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Abstract

Let P be a set of n points in R%. A point  is said to be a centerpoint
of P if x is contained in every convex object that contains more than %
points of P. We call a point = a strong centerpoint for a family of objects
C if x € P is contained in every object C' € C that contains more than
a constant fraction of points of P. A strong centerpoint does not exist
even for halfspaces in R2. We prove that a strong centerpoint exists for
axis-parallel boxes in R? and give exact bounds. We then extend this to
small strong e-nets in the plane and prove upper and lower bounds for
¢ where S is the family of axis-parallel rectangles, halfspaces and disks.
Here €7 represents the smallest real number in [0, 1] such that there exists

an €7 -net of size i with respect to S.

1 Introduction

Let P be a set of n points in R?. A point « € R? is said to be a centerpoint of P

if any halfspace that contains x contains at least 7 points of P. Equivalently,

x is a centerpoint if and only if x is contained in every convex object that
d

contains more than zi5n points of P. It has been proved that a centerpoint

exists for any point set P and the constant % is tight [24]. The computational
aspects related to centerpoint have been studied in [8, 12, [I6]. The notion of
centerpoint has found many applications in statistics, combinatorial geometry,
geometric algorithms ete [I7), 18] 26].

The centerpoint question has also been studied for certain special classes
of convex objects. [2] shows exact constants on centerpoints for halfspaces,
axis-parallel rectangles and disks in R2.

By the definition of centerpoint, x need not be a point in P. A natural
question to ask is the following: Does there exist a strong centerpoint i.e., the
centerpoint must belong to P. In other words, for all point sets P, does there
exist a point p € P such that p is contained in every convex object that contains
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more than a constant fraction of points of P? It can be clearly seen that a
strong centerpoint does not exist for convex objects by considering a point set
with points in convex position. By the same example, a strong centerpoint
does not exist even for objects like disks and halfspaces. The notion of strong
centerpoints has been studied with respect to wedges in [19] where it was shown
that there always exists a point p € P such that any 37"-wedge anchored at
p contains at least dLH points. We show that a strong centerpoint exists for

axis-parallel boxes in R? i.e. for any point set P with n points, there exists a
point x € P such that z is contained in every axis-parallel box that contains
more than %n points of P. A natural extension of strong centerpoint will be
to allow more number of points and see what the bounds are. This question is

related to a well studied area called e-nets. First we shall define e-nets.

Definition 1. Let P be a set of n points in R and R be a family of geometric
objects. N C P is called a (strong) e-net of P with respect to R if NN R # ()
for all subsets R € R that has more than en points of P, that is, |[R N P| > en.
Moreover, N is called a weak e-net if N C R, i.e. N need not be a subset of P.

The concept of e-nets was introduced by Haussler and Welzl [I1] and has
found many applications in computational geometry, approximation algorithms,
learning theory etc. It has been proved that for geometric objects with finite
VC dimension d, there exist e-nets of size O(<log 1) [I1]. It has been proved
that e-nets of size O(1) exist for halfspaces in R? and R® and pseudo-disks in
R? [13] 14, 23]. Alon [I] has shown a slightly super-linear lowerbound for e-
nets with respect to lines in R? thereby disproving the conjecture that there
exists linear-sized e-nets for families of geometric objects. Recently, it has been
shown that e-nets of size Q(%loglog 1) is needed for the family of axis-parallel
rectangles in R? [22]. This bound is also tight by a previous result by Aronov
et al. [3].

The dual version of e-net is also well studied. Here, the input is a collection of
n geometric objects and we have to find a sub-collection of objects that cover all
points that are contained in more than en objects. This question is extensively
studied in [3}[9, 25]. Recently some tight lower bounds for dual e-nets are proved
in [22].

Strong e-nets of size independent of n do not exist for convex objects since
they have infinite VC dimension. However, it is shown that weak e-nets of size
polynomial in % exist for convex objects in R? [7, 15, 20]. Also, a lower bound
of (2 log?~* 1) is proved in [6].

Weak e-nets are an extension of centerpoint. A centerpoint is precisely a
weak #‘il—net of size one. Small weak e-nets have been studied for convex
objects, disks, axis-parallel rectangles and halfspaces in [2] [ [10, 21]. Here the
size of the weak e-net is fixed as a small integer 7 and the value of ¢; is bounded.

