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August 20, 2021

Abstract. A memoryless routing algorithm is one in which the decision about the next edge on the
route to a vertex t for a packet currently located at vertex v is made based only on the coordinates of v,
t, and the neighbourhood, N(v), of v. The current paper explores the limitations of such algorithms by
showing that, for any (randomized) memoryless routing algorithm A, there exists a convex subdivision
on which A takes Ω(n2) expected time to route a message between some pair of vertices. Since this
lower bound is matched by a random walk, this result implies that the geometric information available
in convex subdivisions is not helpful for this class of routing algorithms. The current paper also shows
the existence of triangulations for which the Random-Compass algorithm proposed by Bose et al
(2002,2004) requires 2Ω(n) time to route between some pair of vertices.

1 Introduction

In recent years, motivated primarily by the proliferation of wireless networks and GPS devices, much
research has been done on routing algorithms for geometric networks [5]. In this research a network is
modelled as a geometric graph G = (V,E) whose vertex set V is a set of points in R2. We say that a
routing algorithm A works for G if, for any pair of vertices s, t ∈ V , the algorithm always find a path
from s to t in a finite number of steps.

The research on geometric routing algorithms largely focuses on utilizing geometric properties of
a class of geometric graphs to reduce the complexity of, and information required by, routing algorithms.
For example, when G is the unit disk graph1 of the points in V , then an algorithm, called Face-1,
of Bose et al [3] (see also Karp and Kung [6]) works for G and requires no preprocessing of G or
additional state information at the vertices of G and requires only a constant size header associated
with each packet. An extremely general result in this vein, based on logspace construction of universal
exploration sequences, shows that, using a header containing only O(log n) bits, one can visit all the
vertices of any graph (and hence reach t) in a polynomial number of steps [4].

A particularly interesting and restricted class of routing algorithms are so-called memoryless
routing algorithms. A memoryless routing algorithm is one in which the decision about the next edge
on the route to t for a packet currently located at node v is based only on the coordinates of v, t,
and the neighbourhood, N(v), of v. More precisely, a deterministic memoryless routing algorithm is

1The unit disk graph of a point set V contains the edge uv if and only if the Euclidean distance between u and v is at
most 1.
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a function f : R2 × R2 × (R2)+ → R2 that satisfies f(v, t,N(v)) ∈ N(v) and f(t, t,N(t)) = t for all
inputs.

Note that a memoryless routing algorithm makes each routing step without using information
obtained in previous routing steps and without any global information about G. Memoryless algorithms
are different from oblivious routing algorithm [9, Section 4.2] which select a path from s to t having
total knowledge of G (but without knowledge of other source/destination pairs).

Bose and Morin [2] show that if G is Delaunay triangulation2 or a regular triangulation then
deterministic memoryless routing algorithms, named Greedy and Compass, respectively, work for
G. Bose et al [1] subsequently show a stronger result; a deterministic memoryless routing algorithm,
named Greedy-Compass, works for any triangulation G.

Memoryless routing algorithms are so simple, elegant, and practical that researchers have spent
considerable effort designing geometric embeddings of graphs so that memoryless routing algorithms
can be applied to the resulting embeddings. A famous example in this vein is due to Leighton and
Moitra [7] who prove that every 3-connected planar graph G̃ admits an embedding G in R2 such that
Greedy works on G. The combination of the embedding and routing algorithm represents a form of
compact routing [11].

Unfortunately, deterministic memoryless routing algorithms have severe limitations. These
stem from the fact that these algorithms can not visit the same vertex more than once without looping
forever. Bose et al [2, Theorem 2] show that there exists 17 convex subdivisions3, G1, . . . , G17, each
with 17 vertices such that any deterministic memoryless routing algorithm does not work for at least
one of these subdivisions. Thus, convex subdivisions form a class of geometric graphs that are too rich
for deterministic memoryless routing algorithms [1].

