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Abstract

A grid drawing of a graph maps vertices to grid points and edges to line
segments that avoid grid points representing other vertices. We show that
there is a number of grid points that some line segment of an arbitrary
grid drawing must intersect. This number is closely connected to the
chromatic number. Second, we study how many columns we need to draw
a graph in the grid, introducing some new NP-complete problems. Finally,
we show that any planar graph has a planar grid drawing where every line
segment contains exactly two grid points. This result proves conjectures
asked by David Flores-Peñaloza and Francisco Javier Zaragoza Martinez.

1 Introduction
Let G = (V,E) be a simple, undirected and finite graph. A k-coloring of G
is a function f :V → C for some set C of k colors such that f (u) 6= f (v) for
every edge uv ∈ E. If such k-coloring of G exists, then G is k-colorable. The
chromatic number χ (G) of G is the least k such that G is k-colorable.

For integer d ≥ 2, a column in the grid Zd with rank (x1, . . . , xd−1) ∈ Zd−1 is
the set {(x1, . . . , xd−1, x) | x ∈ Z}. Let xy denote the closed line segment joining
two grid points x, y ∈ Zd. The line segment xy is primitive if xy ∩Zd = {x, y} .

Definition 1. A grid drawing φ (G) of G in Zd is an injective mapping φ:V →
Zd such that, for every edge uv ∈ E and vertex w ∈ V , φ (w) ∈ φ (u)φ (v)
implies that w = u or w = v.
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2 Complexity of the Grid Drawings
A graph G is said to be (grid) locatable in Zd if there exists a grid drawing of G
in Zd where every edge is represented by primitive line segment (such drawing
is also called primitive). Finding a primitive grid drawing of G is called locating
the graph G. David Flores-Peñaloza and Francisco Javier Zaragoza Martinez
showed [11] the following characterization:

Theorem 2 ([11]). A graph G is locatable in Z2 if and only if G is 4-colorable.

Therefore not all graphs are locatable and every (two-dimensional) grid
drawing of any k-colorable graph, where k > 4, contains a line segment which
intersects at least three grid points. This led us to a generalization of the con-
cept of locatability. Let the number gp (φ (G)) denote the maximal number of
grid points any line segment of a grid drawing φ (G) intersects.

Definition 3. A graph G is (grid) q-locatable in Zd, for some integer q ≥ 2, if
there exists a grid drawing φ (G) in Zd such that gp (φ (G)) ≤ q.

Figure 1: Some grid drawings

The complexity of grid drawings of a graph G is understood as the minimum
of gp (φ (G)) among all grid drawings φ (G). For example, the graph K5 has
chromatic number five, thus it is not (two-)locatable. However the grid drawing
in Figure 1 shows thatK5 is three-locatable (the third grid point on line segment
is denoted by an empty circle). The main result of this section is a stronger
version of Theorem 2.

Theorem 4. For integers d, q ≥ 2, a graph G is qd-colorable if and only if G
is q-locatable in Zd.

We split the proof of this theorem into two parts. First, we show the easier
implication and then, after some auxiliary constructions, we give a proof of the
reverse implication.
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Lemma 5. For integers d, q ≥ 2, if the graph G is q-locatable in Zd, then it is
qd-colorable.

Proof. A trivial but useful observation (see [1] for example) is that the line
segment ab between the grid points a, b ∈ Zd intersects exactly the grid points
of the form (

a1 + i
b1 − a1

α
, . . . , ad + i

bd − ad
α

)
where 0 ≤ i ≤ α and α = gcd (|a1 − b1|, . . . , |ad − bd|). Let φ (G) be a grid
drawing of the graph G = (V,E) in Zd having gp (φ (G)) ≤ q. Consider the
function f :Zd → Zd

q denoted as

f (x1, . . . , xd) = (x1 (modq) , . . . , xd (modq))

We use f as coloring of the grid with qd colors and we show that it is also a
proper vertex coloring of G. Assume to the contrary that f (φ (u)) = f (φ (v))
for some uv ∈ E. Then u1 ≡ v1, . . . , ud ≡ vd (modq) which implies

gcd (|u1 − v1|, . . . , |ud − vd|) ≥ q

According to our observation, there are at least q + 1 grid points lying on the
line segment φ (u)φ (v). This contradicts the fact that G is q-locatable via the
drawing φ (G).

Thus it remains to show the implication in the opposite direction. The main
idea is to find a subset of Zd which we can use for a convenient grid drawing of
every qd-colorable graph.

Assume that the dimension d is fixed and let p be a prime number. We
define Vp,1 as the sequence {xi}p

d−1
i=0 such that each xi is from the set Zd

p and no
two terms are equal. This definition is correct as we can always find p distinct
residues modulo p and, naturally, there are pd distinct d-tuples of these residues.
Now we define Vp,e for e ≥ 2 inductively. Assume as induction hypothesis that
we have already set Vp,e−1. Now we place Vp,e as a chain of pd copies of Vp,e−1.
Then we change the terms on the positions

i+ pd(e−1), . . . , i+
(
pd − 1

)
pd(e−1)

for every i ∈
{

0, 1, . . . , pd(e−1) − 1
}
in such way that the new terms are numbers

from Zpe congruent to their predecessors modulo pe and no two terms in Vp,e
are equal. For each element of Zd

pe−1 there are pd congruent elements from Zd
pe

modulo pe−1 and one of them is on the i-th position of Vp,e. Thus the definition
of Vp,e is, again, correct.

Continual repeating of the copies of Vp,e gives us the infinite sequence Sp,e.
We denote the i-th term of Sp,e as Sp,e[i] and the distance of two terms Sp,e[i]
and Sp,e[j] is given by |i− j|. The following lemma shows an important feature
of these sequences.
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Lemma 6. Let p be prime number and e positive integer. Then two terms of
Sp,e are equal if and only if pde divides their distance.

Proof. Suppose that our terms are on positions i and j. The case i = j is
apparent, thus we can assume i 6= j. From the definition two distinct terms
equal if and only if both are in different copies of Vp,e, but on the same position
in Vp,e. The length of Vp,e is exactly pde, so the distance between Sp,e[i] and
Sp,e[j] is a multiple of pde.