In this paper, we initiate the study of small strong e-nets. Let S be a family
of geometric objects. Let ¢ € [0,1] represent the smallest real number such
that, for any set of points P, there exists a set Q C P of size ¢ which is an
ef-net with respect to S. Thus a strong centerpoint will be an e7-net. We



investigate bounds on € for small values of i where S is the family of axis-
parallel rectangles, halfspaces and disks.

1.1 Owur Results

Let R,H,D be the family of axis-parallel rectangles, halfspaces and disks re-
spectively.

1. For axis-parallel boxes in R, we show that strong centerpoint exists and
obtain tight bound of € = %. Note that strong centerpoint does not
exist for halfspaces, disks or convex objects.

2. We give upper and lower bounds for €~ in the plane for small values of
i. We also prove some general upper bounds for € which works for all
values of 1.

3. We give bounds for €/t which are tight for even values of i and almost
tight for odd values of i. These bounds are based on a result from [I3].

4. For the family of disks, we give a non-trivial upper bound for €2

In section 2] we give a general lower bound construction which will be used
in subsequent sections. Section [3] discusses small strong e-nets for axis-parallel
rectangles. Sections @] and [ give bounds for halfspaces and disks respectively.
In section [G] we prove some general lower bounds for small weak e-nets.

2 General lower bound construction

In this section, we give a recursive construction to obtain lower bounds for €
where S is a family of compact convex objects in R%. More precisely, we give
a lower bound construction for eerk based on the lower bound constructions of

535 and 5. These lower bounds work for weak e-nets as well.
Th 165, > 2% k> 1
eorem 1. €7, > e for j, k>

Proof. Let P be a set of n points in R?, arranged as two subsets, P; and P, con-

. s 7 . .
taining Egi’;ﬁékn and Egjrﬁékn points respectively. Let P; be arranged correspond-
J J

ing to the lower bound construction for e}s and P, be arranged corresponding to

the lower bound construction for ef. These two subsets are placed sufficiently

far from each other. Therefore, if N; is an ef -net for Py, there exists some S € §

avoiding Ny such that [S N Pi| = €§|Py|. Since S is compact and P, is placed
sufficiently far from P, S does not contain any point of P». Similarly, if N is an
e-net for Py, there exists some S € S avoiding Na such that |S N Py| = €5 | Ps|
and SN Py = (. Let N be any eerk—net. Then N contains either < j points of

P, or < k points of P,. Therefore there always exists some S € S that avoids
S_S

€€ .
;+’“ n points. O

N and contains g
J k




Hy H
N
Ry I Ry Ras, T ””:
I I I
e ‘ | | @
| |
. i ; |
Ry p: Ry Ros ! ! .
! | | |
" | ; .
| | . |
Ry ! Ry Rz | I |
| |
[ | | :
| o !
|
b)
@ (b)

Figure 1: Bounds for €} in R?

Based on this theorem, we give improved lower bounds on ¢; for axis-parallel
rectangles in section 3] and for small weak e-nets with respect to convex objects
and disks in section

3 Axis-parallel Rectangles

In this section, we show bounds on €.

Let P be a set of n points in R?. Assume that all points in P have distinct
co-ordinates, i.e. if p = (p1,p2,...,pd) and ¢ = (q1, q2, ..., q4) are two points in
P, then p; # ¢; for all i, 1 <4 < d. This assumption can be easily removed by
slightly perturbing the input point set such that the co-ordinates are distinct. It
can be seen that an e-net for the perturbed set acts as an e-net for the original
set also(see section 4 in [2]).

3.1 Strong centerpoints in R?

Let R be the family of axis-parallel boxes in R%.