The same authors [1, 2] observe that randomization can be used to overcome this limitation.
A randomized memoryless routing algorithm is one in which the decision about the next edge on the
route to t for a packet currently located at node v is based only on v, t, the neighbourhood, N(v), of
v, and a sequence B of fresh random bits. More precisely, a randomized memoryless routing algorithm
is defined by a function f : R2 × R2 × (R2)+ × {0, 1}∞ → R2 that satisfies f(v, t,N(v), B) ∈ N(v)
and f(t, t,N(v), B) = t for all inputs. The final argument B is a sequence of random bits that
are chosen fresh for each step taken by the routing algorithm. Bose et al describe a randomized
memoryless algorithm, named Random-Compass, that uses one random bit per step works for any
convex subdivision. They do not analyze the efficiency of Random-Compass except to note that,
for some convex subdivisions G, and some pairs s, t ∈ V , the expected number of steps taken by
Random-Compass when routing from s to t is Ω(|V |2).

Observe that, by the theory of random walks (c.f. [9, Theorem 6.6]), the expected time required
for a random walk on G to travel from a particular vertex s to a particular vertex t is O(n2). There-
fore, a random walk is at least as efficient, in the worst case, as the Random-Compass algorithm.
Nevertheless, one might expect that Random-Compass is more likely to find short routes, since it
uses geometry to find a route that is specifically directed towards the target vertex t. Thus, we might

2A triangulation is a geometric graph all of whose faces, except the outer face, are triangles, and whose outer face is
the complement of a triangle. Delaunay triangulations and regular triangulations are special types of triangulations. For
details, consult [10].

3A convex subdivision is a geometric graph all of whose faces, except the outer face, are convex polygons, and whose
outer face is the complement of a convex polygon.
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Figure 1: The Random-Compass algorithm chooses the next vertex at random among ccwt(v) and
cwt(v).

intuit that Random-Compass is a heuristic that is usually better than a random walk and never much
worse.

In the current paper, we show that this intuition about Random-Compass could not be further
from the truth. Indeed, for any n > 0, there exists a convex subdivision (in fact, a triangulation) G
with n vertices and having two vertices s and t such that the expected number of steps taken by
Random-Compass when routing from s to t is 2Ω(n). This triangulation has diameter 3.

Next we study whether any randomized memoryless routing algorithm for convex subdivisions
can outperform a random walk. We show that, for any randomized memoryless routing algorithm A
and any n, there exists a convex subdivision G = G(A) = (V,E) of size n and a pair of vertices s, t ∈ V
such that the expected number of steps taken by A when routing from s to t is Ω(n2). Therefore, at
least in the worst-case, no algorithm significantly outperforms a random walk.

2 A Bad Example for Random-Compass

The Random-Compass algorithm works by using a coin toss to select among the (at most two)
neighbours ccwt(v) and cwt(v) of the current node v that make the minimum and maximum angle,
respectively, with the segment vt (see Figure 1.a). When applied on a convex subdivision G = (V,E),
Bose et al show that, in the directed graph G′ that contains the edges (v, cwt(v)) and (v, ccwt(v)) for
all v ∈ V , there exists at least one directed path P (v, t) from every vertex v to t (see Figure 1.b). This,
and Wald’s Equation, immediately imply that the expected time to reach t from any vertex is at most
2n; from any vertex v, Random-Compass has probability at least 1/2|P (v,t)| ≥ 1/2n−1 of reaching t
by following P (v, t), and the expected number of steps it takes on P (v, t) before falling off P (v, t) is at
most 2.

The example in Figure 2 shows that the above analysis of Random-Compass, although very
coarse, is about the best one can do. It shows a geometric graph G whose vertex set has size n = 4k+1
and whose vertices are organized as a central vertex t and four paths leading from the outer face to
t. The space between these paths is triangulated so that, at any point, Random-Compass chooses
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Figure 2: A graph in which Random-Compass has expected running time Ω(2n/4).

between an edge that leads one step closer to t or that returns to the outer face.

If we consider the directed graph G′ defined above, then we see that, at any point the packet
is at some distance i from t and that, it can, with equal probability, move to a vertex of distance i− 1
or move to a vertex (on the outer face) of distance k. If we denote by Ti the expected number of steps
required by Random-Compass to reach t given that it is currently at distance i from t, we see that

Ti =
{

0 for i = 0
(1/2)Ti−1 + (1/2)Tk for i ∈ {1, . . . , k}

Expanding the value of Tk gives

Tk = 1 + (1/2)Tk + (1/2)Tk−1

= 1 + (1/2)Tk + 1/2 + (1/4)Tk + (1/4)Tk−2

= 1 + (1/2)Tk + 1/2 + (1/4)Tk + (1/4) + · · ·+ (1/2k−1) + (1/2k)Tk + (1/2k)T0

= 2− 1/2k + (1− 1/2k)Tk ,

and rewriting this gives Tk = 2k(2− 1/2k) = Ω(2n/4). This proves:

Theorem 1. For any n > 1, there exists a triangulation G having two vertices s and t such that the
expected number of steps taken by Random-Compass when routing from s to t is 2Ω(n).