Given a number s, we set f (p) as min
{
e ∈ N | pde ≥ s

}
for every prime

number p < s. Now, for every i, where 0 ≤ i ≤ s − 1, we choose a distinct
column of Zd such that for every prime number p < s the rank of this column
is congruent to the first d− 1 elements of the d-tuple Sp,e[i] modulo pf(p). We
label the chosen columns as W0,s,W1,s, . . . ,Ws−1,s. In every column Wi,s we
keep only the points with their last coordinate congruent to the last element of
Sp,e[i] modulo pf(p), again for every p < s. Finally we set Ws =

⋃s−1
i=0 Wi,s.

Let us mention the last technical remark. If there is a prime p ≥ s such
that ranks of two or more columns from Ws are congruent modulo p, then we
assign distinct residues modulo p to these columns. Subsequently, we keep only
the points with their last coordinate congruent to the assigned residue modulo
p in each one of these columns. This method is correct, because the number
of possible residues is at least s, thus every column can get an unique residue.
According to the Chinese Remainder Theorem, every column ofWs still contains
infinitely many points.

Example Assume we want to build W9 in two-dimensional case. For s = 9, we
have to define the sequences S2,2, S3,1, S5,1 and S7,1, as 24, 32, 52, 72 ≥ 9. No
other sequences are required, because 9 ≤ p for every other prime number p.

S2,2 = (0, 0) , (0, 1) , (1, 0) , (1, 1) , (0, 2) , (0, 3) , (1, 2) , (1, 3) , (2, 0) , . . .
S3,1 = (0, 0) , (0, 1) , (0, 2) , (1, 0) , (1, 1) , (1, 2) , (2, 0) , (2, 1) , (2, 2) , . . .
S5,1 = (0, 0) , (0, 1) , (0, 2) , (0, 3) , (0, 4) , (1, 0) , (1, 1) , (1, 2) , (1, 3) , . . .
S7,1 = (0, 0) , (0, 1) , (0, 2) , (0, 3) , (0, 4) , (0, 5) , (0, 6) , (1, 0) , (1, 1) , . . .

Then we can get the set W9 as a union of the following columns:

W0,9 =
{

(0, x) ∈ Z2 | x ≡ 0 (mod4) , 0 (mod3) , 0 (mod5) , 0 (mod7)
}

W1,9 =
{

(420, x) ∈ Z2 | x ≡ 1 (mod4) , 1 (mod3) , 1 (mod5) , 1 (mod7)
}

W2,9 =
{

(105, x) ∈ Z2 | x ≡ 0 (mod4) , 2 (mod3) , 2 (mod5) , 2 (mod7)
}

W3,9 =
{

(385, x) ∈ Z2 | x ≡ 1 (mod4) , 0 (mod3) , 3 (mod5) , 3 (mod7)
}

W4,9 =
{

(280, x) ∈ Z2 | x ≡ 2 (mod4) , 1 (mod3) , 4 (mod5) , 4 (mod7)
}

W5,9 =
{

(196, x) ∈ Z2 | x ≡ 3 (mod4) , 2 (mod3) , 0 (mod5) , 5 (mod7)
}

W6,9 =
{

(161, x) ∈ Z2 | x ≡ 2 (mod4) , 0 (mod3) , 1 (mod5) , 6 (mod7)
}

W7,9 =
{

(281, x) ∈ Z2 | x ≡ 3 (mod4) , 1 (mod3) , 2 (mod5) , 0 (mod7)
}

W8,9 =
{

(386, x) ∈ Z2 | x ≡ 0 (mod4) , 2 (mod3) , 3 (mod5) , 1 (mod7)
}
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In the last step we ensure possible occurrences of prime numbers p ≥ s in
decompositions of differences of ranks. For example, prime number 23 divides
the difference of ranks 0 and 161. But, if we can keep only the points (0, x) ∈
W0,9 and the points (0, y) ∈W6,9 such that x and y are not congruent modulo 23,
then 23 does not divide gcd (|a1 − b1|, |a2 − b2|) for any a ∈W0,9 and b ∈W6,9.

The construction of the set Ws is not easy to describe, but it has nice prop-
erties that allow us to prove the crucial lemma in the proof of Theorem 4.

Lemma 7. Let s be d-th power of integer q ≥ 2. Let a = (a1, . . . , ad), b =
(b1, . . . , bd) be grid points located in distinct columns of the set Ws. Then

gcd (|a1 − b1| , . . . , |ad − bd|) ≤ d
√
s− 1

Proof. Let α denote the greatest common divisor in the statement. Assume that
the grid point a is in the column Wx,s and the grid point b in the column Wy,s,
0 ≤ x, y ≤ s−1 and x 6= y. The last remark in the construction ofWs guarantee
that no prime number larger than s−1 divides α. Also, for every e ∈ N and prime
number p, the power pe divides α if and only if Sp,e[x] = Sp,e[y]. Because pe | α
implies that each coordinate of a is congruent to each coordinate of b modulo pe
and these coordinates are congruent to the d-tuples Sp,e[x] and Sp,e[y] modulo
pe. Thus pe does not divide α for e ≥ f (p). Otherwise Sp,f(p)[x] = Sp,f(p)[y]

and, according to Lemma 6, the distance |x− y| between them is at least pdf(p),
which is at least s. But this contradicts the inequality 0 ≤ x, y ≤ s− 1.

So we can assume that α =
∏k

i=1 p
ei
i where pi are prime numbers and 1 ≤

ei ≤ f (pi)− 1. Then

αd =

k∏
i=1

pdeii ≤ s− 1

holds. Because the expression of α implies that Spi,ei [x] = Spi,ei [y] and, again,
we get pdeii | |x− y| for every i ∈ {1, 2, . . . , k}. Thus αd ≤ |x− y| ≤ s− 1.

We know that s is d-th power of some integer q ≥ 2 and we just showed
that αd is smaller d-th power than s. Thus αd ≤ (q − 1)

d. But this gives us the
required inequality, as (q − 1) ≤ d

√
qd − 1 holds trivially.

Now we can finally prove Theorem 4.

