
Disconnectivity and Relative Positions
in Simultaneous Embeddings∗

Thomas Bläsius Ignaz Rutter

Karlsruhe Institute of Technology (KIT), Germany

{blaesius,rutter}@kit.edu

Abstract

For two planar graphs G 1 = (V 1 , E 1) and G 2 = (V 2 , E 2) sharing a common
subgraphG = G 1∩G 2 the problem Simultaneous Embedding with Fixed Edges
(SEFE) asks whether they admit planar drawings such that the common graph is
drawn the same. Previous algorithms only work for cases where G is connected, and
hence do not need to handle relative positions of connected components. We consider
the problem where G, G 1 and G 2 are not necessarily connected.
First, we show that a general instance of SEFE can be reduced in linear time

to an equivalent instance where V 1 = V 2 and G 1 and G 2 are connected. Second,
for the case where G consists of disjoint cycles, we introduce the CC-tree which
represents all embeddings of G that extend to planar embeddings of G 1 . We show
that CC-trees can be computed in linear time, and that their intersection is again a
CC-tree. This yields a linear-time algorithm for SEFE if all k input graphs (possibly
k > 2) pairwise share the same set of disjoint cycles. These results, including the
CC-tree, extend to the case where G consists of arbitrary connected components,
each with a fixed planar embedding on the sphere. Then the running time is O(n2).

1 Introduction

To enable a human reader to compare different relational datasets on a common set
of objects it is important to visualize the corresponding graphs in such a way that
the common parts of the different datasets are drawn as similarly as possible. An
example is a dynamic graph that changes over time. Then the change between two
points in time can be easily grasped with the help of a visualization showing the parts
that did not change in the same way for both graphs. This leads to the fundamental
theoretical problem Simultaneous Embedding with Fixed Edges (or SEFE for
short), asking for two graphs G 1 = (V 1 , E 1) and G 2 = (V 2 , E 2) with the common
graph G = (V,E) = (V 1 ∩ V 2 , E 1 ∩ E 2), whether there are planar drawings of G 1 and
G 2 such that the common graph G is drawn the same in both.

∗Part of this work was done within GRADR – EUROGIGA project no. 10-EuroGIGA-OP-003.

1

ar
X

iv
:1

20
4.

29
03

v2
 [

cs
.D

S]
 1

9
Ju

n
20

15

The problem SEFE and its variants, such as Simultaneous Geometric Embedding,
where one insists on a simultaneous straight-line drawing, have been studied intensively
in the past years; see the recent survey [5] for an overview. Some of the results show,
for certain graph classes, that they always admit simultaneous embeddings or that there
exist negative instances of SEFE whose input graphs belong to these classes. As there
are planar graphs that cannot be embedded simultaneously, the question of deciding
whether given graphs admit a SEFE is of high interest. Gassner et al. [13] show that it is
NP-complete to decide SEFE for three or more graphs. For two graphs the complexity
status is still open. However, there are several approaches yielding efficient algorithms
for special cases. Fowler at al. show how to solve SEFE efficiently, if G 1 and G have
at most two and one cycles, respectively [10]. Fowler et al. characterize the class of
common graphs that always admit a SEFE [11]. Angelini et al. [1] show that if one
of the input graphs has a fixed planar embedding, then SEFE can be solved in linear
time. Haeupler et al. solve SEFE in linear time for the case that the common graph
is biconnected [15]. Angelini et al. obtain the same result with a completely different
approach [2]. They additionally solve the case where the common graph is a star and,
moreover, show the equivalence of the case where the common graph is connected to the
case where the common graph is a tree and relate it to a constrained book embedding
problem. The currently least restrictive result (in terms of connectivity) by Bläsius and
Rutter [6] shows that SEFE can be solved in polynomial time for the case that both
graphs are biconnected and the common graph is connected.
The algorithms testing SEFE have in common that they use the result by Jünger

and Schulz [17] stating that the question of finding a simultaneous embedding for two
graphs is equivalent to the problem of finding planar embeddings of G 1 and G 2 such
that they induce the same embedding on G. Moreover, they have in common that they
all assume that the common graph is connected, implying that it is sufficient to enforce
the common edges incident to each vertex to have the same circular ordering in both
embeddings. Especially in the result by Bläsius and Rutter [6] this is heavily used, as
they explicitly consider only orders of edges around vertices using PQ-trees. However, if
the common graph is not required to be connected, we additionally have to care about the
relative positions of connected components to one another, which introduces an additional
difficulty. Note that the case where the common graph is disconnected cannot be reduced
to the case where it is connected by inserting additional edges. Figure 1 shows an instance
that admits a simultaneous embedding, which is no longer true if the isolated vertex v is
connected to the remaining graph. Other approaches to solve the SEFE problem have
only appeared recently. Schaefer [18] characterizes, for certain classes of SEFE instances,
the pairs of graphs that admit a SEFE via the independent odd crossing number. Among
others, this gives a polynomial-time algorithm for SEFE when the common graph has
maximum degree 3 and is not necessarily connected.
In this work we tackle the SEFE problem from the opposite direction than the so

far known results, by assuming that the circular order of edges around vertices in G
is already fixed and we only have to ensure that the embeddings chosen for the input
graphs are compatible in the sense that they induce the same relative positions on G.
Initially, we assume that the graph G consists of a set of disjoint cycles, each of them

2

v

Figure 1. The bold edges belong to both graphs, the dashed and thin edges are exclusive
edges.

having a unique planar embedding. We present a novel data structure, the CC-tree, which
represents all embeddings of a set of disjoint cycles that can be induced by an embedding
of a graph containing them as a subgraph. We moreover show that two such CC-trees
can be intersected, again yielding a CC-tree. Thus, for the case that G 1 and G 2 have the
common graph G consisting of a set of disjoint cycles, the intersection of the CC-trees
corresponding to G 1 and G 2 represents all simultaneous embeddings. We show that
CC-trees can be computed and intersected in linear time, yielding a linear-time algorithm
to solve SEFE for the case that the common graph consists of disjoint cycles. Note
that this obviously also yields a linear-time algorithm to solve SEFE for more than two
graphs if they all share the same common graph consisting of a set of disjoint cycles. We
show that these results can be further extended to the case where the common graph
may contain arbitrary connected components, each of them with a prescribed planar
embedding. However, in this case the corresponding data structure, called CC⊕-tree, may
have quadratic size. These results show that the choice of relative positions of several
connected components does not solely make the problem SEFE hard to solve.
Note that these results have an interesting application concerning the problem Par-

tially Embedded Planarity. The input of Partially Embedded Planarity is a
planar graph G together with a fixed embedding for a subgraph H (including fixed relative
positions). It asks whether G admits a planar embedding extending the embedding of H.
Angelini et al. [1] introduced this problem and solve it in linear time. The CC⊕-tree can
be used to solve Partially Embedded Planarity in quadratic time as it represents
all possible relative positions of the connected components in H to one another that can
be induced by an embedding of G. It is then easy to test whether the prespecified relative
positions can be achieved. In fact, this solves the slightly more general case of Partially
Embedded Planarity where not all relative positions have to be fixed.
The above described results have one restriction that was not mentioned so far. The

graphs G 1 and G 2 are assumed to be connected, otherwise the approach we present does
not work. Fortunately, we can show that both graphs of an instance of SEFE can always
be assumed to be connected, even if all vertices are assumed to be common vertices
(forming isolated vertices when not connected via a common edge). This shows that
SEFE can be solved efficiently if the common graph consists of disjoint cycles without
further restrictions on the connectivity. Moreover, it is an interesting result on its own

3

as it applies to arbitrary instances of SEFE, not only to the special case we primarily
consider here.
As connectivity plays an important role in this work we fix some basic definitions in

the following. A graph is connected if there exists a path between any pair of vertices. A
separating k-set is a set of k vertices whose removal disconnects the graph. Separating
1-sets and 2-sets are cutvertices and separation pairs, respectively. A connected graph
is biconnected if it does not have a cut vertex and triconnected if it does not have a
separation pair. The maximal biconnected components of a graph are called blocks. The
cut components with respect to a separating k-set S are the maximal subgraphs that are
not disconnected by removing S.

Outline. In Section 2 we show that, for any given instance of SEFE, there exists an
equivalent instance such that both input graphs are connected, even if each vertex is
assumed to be a common vertex. With this result instances of SEFE can always be
assumed to have this property. In Section 3 we show how to solve SEFE in linear time if
the common graph consists of disjoint cycles, including a compact representation of all
simultaneous embeddings. In Section 4 we show how to extend these results to solve SEFE
in quadratic time for the case that the common graph consists of arbitrary connected
components, each with a fixed planar embedding. We conclude in Section 5.

2 Connecting Disconnected Graphs

Let G 1 = (V,E 1) and G 2 = (V,E 2) be two planar graphs with common graph G = (V,E)
with E = E 1 ∩ E 2 . We show that the problem SEFE can be reduced to the case where
G 1 and G 2 are required to be connected. First note that the connected components
of the union of G 1 and G 2 can be handled independently. Thus we can assume that
G 1 ∪ G 2 is connected. We first ensure that G 1 is connected without increasing the
number of connected components in G 2 . Afterwards we can apply the same steps to G 2

to make it connected, maintaining the connectivity of G 1 .
Assume G 1 and G 2 consist of k 1 and k 2 connected components, respectively. Since the

union of G 1 and G 2 is connected, we can always find an edge e 2 = {v1, v2} ∈ E 2 such
that the vertices v1 and v2 belong to different connected components H 1

1 and H 1
2 in G 1 .

We construct the augmented instance (G 1
+, G

2
+) of SEFE with respect to the edge e 2 by

introducing a new vertex v12 and new edges e = {v1, v12} ∈ E and e 1 = {v12, v2} ∈ E 1 .
Note that G 1

+ has k 1 − 1 connected components since H 1
1 and H 2

2 are now connected
via the two edges e and e 1 . Moreover, the number k 2 of connected components in G 2

does not change, since the edge e connects the new vertex v12 to one of its connected
components. It remains to show that the original instance and the augmented instance
are equivalent.

Lemma 1. Let (G 1 , G 2) be an instance of SEFE and let (G 1
+, G

2
+) be the augmented

instance with respect to the edge e 2 = {v1, v2}. Then (G 1 , G 2) and (G 1
+, G

2
+) are

equivalent.

4

v2

v1

e 2f 2

1

f 2

2

f

f 1

1

f 1

2

v2

v1

f
G 1

2

G 1

1

v2

v1

f

v12
e 1

e

Figure 2. Illustration of Lemma 1, the common graph is depicted black. The graph G 2

with the edge e 2 = {v1, v2} lying in the common face f , which is the outer face of G
(left). The graph G 1 with the faces f 1

1 , f
1
2 ∈ F 1 (f) incident to v1 and v2, respectively,

partitioned into G 1
1 and G 1

2 (middle). The resulting graph G 1 after choosing f 1
i as outer

face of G 1
i (for i = 1, 2) and inserting the vertex v12 and the edges e and e 1 (right).

Proof. If the augmented instance admits a SEFE, then obviously the original instance
does. To show the other direction assume the original instance (G 1 , G 2) has a SEFE
(E 1 , E 2) inducing the embedding E for the common graph. We show how to construct an
embedding E ′ 1 such that (i) (E ′ 1 , E 2) is a SEFE, and (ii) the vertices v1 and v2 lie on
the border of a common face in E ′ 1 . Then we can easily add the vertex v12 together with
the two edges e and e 1 , yielding a SEFE of the augmented instance (G 1

+, G
2
+). Note

that the first property, namely that (E ′ 1 , E 2) is a SEFE, is satisfied if and only if the
embeddings E 1 and E ′ 1 induce the same embedding E on the common graph. Figure 2
illustrates the proof.
Consider a face f of the embedding E of the common graph. The embedding E 1 of

the graph G 1 splits this face f into a set of faces F 1 (f) = {f 1
1 , . . . , f

1
k }. We say that a

face f 1 ∈ F 1 (f) is contained in f . Note that every face of E 1 is contained in exactly
one face of E . The same definition can be made for the second graph.