R _ 2d—1
Theorem 2. ¢" = =5

Proof. Let HZTF and H; , 1 < i < d, be two axis-parallel hyperplanes orthogonal
to the #*" dimension that divide P into three slabs. Let 73;r be the subset of
P contained in the positive hyperspace defined by ’H,;r and P;” be the subset
of P contained in the negative hyperspace defined by H; . H; and H; are
placed such that [P;| = [P | = & — 1. The hyperplanes #; and H;, 1 <
i < d, partition R? into 3% axis-parallel d-dimensional boxes. Indexing the
partition along each dimension, these boxes are denoted as Ry, q4,..s,, Where
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Figure 2: Bisection of P by vertical and horizontal lines

z; € {1,2,3} (see figure Mi(a) for the upper bound construction in R?). Let
Pyizs.wy = Ruyzs. oy N P. We claim that Py o # 0.
d

Let K = Y (|P; | +|P;"|) = n — 2d. Since none of the points in P o is
i=1

counted in any 73;' or P, K >n — |P. 2| This implies that |Pas 2| > 2d.

Let p be any point in Py 2. We claim that {p} is a %—net. Any d-
dimensional box that does not contain p has to avoid some P;(P;" or P; )

containing 57 — 1 points. Hence it contains at most %n points.

For the lower bound, place 2d subsets of 57 points such that each axis has
two subsets at unit distance on either side of the origin. The lower bound
construction for €] in R? is shown in figure[(b). Let {g} be an e-net. Without
loss of generality, assume that ¢ is chosen from the subset placed at coordinates
(1,0,0,...0). Now the d-dimensional axis-parallel box defined by = < 0.5 avoids

q but contains all the remaining 2d — 1 subsets thereby containing 2¢=2n points.

2d
O

R
3.2 Upper Bounds on ¢;
Let P be a set of n points and R be the family of axis-parallel rectangles in R2.

We prove upper bounds for €.

Lemma 3. There exists a point p € P with coordinates (x',y’) such that the
halfspaces © > a’ and y >3y’ contain at least % points of P.

Proof. Divide P into two horizontal and two vertical slabs such that each slab

contains § points (see figure ).

e Case 1: DN P # (. Any point p € D N P has the desired property.

e Case 2: DN P = (). In this case, [ANP|=|CNP|=1%and BNP = .
Then the point p € AN P with the smallest perpendicular distance to the

horizontal line has the desired property.

O
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Figure 3: Upper bound for e}

Lemma 4. e§ < %

Proof. Divide P into three horizontal slabs containing %", 7 and %” points

respectively. Similarly, divide P into three vertical slabs in the same proportion
to get a grid with nine rectangular regions (figure Bla)).
e Case 1: ENP # 0: Let  be any point in E. Now {z} is a 3-net since
any axis-parallel rectangle that avoids x will avoid an extreme slab which
contains 2n points.

e Case 22 ENP = (: Let Ry, Ry, R3, R4 be the regions AU B U DU
EBUCUEUF,DUFEUGUH,EUFUH U I respectively and let P;
denote R; N P for all i, 1 < ¢ < 4. Since EN P = (), we have |P1| +
|P2| + |Ps| + |P4| = n+[(BUDUFUH)NP| = 3. Therefore either
(|PL|+|Ps]) > 22 or (|P2|+|Ps]) > 22. Without loss of generality assume
that (|P2| + |Ps]) > 2. Using lemma 3 choose a point p = (ps,py) € P»
such that the halfspaces * > p, and y > p, contain at least half of the
points in P,. Similarly, choose a point ¢ = (¢z,¢qy) € P3 such that the
halfspaces z < ¢, and y < g, contain at least half of the points in P3. We
claim that {p,q} is a %—net. Any axis-parallel rectangle that does not take
points from all the three rows and columns contains at most %" points of
P. So assume that R is an axis-parallel rectangle that takes points from
all the rows and columns. To avoid {p,q}, R must avoid at least half of
the points from Py as well as P3 (figure B(b)). So it must avoid at least
[P P 3?" points. Therefore any axis-parallel rectangle that avoids

2
{p, q} contains at most %" points.

O
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Figure 4: General constructions for axis-parallel rectangles

R

Now we discuss two general recursive constructions for €;*.

R_R
R y =
T

< max(3e ) for x,y > 0,2 >y and z = ||

Theorem 5. 6;{(

z+y)+1 ’ 62}-{-63

Proof. Construct an e¥-net {q} for P as described in Theorem 2l Let v and h
be vertical and horizontal lines through ¢ that divide P into two vertical and
two horizontal slabs respectively. Let 6 € [0,1] be a parameter that will be
fixed later. If either of the two vertical slabs contains at least dn points of P
then construct an e’X-net for the points in the slab containing at least én points
and ef—net for the points in the other slab. If both the vertical slabs contain
less than dn points, then construct an e’X-net for the points in each of the two
vertical slabs. Repeat the same construction for the horizontal slabs also. We
have thus added at most 2(z + y) + 1 points to our e-net Q.