Proof of Theorem 4. The first implication is proven in Lemma 5, so assume that
G is a qd-colorable graph, q ≥ 2. We need to find a grid drawing of G such that
at most q grid points lie on any of its line segments. It suffices to show how to
find such drawing for complete qd-partite graph Kn,...,n and arbitrary n ∈ N,
because every qd-colorable graph on n vertices is its subgraph. We consider the
set Ws for s = qd and we keep only the first n vertices of its first two columns.
Then for every i, 2 ≤ i ≤ s − 1, we keep the first n points in the column Wi,s

such that all points in previous columns are visible from any of these points
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(with respect to other columns). These points in Wi,s exist, because, unlike
Wi,s, the previous columns are finite sets.

Afterwards we obtain the set Ws (n) ⊂ Ws such that Kn,...,n is isomorphic
to the visibility graph υ (Ws (n)) and, according to Lemma 7, no line segment
contains more then q grid points. Therefore we get suitable grid drawing of G
and the second implication is proven.

Note that the proof is constructive and we can find an appropriate grid
drawing in time O (|V |) for a given coloring of G.

Corollary 8. A graph is 2d-colorable if and only if is locatable in Zd, for d ≥ 2.

Corollary 9. For given d, q ≥ 2, it is NP-complete to decide whether or not a
graph G is q-locatable in Zd.

Proof. Clearly, the problem belongs to NP. Theorem 4 shows a reduction of
the colorability problem, which asks “Does G admit a proper vertex coloring
with qd colors?”, to our problem. We can also ensure that the reduction is
polynomial.

3 Compactness
Our main concern in this section is how to draw a graph on the bounded number
of columns in a grid. There is no loss of generality in assuming that the grid is
two-dimensional. Because if we can find a grid drawing φ (G) in Zd, d > 2, on
l columns, then we can transfer this drawing on l columns in Z2. We just take
each column of the original grid drawing and transfer its points to an arbitrary
free column in the plane. Then we might have to shift some columns higher
so that no point representing vertex lies on nonadjacent line segment. This is
always possible as the number of vertices in G is finite. By the same trick, we
can also assume that there is no unused column between two columns in our
drawing. If l is the minimal number of columns on which G can be drawn, then
we say that this grid drawing of G is compact.

It is easy to see that if there is a grid drawing on l ≥ 2 columns for a
graph G, then G is l-locatable (in the plane), because the differences of column
ranks from such grid drawing are always lower then l and we can move the
adjacent points of the same column such that the line segment between them is
primitive. The implication in the reverse direction does not hold as the graph
K7 is, according to Theorem 4, three-locatable, but it cannot be drawn on three
columns, because the last vertex with any other two vertices induces C3. Thus
compactness is not the locatability in disguise. Suppose G is l-locatable, then
we know it is l2-colorable. In such case G is embeddable on l2 columns, because
the vertices of each color can use one column. Thus we have:

Corollary 10. A graph G is embeddable on at most χ (G) columns.

However none of the shown bounds is tight, because there is, for example, a
locatable graph with a compact grid drawing on three columns. See Figure 2.
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Figure 2: A locatable graph with a compact grid drawing on three columns

The next simple observation characterizes which graphs are embeddable on
l columns in the terms of the graph theory.

Observation 11. A graph G = (V,E) is embeddable on l columns if and only
if V can be partitioned into V1, V2, . . . , Vl such that each induced subgraph G [Vi]
is isomorphic to a disjoint union of paths.

Proof. In the grid drawing of G on l columns, the vertices represented by points
of a single column define a set Vi. On the other hand, if we have a partition
V1, V2, . . . , Vl of V , then each G [Vi] can be drawn on a single column and we can
always shift the vertices in such way that the visibility of representing points is
guaranteed.

Thus embedding of a graph on few columns is equivalent with a special
variant of defective coloring. That is, an improper vertex coloring in which
every color class induces a cycle-free subgraph of maximum degree at most two
(that is a linear forest). We call these color classes path-colors for short. Also
note that the case l = 1 is not difficult, because a graph that is embeddable on
a single column is a disjoint union of paths and this can be determined in linear
time.

If we restrict our attention to only primitive grid drawings, then the situa-
tion changes rapidly. According to Theorem 4, only four-colorable graphs have
primitive grid drawings in the plane. Also we know, according to Corollary 8,
that we have to proceed to grid drawings in higher dimensions if we want to
obtain primitive grid drawings of graphs with larger chromatic number. The
minimum dimension of grid on which a graph G can be located is dlog2 (χ (G))e
and this is the dimension we factor in for G. Despite the fact that the situation
with primitive grid drawings is quite different, Theorem 4 gives us the same
upper bound on the minimal number of columns.

Corollary 12. A graph G can be located on at most χ (G) columns in Zd.

However this bound is not tight even in the current case. For example,
the graph K5 cannot be located in Z2 as its chromatic number is five, but it
can be located on three columns in Z3. Note that this number of columns is
minimum, because three vertices on a single column induce a 3-cycle. Thus
compact primitive grid drawing of K5 is on three columns in Z3.

In the previous section we assume that the set of columns in a compact
grid drawing does not contain any holes. That is, there are no unused columns
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between two columns of this grid drawing. But now we cannot modify a prim-
itive grid drawing by the same trick as before, because shifted line segments
could intersect more grid points and the drawing would not be primitive then.
Thus it could happen that some primitive grid drawings on minimal number of
columns are necessarily vast and sparse. Luckily, the following theorem shows
that there are primitive grid drawings with minimal number of columns which
take up little space. It also gives us a characterization of locating similar to
Observation 11.

Theorem 13. For a graph G = (V,E), integers d ≥ 2 and l, 2d−1 < l ≤ 2d,
the following statements are equivalent:

1. G can be located on l columns in Zd,

2. V can be partitioned into V1, V2, . . . , Vl such that 2d − l induced subgraphs
G [Vi] induce a disjoint union of paths and the rest induces independent
sets.

Note that the dimension of a grid is minimum for such choice of l, according
to Corollary 8. Also an independent set is a disjoint union of paths as well, thus
the statement says that there are at most 2d − l induced subgraphs G [Vi] that
induce a disjoint union of paths.