The edge e 2 = {v1, v2} borders two faces f 2
1 and f 2

2 of E 2 . Since e 2 belongs exclusively
to G 2 (otherwise v1 and v2 would not have been in different connected components in G 1)
both faces f 2

1 and f 2
2 are contained in the same face f of the embedding E of the common

graph G. We assume without loss of generality that f is the outer face. The face f may
be subdivided by edges belonging exclusively to the graph G 1 . However, we can find faces
f 1
1 and f 1

2 of E 1 , both contained in f , such that v1 and v2 are contained in the boundary
of these faces. If f 1

1 = f 1
2 we are done since v1 and v2 lie on the boundary of the same face

in E 1 . Otherwise, we split G 1 into two subgraphs G 1
1 and G 1

2 with the embeddings E 1
1

and E 1
2 induced by E 1 as follows. The connected component H 1

i (for i = 1, 2) containing
vi belongs to G 1

i and all connected components that are completely contained in an
internal face of H 1

i also belong to G 1
i . All remaining connected components belong either

to G 1
1 or to G 1

2 . Note that this partition ensures that there is a simple closed curve in
the outer face of E 1 separating G 1

1 and G 1
2 . Thus, we can change the embeddings of E 1

1

5

and E 1
2 independently. In particular, we choose the faces f 1

1 and f 1
2 to be the new outer

faces, yielding the changed embeddings E ′ 11 and E ′ 12 , respectively. When combining these
to embeddings by putting G 1

1 into the outer face of G 1
2 and vice versa, we obtain a new

embedding E ′ 1 of G 1 with the following two properties. First, the embedding induced for
the common graph does not change since both faces f 1

1 and f 1
2 belong to the outer face

f of the embedding E of the common graph G. Second, the vertices v1 and v2 both lie
on the outer face of the embedding E ′ 1 . Hence, (E ′ 1 , E 2) is still a SEFE of the instance
(G 1 , G 2) and the vertex v12 together with the two edges e and e 1 can be added easily,
which concludes the proof.

With this construction we can reduce the number of connected components of G 1 and
G 2 and thus finally obtain an equivalent instance of SEFE in which both graphs are
connected. We obtain the following Theorem.

Theorem 1. For every instance (G 1 , G 2) of SEFE there exits an equivalent instance
(G 1

++, G
2
++) such that G 1

++ and G 2
++ are connected. Such an instance can be computed

in linear time.

Proof. Lemma 1 directly implies that an equivalent instance (G 1
++, G

2
++) in which both

graphs are connected exists. It remains to show that it can be computed in linear time. To
connect all the connected components of G 1 , we contract each of them to a single vertex
in the graph G 2 . Then an arbitrary spanning tree yields a set of edges e 2

1 , . . . , e
2
k ∈ E 2 ,

such that augmenting the instance with respect to these edges yields a connected graph
G 1

++. This works symmetrically for G 2 and can obviously be done in linear time.

3 Disjoint Cycles

In this section, we consider the problem SEFE for the case that the common graph
consists of a set of disjoint cycles. Due to Theorem 1, we can assume without loss of
generality that both graphs are connected. In Section 3.1 we show how to solve this
special case of SEFE in polynomial time. In Section 3.2 we introduce a tree-like data
structure, the CC-tree, representing all planar embeddings of a set of cycles contained in
a single graph that can be induced by an embedding of the whole graph. We additionally
show that the intersection of the set of embeddings represented by two CC-trees can again
be represented by a CC-tree, yielding a solution for SEFE even for the case of more than
two graphs if all graphs have the same common graph, which consists of a set of disjoint
cycles. In Section 3.3 we show how to compute the CC-tree and the intersection of two
CC-trees in linear time. Before we start, we fix some definitions.

Embeddings of Disjoint Cycles. Let C = {C1, . . . , Ck} be a set of disjoint simple cycles.
We consider embeddings of these cycles on the sphere. Since a single cycle has a unique
embedding on the sphere only their relative positions to one another are of interest.
To be able to use the terms “left” and “right” we consider the cycles to be directed.
We denote the relative position of a cycle Cj with respect to a cycle Ci by posCi

(Cj).

6

Ci
Cj

Ck

Figure 3. Three nested cycles.

More precisely, we have posCi
(Cj) = “left” and posCi

(Cj) = “right”, if Cj lies on the
left and right side of Ci, respectively. We call an assignment of a value “left” or “right”
to each of these relative positions a semi-embedding of the cycles C = {C1, . . . , Ck}.
Note that not every semi-embedding yields an embedding of the cycles. For example
if posCi

(Cj) = posCj
(Ck) = “left” and posCj

(Ci) = “right”, then posCi
(Ck) also needs

to have the value “left”; see Figure 3. However, two embeddings yielding the same
semi-embedding are the same.

Sometimes we do not only consider the relative position of cycles but also of some other
disjoint subgraph. We extend our notation to this case. For example the relative position
of a single vertex v with respect to a cycle C is denoted by posC(v).

SPQR- and BC-Trees. The block-cutvertex tree (BC-tree) B of a connected graph is a
tree whose nodes are the blocks and cutvertices of the graph, called B-nodes and C-nodes,
respectively. In the BC-tree a block B and a cutvertex v are joined by an edge if v belongs
to B. If an embedding is chosen for each block, these embeddings can be combined to an
embedding of the whole graph if and only if B can be rooted at a B-node such that the
parent of every other block B in B, which is a cutvertex, lies on the outer face of B.
We use the SPQR-tree introduced by Di Battista and Tamassia [7, 8] to represent

all planar embeddings of a biconnected planar graph G. The SPQR-tree T of G is a
decomposition of G into triconnected components along its split pairs, where a split
pair is either a separation pair or an edge. We define the SPQR-tree to be unrooted,
representing embeddings on the sphere, that is planar embeddings without a designated
outer face. Let {s, t} be a split pair and let H1 and H2 be two subgraphs of G such that
H1 ∪H2 = G and H1 ∩H2 = {s, t}. Consider the tree containing the two nodes µ1 and
µ2 associated with the graphs H1 + {s, t} and H2 + {s, t}, respectively. These graphs are
called skeletons of the nodes µi, denoted by skel(µi) and the special edge {s, t} is said to
be a virtual edge. The two nodes µ1 and µ2 are connected by an edge or, more precisely,
the occurrence of the virtual edges {s, t} in both skeletons are linked by this edge. The
expansion graph exp({s, t}) of a virtual edge {s, t} is the subgraph of G it represents,
that is in skel(µ1) and skel(µ2) the expansion graphs of {s, t} are H2 and H1, respectively.
Now a combinatorial embedding of G uniquely induces a combinatorial embedding of
skel(µ1) and skel(µ2). Furthermore, arbitrary and independently chosen embeddings for
the two skeletons determine an embedding of G, thus the resulting tree can be used to
represent all embeddings of G by the combination of all embeddings of two smaller planar
graphs. This replacement can of course be applied iteratively to the skeletons yielding a
tree with more nodes but smaller skeletons associated with the nodes.

7

µ2v1

v2

v3 v4 v5

a b c d

e

f

g
h i j

v5

v2

i
j

v5

v2

v1

d

v1

v2

e

v1

v4

v4

v1

v2

v3

b
c

a

f g h

µ5µ4
µ3

µ1

Figure 4. The unrooted SPQR-tree of a biconnected planar graph. The nodes µ1, µ3
and µ5 are P-nodes, µ2 is an R-node and µ4 is an S-node. The Q-nodes are not shown
explicitely.

Applying this kind of decomposition in a systematic way yields the SPQR-tree as
introduced by Di Battista and Tamassia [7, 8]. The SPQR-tree T of a biconnected planar
graph G contains four types of nodes. First, the skeleton of a P-node consists of a bundle of
at least three parallel edges. Embedding the skeleton of a P-node corresponds to choosing
an order for the parallel edges. Second, the skeleton of an R-node is triconnected, thus
having exactly two embeddings [19], and third, S-nodes have a simple cycle as skeleton
without any choice for the embedding. Finally, every edge in a skeleton representing only
a single edge in the original graph G is formally also considered to be a virtual edge linked
to a Q-node in T representing this single edge. Note that all leaves of the SPQR-tree T
are Q-nodes. Besides from being a nice way to represent all embeddings of a biconnected
planar graph, the SPQR-tree has size only linear in the size of G and Gutwenger and
Mutzel [14] show that it can be computed in linear time. Figure 4 shows a biconnected
planar graph together with its SPQR-tree.

3.1 A Polynomial-Time Algorithm

Let (G 1 , G 2) be an instance of SEFE with common graph G consisting of pairwise
disjoint simple cycles C = {C1, . . . , Ck}. We first assume that G 1 and G 2 are biconnected
and show later how to remove this restriction. Our approach is to formulate constraints
on the relative positions of the cycles to one another ensuring that G 1 and G 2 induce
the same semi-embedding on the common graph G. We show implicitly that the resulting
semi-embedding is really an embedding by showing that the graphs G 1 and G 2 have
planar embeddings inducing this semi-embedding. Note that this only works for the case
that G 1 and G 2 are connected. Thus, our approach crucially relies on the result provided
in Section 2.

Biconnected Graphs

Before considering two graphs, we determine for a single graph the possible embeddings
it may induce on a set of disjoint cycles contained in it. Let G = (V,E) be a biconnected
graph with SPQR-tree T , let C be a simple directed cycle in G and let µ be a node in T .
Obviously, C is either completely contained in the expansion graph of a single virtual

8

edge of µ or C induces a simple directed cycle of virtual edges in skel(µ). We say that C
is contracted in skel(µ) in the first case and that C is a cycle in skel(µ) in the second case.
If C is a cycle in skel(µ), we also say that skel(µ) contains C as a cycle. Consider the
case where C is a cycle in skel(µ) and let κ denote this cycle. By fixing the embedding of
skel(µ) the virtual edges in skel(µ) not contained in κ split into two groups, some lie to
the left and some to the right of κ. Obviously, a vertex v ∈ V \ V (C) in the expansion
graph of a virtual edge that lies to the left (to the right) of κ lies to the left (to the right)
of C in G, no matter which embedding is chosen for the skeletons of other nodes. In other
words, the value of posC(v) is completely determined by this single node µ. We show
that for every vertex v ∈ V \ V (C) there is a node µ in T containing C as a cycle such
that the virtual edge in skel(µ) containing v in its expansion graph is not contained in
the cycle κ induced by C. Hence such a node µ ∈ T determining posC(v) always exists.
Extending this to a pair of cycles yields the following lemma.

Lemma 2. Let G be a biconnected planar graph with SPQR-tree T and let C1 and C2 be
two disjoint simple cycles in G. There is exactly one node µ in T determining posC1

(C2).
Moreover, µ contains C1 as cycle κ1 and C2 either as a cycle or contracted in an edge
not contained in κ1.

Proof. We choose some vertex v ∈ V (C2) as representative for the whole cycle. Consider
a Q-node µ1 in the SPQR-tree T corresponding to an edge contained in C1. Moreover,
let µk be a Q-node corresponding to an edge incident to v. We claim that the desired
node µ lies somewhere on the path µ1, . . . , µk in the SPQR-tree T .
Obviously C1 is a cycle in µ1 and the vertex v belongs to the virtual edge in skel(µ1).

In µk the vertex v is a pole and C1 is contracted in the virtual edge of skel(µk) since
v /∈ V (C1). Assume we are navigating from µ1 to µk and let µi be the current node. If
skel(µi) does not contain the vertex v, it belongs to a single virtual edge in skel(µi). In
this case µi+1 is obviously the node corresponding to this virtual edge. If v is a vertex of
skel(µi), then µi+1 corresponds to one of the virtual edges incident to v in skel(µi). As
long as C1 is a cycle in the current node and v belongs to a virtual edge in this cycle,
the next node in the path corresponds to this virtual edge and thus C1 remains a cycle.
Since C1 is contracted in µk, we somewhere need to follow a virtual edge not contained
in the cycle induced by C1; let µ be this node. By definition µ contains C1 as cycle κ
and the next node on the path belongs to a virtual edge that is not contained in κ but
contains v in its expansion graph. Thus posC1

(v) is determined by this node µ. Since v
is a node of the second cycle C2 also posC1

(C2) is completely determined by this node.
Moreover, µ contains C1 as cycle κ and C2 either as a cycle or contracted in a virtual
edge not belonging to κ.