Since ¢ € @, any axis-parallel rectangle that avoids @ is contained in one of
the (vertical or horizontal) slabs and this slab has at most %T" points.

First consider the case where there is a vertical or horizontal slab with at
least 6n points. After adding an €X-net to @, any axis-parallel rectangle that
avoids @) contains at most %e?n points of P from this slab. Similarly, the
other slab has at most (1 — §)n points of P and any axis-parallel rectangle
that avoids Q contains at most (1 — &)el*n points of P from this slab. Thus
an axis-parallel rectangle that avoids () and is contained in one of these slabs
has at most max(3eRn, (1 — §)ern) points(see figure @ (a)). In the case where
both the slabs have less than dn points, any axis-parallel rectangle that avoids
Q has at most de’*n points. Thus any axis-parallel rectangle that avoids @

R
has at most maz(3efn, (1 — §)ern, 6efn) points. Setting § = %736%63 so that
R_R
3 €y €2
(1-— 5)65 = §eR, we get €§z+y)+1 < max(3€¥, GZJ%TGZQ) O



2eR (R .
Theorem 6. 6;%1_2)(y_1)+jm+ky < max(=L, %) for x,y >2 and j,k > 0.

Proof. Divide P into x horizontal slabs and y vertical slabs to get a grid with
each horizontal slab containing 2 points and each vertical slab containing %
points. Let the horizontal slabs be denoted as Hy, Hs, ..., H,. For a horizontal
slab H;, there are y — 1 vertical lines of the grid intersecting it. For each of
these lines, find two points(if present) of P in H; that has the least perpendicular
distance from that line on either side. Repeat this for all horizontal slabs H;, 2 <
i <x—1 (see figure [ (b)). Add these (at most) 2(z — 2)(y — 1) points to the
eR-net Q.

We claim that any axis-parallel rectangle that avoids these points has at most
max(%", %) points. If an axis-parallel rectangle intersects at most one vertical
slab or at most two horizontal slabs, then it contains at most ma:z:(%", %) points.
Let R be an axis-parallel rectangle that intersects at least two vertical slabs and
at least three horizontal slabs. Let H;, H;11,...,H,, be the horizontal slabs
intersected by R. R also intersects at least one vertical line and avoids the
nearest points to these vertical lines in all H;, i + 1 < < m — 1. Therefore R
cannot take points from any such H;. Thus R can only take points from H; and

H,, and hence contains at most 27" points of P.

Now add an e}z-net for points in each horizontal slab and an €)¢-net for points

in each vertical slab and add these e-net points to Q. Now |Q| < 2(z — 2)(y —
1) + jz + ky and the result follows.
o

Re9. Rc1. R3. R 5
Lemma 7. " < 565 < 33,67 <2765 < 35

Proof. The results follow from the fact that €f = 1 and Theorem [ with z =
Ly=0foref;x=2,y=0for ef; 2 =3,y=0for eX; x =4,y =0 for €.

Rec1l. . R<2..R
Lemma 8. ¢ < 5765 < &7 €75 <

owolw

Proof. The results follow from the fact that e} = 1 and Theorem [ with = =
dyy=2,7=4k=0for ef; withx =5,y =2,j =0,k =1 for €§; v = 4,y =
2,j=1,k=1for €f,.

R

i

3.3 Lower Bounds on ¢

In this subsection, we call an axis-parallel rectangle R an «a-big rectangle if
|[PNR| > a|P|. Let Q be an e-net and Py C P. We call P; as free if PLNQ = 0.