Proof. Suppose that G is located on l columns in Zd. We construct a congruence
graph C on the set of column ranks of such primitive grid drawing. Every
vertex of this graph corresponds to an unique column rank and two vertices are
adjacent if the corresponding ranks are congruent modulo two. The graph C is
a disjoint union of complete graphs, because congruence is equivalence relation.
All points in the columns with ranks which lie in the same connected component
of C can be colored with two colors and each such color induces an independent
set. Because if we color the points with the odd last coordinate white and the
points with the even last coordinate black, then no two monochromatic points
can share an edge. Since such ranks are congruent modulo two, then the line
segment joining two adjacent monochromatic points would not be primitive.
But this would be a contradiction, since the whole grid drawing is primitive.
Thus we can use two colors in each clique in C which contains at least two
vertices.

Now we show by induction on l that l colors is sufficient and that there
are at most 2d − l colors that induce a disjoint union of paths. Consider the
case when l = 2d−1 + 1. Then the congruence graph cannot contain more than
2d−1 − 1 isolated vertices, because the maximal number of possible values of
ranks modulo two is 2d−1 < l. In such case we color the points of column,
whose rank corresponds to an isolated vertex in C, with a single color. These
colors induce disjoint unions of paths. Then we color the points in all columns
with ranks congruent modulo two with only two colors (as we showed before).
Then the condition holds, because 2d − l = 2d −

(
2d−1 + 1

)
= 2d−1 − 1 = l− 2.

Let us assume that this initial graph contains all isolated vertices of the final
congruence graph C. Now suppose that our C contains l vertices and we know
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from the induction hypothesis that the condition holds for congruence graphs
on l−1 vertices. We get the graph C by joining one vertex u to such congruence
graph. Due to the choice of initial graph, we know that u is not isolated in C.
If we join u to some clique with at least two vertices, then we color the points of
a corresponding column with the two colors of this clique. One color for points
in even height, the other one for points in odd length. If 2d − l drops bellow
the number of colors which induce a disjoint union of paths, then we choose an
isolated vertex whose column is monochromatic and color its points with two
colors. One color is the original one, the other is new for u. If we join the new
vertex u to an isolated vertex v, then there are two possibilities. If the points
of the column with rank v are colored with a single color, then we color points
in the columns with ranks u and v using two colors. One is new for u, the other
is original. If points of the column with rank v are bi-chromatic, then we color
points in both columns with these two colors and alternatively correct the case
of low 2d − l as before.

Now we prove the reverse implication. Let V1, V2, . . . , Vl be the partition of
V in the second statement. Consider the set{

(r1, r2, . . . , rd−1) ∈ Zd−1 | r1 ∈ Z4, ri ∈ Z2

}
The last d− 2 coordinates r2, r3, . . . , rd−1 determine the set{

(r1, r2, . . . , rd−1) ∈ Zd−1 | r1 ∈ Z4

}
We mark it as Gr2,...,rd−1

and its elements as gi,r2,...,rd−1
= (i, r2, . . . , rd−1), for

i = 0, 1, 2, 3. For d = 2, there is only one such G = {0, 1, 2, 3}. Now we show
a simple algorithm how to locate G on columns with ranks from this set. We
repeat the following steps until there is no set of vertices left in our partition.

1. Take Gr2,...,rd−1
that has not been chosen yet.

2. If there are two sets Vi, Vj such that G [Vi], G [Vj ] are linear forests and
there is no set which induces an independent set, then map the vertices
from Vi to points of column with rank g0,r2,...,rd−1

and the vertices from
Vj to points of column with rank g1,r2,...,rd−1

.

3. If there is Vi such that G [Vi] induce a linear forest and two sets Vj , Vk
which induce independent sets, then map the vertices of Vi on the column
with rank g1,r2,...,rd−1

. Also, map the vertices of Vj to points of column
with rank g0,r2,...,rd−1

that have even d-th coordinate and map the ver-
tices of Vk to points of column with rank g2,r2,...,rd−1

that have odd d-th
coordinate.

4. If there is no such Vi, then take four (or two, if there are not that many)
sets from the partition. Let these sets be Vi, Vj , Vk and Vm. Every one
of them induces an independent set. Map Vi to points of column with
rank g0,r2,...,rd−1

that have even d-th coordinate divisible by three and Vj
to points of column with rank g1,r2,...,rd−1

that have even d-th coordinate
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too. Then, map Vk to points of column with rank g2,r2,...,rd−1
that have

odd last coordinate and Vm to points of column with rank g3,r2,...,rd−1
that

have odd last coordinate which is not divisible by three.

5. Remove chosen sets of vertices from the partition.

Note that the total number of sets in the partition which induce independent
set is even, because this number equals l−

(
2d − l

)
= 2l−2d. Thus if there is at

least one such set in any step of the algorithm, then there is also another one,
because we remove these sets by two or four.

The maximum number of steps is 2d−2, because it is also the number of sets
Gr2,...,rd−1

. We show that this number is sufficient. First, notice that for each Vi,
that induces a linear forest, we lower l by one (if we start with empty partition
and l = 2d). Thus we can pair such Vi with unique empty set of vertices and
we obtain 2d sets of vertices such that some of them induce a disjoint union of
paths, some an independent set and some are empty. Each step of the algorithm
takes four of these sets and locates their vertices. Thus we can locate all these
2d = 4 · 2d−2 sets within 2d−2 steps.

It is not difficult to see that the obtained grid drawing is primitive as the
only possible occurrence of non-primitive line segment is between columns from
the same set Gr2,...,rd−1

. But we mapped the vertices such that no line can
intersect more than two grid points.

The proof of the previous theorem shows how to relocate a primitive grid
drawing of G on minimal number of columns, such that the new grid drawing
is still primitive and it also requires small part of the grid (the first d − 1
coordinates are constant). We also obtained relation between compact and
primitive compact grid drawings.

Corollary 14. Every graph with a grid drawing on l columns has a primitive
grid drawing on k columns in Zd where l ≤ k ≤ 2l − 2d−1 and d is an integer
such that 2d−1 + 1 ≤ l ≤ 2d.