Now consider a set of pairwise disjoint cycles C = {C1, . . . , Ck} in G. Let µ be an
arbitrary node in the SPQR-tree T . If µ is an S- or a Q-node it clearly does not determine
any of the relative positions since either every cycle is contracted in skel(µ) or a single
cycle is a cycle in skel(µ) containing all the virtual edges. In the following, we consider
the two interesting cases namely that µ is an R- or a P-node containing at least one cycle
as a cycle.

9

Let µ be a P-node in T with skel(µ) consisting of two vertices s and t with parallel
virtual edges ε1, . . . , ε` between them. If C ∈ C is contained as a cycle in skel(µ), it
induces a cycle κ in skel(µ) consisting of two of the parallel virtual edges. Let without
loss of generality ε1 and ε2 be these virtual edges. Obviously, no other cycle C ′ ∈ C is a
cycle in skel(µ) since such a cycle would need to contain s and t, which is a contradiction
to the assumption that C and C ′ are disjoint. Thus, every other cycle C ′ is contracted in
skel(µ), belonging to one of the virtual edges ε1, . . . , ε`. If it belongs to ε1 or ε2, which are
contained in κ, then posC(C

′) is not determined by µ. If C ′ belongs to one of the virtual
edges ε3, . . . , ε`, the relative position posC(C

′) is determined by the relative position of
this virtual edge with respect to the cycle κ. This relative position can be chosen for
every virtual edge ε3, . . . , ε` arbitrarily and independently. Hence, if there are two cycles
Ci and Cj belonging to different virtual edges in µ, the positions posC(Ci) and posC(Cj)
can be chosen independently. Furthermore, if the two cycles Ci and Cj belong to the
same virtual edge ε ∈ {ε3, . . . , ε`}, their relative position with respect to C is the same,
that is posC(Ci) = posC(Cj), for every embedding of G.

Let µ be an R-node in T . For the moment, we consider that the embedding of skel(µ)
is fixed by choosing one of the two orientations. Let C be a cycle inducing the cycle κ
in skel(µ). Then the relative position posC(C

′) of a cycle C ′ 6= C is determined by µ
if and only if C ′ is a cycle in skel(µ) or if it is contracted belonging to a virtual edge
not contained in κ. Since we consider only one of the two embeddings of skel(µ) at the
moment, posC(C ′) is fixed to one of the two values “left” or “right” in this case. The same
can be done for all other cycles that are cycles in skel(µ) yielding a fixed value for all
relative positions that are determined by µ. Finally, we have a partition of all positions
determined by µ into the set of positions P1 = {posCa(1)

(Cb(1)), . . . ,posCa(r)
(Cb(r))} all

having the value “left” and the set of positions P2 = {posCc(1)
(Cd(1)), . . . ,posCc(s)

(Cd(s))}
having the value “right”. Now if the embedding of skel(µ) is not fixed anymore, we have
only the possibility to flip it. By flipping, all the positions in P1 change to “right” and all
positions in P2 change to “left”. Hence, we obtain that the equation posCa(1)

(Cb(1)) = · · · =
posCa(r)

(Cb(r)) 6= posCc(1)
(Cd(1)) = · · · = posCc(s)

(Cd(s)) is satisfied for every embedding
of the cycles C = {C1, . . . , Ck} induced by an embedding of G.
To sum up, we obtain a set of (in)equalities relating the relative positions of cycles

to one another. We call these constraints the PR-node constraints with respect to the
biconnected graph G. Obviously the PR-node constraints are necessary in the sense that
every embedding of G induces an embedding of the cycles C = {C1, . . . , Ck} satisfying
these constraints. The following lemma additionally states the sufficiency of the PR-node
constraints.

Lemma 3. Let G be a biconnected planar graph containing the disjoint cycles C =
{C1, . . . , Ck}. Let further EC be a semi-embedding of these cycles. There is an embedding
E of G inducing EC if and only if EC satisfies the PR-node constraints.

Proof. The “only if”-part of the proof is obvious, as mentioned above. It remains to show
the “if”-part. Let EC be a semi-embedding of C = {C1, . . . , Ck} satisfying the PR-node
constraints given by G. We show how to construct an embedding E of G inducing the

10

embedding EC on the cycles C = {C1, . . . , Ck}. We simply process the nodes of the
SPQR-tree one by one and choose an embedding for the skeleton of every node. Let µ be a
node in T . If µ is an S- or a Q-node, there is nothing to do, since there is no choice for the
embedding of skel(µ). If µ is a P-node several relative positions may be determined by the
embedding of skel(µ). However, these positions satisfy the PR-node constraints stemming
from µ, hence we can choose an embedding for skel(µ) determining these positions as given
by EC . Obviously, the same holds for the case where µ is an R-node. Hence, we finally
obtain an embedding E of G determining the positions that are determined by a node
in T as required by EC . Due to Lemma 2 every pair of relative positions is determined
by exactly one node in T , yielding that the resulting embedding E induces EC on the
cycles. Note that this shows implicitly that EC is not only a semi-embedding but also an
embedding.

Now let G 1 and G 2 be two biconnected planar graphs with the common graph
G consisting of pairwise disjoint simple cycles C = {C1, . . . , Ck}. If we find a semi-
embedding E of the cycles that satisfies the PR-node constraints with respect to G 1

and G 2 simultaneously, we can use Lemma 3 to find embeddings E 1 and E 2 for G 1

and G 2 both inducing the embedding E on the common graph G. Thus, satisfying the
PR-node constraints with respect to both G 1 and G 2 , is sufficient to find a SEFE.
Conversely, given a pair of embeddings E 1 and E 2 inducing the same embedding E on G,
this embedding E needs to satisfy the PR-node constraints with respect to both, G 1

and G 2 , which is again due to Lemma 3. Since the PR-node constraints form a set of
boolean (in)equalities we can express them as an instance of 2-Sat. As this instance has
polynomial size and can easily be computed in polynomial time, we obtain the following
theorem.

Theorem 2. Simultaneous Embedding with Fixed Edges can be solved in quadratic
time for biconnected graphs whose common graph is a set of disjoint cycles.

Proof. It remains to show that the PR-node constraints can be computed in quadratic
time, yielding an instance of 2-Sat with quadratic size. As this 2-Sat instance can be
solved consuming time linear in its size [3, 9], we obtain a quadratic-time algorithm.
We show how to process each node µ of the SPQR-tree in O(n · | skel(µ)|) time,

computing the PR-node constraints stemming from µ. For each virtual edge ε we compute
a list of cycles in C that contain edges in the expansion graph exp(ε) by traversing all
leaves in the corresponding subtree, consuming O(n) time for each virtual edge. Then the
list of cycles that occur as cycles in skel(µ) can be computed in linear time. For each of
these cycles C all constraints on relative positions with respect to C determined by µ can
be easily computed in O(n) time. As only O(| skel(µ)|) cycles can be contained as cycles
in skel(µ), this yields the claimed O(n · | skel(µ)|) time for each skeleton. Since the total
size of the skeletons is linear in the size of the graph, this yields an overall O(n2)-time
algorithm.

11

Allowing Cutvertices

In this section we consider the case where the graphs may contain cutvertices. As before,
we consider a single graph G containing a set of disjoint cycles C = {C1, . . . , Ck} first.
Let C ∈ C be one of the cycles and let v be a cutvertex contained in the same block B
that contains C. The cutvertex v splits G into ` cut components H1, . . . ,H`. Assume
without loss of generality that B (and with it also C) is contained in H1. We distinguish
between the cases that v is contained in C and that it is not.
If v is not contained in C, then the relative position posC(v) is determined by the

embedding of the block B and it follows that all the subgraphs H2, . . . ,H` lie on the
same side of C as v does. It follows from the biconnected case (Lemma 2) that posC(v) is
determined by the embedding of the skeleton of exactly one node µ in the SPQR-tree of B.
Obviously, the conditions that all cycles in H2, . . . ,H` are on the same side of C as v can
be easily added to the PR-node constraints stemming from the node µ; call the resulting
constraints the extended PR-node constraints. These constraints are clearly necessary. On
the other hand, if EC is a semi-embedding of the cycles satisfying the extended PR-node
constraints, we can find an embedding EB of the block B such that all relative positions of
cycles that are determined by single nodes in the SPQR-tree of B are compatible with EC .
If v is contained in C, the relative position posC(v) does not exist. Assume the

embedding of each block is already chosen. Then for each subgraph H ∈ {H2, . . . ,H`},
the positions posC(H) can be chosen arbitrarily and independently. In this case we say
for a cycle C ′ in H that its relative position posC(C

′) is determined by the embedding
chosen for the cutvertex v. Obviously, in every embedding of G, a pair of cycles Ci and
Cj both belonging to the same subgraph H ∈ {H2, . . . ,H`} lie on the same side of C
yielding the equation posC(Ci) = posC(Cj). This equation can be set up for every pair
of cycles in each of the subgraphs, yielding the cutvertex constraints with respect to v.
Again we have that, given a semi-embedding EC of the cycles satisfying the cutvertex
constraints with respect to v, we can simply choose an embedding of the graph such that
the relative positions determined by the embedding around the cutvertex are compatible
with EC .

To sum up, a semi-embedding EC on the cycles C = {C1, . . . , Ck} that is induced by an
embedding E of the whole graph always satisfies the extended PR-node and cutvertex
constraints. Moreover, given a semi-embedding EC satisfying these constraints, we can find
an embedding E of G inducing compatible relative positions for each relative position that
is determined by a single node in the SPQR-tree of a block or by a cutvertex. Obviously,
the relative position of every pair of cycles is determined by such a node or a cutvertex.
Thus the extended PR-node and cutvertex constraints together are sufficient, that is, given
a semi-embedding of the cycles satisfying these constraints, we can find an embedding of
G inducing this semi-embedding. This shows implicitly that the given semi-embedding is
an embedding. This result is stated again in the following lemma.

Lemma 4. Let G be a connected planar graph containing the disjoint cycles C = {C1, . . . , Ck}.
Let further EC be a semi-embedding of these cycles. There is an embedding E of G in-
ducing EC if and only if EC satisfies the extended PR-node and cutvertex constraints with
respect to G.

12

C v

posC(v) = “right”

C
v

posC(v) = “left”

C
v

posC(v) = “right”

C v

posC(v) = “left”

a

b

c

d

a

b

c

d

a

d

c

b

a

d

c

b

Figure 5. One component containing C (bold) and another consisting only of the vertex
v. Changing the face in which v lies may change the relative position posC(v). Moreover,
changing the embedding of the component containing C (in this case flipping it) also
changes posC(v).

This result again directly yields a polynomial-time algorithm to solve SEFE for the
case that both graphs G 1 and G 2 are connected and their common graph G consists of a
set of disjoint cycles. Moreover, requiring both graphs to be connected is not really a
restriction due to Theorem 1. The extended PR-node and cutvertex constraints can be
computed similarly as in the proof of Theorem 2, yielding the following theorem.

Theorem 3. Simultaneous Embedding with Fixed Edges can be solved in quadratic
time if the common graph consists of disjoint cycles.

Note that we really need to use Theorem 1 to ensure that the graphs are connected since
our approach does not extend to the case where the graphs are allowed to be disconnected.
In this case it would still be easy to formulate necessary conditions in terms of boolean
equations. However, these conditions would only be sufficient if it is additionally ensured
that the given semi-embedding actually is an embedding. The reason why this is not
directly ensured by the embedding of the graph (as it is in the connected case) is that
the relative position of cycles to one another is not determined by exactly one choice that
can be made independently from the other choices; see Figure 5.

3.2 A Compact Representation of all Simultaneous Embeddings

In the previous section we showed that SEFE can be solved in polynomial time for the
case that the common graph consists of disjoint cycles. In this section we describe a
data structure, the CC-tree, representing all embeddings of a set of disjoint cycles that
can be induced by an embedding of a connected graph containing them. Afterwards, we
show that the intersection of the sets of embeddings represented by two CC-trees can
again be represented by a CC-tree. In Section 3.3 we then show that the CC-tree and
the intersection of two CC-trees can be computed in linear time, yielding an optimal
linear-time algorithm for SEFE for the case that the common graph consists of disjoint
cycles. Note that this algorithm obviously extends to the case where k graphs G 1 , . . . , G̨
are given such that they all intersect in the same common graph G consisting of a set of
disjoint cycles.