Lemma 9. e§ > %
Proof. Divide the n points into three equal subsets of % points each and place

each subset uniformly on the bold segments as shown in figure Bl Let @ be an
e-net of size two. The different cases of choosing ) from this set are shown in
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Figure 5: Lower bound for eX

figure Bl Let x,y denote the fraction of points from a subset which lie on one
side of the point in ) as shown in the corresponding figure for each case. Let
f be a function that represents the maximum fraction of points of P that an
axis-parallel rectangle contains without containing any of the points in Q. In
each case, we compute the values of z and y that minimize f by considering all
the rectangles that avoids the e-net points.

(a) f=maz(% +3,1- M, @ + ¥). f is minimized when z =y = 1,

which results in f = g.

3

(b) f= mcm:(%y +4,1- 2””;"”, 2y 1_Ty) f is minimized when z = 1,y =

which results in f = g

Wl

(c) f = max(l — &2 2 4 1;37’,%3’ + 17793,2@%:;)—1) f is minimized when
r=y= %, which results in f = g.

(d) f=maz(z+
results in f =

e %y, 1— 2(1;‘”)). f is minimized when = = y = %, which

olowe|

So there always exists an axis-parallel rectangle that avoids all the points in the

e-net and contains at least 57" points.
O
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Figure 6: Lower bound for e}

Lemma 10. € > %

Proof. Let P be arranged into 20 equal subsets. Each quadrant has a group of

five subsets, we will denote these groups as A, B, C, D as shown in figure
Clearly, all the subsets of one of the groups will be free. Assume that all the

subsets in A are free. The three points in () can be chosen in two ways.

e Case 1: One point is chosen from each of the other three groups: Any set
of eight consecutive subsets is contained in a %—big axis-parallel rectangle.
Since subsets in A are free, all the three subsets near A in B and D can-
not be free. This means a point has to be chosen from one of the subsets
b1,b2 or bz. Now if a point is chosen from subset b; then the remaining
subsets in B are free and there exists a %—big axis-parallel rectangle con-
taining all those subsets and aj, a9, as,ay from A. Therefore b; has to
be free. Symmetrically, ds also has to be free. Clearly two points have
to be selected from the subsets by and d4 to avoid the %—big axis-parallel
rectangle with consecutive subsets from D, B and A (ds,aq,...,as,b1,bo
and dy,ds,a1,...,a5,b1). If the subset ¢; is free then there is a %—big
axis-parallel rectangle containing the free subsets ds, a1, as, as, bs, by, bs, c1.
Therefore the three points have to be chosen from the subsets bo, 1, dy.
Now there exists a %—big axis-parallel rectangle as shown in figure [6(b)
that avoids these subsets.

o Case 2: Two points are chosen from a group and the third point is chosen
from the diagonally opposite group: Assume that two points are chosen
from B and one point from D. Clearly, a point has to be chosen from
the subset d3 to avoid the %—big axis-parallel rectangles with consecutive
subsets from D, A and D, C (ds,ds,ds,a1,...,a5 and c1, . .., ¢5,d1, do, d3).
The other subsets in D are free. The next two points chosen have to be
from the subsets b1 and b5 to avoid the %—big axis-parallel rectangles con-
taining consecutive subsets from B, C, D (bs,c1, ..., ¢5,d1,d2) and D, A, B
(da,ds,a1,...,a5,b1). Now there exists a %—big axis-parallel rectangle as
shown in figure [Bl(c) which avoids the subsets by, bs, d3.

O

10
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Lemma 11. ¢ > 2

Proof. Let P be arranged as ten equal subsets as shown in figure [[l The eight
subsets in between the topmost and bottommost subsets are arranged as two
quadrilaterals. Let @ be an e-net of size four. We claim that there always exists
a %-big axis-parallel rectangle that avoids Q.

It is easy to see that there can be at most two free subsets in each of the
quadrilaterals since there is a %—big axis-parallel rectangle that contains any
three free subsets from a quadrilateral. Hence all the four points of @ have
to be chosen from the subsets forming the two quadrilaterals(two points from
each quadrilateral). Therefore the top and bottom subsets are free. Both these
subsets form a %—big axis-parallel rectangle with the black subsets in the quadri-
lateral(see figure[f]). Therefore two of the points in @ have to be chosen from the
black subsets. The two gray subsets in the lower(resp. upper) half form a %—big
axis-parallel rectangle with the bottommost(resp. topmost) subset. Hence the
remaining two points in ) have to be chosen from the gray subsets(one point
from the top gray subsets and one from the bottom gray subsets). Thus one
gray subset in the lower half is free which forms a %-big axis-parallel rectangle
that avoids @ as shown in figure [7

O

Lemma 12. & > %

Proof. Let P be arranged as eight equal subsets, four in the outer layer and four
in the inner layer (see figure B). Let @ be an e-net of size five. We claim that
there always exists a %—big axis-parallel rectangle that avoids Q.