Proof. The lower bound on k is immediate. To show the upper bound we just
combine Observation 11 and Theorem 13. It suffices to split each of l − 2d−1

path-colors into two normal colors. Then the final number of columns is

l − (l − 2d−1) + 2(l − 2d−1) = 2l − 2d−1.

We can also characterize graphs which can be located on less than 2d−1 + 1
columns.

Observation 15. For a graph G = (V,E) and integers d ≥ 2 and l, 1 ≤ l ≤
2d−1, the following statements are equivalent:

1. G can be located on l columns in Zd,
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2. G is embeddable on l columns (in Z2).

Proof. Let G is located on 2d−1 columns in Zd. Then we can take each column
of this primitive grid drawing and arrange them in a consecutive order in the
plane. Then we might have to shift some columns higher to satisfy the condition
on mutual visibility with respect to points representing vertices. On the other
hand, if there is a grid drawing of G on 2d−1 columns in the plane, then we take
each column of this drawing and copy it on an unique point from the set

{(r1, . . . , rd−1) | 0 ≤ xi ≤ 1} ⊂ Zd−1

This observation is somehow intuitive as every grid drawing on two columns
is primitive. However, we know, according to Theorem 13, that for a larger
number of columns this does not hold and locating becomes more restrictive
than drawing.

Although we show that locating the graph on bounded number of columns
is NP-complete in the following section, there are special classes of graphs for
which we can find suitable estimations. The following theorem gives bounds
that depend on the maximum degree of a graph. In order to show this, we need
an auxiliary lemma proven by László Lovász.

Lemma 16 ([10]). Let G = (V,E) be a graph and let k1, k2, . . . , km be nonnega-
tive integers with k1 +k2 + . . .+km ≥ ∆ (G)−m+1. Then V can be partitioned
into V1, V2, . . . , Vm so that ∆ (G [Vi]) ≤ ki, for all i ∈ [m].

Theorem 17. Let G = (V,E) be a graph with ∆ (G) ≤ 2d+1 − 1, for d ∈ N.
Then G can be located on 2d columns in Zd+1.

Proof. According to Proposition 15, it suffices to prove that G is embeddable on
2d columns in the plane. To prove this we apply Observation 11. So eventually,
we show by induction on d that the assumption in our theorem implies that V
can be partitioned into V1, V2, . . . , V2d such that every induced subgraph G [Vi]
is isomorphic to a linear forest. As the basis of the induction we use the proof
of a weaker theorem proven in [8].

For d = 1, the graph G is either a complete graph on four vertices or,
according to Brooks’ theorem, G can be colored with three colors. We know
that the graph K4 can be drawn on two columns, so the statement holds in the
first case. In the second case, the vertices of G can be partitioned into three
color classes C1, C2 and C3 (we label the colors as c1, c2 and c3). Consider
the induced subgraph G [C1 ∪ C2]. If there is a vertex of degree three, then
we color it with the color c3. Thus we ensured that ∆ (G [C1 ∪ C2]) ≤ 2. If
there is a cycle left, then we choose its arbitrary vertex and color it with the
new color c4. Afterwards, the graph G [C1 ∪ C2] is isomorphic to a linear forest,
but there might be a vertex of degree three in the graph G [C3 ∪ C4]. If there
is such vertex, then we color it to c1. After that, the graphs G [C1 ∪ C2] and
G [C3 ∪ C4] are both linear forests.
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Now we do the inductive step. Let the maximal degree of G is at most
2d+1−1. Then, according to Lemma 16, V can be partitioned into V1 and V2 such
that G [V1] ≤ 2d − 1 and G [V2] ≤ 2d − 1, if we set m = 2 and k1 = k2 = 2d − 1.
It follows from the inductive step that the vertices of each of the graphs G [V1],
G [V2] can be partitioned into 2d−1 required sets. Together these partitions give
the partition of V into 2d−1 + 2d−1 = 2d sets.

Note that the reverse implication does not hold, as every star graph can be
located on two columns in the plane and its maximal degree does not have to
be bounded.

4 Mixed Colorings
We saw that drawing/locating of a graph with bounded number of columns is
related to a special form of defective coloring where every color class induces
either an independent set or a linear forest. Such coloring is called mixed and
we use it later to prove NP-completeness of a problem of deciding whether a
graph can be drawn/located on l ≥ 2 columns.

Coloring of G with only path colors is called path coloring and, on the other
hand, coloring with only normal colors is called normal coloring. If we can color
a graph G with a normal colors and b path colors, then we say that G is (a, b)-
colorable. The class of all (a, b)-colorable graphs is denoted as Ga,b and it is
referred as a mixed coloring type.

Then we see that Ga,b ⊇ Gc,d if and only if there is a sequence {Gai,bi}ni=1
such that a1 = a, b1 = b, an = c , bn = d and for every i ∈ {1, . . . , n− 1} it
holds that ai+1 = ai + 2, bi+1 = bi − 1 or ai+1 = ai − 1, bi+1 = bi + 1. That
is, there is a sequence of steps where every step corresponds to a substitution
of one path color by two normal colors or one normal by one path color.

We can consider the partially ordered set of the set of all mixed coloring types
ordered by inclusion. The picture bellow shows the modified Hasse diagram of
this POSET where the inclusion corresponds to an oriented path between two
types. The inclusion is not total order in this case as there are incomparable
elements.

According to Observation 11, the mixed coloring types which are drawn
in the common grey site are classes of graphs that can be drawn on the same
number of columns. Similarly, the mixed coloring types denoted as black vertices
correspond to the graph classes from Theorem 13.

The Four Color Theorem implies that every planar graph is (4, 0)-colorable
and Wayne Goddard [6] showed that it is also (0, 3)-colorable. Thus we get the
following corollary.

Corollary 18. Every planar graph can be drawn on three columns.