Note that the base in the exponent can be improved by using a construction with 3 paths
instead of 4. In this case, the lower bound becomes Ω(2n/3). Furthermore, up to a factor of 2, the
lower bound on Theorem 1 holds for all choices of the source vertex s since, for any vertex s 6= t, the
expected time to route from s to t is at least (1/2)Tk.

3 A Lower Bound for Any Algorithm

In this section we develop an Ω(n2) lower bound for routing on convex subdivisions using any random-
ized memoryless routing algorithm A. The outline of the lower bound is as follows: We start with a
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lemma about Markov chains whose transition graphs are paths. We show that, when starting at the
midpoint of the path, there is at most one endpoint of the path that can be reached in subquadratic
expected time. This lemma is relevant since, if A finds itself in the interior of a path of degree 2 vertices
in G, it will behave like such a Markov chain until it reaches one of the endpoints of this path.

Next, we observe how A behaves on certain paths of degree 2 vertices and show that, because A
can only reach one endpoint of any path in subquadratic time, that we can always find a subset of these
paths that can be pieced together to form a convex subdivision in which A takes at least quadratic
expected time to route from some vertex s to some vertex t.

3.1 Markov Chains

Consider a Markov chain on {1, . . . , n}, n > 1, where transitions only take place between neighbors. If
pi,j is the probability of a transition from i to j, then we have

p1,2 = pn,n−1 = 1,

pi,i+1 = 1− pi,i−1 = πi, 2 ≤ i ≤ n− 1,

where π2, . . . , πn−1 are fixed probabilities. The vector of these probabilities is denoted by π. We will set
π1 = 1, πn = 0, to be consistent, as the extreme states are reflecting. When πi = 1/2 for 2 ≤ i ≤ n− 1,
we obtain a standard random walk on a finite interval with reflecting barriers.

We denote the Markov chain by X0, X1, . . . , Xt, . . ., and denote the hitting times by Ti,j :

Ti,j = min{t > 0 : Xt = j|X0 = i}.

For a standard random walk, it is known that

E{Ti,j} = (j − i)2, j 6= i, 1 ≤ j, i ≤ n

[8]. The standard random walk is in fact the best possible chain in the following sense:

Lemma 1. For any vector of probabilities π, and any n > 1,

E{T1,n + Tn,1} ≥ 2(n− 1)2.

Proof. The lemma is obviously true if any πi, 2 ≤ i ≤ n− 1, is either zero or one as that would imply
that at least one of the hitting times is infinite. Thus, we assume that all probabilities are strictly in
(0, 1). It is also trivial if n = 2, so assume n > 2. Define

Pi =
1
πi
− 1, Qi =

1
1− πi

− 1,

and note that PiQi = 1. If needed, we formally set P1 = Qn = 0.

We need an explicit formula for E{T1,1}. Let us introduce the chains on {i, . . . , n} with reflecting
barriers at i and n, but with the same πj values associated with non-terminal states. Let T+

i,j with
j ≥ i, denote the hitting time from i to j in the chain {1, . . . , n} defined this way. Clearly,

T+
n−1,n−1 = 2.

5



Next,

T+
n−2,n−2 = 2 +

∑
j≤Z

Wj ,

where Wj are independent lengths excursions from n−1 to n−1 on the chain {n−1, n}, and Z (possibly
zero) is the number of such excursions. Obviously, Z is geometrically distributed, and E{Z} = Qn−1.
Because E{W1} = E{T+

n−1,n−1} = 2, and because Z is a stopping time, we have, by Wald’s identity,

E{T+
n−2,n−2} = 2 + 2Qn−1.

This argument is easily extended by induction, and we obtain for 1 ≤ i < n− 1,

E{T+
i,i} = 2 +Qi+1E{T+

i+1,i+1} = 2 (1 +Qi+1 +Qi+1Qi+2 + · · ·+Qi+1 · · ·Qn−1) .