13

C′

posC(C
′) = “right”

C

C′′

C′

posC(C
′) = “left”

C
C′′

Figure 6. Two embeddings of the same CC-tree. The only difference between the embed-
dings is that different values are chosen for the crucial relative position posC(C

′). Note
that the tree structure enforces the (non-crucial) relative position posC(C

′′) to be equal
to posC(C

′).

C-Trees and CC-Trees

Let C = {C1, . . . , Ck} be a set of disjoint cycles. A cycle-tree (C-tree) TC on these cycles
is a minimal connected graph containing C; see Figure 6. Obviously, every embedding of
TC induces an embedding of the cycles. We say that two embeddings of TC are equivalent
if they induce the same embedding of C and we are only interested in the equivalence
classes with respect to this equivalence relation. An embedding E of the cycles in C is
represented by TC if it admits an embedding inducing E . Note that contracting each of
the cycles C = {C1, . . . , Ck} in a C-tree to a single vertex yields a spanning tree on these
vertices. In most cases we implicitly assume the cycles to be contracted such that TC can
be treated like a tree.
The embedding choices that can be made for TC are of the following kind. For every

edge e = {C,C ′} in TC , we can decide to put all cycles in the subtree attached to C via e
either to the left or to the right of C. In particular, we can assign a value “left” or “right”
to the relative position posC(C

′). Moreover, by fixing the relative positions posC(C
′)

and posC′(C) for every pair of cycles C and C ′ that are adjacent in TC , the embedding
represented by TC is completely determined. Thus, given a C-tree TC , we call the relative
positions posC(C ′) and posC′(C) with C,C ′ ∈ C crucial if C and C ′ are adjacent in TC ;
see Figure 6. We note that, when determining an embedding of TC , the crucial relative
positions can be chosen independently from one another.

Since the crucial relative positions with respect to a C-tree TC are binary variables, we
can use (in)equalities between them to further constrain the embeddings represented by
TC . We call a C-tree with such additional constraints on its crucial relative positions a
constrained cycle-tree (CC-tree) on the set of cycles C. In this way, there is a bijection
between the embeddings of C represented by a CC-tree and the solutions of an instance
of 2-Sat given by the constraints on the crucial relative positions of TC . We essentially
prove two things. First, for every connected graph G containing the cycles C, there exists
a CC-tree representing exactly the embeddings of C that can be induced by embeddings
of G. Essentially, we have to restrict the extended PR-node and cutvertex constraints

14

to the crucial relative positions of a C-tree compatible with G. Second, for a pair of
CC-trees T 1

C and T 2
C on the same set C of cycles, there exists a CC-tree TC representing

exactly the embeddings of C that are represented by T 1
C and T 2

C .
Let G be a connected planar graph containing a set C of disjoint cycles. We say that

a C-tree TC is compatible with G if it is a minor of G, that is if it can be obtained by
contracting edges in a subgraph of G. The corresponding compatible CC-tree is obtained
from TC by adding the subset of the extended PR-node and cutvertex constraints that
only involve crucial relative positions of TC . Note that there may be many compatible
CC-trees for a single graph G. However, in the following we arbitrarily fix one of them
and speak about the CC-tree of G.

Theorem 4. Let G be a connected planar graph containing the disjoint cycles C =
{C1, . . . , Ck}. The CC-tree TC of G represents exactly the embeddings of C that can be
induced by an embedding of G.

Proof. Let E be an embedding of G and let EC be the embedding induced on the cycles
C = {C1, . . . , Ck}. Obviously, the CC-tree TC can be obtained from G by contracting the
cycles C to single vertices, choosing a spanning tree, expanding the cycles and contracting
edges incident to non-cycle vertices. Since we essentially only pick a subgraph of G
containing all cycles C = {C1, . . . , Ck} and contract edges, the embedding EC is preserved.
Moreover, by Lemma 4, it satisfies the extended PR-node and cutvertex constraints since
it is induced by the embedding E of G. Hence, EC is represented by the CC-tree TC .
Conversely, let EC be an embedding on the cycles represented by the CC-tree TC . By

definition, the extended PR-node and cutvertex constraints are satisfied for the crucial
relative positions. We show that the tree-like structure of TC ensures that they are
also satisfied for the remaining relative positions, yielding that an embedding E of G
inducing EC exists due to Lemma 4. We start with the PR-node constraints. Let B
be a block of G with SPQR-tree T (B). In a P-node µ containing a cycle C as cycle κ
every other cycle in B is contracted, belonging to a single virtual edge. Let Ci and Cj

be two cycles in B belonging to the same virtual edge ε not contained in κ. In this case
the PR-node constraints stemming from µ require posC(Ci) = posC(Cj), and we show
that this equation is implied if the extended PR-node constraints are satisfied for the
crucial relative positions. Let C ′i and C

′
j be the first cycles on the paths from C to Ci

and Cj in TC , respectively. Note that C ′i and C ′j are not necessarily contained in the
block B. However, we first consider the case where both are contained in B. Then C ′i
and C ′j are both contracted in the same virtual edge ε as Ci and Cj since a path from
a cycle belonging to ε to a cycle belonging to a different virtual edge would necessarily
contain a pole of skel(µ) and thus a vertex in C. Thus, the PR-node constraints restricted
to the crucial relative positions enforce posC(C

′
i) = posC(C

′
j). Furthermore, the tree

structure of TC enforces posC(Ci) = posC(C
′
i) and posC(Cj) = posC(C

′
j). Hence, in this

case the PR-node constraints stemming from µ are implied by their restriction to the
crucial relative positions. For the case that C ′i or C

′
j are contained in a different block,

they are connected to B via cutvertices vi or vj , which must belong to exp(ε) by the same
argument as above, namely that every path from Ci or Cj to a vertex that is contained in
the expansion graph of another virtual edge needs to contain one of the poles. Thus, the

15

extended PR-node constraints enforce posC(C
′
i) = posC(C

′
j) yielding the same situation

as above. In total, the extended PR-node constraints stemming from a P-node µ restricted
to the crucial relative positions enforce that the PR-node constraints stemming from µ
are satisfied for all relative positions.

For the case that µ is an R-node a similar argument holds. If C is a cycle κ in skel(µ)
and two cycles Ci and Cj lie contracted or as cycles on the same side (on different sides)
of κ, then the first cycles C ′i and C

′
j on the path from C to Ci and Cj in the CC-tree

TC lie on the same side (on different sides) of κ or the cutvertices connecting C ′i and C
′
j

to the block B lie on the same side (on different sides) of κ. Thus, the extended PR-
node constraints restricted to the crucial relative positions enforce posC(C

′
i) = posC(C

′
j)

(posC(C ′i) 6= posC(C
′
j)) and the tree structure of TC yields posC(Ci) = posC(C

′
i) and

posC(Cj) = posC(C
′
j). Obviously, these arguments extend to the case of extended PR-

node constraints since a cutvertex not contained in C can be treated like a disjoint
cycle.
It remains to deal with the cutvertex constraints stemming from the case where C is

a cycle containing a cutvertex v splitting G into the cut components H1, . . . ,H`. Let
without loss of generality H1 be the subgraph containing C. The cutvertex constraints
ensure that a pair of cycles Ci and Cj belonging to the same subgraph H ∈ {H2, . . . ,H`}
are located on the same side of C. Let C ′i and C

′
j be the first cycles on the path from C

to Ci and Cj in the CC-tree TC , respectively. Obviously C ′i and C
′
j belong to the same

subgraph H and hence the cutvertex constraints restricted to the crucial relative positions
enforce posC(C

′
i) = posC(C

′
j). Moreover, the tree structure of TC again ensures that the

equations posC(Ci) = posC(C
′
i) and posC(Cj) = posC(C

′
j) hold, which concludes the

proof.

Intersecting CC-Trees

In this section we consider two CC-trees T 1
C and T 2

C on the same set of cycles C. We
show that the set of embeddings that are represented by both T 1

C and T 2
C can again be

represented by a single CC-tree. We will show this by constructing a new CC-tree, which
we call the intersection of T 1

C and T 2
C , showing afterwards that this CC-tree has the

desired property. The intersection TC is a copy of T 1
C with some additional constraints

given by the second CC-tree T 2
C . We essentially have to formulate two types of constraints.

First, constraints stemming from the structure of the underlying C-tree of T 2
C . Second,

the constraints given by the (in)equalities on the relative positions that are crucial with
respect to T 2

C . We show that both kinds of constraints can be formulated as (in)equalities
on the relative positions that are crucial with respect to T 1

C .
Let C1 and C2 be two cycles joined by an edge in T 2

C . Obviously, C1 and C2 are
contained in the boundary of a common face in every embedding E 2 represented by
T 2
C . It is easy to formulate constraints on the relative positions that are crucial with

respect to T 1
C such that C1 and C2 are contained in the boundary of a common face

for every embedding represented by T 1
C . Consider the path π from C1 to C2 in T 1

C .
For every three cycles C, C ′ and C ′′ appearing consecutively on π it is necessary that
posC′(C) = posC′(C

′′) holds. Otherwise C1 and C2 would be separated by C ′. Conversely,

16

if this equation holds for every triple of consecutive cycles on π, then C1 and C2 always
lie on a common face. We call the resulting equations the common-face constraints. Note
that all relative positions involved in such constraints are crucial with respect to T 1

C .
To formulate the constraints given on the crucial relative positions of T 2

C , we essentially
find, for each of these crucial relative positions posC1

(C2), a relative position posC1
(C ′2)

that is crucial with respect to T 1
C such that posC1

(C2) is determined by fixing posC1
(C ′2)

in T 1
C . More precisely, for every relative position posC1

(C2) that is crucial with respect to
T 2
C we define its representative in T 1

C to be the crucial relative position posC1
(C ′2), where

C ′2 is the first cycle in T 1
C on the path from C1 to C2. We obtain the crucial-position

constraints on the crucial relative positions of T 1
C by replacing every relative position in

the constraints given for T 2
C by its representative. The resulting set of (in)equalities on

the crucial relative positions of T 1
C is obviously necessary.

We can now formally define the intersection TC of two CC-trees T 1
C and T 2

C to be T 1
C

with the common-face and crucial-position constraints additionally restricting its crucial
relative positions. We obtain the following theorem, justifying the name “intersection”.

Theorem 5. The intersection of two CC-trees represents exactly the embeddings that are
represented by both CC-trees.

Proof. Let T 1
C and T 2

C be two CC-trees and let TC be their intersection. Let further
E be an embedding represented by T 1

C and T 2
C . Then TC also represents E since the

common-face and crucial-position constraints are obviously necessary. Now let E be an
embedding represented by TC . It is clearly also represented by T 1

C since TC is the same
tree with some additional constraints. It remains to show that E is represented by T 2

C .
The embedding E induces a value for every relative position. In particular, it induces a
value for every relative position that is crucial with respect to T 2

C . The crucial-position
constraints ensure that these values satisfy the constraints given for the crucial relative
positions in the CC-tree T 2

C . Thus we can simply take these positions, apply them to T 2
C

and obtain an embedding E 2 that is represented by T 2
C . It remains to show that E = E 2 .

To this end, we consider an arbitrary pair of cycles C1 and C2 and show the following
equation, where posC1

(C2) and pos 2
C1
(C2) denote the relative positions of C2 with respect

to C1 in the embeddings E and E 2 , respectively.

posC1
(C2) = pos 2

C1
(C2) (1)

Consider the paths π and π 2 from C1 to C2 in TC and T 2
C , respectively. We use

induction on the length of π 2 , illustrated in Figure 7, with Equation (1) as induction
hypothesis. If |π 2 | = 1, then posC1

(C2) is crucial with respect to T 2
C and thus equal

in both embeddings E and E 2 by construction of E 2 . For the case |π 2 | > 1 let C ′1 and
C 2
1 be the neighbors of C1 in π and π 2 , respectively. Since C ′1 and C 2

1 lie on the path
between C1 and C2 in TC and T 2

C , the following two equations hold.

posC1
(C2) = posC1

(C ′1) (2)

pos 2
C1
(C2) = pos 2

C1
(C 2

1) (3)

17

C1 C ′
1

C2

C 2

2 C2

C1 C 2

1

C 2

2=

C1 C ′
1

C2

C 2

2 C2

C1 C 2

1

C 2

2

=

C ′′
1

=

π

π 2

π

π 2

TC

T 2

C

TC

T 2

C

Figure 7. The two cases arising in the proof of Theorem 5. If the path from C1 to
C 2
2 starts with the edge {C1, C

′
1} (left) the equation posC1

(C ′1) = pos 2
C1
(C 2

1) follows
by induction. Otherwise (right) posC1

(C ′′1) = pos 2
C1
(C 2

1) follows by induction and the
equation posC1

(C ′1) = posC1
(C ′′1) holds due to the common-face constraint stemming

from {C2, C
2
2 }.