Cáceres et. al. [8] showed that every outerplanar graph can be drawn (and
located) on two columns. In the same paper there is introduced an example of a
planar graph which is not (2, 1)-colorable. Thus we need four columns to locate
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G1,0

G2,0

G0,1

G1,1

G3,0 G0,2

G2,1

G4,0 G1,2

G0,3G3,1

G5,0 G2,2

G4,1 G1,3

G3,2G6,0

G5,1

G0,4

G2,3

G1,4G4,2G7,0

G6,1 G3,3 G0,5

...

Figure 3: Mixed coloring types ordered by inclusion

an arbitrary planar graph. The natural question is whether every planar graph
is (1, 2)-colorable. The following proposition shows that using one normal and
two path colors is insufficient too.

Proposition 19. There is a planar graph which is not (1, 2)-colorable.

Proof. Let α be the normal color and β and γ be the path colors we can use.
Consider the gadgetH depicted in part a) of Figure 4. This gadget is isomorphic
to a complete graph on four vertices with a path on ten vertices inside each inner
face. The path colors β and γ cannot both appear on the vertices of the outer
face otherwise it is not possible to color the path adjacent to them. We could
color at most four vertices of this path with β and γ in such case, but there
would still be an edge with both vertices of color α. But this is not possible,
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since α is normal color. Thus the vertices of the outer face are colored with α
and one path color, say β.

H
G

H2H1

a) b)

H3

Figure 4: Construction of a planar graph which is not (1, 2)-colorable

Now we join three copies H1, H2 and H3 of H as shown in Figure 4, part
b), and we obtain the graph G. We see that G is not (2, 1)-colorable, because
the only way how to color it with α, β and γ is to color K4 with α and β and
this is clearly not possible.

It is not difficult to prove that there is an outerplanar graph which is not
(1, 1)-colorable, hence we know the tight estimations on mixed colorability of
both planar and outerplanar graphs.

Now our main goal is to prove NP-completeness of problem of deciding
whether a graph G is (a, b)-colorable for sufficiently large a and b. As a consec-
utive result we obtain that drawing/locating of graphs on bounded number of
columns is a difficult task answering the open question in [8].

This problem is already partially solved as Glenn G. Chappell, John Gimbel
and Chris Hartman [4] proved that determining whether G can be colored with
l ≥ 2 path colors is NP-complete. Although this does not answer the question for
locating of graphs (we need to prove the statement for general mixed colorings,
not only for path colorings), we later apply a similar technique to prove NP-
completeness of (a, b)-colorability for sufficiently large a and b.

In the following lemma we prove the initial case by using a reduction to the
One-in-three 3SAT problem (see [5]).

Lemma 20. It is NP-complete to decide whether or not a graph G = (V,E) is
(1, 1)-colorable.

Proof. Let F be a collection of m clauses C1, C2, . . . , Cm over n Boolean vari-
ables v1, v2, . . . , vn such that each clause Ci contains exactly three literals ci,1,
ci,2 and ci,3. Each literal ci,j , i ∈ [m] and j ∈ {1, 2, 3}, is either vk or vk for
some suitable k ∈ [n]. One-in-three 3SAT is a problem of determining whether
there is a truth assignment e satisfying F such that each clause in F has exactly
one true literal (and thus exactly two false literals).
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We construct a graph G (k) shown in Figure 4 for each variable vk. Then,
for each clause Ci, we construct a graph G (Ci) which is isomorphic to K3 and
each one of its vertices represents a different literal of the clause Ci. Let G (F )
be a graph consisting of all the graphs G (k) and G (Ci) where the vertex ci,j is
adjacent to v ∈ V (G (k)) if and only if the literal ci,j is v ∈ {vk, vk}.

vk vk

G (k)
w t

v

u

Figure 5: The graph G (k)

Suppose that G is colored with one path and one normal color, say black and
white. Then the vertices vk and vk of G (k) are colored differently. Otherwise
they are black and the vertex u must be white. But then, since white is a
normal color, w and t are black and induce a black 4-cycle together with vk
and vk. Also, if the vertices x ∈ {vk, vk} and ci,j are adjacent, then their colors
are different too. Assume to the contrary that x (say x = vk) and ci,j are both
black and adjacent. Then we know that vk is white and thus u and v are black.
Hence vk has three black neighbors which is a contradiction.

We define the truth assignment e for F as follows: if vk is white, then e (vk)
is true else e (vk) is false. The assignment e is correct as the vertices vk and vk
are not monochromatic. In addition, there is exactly one true literal in every
clause. Otherwise there would be a black 3-cycle or an edge with both vertices
white in some G (Ci).

Suppose that e satisfies F such that every clause has exactly one true and
two false literals. Then we color the labeled vertices of each G (Ci) white, if
the corresponding literal is true; otherwise black. By the assumption, there is
no monochromatic graph G (Ci). After that, we color the vertex v ∈ {vk, vk}
adjacent to ci,j black (white, respectively) if ci,j is white (black, respectively).
Note that the vertices vk and vk are, again, differently colored. It remains to
color the rest of graph G (k) for each k ∈ [n].

We use a reduction to the Colorability Problem in the final statement, but
this problem is NP-complete for at least three colors, thus we need to consider
one more special case. That is (0, 2)-colorability. Although the following lemma
is already known to be true [4], the known proof is based on the result with
so called one-defective colorings. For completeness we include a short proof
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which uses a similar idea as the previous one (a variation of a technique used
by Hoòng-Oanh Le [9]).

Lemma 21. It is NP-complete to decide whether or not a graph G = (V,E) is
(0, 2)-colorable.

Proof. The main idea is the same as before. We use a reduction to a variation
of 3SAT problem, only this time we use Not-All-Equal 3SAT (see [5]). It is a
problem of determining whether there is a truth assignment satisfying a formula
such that each clause has at least one true literal. So, let the notation be the
same as in Lemma 20 with the only difference that instead of G (k) we use the
graph depicted in Figure 4.

vk vk

Figure 6: The new graph G (k)

Let G be colored with two path colors black and white. One can easily show
that it holds again that the vertices vk and vk have distinct colors. Otherwise
the remaining vertices of G (k) induce a monochromatic 4-cycle. The adjacent
vertices x ∈ {vk, vk} and ci,j are also heterochromatic. Otherwise x would have
three neighbors of the same color.