By flipping sides, and denoting by T− the hitting times for the Markov chains on {1, . . . i} with reflecting
bariers at 1 and i, we obtain in a similar fashion, for 2 < i ≤ n,

E{T−i,i} = 2 + Pi−1E{T−i−1,i−1} = 2 (1 + Pi−1 + Pi−1Pi−2 + · · ·+ Pi−1 · · ·P2) .

Furthermore, E{T−2,2} = 2.

With these calculations out of the way, we note that

E{Ti,i+1} = 1 + Pi × E{T−i,i} ,

and

E{Ti,i−1} = 1 +Qi × E{T+
i,i} .

6



Clearly,

E{T1,n + Tn,1}

=
n−1∑
i=1

E{Ti,i+1}+
n∑

i=2

E{Ti,i−1}

= 2(n− 1) + 2
n−1∑
i=2

(Pi + PiPi−1 + · · ·+ Pi · · ·P2) + 2
n∑

i=2

(Qi +QiQi+1 + · · ·+Qi · · ·Qn−1)

= 2(n− 1) + 2
n−1∑
i=2

i∑
j=2

i∏
k=j

Pk + 2
n∑

i=2

n−1∑
j=i

j∏
k=i

Qk

= 2(n− 1) + 2
n−1∑
i=2

i∑
j=2

i∏
k=j

Pk + 2
n∑

j=2

n−1∑
i=j

i∏
k=j

Qk

= 2(n− 1) + 2
n−1∑
i=2

i∑
j=2

i∏
k=j

Pk + 2
n−1∑
i=2

i∑
j=2

i∏
k=j

Qk

= 2(n− 1) + 2
n−1∑
i=2

i∑
j=2

 i∏
k=j

Pk +
i∏

k=j

Qk


≥ 2(n− 1) + 4

n−1∑
i=2

i∑
j=2

√√√√ i∏
k=j

Pk ×
i∏

k=j

Qk

(by the arithmetic-geometric mean ineqality)

= 2(n− 1) + 4
n−1∑
i=2

i∑
j=2

1

(since PiQi = 1 for all i in our range)

= 2(n− 1) + 4
n−1∑
i=1

(i− 1)

= 2(n− 1) + 2n(n− 1)− 4(n− 1)

= 2(n− 1)2,

which concludes the proof.

Next we present a simple corollary of Lemma 1 that is used in our lower bound.

Corollary 1. Consider a random walk with reflecting barriers on {−n, . . . , n}, n > 0. In this chain,

max (E{T0,n},E{T0,−n}) ≥
2
3
n2.

Proof. We prove this by contradiction. Set c = 2/3. Assume that

max (E{T0,n},E{T0,−n}) < cn2.

By Theorem 1,
E{T0,n}+ E{Tn,0} ≥ 2n2,
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Figure 3: The chains A and B.

and
E{T0,−n}+ E{T−n,0} ≥ 2n2.

Observe for this that 0 is not a reflecting barrier, but this makes E{T0,n} only larger, so Theorem 1
does indeed apply. By our assumption, we thus have

min (E{Tn,0},E{T−n,0}) > (2− c)n2.

Let T be the cover time, i.e., the time to visit all states starting from state 0. It is easy to see that

T0,n + T0,−n > T = max (T0,n, T0,−n) = T0,S + TS,−S ,

where S ∈ {n,−n} is the first of the two end states reached by the Markov chain. If we condition on
the history up to T0,S , we see that

E{TS,−S} ≥ min (E{Tn,0},E{T−n,0}) > (2− c)n2.

Thus,

max (E{T0,n},E{T0,−n}) ≥
1
2

(E{T0,n}+ E{T0,−n}) ≥
1
2

E {max (T0,n, T0,−n)} =
1
2

E{T} > (1−c/2)n2,

which contradicts our assumption.

3.2 The Lower Bound

Let A be a randomized memoryless routing algorithm. Let k be an even integer, let t be the origin, and
let A = a1, . . . ak be a path of k collinear vertices such that ak is closer to t than any of a1, . . . , ak−1

and the three points a1, ak, t make a left turn with ∠a1akt greater than 150◦ degrees but less than 180◦

(see Figure 3.a). Let B = b1, . . . , bk be the reflection of A through the line parallel to A that contains t
(see Figure 3.b). Let A(α), respectively, B(α), denote the path A, respectively, B, rotated by an angle
of α about the origin, t.