It is clear that we have to choose a point each from at least three of the inner
layer subsets, otherwise there can be an axis-parallel rectangle that contains all
the points of two free subsets. Also, a point each has to be chosen from at least
two of the outer subsets to avoid the axis-parallel rectangles that contains all

11



€1 €2 €3 €4 €5 €6 €7 €8 €9 €10
LB | 3/4|5/9 | 2/5 | 3/10 | 1/4 | 1/5 | 5/29 | 2/13 | 3/22 | 1/8
UB | 3/4 [ 5/8 [ 9/16 | 1/2 | 15/32 | 15/32 | 3/7 | 2/5 | 5/13 | 3/8

Table 1: Summary of lower and upper bounds for X

the points of two consecutive subsets in the outer layer. Moreover, these two
points are to be chosen from diagonally opposite subsets. Let the e-net points
be chosen from the five black subsets as shown in figure Now there exists
a %-big axis-parallel rectangle containing the free subset in the inner layer and
the nearest free subset in the outer layer.

O
R R 2. R~ 3.R > 1
Lemma 13. ¢f > L, el > S ef > 2, b > 20 ey > ¢
Proof. The results follow from theorem [ with j = k = 3 for €; j = 2,k =
for eX; j=3,k=>5foref; j =4,k =5 for eff; j =5,k =5 for €f. o

Lemma 14. eR > 10, fori>2

Proof. We use Inathematical induction to prove this The lemma holds for ¢ = 2
and i = 3 since e > 2 > 2 (by lemma[d) and ¥ > 2 > 512 (by lemma [I0).
R 0

Now assume the 1emma holds for i = k, ie., € > gp or 9 ok = ELR Thus,
k

+ R
Sk+2> R + R, ie, %(k+2) > Ekk_zz Therefore, €)%, , > % > 5ty
(from theorem E]) Hence the result follows for all values of .
O

The summary of lower and upper bounds for e is given in table 1.

4 Half spaces

Let P be a set of n points in R? and # be the family of halfspaces. In this

section, we prove bounds on €’t.

Lemma 15. e:f‘ < 1%

Proof. The proof of this lemma is similar to that of Theorem 4.1 in [13]. For
i = 2, [13] gives a constructive proof to show that e} < 2. For i > 3, [I3] gives
an existential proof showing that a strong e-net of size (5)1 — 1 exists. Based on
this proof, we give an explicit construction for H—l—net of size 1.

Let ¢1,co, ..., cm be the vertices of the convex hull of P, in clockwise order.
Let N represent the e-net. We will denote the chosen e-net points as nq,no,. ...
Initially N = {¢1} and « = ¢;.

Let ¢, be the first vertex encountered in the clockwise direction such that
the halfspace formed by T¢,11 and containing ¢, has > + —=n points. Add c, to

N and set x = c¢,. Repeat this procedure till we have considered all vertices of

12
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Figure 9: Lower bound for €}

the convex hull i.e, we have added the point ng41 to NV such that ngiq is ¢; or
the halfspace iy 11 contains ¢;. In the latter case, there are two possibilities:

e ni1 = ne: Now n; is redundant and is removed from N. Rename ny as
ni.

e 1y lies between n; and ny : ngyi is a redundant point and is removed
from N.