Thus, it suffices to show that posC1
(C ′1) = pos 2

C1
(C 2

1) holds to obtain Equation (1). Let
C 2
2 be the neighbor of C2 on the path π 2 . Since the path from C1 to C 2

2 is shorter
than π 2 the equation posC1

(C 2
2) = pos 2

C1
(C 2

2) follows from the induction hypothesis
stated in Equation (1). There are two possibilities. The path from C1 to C 2

2 in TC has
either {C1, C

′
1} or {C1, C

′′
1 } for some other cycle C ′′1 as first edge. In the former case the

equation

posC1
(C ′1) = pos 2

C1
(C 2

1) (4)

obviously follows. Together with Equations (2) and (3), this yields the induction hypothesis
(Equation (1)). In the latter case we have the following equation.

posC1
(C ′′1) = pos 2

C1
(C 2

1) (5)

Moreover, the common-face constraints stemming from the edge {C 2
2 , C2} in T 2

C enforce

posC1
(C ′′1) = posC1

(C ′1), (6)

again yielding the induction hypothesis stated in Equation (1). This concludes the
proof.

3.3 Linear-Time Algorithm

In this section we first show how to compute the CC-tree of a given graph containing
a set of disjoint cycles in linear time. Afterwards, we show that the intersection of two
CC-trees can be computed in linear time. Together, this yields a linear-time algorithm
for the variant of SEFE we consider.

Computing the CC-Tree in Linear Time

The first step of computing the CC-tree TC of a graph G is to compute the underlying
C-tree. Obviously, this can be easily done in linear time. Thus, the focus of this section

18

lies on computing the extended PR-node and cutvertex constraints restricted to the crucial
relative positions. To simplify notation we first consider the case where G is biconnected.
Before we start computing the PR-node constraints we need one more definition. For
each cycle C there is a set of inner nodes in the SPQR-tree T containing C as a cycle.
We denote the subgraph of T induced by these nodes by T |C and call it the induced
subtree with respect to C. To justify the term “subtree” we prove the following lemma.

Lemma 5. Let G be a biconnected planar graph with SPQR-tree T containing the disjoint
cycles C = {C1, . . . , Ck}. The induced subtrees T |C1

, . . . , T |Ck
with respect to C1, . . . , Ck

are pairwise edge-disjoint trees.

Proof. We first show that the induced tree with respect to a single cycle is really a tree.
Afterwards, we show that two disjoint cycles induce edge-disjoint trees, yielding that they
have linear size in total.
Let C be a cycle in G and let T |C be its induced tree. A Q-node in T contains C as

a cycle if and only if the corresponding edge is contained in C. For each pair of these
Q-nodes all nodes on the path between them are contained in T |C , thus the Q-nodes are
in the same connected component in the induced subtree. Moreover, an internal node in
T cannot be a leaf in T |C , implying that it contains only one connected component.
Assume there are two cycles Ci and Cj inducing trees T |Ci

and T |Cj
that are not

edge-disjoint. Let {µ, µ′} be an edge in T belonging to both. Let further κi and κj
be the cycles in skel(µ) induced by Ci and Cj , respectively. Since the neighbor µ′ of
µ also contains Ci as a cycle, it corresponds to a virtual edge ε in µ that is contained
in κi. Similarly, ε is also contained in κj , which is a contradiction since Ci and Cj are
disjoint.

Our algorithm computing the PR-node constraints consists of four phases, each of
them consuming linear time. In each phase we compute data we then use in the next
phase. Table 1 gives an overview about the data we compute. During all phases we
assume the SPQR-tree T to be rooted at a Q-node corresponding to an edge in G that is
not contained in any cycle in C. In the first phase we essentially compute the induced
trees T |C . More precisely, for every node µ in the SPQR-tree we compute a list cyc(µ)
containing a cycle C if and only if C is a cycle in skel(µ), that is if and only if µ is
contained in T |C . Moreover, we say a virtual edge ε in skel(µ) belongs to a cycle C if
C induces a cycle in skel(µ) containing ε. Note that ε belongs to at most one cycle. If
ε belongs to C, we set bel(ε) = C; if ε does not belong to any cycle, we set bel(ε) = ⊥.
Finally, the root of an induced tree T |C with respect to the root chosen for T is denoted
by root(T |C). To sum up, in the first phase we compute cyc(µ) for every node µ, bel(ε)
for every virtual edge ε and root(T |C) for every induced subtree T |C . In the second
phase, we compute high(µ) as the highest edge in the SPQR-tree T on the path from µ
to the root whose endpoints are both reachable from µ without using edges contained in
any of the induced subtrees T |C . Note that high(µ) is the edge in T incident to the root
if no edge on the path from µ to the root is contained in one of the induced subtrees. For
the special case that the edge from µ to its parent itself is already contained in one of
the induced trees, the edge high(µ) is not defined and we set high(µ) = ⊥. In the third

19

Data Description

cyc(µ) For a node µ in the SPQR-tree the list of cycles in C that are cycles in
skel(µ).

bel(ε) For a virtual edge ε in skel(µ) either a cycle C ∈ C if C induces a cycle
in skel(µ) containing ε or ⊥ denoting that ε is not contained in such a
cycle.

root(T |C) The root for the induced tree T |C with respect to a chosen root for the
SPQR-tree T .

high(µ) For a node µ in the SPQR-tree T the highest edge in T on the path
from µ to the root that is reachable without using an edge in any of
the induced subtrees T |C .

det(posC(C
′)) The node in the SPQR-tree determining the relative position posC(C

′)
of the cycle C ′ with respect to another cycle C.

contr(ε) For a virtual edge ε in skel(µ) a list of relative positions containing
posC(C

′) if and only if it is crucial, determined by µ and C ′ is contracted
in ε.

detcyc(µ) For every R-node µ a list of crucial relative positions containing posC(C ′)
if and only if C and C ′ are cycles in skel(µ).

Table 1. Data that is computed to compute the PR-node constraints restricted to the
crucial relative positions.

phase we compute for every crucial relative position posC(C
′) the node in the SPQR-tree

determining it, denoted by det(posC(C
′)). Moreover, for every virtual edge ε in skel(µ)

we compute a list contr(ε) of relative positions. A relative position posC(C
′) is contained

in contr(ε) if and only if it is crucial, determined by µ and C ′ is contracted in ε. Similarly,
the list detcyc(µ) for an R-node µ contains the crucial relative position posC(C

′) if and
only if C and C ′ are both cycles in skel(µ), implying that posC(C ′) is determined by µ.
Finally, in the fourth pase, we compute the PR-node constraints restricted to the crucial
relative positions. The next lemma states that the first phase can be implemented in
linear time.

Lemma 6. Let G be a biconnected planar graph with SPQR-tree T containing the disjoint
cycles C. The data cyc(µ) for every node µ, bel(ε) for every virtual edge ε, and root(T |Ci

)
for every cycle Ci can be computed in overall linear time.

Proof. We process the SPQR-tree T bottom-up, starting with the Q-nodes. If a Q-node
µ corresponds to an edge belonging to a cycle C, then cyc(µ) contains only C and
bel(ε) = C for the virtual edge in µ. If the edge corresponding to µ is not contained in a
cycle, then cyc(µ) is empty and bel(ε) = ⊥. Furthermore, a Q-node cannot be the root
of any induced subtree T |C as we chose as the root of T a Q-node corresponding to an

20

edge not contained in any of the cycles. Now consider an inner node µ. We first process
the virtual edges in skel(µ) not belonging to the parent of µ. Let ε be such a virtual edge
corresponding to the child µ′ of µ and let ε′ be the virtual edge in skel(µ′) corresponding
to its parent µ. Then ε belongs to a cycle induced by C if and only if ε′ does, thus we set
bel(ε) = bel(ε′). Moreover, if bel(ε) 6= ⊥ we need to add the cycle bel(ε) to cyc(µ) if it
was not already added. Whether bel(ε) is already contained in cyc(µ) can be tested in
constant time as follows. We define a timestamp t, increase t every time we go to the next
node in T and we store the current value of t for a cycle added to cyc(µ). Then a cycle
C was already added to cyc(µ) if and only if the timestamp stored for C is equal to the
current timestamp t. Thus, processing all virtual edges in skel(µ) not corresponding to
the parent of µ takes time linear in the size of skel(µ). Let now ε = {s, t} be the virtual
edge corresponding to the parent of µ. If bel(ε′) = ⊥ for all virtual edges ε′ incident to s,
then ε cannot be contained in a cycle induced by any of the cycles in C. Otherwise, there
are two possibilities. There is a cycle C ∈ C such that bel(ε1) = C for exactly one virtual
edge ε1 incident to s or there are two such edges ε1 and ε2 with bel(ε1) = bel(ε2) = C.
In the former case the edges belonging to C in skel(µ) form a path from s to t, thus
the edge ε corresponding to the parent also belongs to C and we set bel(ε) = C. In the
latter case s is contained in the cycle C but the virtual edge does not belong to C and
we set bel(ε) = ⊥. This takes time linear in the degree of s in skel(µ) and hence lies in
O(| skel(µ)|). It remains to set root(T |C) = µ for every cycle C inducing the subtree
T |C having µ as root. The tree T |C has µ as root if and only if C is contained as cycle κ
in µ but the virtual edge ε in skel(µ) corresponding to the parent of µ is not contained in
κ. Thus we have to set root(T |C) = µ for all cycles C in cyc(µ) except for bel(ε). Note
that this again consumes time linear in the size of skel(µ) since the number of cycles that
are cycles in µ is in O(| skel(µ)|). Due to the fact that the SPQR-tree T has linear size
this yields an overall linear running time.

In the second phase we want to compute high(µ) for each of the nodes in T . We obtain
the following lemma.

Lemma 7. Let G be a biconnected planar graph with SPQR-tree T containing the disjoint
cycles C. For every node µ in T the edge high(µ) can be computed in linear time.

Proof. We make use of the fact that bel(ε) is already computed for every virtual edge ε in
each of the skeletons, which can be done in linear time due to Lemma 6. Note that an edge
{µ, µ′} in the SPQR-tree T (where µ is the parent of µ′) belongs to the induced subtree
T |C with respect to the cycle C ∈ C if and only if bel(ε) = C for the virtual edge ε in
skel(µ) corresponding to the child µ′. In this case we also have bel(ε′) = bel(ε) = C where
ε′ is the virtual edge in skel(µ′) corresponding to the parent. Hence, we can compute
high(µ) for every node µ in T by processing T top-down remembering the latest processed
edge not belonging to any of the induced subtrees. This can easily be done in linear
time.

In the third phase we compute det(posC(C ′)) for every crucial relative position in linear
time. Moreover, we compute contr(ε) for every virtual edge ε and detcyc(µ) for every
R-node µ. We show the following lemma.

21

det(posC(C′)) = µ det(posC(C′)) = ηdet(posC(C′)) = µ

det(posC(C′)) = µ

posC(C′) not crucial

(a)

(b)

(d)(c) (e)

high(µ′) = ⊥

det(posC(C′)) = µ′

(f)

µ = µ′

T |C T |C′

η

η′
high(µ′)

T |C′
T |C

µ

µ′
µ′′

T |C

T |C′

µ

µ′

η

η′
high(µ′)

T |C′

µ′

T |C′′
T |C

µ

η

η′
high(µ′)

T |C

T |C′

µ

µ′
T |C T |C′

µ µ′
LCA

Figure 8. The cases that occur in the proof of Lemma 8.

Lemma 8. Let G be a biconnected planar graph with SPQR-tree T containing the disjoint
cycles C. The node det(posC(C

′)) for each crucial relative position posC(C
′), the list

contr(ε) for each virtual edges ε and the list detcyc(µ) for each R-nodes µ can be computed
in overall linear time.