Define the color of a path A(α) = a′1, . . . , a
′
k as follows: Imagine running A on the graph

consisting of A′ and the isolated vertex t, starting at a′k/2. If A takes Ω(k2) expected time to reach a′k

8
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Figure 4: Two blue chains A(α) and B(α).
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Figure 5: Two red chains A(α) and B(180 + α).

then color A(α) blue, otherwise color A(α) red. Note that Corollary 1 implies that, if A(α) is red, then
A takes Ω(k2) expected time to reach a1 starting at ak/2.

Intuitively, a path is red (getting hotter — closer to t) if A could move quickly from ak/2 to ak.
A path is blue (getting cooler — further from t) if A could move quickly to a1. Define the color (red
or blue) of a path B(α) in the same way.

Lemma 2. If there exists α such that A(α) and B(α) are both blue, then there exists a convex subdi-
vision G = (V,E) with |V | = 2k + 1 with vertices s, t ∈ V such that A takes Ω(k2) steps when routing
from s to t.

Proof. Let A′ = A(α) = a′1, . . . , a
′
k and B′ = B(α) = b′1, . . . , b

′
k. The convex subdivision G consists

of A′ and B′ as well as the edges a′1b
′
1, a′kt and b′kt (see Figure 4). Since A(α) and B(α) both blue,

applying A to route from a′k/2 to t will require Ω(k2) expected steps.

Lemma 3. If there exists α such that A(α) and B(180 + α) are both red, then there exists a convex
subdivision G = (V,E) with |V | = 2k + 1 with vertices s, t ∈ V such that A takes Ω(k2) steps when
routing from s to t.

Proof. Let A′ = A(α) = a′1, . . . , a
′
k and B′ = B(180 + α) = b′1, . . . , b

′
k. The convex subdivision G

consists of A′ and B′ as well as the edges a′kb
′
k, a′1t and b′1t (see Figure 5). Since A(α) and B(180 + α)

are red, applying A to route from a′k/2 to t will require Ω(k2) expected steps.

Theorem 2. For any integer k > 0 and any memoryless routing algorithm A, there exists a convex
subdivision G = (V,E) with |V | = Θ(k) having vertices s, t ∈ V such that A takes Ω(k2) steps when
routing from s to t.

Proof. If either of Lemma 2 or Lemma 3 apply to A then the proof is complete. Otherwise, observe
that the exclusion of these two lemmata implies that, for any α, at least one of A(α) and B(α) is blue.
To see this, note that if A(α) is red, then (the exclusion of) Lemma 3 implies that B(α+ 180) is blue,
so (the exclusion of) Lemma 2 implies that A(α + 180) is red, so (the exclusion of) Lemma 3 implies
that B(α) is blue.
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Therefore, there exists 3 blue chains X = x1, . . . , xk, Y = y1, . . . , yk, and Z = z1, . . . , zk where
X ∈ {A(0), B(0)}, Y ∈ {A(120), B(120)} and Z ∈ {A(240), B(240)}. We can then take G to be the
graph containing X, Y , and Z, as well as the edges x1y1, y1z1, z1x1, xkyk, ykzk, zkxk, xkt, ykt, zkt
(see Figure 6). Because X, Y , and Z are all blue, the expected number of steps required to route from
xk/2 to t using A is Ω(k2).

X

Y

Z
t

xa
k

za
k

ya
k

zb
k

xb
k

yb
k

zb
1

xb
1

yb
1

ya
1

za
1

xa
1

Figure 6: Three blue chains

All that remains is to verify that G is indeed a convex subdivision. This is readily established
using the fact that the angles ∠x1xkt, ∠y1ykt, and ∠z1zkt, are all between 150 and 180 degrees.

4 Conclusions

We have shown that the Random-Compass algorithm takes exponential expected time to route
on some convex subdivisions and that any randomized memoryless routing algorithm takes at least
quadratic time to route on some convex subdivisions. We conclude with two open problems:

Open Problem 1. The current upper bound for the expected time required by Random-Compass on
convex subdivisions is O(2n) and the lower bound is Ω(2n/3). Close this gap.

Open Problem 2. A random walk on G routes any message in O(n2) expected time but requires
O(log d) random bits when located at a vertex of degree d. Is there a randomized memoryless routing
algorithm for routing on convex subdivisions that uses O(1) random bits per step and that routes any
message in O(n2) expected time?
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