Clearly any halfspace that avoids IV has at most ;=5n points. Hence N is a

i_%l-net. We claim that N has at most ¢ points.
Let N have [ points and let H; be the halfspace formed by the line ;17,1

and containing n;. Let h; = |H; N P|. From the above construction, we know

that h; > ’L+1 for all j, 1 < j < [I. Therefore Z h;j > 75n. Since any point
j=

in P is present in at most two H;’s, Z h; < 2n. Combining the above two
j=1
inequalities, we have [ < i+ 1 and the result follows.
O

Lemma 16. [13]

K2 —_ .
for i,even

s {% for i,odd

i+2
Proof. The result follows from the lower bounds given in [I3]. For odd values of
1, consider a point set divided into ﬂ equal subsets, as described in [I3]. For
any e-net IV of size i, there exists a halfspace that avoids NV and contains all the
7 +1n points from one subset. For even values, the lower bound for €/* follows
from that for €% ,. O

Lemma 17. e}t > 2

Proof. Let P be a set of n points arranged as a subset S of 3” points uniformly
placed on the arc of a circle with angle less than 7 and a subset T of 2" points
placed close together, at a sufficiently large distance from S so that the tangent
to the arc at any point p € S has S\{p} and T on different sides of it (see
figure [@(a)).
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Figure 10: Upper bound for €2

If only one point in the e-net is chosen from 5, the tangent to the arc passing
through it results in a halfspace containing 22 —1 points (figure[@(b)). So assume
that both the e-net points are chosen from S. Let p; and ps be the e3-net points
chosen from S. The points in S are divided into three arcs by p; and p2. One of
the arcs contain at least ¢ points. There exists a halfspace avoiding p; and p;
that contains all the points of this arc and all the points of T'(see figure[@(c)). O

5 Disks

In this section, we consider the family of disks. We show an upper bound for
€. The proof is motivated by the construction for e} given in [13].

Theorem 18. 62D < %

Proof. Let P be a set of n points and p be the centerpoint of P. Let T be the
Delaunay triangulation of P. Let a, b, c be points in P such that they are the
vertices of the delaunay triangle in T that contains p. For all x € P\ {a,b, ¢},
consider the line segment connecting = and p. Each of these n — 3 line segments
intersect one of the edges ab, bc or ac and at least one of them, say ab, has at
least one-third of these line segments intersecting it. We claim that {a, b} is a
%—net.

Let P, C P be the set of points g such that the line segment pq intersects
the edge ab. Consider the circumcircle C' of triangle abc and let C,p be the
arc between a and b that is intersected by the line segment pq, for any q € P;.
By the definition of delaunay triangulation, C' does not contain any point of
P. Any disk D that avoids {a,b} and contains more than 22 points of P

contains the centerpoint p and at least one point ¢ € P, singe |Py| > "T_3
Therefore D intersects C at two points y, z. If exactly one of these points lie
on the arc Cy then D contains either a or b (see figure [0(a)). Similarly if
both y and z are outside the arc Cgp, then D contains both the points a and
b (see figure [Q(b)). Therefore assume that both y and z lie on the arc Cjp.

In this case, D contains only points from P;. Then we can have another disk

14
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Figure 11: Lower bound for €2

D’ such that (DN P) C (D'NP) and p ¢ D' (see figure [0c)). This implies
that D’ contains more than %" points and does not contain the centerpoint, a
contradiction.

O

The lower bounds e > Z% for odd values of i and P > ZJ% for even values
of i follow from the lower bound results for halfspaces.

6 Lower bounds for weak epsilon nets

In this section, we give general lower bounds for €; for weak e-nets. These
bounds are improvements over the general lower bound of 1% given in [2].
Let C represent the family of convex objects.

C 2. C 20. C 5. .C 10. C 20 . C 5..C 10
Lemma 19. 64277652ﬁ766Zﬁ7672ﬁ7682m7692§7610 =

v

% (as shown in [21]). Use j = k = 2 for ¢{; j = 2,k = 3 for €5; j = k = 3 for
eg;j:2,k:5f0re$;j=3,k=5f0reg;j=3,k:6f0reg;j:2,k:8f0r
€70- O

Proof. The results follow from theorem by applying the base cases €5 > %, €§ >

Lemma 20. ef > %, fori>2

Proof. We prove the result using mathematical induction. The result holds for
7 = 2 and ¢ = 3 since eg > % > % and eg > % > % (both lower bounds

shown in [2I]). Assume the result holds for i = k i.e., €f > & or Tk > *.
k

C C

Thus, 2k + I > L + L (since €§ > 2 as shown in [2I]) i.e., T(k +2) > %2,
Ek} 52 €k€2

€c€c

Therefore, €, > —£2 >

Z e 2 ﬁ (from theorem [I]).