Proof. Let C and C ′ be two cycles such that posC(C
′) is a crucial relative position.

We show how to compute the node det(posC(C
′)) determining this relative position in

constant time. Moreover, if C ′ is contracted in a virtual edge ε in det(posC(C
′)), we

append the relative position posC(C
′) to contr(ε). Otherwise, det(posC(C ′)) is an R-node

containing C and C ′ as cycles and we add posC(C
′) to detcyc(det(posC(C

′))). Since
there are only linearly many crucial relative positions this takes only linear time. Let
µ = root(T |C) and µ′ = root(T |C′) be the roots of the induced trees with respect to C
and C ′, respectively, which are already computed due to Lemma 6. We use that the lowest
common ancestor of a pair of nodes can be computed in constant time after a linear-time
preprocessing [4, 16]. In particular, let LCA(µ, µ′) be the lowest common ancestor of
the two roots. There are three possibilities. First, LCA(µ, µ′) is above µ (Figure 8(a)).
Second, LCA(µ, µ′) = µ = µ′ (Figure 8(b)). And third, LCA(µ, µ′) = µ lies above µ′

(Figure 8(c–f)). Note that the first case includes the situation where µ′ = LCA(µ, µ′) lies
above µ.

In the first case the cycle C ′ is contracted in µ in the virtual edge ε corresponding to the
parent of µ, while µ contains C as cycle κ not containing the virtual edge ε corresponding
to the parent. Hence, µ determines posC(C

′). We set det(posC(C
′)) = µ and insert

posC(C
′) into contr(ε). In the second case C and C ′ are both cycles in µ = µ′, hence

µ determines posC(C
′). We set det(posC(C

′)) = µ and insert posC(C
′) into detcyc(µ)

since skel(µ) contains C and C ′ as cycles.
In the third case the node determining posC(C

′) lies somewhere on the path from µ
down to µ′. In this situation high(µ′) comes into play and we distinguish several cases.
We first assume that high(µ′) 6= ⊥. Let {η, η′} = high(µ′) be the highest edge in T on
the path from µ′ to the root that is reachable without using an edge in any of the induced
trees, as computed by Lemma 7. Let η be the parent of η′. We claim that either µ or η
determines the crucial relative position posC(C

′).

22

More precisely, if η lies above or is equal to µ (Figure 8(c)), then the child µ′′ of µ on
the path from µ′ to µ does not contain C as a cycle. Otherwise the edge {µ, µ′′} would
have been contained in T |C , which is a contradiction to the definition of high(µ′). Thus,
C ′ is contracted in the virtual edge ε in skel(µ) corresponding to the child µ′′ that is
not contained in the cycle induced by C, implying that µ determines posC(C ′). In this
case we set det(posC(C ′)) = µ. Moreover, we want to insert the crucial relative position
posC(C

′) into contr(ε). Unfortunately, we cannot determine the virtual edge ε belonging
to the child µ′′ in constant time. We handle that problem by storing a temporary list
temp(µ) for the node µ and insert posC(C ′) into this list. After we have processed all
crucial relative positions, we process T bottom-up, building a union-find data structure by
taking the union of µ with all its children after processing µ. Thus, when processing µ, we
can simply traverse the list temp(µ) once, find for every crucial relative position posC(C

′)
the virtual edge ε containing C ′ by finding root(T |C′) in the union-find data structure
and then add posC(C

′) to contr(ε). Note that this takes overall linear time, because
the union-find data structure consumes amortized constant time per operation since the
union-operations we apply are known in advance [12].

In the second case η lies below µ, where high(µ′) = {η, η′}. We claim that η contains C
as a cycle and C ′ contracted in the virtual edge ε′ in skel(η) corresponding to the child η′,
as depicted in Figure 8(d). By definition of high(µ′) there is a cycle C ′′ that is contained
as a cycle in η and in the parent of η but not in η′. We show that C ′′ = C or posC(C ′) is
not a crucial relative position. Assume C ′′ 6= C; see Figure 8(e). In skel(η) the cycle C ′

is contracted in the virtual edge ε′ corresponding to the child η′, whereas C is contracted
in the virtual edge ε corresponding to the parent of η. Since C ′′ is a cycle in η and in its
parent, it induces a cycle in skel(η) containing ε. Consider a path π from C ′ to C in the
graph G. Then π contains one of the poles of skel(η) and hence contains a vertex in C ′′.
Thus the relative position posC(C

′) is not crucial, which is a contradiction. Hence we
can simply set det(posC(C ′)) = η and append posC(C

′) to the list contr(ε′).
Finally, high(µ′) may be not defined, that is high(µ′) = ⊥ since the edge connecting

µ′ to its parent is already contained in one of the induced cycle trees. With a similar
argument as before, this induced tree is T |C , belonging to the cycle C, as depicted in
Figure 8(f). Thus µ′ contains C and C ′ as cycles and we set det(posC(C ′)) = µ′ and add
posC(C

′) to the list detcyc(µ′). This concludes the proof.

In the fourth and last phase we process the SPQR-tree T once more to finally compute
the PR-node constraints restricted to the crucial relative positions. We obtain the
following lemma.

Lemma 9. Let G be a biconnected planar graph. The PR-node constraints restricted to
the crucial relative positions can be computed in linear time.

Proof. We process each node in the SPQR-tree T of G once, consuming time linear in
the size of its skeleton plus some additional costs that sum up to the number of crucial
relative positions in total. Let µ be a node in T . If µ is not contained in any induced
tree T |C , it does not determine any relative position at all. Thus assume there is at least
one cycle that is a cycle in µ. If µ is a P-node, skel(µ) consists of ` parallel virtual edges

23

ε1, . . . , ε` and we can assume without loss of generality that the cycle C induces in skel(µ)
the cycle κ consisting of the two virtual edges ε1 and ε2. For every crucial relative position
posC(C

′) that is determined by µ there is a virtual edge ε ∈ {ε3, . . . , ε`} containing C ′
in the list contr(ε), which is already computed due to Lemma 8. Hence, the PR-node
constraints stemming from µ can be computed by processing each of these lists contr(ε),
setting posC(C

′) = posC(C
′′) for any two cycles C ′ and C ′′ appearing consecutively in

contr(ε). The time-consumption is linear in the size of skel(µ) plus the number of crucial
relative positions determined by µ.
If µ is an R-node, it may contain several cycles as a cycle, all of them stored in the

list cyc(µ) due to Lemma 6. Every crucial relative position posC(C
′) determined by µ is

either contained in the lists contr(ε) for a virtual edge ε in skel(µ) or in detcyc(µ) if C
and C ′ are both cycles in µ (Lemma 8). We first carry the relative positions in detcyc(µ)
over to the corresponding cycles. More precisely, we define a list detcyc(C ′) for every
cycle C ′ in cyc(µ) and insert a crucial relative position posC(C

′) into it, if it is contained
in detcyc(µ). This can obviously be done consuming time linear in the size of detcyc(µ).
Afterwards, we start by fixing the embedding of skel(µ) and pick an arbitrary vertex v0 in
skel(µ). For each cycle C contained as cycle κ in skel(µ) we define a variable side(C) and
initialize it with the value “left” or “right”, depending on which side v0 lies with respect to
κ in the chosen embedding of skel(µ), or with the value “on” if v0 is contained in C. Due
to Lemma 6 we know for every edge ε to which cycle it belongs (or that it does not belong
to a cycle at all). Thus side(C) can be easily computed for every cycle C that is a cycle
in skel(µ) consuming time linear in | skel(µ)| by traversing skel(µ) once, starting at v0.

To sum up, each crucial relative position posC(C
′) determined by µ is either contained

in contr(ε) if C ′ is contracted in ε or in detcyc(C ′) if C ′ is a cycle in skel(µ). Moreover,
for each cycle C the value of side(C) describes on which side of C the chosen start-vertex
v0 lies with respect to a chosen orientation of skel(µ). We now want to divide the crucial
relative positions determined by µ into two lists Left and Right depending on which
value they have with respect to the chosen embedding. If this is done, the PR-node
constraints stemming from µ restricted to the crucial relative positions can be computed
by simply processing these two lists once. To construct the lists Left and Right, we
make a DFS-traversal in skel(µ) such that each virtual edge is processed once. More
precisely, when we visit an edge {u, v} (starting at u), then v is either an unvisited vertex
and we continue the traversal from v or v was already visited, then we go back to u. If all
virtual edges incident to the current vertex u were already visited, we do a back-tracking
step, i.e., we go back to the vertex from which we moved to u. Essentially, a normal step
consists of three phases, leaving the current vertex u, traveling along the virtual edge
{u, v}, and finally arriving at v or back at u. In a back-tracking step we have only two
phases, namely leaving the current vertex u and arriving at its predecessor. During the
whole traversal we keep track of the sides side(·). More precisely, when leaving a vertex
u that was contained in a cycle C we may have to update side(C) if the target-vertex
v is not also contained in C. On the other hand, when arriving at a vertex v contained
in a cycle C we have to set side(C) = “on”. Since such an update has to be done for at
most one cycle we can keep track of the sides in constant time per operation and thus in
overall linear time. Now it is easy to compute the values of the crucial relative positions

24

determined by µ with respect to the currently chosen embedding. While traveling along
a virtual edge ε = {u, v} we process contr(ε). For a crucial relative position posC(C

′)
contained in contr(ε) we know that C ′ is contracted in ε. Thus, in the chosen embedding
the value of posC(C ′) is the current value of side(C) and we can insert posC(C

′) into
the list Left or Right depending on the value of side(C). This takes linear time in
the number of crucial relative positions contained in contr(ε). We deal with the crucial
relative positions contained in one of the lists detcyc(C ′) in a similar way. Every time
we reach a vertex v contained in a cycle C ′ we check whether this is the first time we
visit the cycle C ′. If it is the first time, we insert every crucial relative positions posC(C ′)
contained in detcyc(C ′) into one of the lists Left or Right, depending on the current
value of side(C). Clearly the whole traversal takes linear time in the size of skel(µ)
plus linear time in the number of crucial relative positions determined by µ. Moreover,
we obviously obtain the PR-node constraints restricted to the crucial relative positions
stemming form µ by processing each of the lists Left and Right once, obtaining an
equality constraint for positions that are adjacent in the lists and additionally a single
inequality for a pair of positions, one contained in Left and the other in Right, unless
one of them is empty.

Corollary 1. The CC-tree TC of a biconnected planar graph G can be computed in linear
time.

It remains to extend the described algorithm to the case where G is not necessarily
biconnected. More precisely, we need to show how to compute the extended PR-node
constraints and the cutvertex constraints in linear time. This is done in the proof of the
following theorem.

Theorem 6. The CC-tree TC of a connected planar graph G can be computed in linear
time.

Proof. As before, the underlying C-tree can be easily computed in linear time. For a
fixed block B we have the SPQR-tree T and for a cycle C in B the induced tree T |C
can be defined as before. Obviously, Lemma 6 can be used as before to compute cyc(µ)
for every node µ, bel(ε) for every virtual edge and root(T |C) for every induced subtree
in linear time. Moreover, the edge high(µ) in T can be computed for every node µ as
in Lemma 7. For the computation of det(posC(C ′)) for every crucial relative position
posC(C

′) and contr(ε) for every virtual edge ε, we cannot directly apply Lemma 8 since
the cycles C and C ′ may be contained in different blocks. Thus, before we can compute
det(posC(C

′)), we need to find out whether C and C ′ are in the same block, which can
be done by simply storing for every cycle a pointer to the block containing it. For the
case that C and C ′ are contained in the same block det(posC(C

′)) can be computed as
before and posC(C

′) can be inserted into the list contr(ε) for some ε if necessary. For
the case that C and C ′ are contained in different blocks B and B′, we need to find the
unique cutvertex v in B that separates B and B′. This can be done in overall linear time
by computing the BC-tree and using an approach combining the lowest common ancestor
and union-find data structure similar as in the proof of Lemma 8.