Now, we can define the truth assignment as follows: if vk is white, then e (vk)
is true else e (vk) is false. The previous facts imply correctness of this assignment
and there is at least one true literal in every clause, otherwise G (Ci) would
be monochromatic 3-cycle. The proof of the reverse implication is analogous
too.

Theorem 22. It is NP-complete to decide whether or not a graph G = (V,E)
is (a, b)-colorable where a+ b ≥ 2 and (a, b) 6= (2, 0).

Proof. We apply a reduction to the Colorability Problem. That is, a problem of
determining whether or not it is possible to color a given graph G with k colors.
If we set k = a + b, then we can assume, according to the previous lemmas,
that k ≥ 3. The Colorability Problem is NP-complete in such case, thus we
can consider the reduction. Suppose that G is a given graph. Let us create the
graph H by joining two disjoint copies of the complete graph Ka+2b−1 to every
vertex v of G.
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Suppose that G is colored with k normal colors. Then we color the cliques
for every vertex v with all colors. Two vertices per path color and one per
normal color.

On the other hand, if H is colored with a normal and b path colors, then G
is colored with at most k = a + b normal colors. Assume to the contrary that
there is an edge uv with both vertices colored with the same path color (say
black) in G. Then u has at least three black neighbors, because the sizes of the
adjacent cliques imply that there is at least one other black vertex in every one
of them. This is a contradiction since the coloring of H is correct.

Corollary 23. It is NP-complete to decide whether or not it is possible to draw
a given graph on l ≥ 2 columns.

Corollary 24. It is NP-complete to decide whether or not it is possible to locate
a given graph on l ≥ 2 columns (in a grid of sufficiently large dimension).

5 Planar Grid Drawings
Although Theorem 4 and the Four Color Theorem imply that every planar graph
is locatable, the drawings obtained by this approach do not have to be planar.
On the other hand, De Fraysseix, Pach, and Pollack [3], Schnyder [12], and
Chrobak and Nakano [2] proved that any planar graph on n vertices has a planar
grid drawing which can be realized in grids of sizes (2n− 4)× (n− 2), (n− 2)×
(n− 2) and b2 (n− 1) /3c × (4 b2 (n− 1) /3c − 1), respectively. Unfortunately,
these drawings are not primitive.

Definition 25. A primitive planar grid drawing is said to be proper.

In this section we show that the Four Color Theorem together with Fáry’s
theorem imply the existence of a proper grid drawing for every planar graph.

Theorem 26. There exists a proper grid drawing for every planar graph.

Proof. The main idea is to map a planar drawing of a graph, where line segments
correspond to edges, to a grid such that no line segment contains more than two
grid points. To find convenient coordinates we use the Four Color Theorem.

Let G = (V,E) be a planar graph and let φ (G) be its initial planar em-
bedding whose existence is ensured by, for example, Fáry’s theorem. The
mapping φ maps vertices of G to points with real coordinates in the plane.
The edge uv ∈ E corresponds to the line segment φ (u)φ (v) in the embed-
ding φ (G). Let f :V → C be a vertex coloring of G with four colors and let
C = {(0, 0) , (0, 1) , (1, 0) , (1, 1)}. The first coordinate of color c ∈ C is denoted
as c1, the second one as c2. The existence of f is ensured by the Four Color
Theorem.

Let r ∈ R denote the smallest distance such that every vertex can be shifted
by r in any direction so that the condition on planarity holds still. We can set
r as one-half of the minimum distance between two points x, y ∈ R2 such that
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x and y belong to line segments which represent two vertex disjoint edges of
G. The distance r is positive, otherwise we get a contradiction with planarity
of φ (G). Thus, for every vertex v ∈ V , there is an open neighborhood Ω (v, r)
of the point φ (v) such that any point x ∈ Ω (v, r) can represent the vertex v
without violating the condition on planarity. Let us assume that no vertical line
segment intersects two different neighborhoods Ω (u, r), Ω (v, r). Otherwise we
can lower the distance r as no two points φ (u), φ (v) lie on the same vertical
line.

Now we put vertical lines across the whole plane such that the distance
between two consecutive lines is ε > 0. We choose the number ε such that every
neighborhood is crossed by at least six lines (we can assume that ε = 1). Then we
choose one line and declare it as the initial line. Each line gets number according
to its order, the initial line has number zero. Now for every vertex v ∈ V , we set
φ (v) = x, where x is a point from Ω (v, r) such that it lies on some vertical line
with number l and l ≡ f (v)1 (mod2), l ≡ f (v)1 (mod3). We can always choose
such line, because there are six consecutive lines crossing the neighborhood
Ω (v, r). Thus numbers of these lines get through all values modulo two and
three. In the rest of the proof, we assume that the first coordinates of points
representing the vertices of G are integers. The point x is in Ω (v, r), so the
modified embedding is still planar. By choosing appropriate lines we can also
ensure that no two adjacent vertices lie on the same vertical line (but we might
have to cross the neighborhoods by twelve lines).

φ (v) φ (v)

ǫ

x

Ω (v, r) Ω (v, r)

Figure 7: Placing the vertical lines

Let P denote the set of all prime numbers which appear in the decomposition
of the difference |φ (u)1 − φ (v)1| where φ (u)1, φ (v)1 are the first coordinates
of points φ (u), φ (v) and uv ∈ E. The set P is finite, because no two points
representing vertices lie on the same vertical line and thus the difference is
always positive. Now we analogously put horizontal lines across the whole plane
such that the distance between two consecutive lines is δ > 0. This time we
choose δ such that every vertical line is crossed by at least

∏
p∈P p lines in every
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neighborhood.

Ω (v, r)

φ (v)

δ

Ω (v, r)

φ (v)

x

Figure 8: Placing the horizontal lines

Again, we declare one of these lines as initial and number them according to
their order. Then, for every vertex v ∈ V , we set φ (v) = x such that x ∈ Ω (v, r),
the first coordinate of φ (v) remains the same and x lies on the horizontal line
with number l, where l ≡ f (v)2 (mod2), l ≡ f (v)2 (mod3). In addition, if
there is another prime number p which divides the difference |φ (u)1 − φ (v)1|,
uv ∈ E, then we set such horizontal lines for u and v that their numbers are not
congruent modulo p. The different residues modulo p can be chosen according
to the coloring f . Each color corresponds to an unique residue modulo p (p > 4,
so there is enough residues). We chose δ such that there is enough horizontal
lines from which we can always choose the right ones.