O
Lemma 21. ¢ > %
Proof. Let P be a set of n points divided into six subsets of & points each and
arranged equidistant on two concentric circles as shown in figure[I1l(a).Let @ be
a weak e-net of size three. We claim that there always exists a disk that avoids
() and contains 5 points from P.
The three disks, D;, Dy and D3 shown in figure [[I(b) contain % points
each. So each of these disks must contain one point from Q. Disk D} and
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Figure 12: To prove Lemma 23]

halfspace Hio as shown in figure [[1l(c) also contain % points each. Therefore,
the point in @ from disk D; must also be contained in disk Dj. Similarly, the
point from either Dy or Do must be contained in halfspace Hyo. Without loss of
generality, let the point of ) contained in His be from D;. A point belonging
to D1 N D} N Hyz belongs to the topmost group as can be seen in figure [[I}(c).
Now halfspace Has, shown in figure [[I(d) must contain a point belonging to
either Dy or D3. Let this point lie in D3. Then there exists a disk that avoids

Q and contains § points as shown in figure [[1{d). O
Lemma 22. eiD > %, fori>2

Proof. We use mathematical induction to prove the result. The result holds for
i = 2(by [2]) and ¢ = 3(by lemma [2]]). Assume the result holds for i = & i.e.,
e’ >1ork> 6% Thus, k + 2 > 6% + 6% (since € > 1 as shown in [2]) i.e.,
k k 2
D

D D D
€r tey D €k €2 1
k + 2 2 —EEE;) . Thus 6k}+2 2 €'ICD+E;) 2 Fr2- I:‘

Lemma 23. When a circle is divided into i equal sectors, i > 4, there exist
i axis-parallel rectangles such that each of them contains the corresponding arc
from each sector and none of them intersect.

Proof. We will first prove for ¢ = 4.

Assume that the centre of the circle is at the origin and the radius of the
circle is r. Then the two lines that divide the circle into four equal sectors will
pass through (0,0) and will intersect the circle in four different points. Let these
points of intersection be (a,b), (¢, —d), (—a, —b), (¢, d) where a,b,c,d > 0.

Without loss of generality, assume that d < b. Now the four rectangles with
the following set of vertices will contain the four arcs (See Figure [12]).

e (—¢,d),(—c¢,7),(a,r),(a,d)
e (a,b),(r,b),(r,—d), (a,—d)
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Rectangles | Half Spaces Disks
LB| UB LB| UB LB|UB

e 3/4 1 1
e | 5/9] 5/8 | 3/5] 2/3 |3/5]2/3
es | 2/5 | 9/16 172 1/2 ] 2/3

Table 2: Summary of lower and upper bounds for ;.

e (¢,—d),(c,7),(—a,r),(—a,—d)
e (—a,—b),(r,—b),(r,d),(—a,d)

Clearly none of these rectangles intersect.

Now assume ¢ > 4. When a circle is divided into 7 sectors, two rectangles that
contain two consecutive sectors are contained in two separate bigger rectangles
as seen in the previous paragraph. Since the bigger rectangles are already proved
to be non-intersecting the smaller rectangles that are contained in them also do
not intersect. o

Theorem 24. X > 1 fori>4

— 3’
Proof. Let P = p1,po,....,pn be a point set of n points arranged along the
boundary of a circle, where n = ik + 1 for some arbitrary k. Consider groups
of points, S;, 1 <1 < n, of size k in which each group consists of k£ consecutive
points starting with point p;. Now, by Lemma 23] there exists a family of axis-
parallel rectangles R = {R;,1 < j < n} such that each R; contains all the k
points of S; and R; and R;;; do not have a common intersection. Therefore
any point p in the epsilon net can cover at most k rectangles in R, so ¢ points
can cover at most ik rectangles. Thus, for any e-net @ of size i, there exists an
axis-parallel rectangle in R that avoids ). Thus for large k, X > % o

Conclusions and Open Questions

In this paper, we have shown lower and upper bounds for € where S is the family
of axis-parallel rectangles, halfspace and disks. A summary of the bounds for
1 < 3 are given in Table 2. An interesting open question is to find the exact
value of € for small values of i.
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