25

If the resulting cutvertex v is not contained in C, we can treat the cutvertex v as if it
was the cycle C ′ and use the same algorithm as in Lemma 8 to compute det(posC(C

′))
and append posC(C

′) to contr(ε) for some ε if necessary. If v is contained in C, then the
crucial relative position posC(C

′) is not determined by any node in any SPQR-tree at all,
but by the embedding of the blocks around the cutvertex v. Thus there are no extended
PR-node constraints restricting posC(C

′). Finally, det(posC(C ′)) can be computed in
overall linear time for every crucial relative position posC(C

′) that is determined by a node
in the SPQR-tree of the block containing C. Moreover, for a node µ in the SPQR-tree of
the block B containing C every virtual edge ε has a list contr(ε) containing all crucial
relative positions posC(C ′) that are determined by µ and for which either C ′ is contracted
in ε or belongs to a different block B′ and is connected to B via a cutvertex contained in
the expansion graph exp(ε). With these information the extended PR-node constraints
can be computed exactly the same as the PR-node constraints are computed in Lemma 9.
It remains to compute the cutvertex constraints restricted to the crucial relative

positions. As mentioned above, we can compute a list of crucial relative positions
posC(C1), . . . ,posC(C`) determined by the embedding of the blocks around a cutvertex
v contained in C in linear time. We then process this list once, starting with posC(C1).
We store posC(C1) as reference position for the block B1 containing C1. Now, when
processing posC(Ci), we check whether the block Bi containing Ci already has a reference
position posC(Cj) assigned to it. In this case we set posC(Ci) = posC(Cj), otherwise we
set posC(Ci) to be the reference position. This obviously consumes overall linear time
and computes the cutvertex constraints restricted to the crucial relative positions.

Intersecting CC-Trees in Linear Time

Due to Theorem 5 we can test whether two graphs G 1 and G 2 with common graph C
consisting of a set of disjoint cycles have a SEFE by computing the CC-trees T 1

C and
T 2
C of G 1 and G 2 , respectively, which can be done in linear time due to Theorem 6.

Then the intersection TC of T 1
C and T 2

C represents exactly the possible embeddings of the
common graph G in a SEFE. It remains to show that the intersection can be computed
in linear time.

Theorem 7. The intersection of two CC-trees can be computed in linear time.

Proof. Let T 1
C and T 2

C be two CC-trees on a set C of cycles. We start with TC = T 1
C

and show how to compute the common-face and crucial-position constraints in overall
linear time. For the crucial-position constraints we essentially only show how to find for
each crucial relative position in T 2

C a crucial relative position in TC corresponding to it.
Computing the crucial-position constraints is then easy. We root TC at an arbitrary vertex
and again use that the lowest common ancestor of two vertices in TC can be computed
in constant time [4, 16]. For every edge e 2 = {C1, C2} in T 2

C we obtain a path in TC
from C1 to the lowest common ancestor of C1 and C2 and further to C2. We essentially
process these two parts of the path separately with some additional computation for the
lowest common ancestor. We say that the parts of the paths belong to the half-edges e 2

1

and e 2
2 , respectively. We use the following data structure. For every cycle C there is a

26

list end(C) containing all edges in T 2
C whose endpoints have C in TC as lowest common

ancestor. This list can be computed for every cycle in overall linear time. We then
process TC bottom up, saving for the cycle C we currently process a second list curr(C)
containing all the half-edges in T 2

C whose paths contain C. This can be done in overall
linear time by ensuring that every half-edge e 2

i (i = 1, 2) is contained in at most one list
curr(C) at the same time. Then e 2

i can be removed from this list in constant time by
storing for e 2

i pointers to the previous and to the next element in that list, denoted by
prev(e 2

i) and next(e 2
i). Additionally, we build up the following union-find data structure.

Every time we have processed a cycle C, we union C with all its children in TC . Thus,
when processing C, this data structure can be used to find for every cycle in the subtree
below C the child of C it belongs to. Note that again this version of the union-find data
structure consumes amortized constant time per operation since the sequence of union
operations is known in advance [12]. Before starting to process TC , we process T 2

C once
and for every edge e 2 = {C1, C2} we insert the half-edges e 2

1 and e 2
2 to the lists curr(C1)

and curr(C2), respectively. While processing TC bottom up the following invariants hold
at the moment we start to process C.

1. The list curr(C) contains all half-edges starting at C.
2. For every child C ′ of C the list curr(C ′) contains the half-edge e 2

i if and only if the
path belonging to it contains C and C ′.

3. Every half-edge e 2
i is contained in at most one list curr(C), and prev(e 2

i) and
next(e 2

i) contain the previous and next element in that list, respectively.
When we start processing a leaf C the invariants are obviously true. To satisfy invariant 2.
for the parent of C we have to ensure that all half-edges ending at C are removed form
the list curr(C). Since there are no half-edges ending in a leaf, we simply do nothing.
Invariants 1. and 3. obviously also hold for the parent of C.

Let C be an arbitrary cycle and assume that the invariants are satisfied. To ensure that
invariant 2. holds for the parent of C, we need to build a list of all half-edges whose paths
contain C and do not end at C. Since invariants 1. and 2. hold for C this are exactly the
half-edges contained in curr(C) plus the half-edges contained in curr(C ′) for each of the
children C ′ of C that are not ending at C. Note that a half-edge may also start at C and
end at C. This is the case if the corresponding edge connects C with another cycle C ′′

such that the lowest common ancestor of C and C ′′ is C. We first process the list end(C)
containing the edges ending at C; let e 2 be an edge in end(C). The two half-edges e 2

1

and e 2
2 belonging to e 2 are contained in the lists curr(C1) and curr(C2), where C1 and

C2 are different cycles and each of them is either C or a child of C. We remove e 2
i form

curr(Ci) for i = 1, 2. This can be done by setting the pointers next(prev(e 2
i)) = next(e 2

i)
and prev(next(e 2

i)) = prev(e 2
i), taking constant time per edge since each half-edge is

contained in at most one list due to invariant 3. Afterwards, for every child C ′ of C,
we append curr(C ′) to curr(C) and empty the list curr(C ′) afterwards, to ensure that
invariant 3 remains satisfied. This takes constant time per child and thus overall time
linear in the degree of C. Obviously this satisfies all invariants for the parent of C.
Furthermore, we consume time linear in the degree of C plus time linear in the number
of half-edges ending at C. However, every half-edge ends exactly once yielding overall
linear time.

27

Now it is easy to compute the common-face and crucial-position constraints while
processing TC as described above. Essentially, when processing C, we compute all the
constraints concerning the relative position of other cycles with respect to C. In particular,
we need to add common-face constraints if two half-edges end at C and if the path
belonging to a half-edge contains C in its interior. Furthermore, we find a corresponding
crucial relative position for every half-edge starting at C. Let e 2 = {C1, C2} be an edge
whose half-edges end at C. There are two different cases. First, one of the cycles Ci (for
i = 1, 2) is C (its half edge starts and ends at C). Then the other cycle (whose half-edge
only ends at C) is contained in a subtree with root C ′, where C ′ is a child of C. Second,
C1 and C2 are contained in the subtrees with roots C ′1 and C ′2, respectively, where C ′1 and
C ′2 are different children of C. In this case, both half-edges end at C. We consider the
second case first. Then C ′1 and C ′2 can be found in amortized constant time by finding C1

and C2 in the union-find data structure. The equation posC(C
′
1) = posC(C

′
2) is exactly

the common-face constraint at the cycle C stemming from the edge e 2 . In the second
case we can again find the child C ′ in constant time. Assume without loss of generality
that C1 = C and C2 is contained in the subtree having C ′ as root. Then posC(C

′) is the
crucial relative position in TC corresponding to the crucial relative position posC(C2) in
T 2
C . The half-edges containing C in its interior are exactly the half-edges contained in one

of the lists curr(C ′) for a child C ′ of C whose path does not end at C. Thus, for the parent
C ′′ of C we have to add the common-face constraint posC(C ′) = posC(C

′′) if and only if
the list curr(C ′) is not empty after deleting all half-edges in end(C). These additional
computations obviously do not increase the running time and hence the common-face
and crucial-position constraints can be computed in overall linear running time.

Theorems 4, 5, 6 and 7 directly yield the following results.

Theorem 8. Simultaneous Embedding with Fixed Edges can be solved in linear
time if the common graph consists of disjoint cycles.

Theorem 9. SEFE can be solved in linear time for the case of k graphs G 1 , . . . , G̨ all
intersecting in the same common graph G consisting of disjoint cycles.

4 Connected Components with Fixed Embedding

In this section we show how the previous results can be extended to the case that the
common graph has several connected components, each of them with a fixed planar
embedding. Again, we first consider the case of a single graph G containing C as a
subgraph, where in this case C is a set of connected components instead of a set of disjoint
cycles. First note that the relative position posC(C

′) of a component C ′ with respect
to another component C can be an arbitrary face of C. Thus, the choice of the relative
positions is no longer binary and a set of inequalities on the relative positions would
lead to a coloring problem in the conflict graph, which is NP-hard in general. However,
most of the constraints between relative positions are equations, in fact, all inequalities
stem from R-nodes in the SPQR-tree of G (or of the SPQR-tree of one of the blocks
in G). Fortunately, if a relative position is determined by an R-node, there are only two

28

possibilities to embed this R-node. Thus, the possible values for the relative position is
restricted to two faces, yielding a binary decision. Note that in general the possible values
for posC(C ′) are not all faces of C, even if posC(C ′) is not determined by an R-node but
by a P-node or by the embedding around a cutvertex.

Thus, we obtain for each relative position a set of possible faces as values and additionally
several equations and inequalities, where inequalities only occur between relative positions
with a binary choice. These conditions can be modeled as a conflict graph where each
node represents a relative position with some allowed colors (faces) and edges in this
conflict graph enforce both endvertices to be either colored the same or differently. In the
case of the problem SEFE each of the graphs yields such a conflict graph. These conflict
graphs can be easily merged by intersecting for each relative position the sets of allowed
colors (faces). Then a simultaneous embedding can be constructed by first iteratively
contracting edges requiring equality, intersecting the possible colors of the involved nodes.
If the resulting graph contains a node with the empty set as choice for the color, then
no simultaneous embedding exists. Otherwise, we have to test whether each connected
component in the remaining graph can be colored such that adjacent nodes have different
colors, which can be done efficiently since such a component either consists of a single
node or there are only up to two possible colors for each connected component left due to
the considerations above.
Moreover, the CC-tree can be adapted to work for the case of connected components

with fixed embeddings instead of disjoint cycles, as the extended PR-node and cutvertex
constraints on the crucial relative positions are still sufficient to imply them on all
relative positions. We call this tree on connected components the CC⊕-tree, standing
for constrained component-tree. In the following we quickly go through the steps we did
before in the case of disjoint cycles and describe the changes when considering connected
components instead.

PR-Node Constraints. Let G be a biconnected planar graph and let C be a subgraph
of G consisting of several connected components, each with a fixed planar embedding.
Let further C ∈ C be one of the connected components and let µ be a node in the
SPQR-tree T of G. The virtual edges in skel(µ) whose expansion graphs contain parts of
the component C induce a connected subgraph in skel(µ). In the previous case, where
the subgraph consisted of disjoint cycles, this induced subgraph was either a single edge
or a cycle. In the case that C is an arbitrary component the induced graph can be an
arbitrary connected subgraph of skel(µ). If it is a single edge, we say that C is contracted
in µ, otherwise C is a component in µ.