Eventually the horizontal and vertical lines form an elongated grid which
we can modify into a regular grid. It suffices to contract the grid such that the
size of columns equals the size of rows, that is ε = δ. The contraction does not
violate planarity, because the whole grid is regularly contracted, thus no positive
distance can lower to zero. The coordinates of points are chosen such that every
line segment is primitive, thus the embedding is planar and primitive.

This result gives an affirmative answer to the conjecture asked by Pen̋aloza
and Martinez [11]. The authors point out that proof of this statement would
yield an alternate proof of the Four Color Theorem. However we use it as one of
the assumptions. In fact, this theorem is equivalent to the Four Color Theorem,
as the proof of the reverse implication is apparent. Also if we use the Five
Color Theorem in the proof instead, then we obtain three-locatable planar grid
drawings of planar graphs and thus the problem of finding almost-proper grid
drawings (i.e. at most three grid points on each line segment) belongs to P.

Note that the choice of coordinates also gives us a coloring of G with at most
four colors. In fact, we also proved a stronger conjecture from [11].
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Corollary 27. Any planar graph G is isomorphic to a plane subgraph H of the
visibility graph of the integer lattice, in such a way that the function g (a1, a2) =
(a1 (mod2) , a2 (mod2)) is a coloring of H that uses exactly χ (G) colors.

The grid drawings obtained by the proof can require large area with no
reasonable bounds. However if we start with a nicer intial drawing, then we can
estimate the upper bounds quite easily.

Suppose that the initial embedding is already a grid drawing of size O (n)×
O (n) where n denotes the number of vertices of a given graph. The results
of Chrobak, De Fraysseix, Pach, and Pollack, and Nakano [2, 3, 12] ensure the
existence of such embedding. Then the following lemma gives us a lower bound
on r.

Lemma 28. Given an n×n integer grid, n > 1, the minimum nonzero distance
from any grid point to any line segment is in Ω

(
1
n

)
.

Proof. Let us recall that the distance from a point (a1, a2) to a line with equation
kx+ ly +m = 0 is given by the formula

|ka1 + la2 +m|√
k2 + l2.

Without loss of generality let us assume that the first point is (a1, a2) and the
line intersects grid points (0, 0) and (b1, b2) where b1 and b2 are relatively prime
(otherwise we consider the point

(
b1

gcd(b1,b2) ,
b2

gcd(b1,b2)

)
that lies on the same

line). Then the equation of our line is b1x− b2y = 0 and |b2a1 − b1a2| is at least
one. Therefore the minimum nonzero distance is at least

1√
b21 + b22

.

Now we minimalize the expression by choosing coordinates b1 and b2. The sum
b21 + b22 is maximal when b1 and b2 differ as little as possible, so the appropriate
choice is b1 = n and b2 = n − 1. So the minimum possible distance from grid
point to a line is at least

1√
2n2 − 2n+ 1

∈ Ω

(
1

n

)
.

Thus if the size of the initial grid drawing is cn × cn, where c > 0 is some
constant, then the minimum nonzero distance r from any point representing a
vertex to any point representing an edge is in Ω

(
1
n

)
. In the first part of the

proof we refine the coordinates such that the neighborhood of every vertex is
intersected by a constant number of vertical lines. The diameter of the neigh-
borhoods is exactly r ∈ Ω

(
1
n

)
, therefore the width of the new grid drawing is

in O
(
n2
)
.
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All that is left is to estimate the height of the drawing. Following the proof
we refine the vertical coordinates such that every neighborhood is intersected
by at least

∏
p∈P p horizontal lines. The diameter of the neighborhoods is now

in O (1), so if we find a function f :N → N such that the product
∏

p∈P p is in
O (f (n)), then we know that the height is in O

(
n2f (n)

)
too.

We can focus on every vertex separately. Let v be a vertex of G and let Pv

denote the set of prime numbers which divide the nonzero horizontal distance
between the points φ (u) and φ (v) where uv ∈ E. Then the product of primes
which divide the distance between u and v is in O

(
n2
)
as it is the width of the

whole drawing. Therefore we get that∏
p∈Pv

p ∈ O
(
n2d(u)

)
where d (u) denotes the degree of u. According to the Chinese Remainder The-
orem, we see that we can consider only the vertex with maximum degree ∆.

Hence we can find a proper grid drawing of any planar graph G with given
coloring in the grid of size O

(
n2
)
×O

(
n2∆+2

)
where n denotes the number of

vertices of G. Thus the rough estimation of the size of the drawing is polynomial
for ∆ ∈ O (1), quasi-polynomial for ∆ ∈ O (poly (log n)) and exponential for
linear maximum degree.

Unfortunately we don’t know how to embed the general planar graphs in a
grid of polynomial size and the following question remains open.

Conjecture 29. For arbitrary planar graph G, is there a proper grid drawing
of G in a grid of polynomial size?

6 Conclusion
We studied grid drawings from three points of views. First, we showed a con-
nection between the chromatic number of the graph G and the maximal number
of grid points that must appear on a line segment of a grid drawing of G. This
led to a new classification of graphs according to so called locatability.

Second, we showed that it is NP-complete to find the minimal number of
columns on which a graph can be drawn. If we consider only primitive grid
drawings, then we have to move to higher dimensions as the chromatic number
grows. We also characterized the graphs which can be located on l columns
in d-dimensional grid and showed that locating graphs is also NP-complete.
Natural question is what happens if we consider grid drawings with both width
and height bounded [13]. Such problem is closely connected to "No-three-in-line
problem" [7].

In the last section we proved that there exist primitive planar grid drawings
of an arbitrary planar graph. However the proof of this statement uses a strong
result, namely the Four Color Theorem. Perhaps the most intriguing question
left open is whether there is a proof of this statement without using the Four
Color Theorem. Such proof would yield an alternate proof of this classical result
in the graph theory.
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