We obviously obtain that the relative position posC(C
′) of another component C ′ with

respect to C is determined by the embedding of skel(µ) if and only if C is a component
in µ and C ′ is not contracted in one of the virtual edges belonging to the subgraph
induced by C. Moreover, the embedding of skel(µ) is partially (or completely) fixed by
the embedding of C if the induced graph in skel(µ) contains a vertex with degree greater
than 2. More precisely, consider µ to be a P-node containing C as a component. Then the
virtual edges belonging to C have a fixed planar embedding and each face in this induced

29

graph represents a face in C. These faces are the possible values for the relative positions
with respect to C that are determined by µ. The remaining virtual edges not belonging
to C can be added arbitrarily and thus components contracted in these edges can be put
into one of the possible faces with the restriction that two components contracted in the
same virtual edge have to lie in the same face, that is they have the same relative position
with respect to C. To sum up, we obtain a set of possible faces of C with respect to µ
and a set of equations between relative positions of components with respect to C.
For the case that µ is an R-node, either the embedding of skel(µ) is fixed due to the

fact that there exists a component whose induced graph in skel(µ) contains a vertex
with degree greater than 2. Otherwise, each component is either contracted in µ or the
induced subgraph is a cycle or a path. No matter which case arises, the relative positions
determined by µ are either completely fixed or there are only two possibilities. If the
embedding is fixed, the relative positions determined by µ are fixed and thus there is no
need for additional constraints. Otherwise, a crucial relative position with respect to C is
fixed if C induces a path in skel(µ) and it changes by flipping skel(µ) if C induces a cycle.
For two components C and C ′ both inducing a cycle in skel(µ) this yields a bijection
between the two possible values for relative positions with respect to C determined by
µ and the two possible values for positions with respect to C ′. Thus we can add the
equations and inequalities as in the case of disjoint cycles.
The resulting constraints are again called PR-node constraints. As for disjoint cycles

we obtain that an embedding of the components C respecting the fixed embeddings for
each component can be induced by an embedding chosen for G if and only if the PR-node
constraints are satisfied. This directly yields a polynomial-time algorithm to solve SEFE
for the case that both graphs are biconnected and the common graph consists of several
connected components, each having a fixed planar embedding.

Extended PR-Node and Cutvertex Constraints. As for cycles the considerations above
can be easily extended to the case that the graph G containing the components C is
allowed to contain cutvertices. For a cutvertex v not contained in a component C, the
relative position of v with respect to C determines the relative positions of components
attached via v, which again yields the extended PR-node constraints. If v is contained in
C, then the relative position of another component C ′ with respect to C is determined by
the embedding around v if and only if v splits C from C ′. In this case C ′ can obviously
lie in one of the faces of C incident to v. Fortunately, the cutvertex constraints do not
contain inequalities as they only ensure that components attached to v via the same
block lie in the same face of C. With these considerations all results form Section 3.1
can be extended to the case of components with fixed embedding instead of cycles. In
particular, SEFE can be solved in polynomial time if the common graph consists of
connected components, each with a fixed planar embedding.

CC⊕-Trees. As mentioned before, the CC-tree can be adapted to represent all embed-
dings that can be induced on the set of components C by an embedding of the graph
G, yielding the CC⊕-tree. To this end, each node in the tree represents a component

30

C ∈ C and the incidence to C of an edge {C,C ′} in the CC⊕-tree represents the choice
for the crucial relative position posC(C

′). The possible values are restricted to a subset of
faces of C as described before and there may be some equations between crucial relative
positions with respect to C. Moreover, there may be inequalities between crucial relative
positions even with respect to different components. However, if this is the case, then
there are at most two possible choices and we have a bijection between the possible faces
of different components. As in the proof of Theorem 4, it follows from the structure of
the underlying C-tree, that relative positions that are not crucial are determined by a
crucial relative position that is determined by the same P- or R-node or by the same
embedding choice around a cutvertex. The proof can be easily adapted to the case of
components instead of cycles yielding that satisfying the constraints and restrictions to a
subset of faces for the crucial relative positions automatically satisfies these conditions
for all relative positions.
To be able to solve SEFE with the help of CC⊕-trees, we need to intersect two CC⊕-

trees such that the result is again a CC⊕-tree. Assume as in the case of cycles that we have
the two CC⊕-trees T 1

C and T 2
C . As before we start with T 1

C and add the restrictions given
by T 2

C . More precisely, for every pair {C,C ′} of adjacent nodes in T 2
C we have to add

the common-face constraints to T 1
C , that is equations between crucial relative positions

on the path between C and C ′ in T 1
C enforcing C and C ′ to share a face. Moreover, for

every relative position posC(C
′) that is crucial with respect to T 2

C we have to add the
equations and inequalities it is involved in to the CC⊕-tree T 1

C . As for cycles posC(C ′) is
in T 1

C determined by the crucial relative position posC(C
′′), where C ′′ is the first node on

the path from C to C ′. We have to do two things. First, we have to restrict the possible
choices for posC(C ′′) to those that are possible for posC(C ′), which can easily be done by
intersecting the two sets. Second, the equations and inequalities posC(C ′) is involved in
have to be carried over to posC(C

′′). This can be done as before by choosing for each
crucial relative position in T 2

C the representative in T 1
C . For the resulting intersection TC

it remains to show that every embedding represented by it is also represented by T 1
C and

T 2
C . The former is clear, the latter can be shown as in the proof of Theorem 5.

Efficient Implementation. Unfortunately, the constrained component-tree may have
quadratic size in contrast to the constrained cycle-tree, which has linear size. This comes
from the fact that a node C in the CC⊕-tree may have linearly many neighbors. Moreover,
each relative position posC(C

′) of a neighbor C ′ of C may have linearly many possible
values, as C may have that many faces. As these possible values need to be stored for the
edge {C,C ′} in the CC-tree it has quadratic size. On the other hand, it is easy to see
that the CC-tree can be computed in quadratic time. Moreover, the proof of Theorem 7
providing a linear-time algorithm to intersect CC⊕-trees can be adapted almost literally.
The only thing that changes is that additionally the possible values for posC(C ′′) and
posC(C

′) need to be intersected, where posC(C ′) is a relative position that is crucial with
respect to T 2

C and posC(C
′′) is the representative in T 1

C . Thus, two CC⊕-trees can be
intersected consuming time linear in the size of the CC⊕-trees, that is quadratic time in
the size of the input graphs. We finally obtain the following theorem.

31

Theorem 10. Simultaneous Embedding with Fixed Edges can be solved in quadratic
time, if the embedding of each connected component of the common graph is fixed.

Let TC be the CC⊕-tree representing all embeddings of the components C that can be
induced by the graph G. It is worth noting that, although the explicit representation of
TC may have quadratic size, it also admits a compact representation of linear size. The
key idea is the following. In case there are more than two possible values for a crucial
relative position posC(C

′), this position is determined by a P-node or a cutvertex. Then
we can encode the possible values for posC(C

′) by pointing to a list that is stored at
that P-node or cutvertex, respectively. Since this set of values is independent of C ′ it
is sufficient to store one list for each P-node or cutvertex. It is not hard to see that the
total size of these lists is linear. Moreover, the fast algorithm for computing CC-trees
can be applied with obvious modifications to compute this compact representation in
linear time. It is, however, unclear whether the intersection of two or more CC⊕-trees
still admits a compact representation and whether it can be computed in linear time from
the given compact representations.

5 Conclusion

Contrary to the previous results on simultaneous embeddings we focused on the case
where the embedding choice does not consist of ordering edges around vertices but of
placing connected components in relative positions to one another. We first showed
that generally both input graphs of an instance of Simultaneous Embedding with
Fixed Edges can be always assumed to be connected. We then showed how to solve
Simultaneous Embedding with Fixed Edges in linear time for the case that the
common graph consists of simple disjoint cycles (or more generally has maximum degree 2).
We further extended the result to a quadratic-time algorithm solving the more general
case where the embedding of each connected component of the common graph is fixed.
These solutions include a compact and easy to handle data structure, the CC-tree and
CC⊕-tree, representing all possible simultaneous embeddings. Thus, there is hope that
the CC-tree and the CC⊕-tree are also useful when relaxing the restriction of a fixed
embedding for each component.

References

[1] Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vít Jelínek, Jan Kratochvíl,
Maurizio Patrignani, and Ignaz Rutter. Testing planarity of partially embedded
graphs. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’10), pages 202–221. SIAM, 2010.

[2] Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani, and Ig-
naz Rutter. Testing the simultaneous embeddability of two graphs whose intersection
is a biconnected or a connected graph. Journal of Discrete Algorithms, 14:150–172,
2012.

32

[3] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm
for testing the truth of certain quantified boolean formulas. Information Processing
Letters, 8(3):121–123, 1979.

[4] Michael A. Bender and Martin Farach-Colton. The LCA Problem Revisited. In
Proceedings of the 4th Latin American Symposium on Theoretical Informatics, LATIN
’00, pages 88–94. Springer-Verlag, 2000.

[5] Thomas Bläsius, Stephen G. Kobourov, and Ignaz Rutter. Handbook of Graph
Drawing and Visualization, chapter Simultaneous Embedding of Planar Graphs,
pages 349–381. Chapman and Hall/CRC, 2013.

[6] Thomas Bläsius and Ignaz Rutter. Simultaneous PQ-ordering with applications
to constrained embedding problems. In Proceedings of the twenty-fourth annual
ACM-SIAM symposium on Discrete algorithm, SODA ’13, pages 1030–1043. ACM,
2013.

[7] G. Di Battista and R. Tamassia. On-Line Maintenance of Triconnected Components
with SPQR-Trees. Algorithmica, 15(4):302–318, 1996.

[8] G. Di Battista and R. Tamassia. On-Line Planarity Testing. SIAM J. Comput.,
25(5):956–997, 1996.

[9] S. Even, A. Itai, and A. Shamir. On the Complexity of Timetable and Multicommodity
Flow Problems. SIAM Journal on Computing, 5(4):691–703, 1976.

[10] J. Joseph Fowler, Carsten Gutwenger, Michael Jünger, Petra Mutzel, and Michael
Schulz. An SPQR-Tree Approach to Decide Special Cases of Simultaneous Embedding
with Fixed Edges. In Ioannis Tollis and Maurizio Patrignani, editors, Proceedings
of the 16th International Symposium on Graph Drawing (GD’08), volume 5417 of
Lecture Notes in Computer Science, pages 157–168. Springer Berlin/Heidelberg, 2009.

[11] J. Joseph Fowler, Michael Jünger, Stephen G. Kobourov, and Michael Schulz. Char-
acterizations of restricted pairs of planar graphs allowing simultaneous embedding
with fixed edges. Computational Geometry, 44(8):385–398, 2011.

[12] Harold N. Gabow and Robert Endre Tarjan. A Linear-Time Algorithm for a Special
Case of Disjoint Set Union. Journal of Computer and System Sciences, 30(2):209–221,
1985.

[13] Elisabeth Gassner, Michael Jünger, Merijam Percan, Marcus Schaefer, and Michael
Schulz. Simultaneous Graph Embeddings with Fixed Edges. In Fedor Fomin, editor,
Proceedings of the 32nd Workshop on Graph-Theoretic Concepts in Computer Science
(WG’06), volume 4271 of Lecture Notes in Computer Science, pages 325–335. Springer
Berlin/Heidelberg, 2006.

[14] Carsten Gutwenger and Petra Mutzel. A Linear Time Implementation of SPQR-Trees.
In Proc. 8th Internat. Sympos. Graph Drawing (GD’00), volume 1984 of LNCS, pages
77–90. Springer-Verlag, 2001.

33

[15] Bernhard Haeupler, Krishnam Jampani, and Anna Lubiw. Testing Simultaneous
Planarity When the Common Graph Is 2-Connected. In Otfried Cheong, Kyung-Yong
Chwa, and Kunsoo Park, editors, Proceedings of the 21st International Symposium on
Algorithms and Computation (ISAAC’10), volume 6507 of Lecture Notes in Computer
Science, pages 410–421. Springer Berlin/Heidelberg, 2010.

[16] Dov Harel and Robert Endre Tarjan. Fast Algorithms for Finding Nearest Common
Ancestors. SIAM Journal on Computing, 13(2):338–355, 1984.

[17] Michael Jünger and Michael Schulz. Intersection Graphs in Simultaneous Embedding
with Fixed Edges. Journal of Graph Algorithms and Applications, 13(2):205–218,
2009.

[18] Marcus Schaefer. Toward a theory of planarity: Hanani-tutte and planarity variants.
In Walter Didimo and Maurizio Patrignani, editors, Graph Drawing, volume 7704 of
Lecture Notes in Computer Science, pages 162–173. Springer Berlin / Heidelberg,
2013.

[19] Hassler Whitney. Congruent Graphs and the Connectivity of Graphs. American
Journal of Mathematics, 54(1):150–168, 1932.

34

	1 Introduction
	2 Connecting Disconnected Graphs
	3 Disjoint Cycles
	3.1 A Polynomial-Time Algorithm
	3.2 A Compact Representation of all Simultaneous Embeddings
	3.3 Linear-Time Algorithm

	4 Connected Components with Fixed Embedding
	5 Conclusion

