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Abstract

In 2001, Károlyi, Pach and Tóth introduced a family of point sets
to solve an Erdős-Szekeres type problem; which have been used to solve
several other Edős-Szekeres type problems. In this paper we refer to these
sets as nested almost convex sets. A nested almost convex set X has the
property that the interior of every triangle determined by three points
in the same convex layer of X , contains exactly one point of X . In this
paper, we introduce a characterization of nested almost convex sets. Our
characterization implies that there exists at most one (up to order type)
nested almost convex set of n points. We use our characterization to
obtain a linear time algorithm to construct nested almost convex sets of
n points, with integer coordinates of absolute values at most O(nlog2 5).
Finally, we use our characterization to obtain an O(n logn)-time algorithm
to determine whether a set of points is a nested almost convex set.

1 Introduction.

We say that a set of points in the plane is in general position if no three of them
are collinear. Throughout this paper all points sets are in general position. In
[9], Erdős asked for the minimum integer E(s, l) that satisfies the following.
Every set of at least E(s, l) points, contains s points in convex position and at
most l points in its interior. A k-hole of X is a polygon with k vertices, all of
which belong to X and has no points of X in its interior; the polygon may be
convex or non-convex. In 1983, Horton surprised the community with a simple
proof that E(s, l) does not exist for l = 0 and s ≥ 7 [12]; Horton constructed
arbitrarily large point set with no convex 7-holes. Note that for l = 0, E(s, l) is
the minimum integer such that every set of at least E(s, 0) points contains at
least one s-hole.

In 2001 [14] Károlyi, Pach and Tóth introduce a family of sets that, although
was not given a name, it was used in other works related to the original question
of Erdős. In this paper we refer the elements of this family as nested almost
convex sets. They have been used in the following problems.
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A modular version of the Erdős problem. In 2001 [14] Károlyi, Pach and
Tóth use the nested almost convex sets to prove that, for any s ≥ 5l/6 +O(1),
there is an integer B(s, l) with the following property. Every set of at least
B(s, l) points in general position contains s points in convex position such that
the number of points in the interior of their convex hull is 0, modulo (l). This
”modular” version of the Erdős problem was proposed by Bialostocki, Dierker,
and Voxman [5]. This was proved for s ≥ l + 2 by Bialostocki et al. The
original upper bound on B(s, l) was later improved by Caro in [7].

A version of the Erdős problem in almost convex sets. We say that X
is an almost convex set if every triangle with vertices in X contains at most
one point of X in its interior. Let N(s) be the smallest integer such that every
almost convex set of at least N(s) points contains an s-hole. In 2007 [17] Valtr
Lippner and Károlyi use the nested almost convex sets to prove that:

N(s) =

{
2(s+1)/2 − 1 if s ≥ 3 is odd
3
22s/2 − 1 if s ≥ 4 is even.

(1)

The authors use the nested almost convex sets to attain the equality in (1).
The existence of N(s) was first proved by Károlyi, Pach and Tóth in [14]. The
upper bound for N(s) was improved by Kun and Lippner in [15], and it was
improved again by Valtr in [16].

Maximizing the number of non-convex 4-holes. In 2014 [1] Aichholzer,
Fabila-Monroy, González-Aguilar, Hackl, Heredia, Huemer, Urrutia and Vogten-
huber prove that the maximum number of non-convex 4-holes in a set of n
points is at most n3/2−Θ(n2). The authors use the nested almost convex sets
to prove that some sets have n3/2−Θ(n2 log(n)) non-convex 4-holes.

Blocking 5-holes. A set B blocks the convex k-holes in X , if any k-hole of
X contains at least one element of B in the interior of its convex hull. In
2015 [6] Cano, Garcia, Hurtado, Sakai, Tejel and Urritia use the nested almost
convex sets to prove that: n/2− 2 points are always necessary and sometimes
sufficient to block the 5-holes of a point set with n elements in convex position
and n = 4k. The authors use the nested almost convex sets as an example of
a set for which n/2− 2 points are sufficient to block its 5-holes.

We now define formally the nested almost convex sets.

Definition 1.1. Let X be a point set; let k be the number of convex layers of
X ; and for 1 ≤ j ≤ k, let Rj be the set of points in the j-th convex layer of X .
We say that X is a nested almost convex set if:

1. Xj := R1 ∪R2 ∪ · · · ∪Rj is in general position,

2. the vertices in the convex hull of Xj are the elements of Rj, and

3. any triangle determined by three points of Rj contains precisely one point
of Xj−1 in its interior.

In this paper, we give a characterization of when a set of points is a nested
almost convex set. This is done by first defining a family of trees. If there exists
a map, that satisfies certain properties, from the point set to the nodes of a tree
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in the family, then the point set is a nested almost convex set. This map encodes
a lot of information about the point set. For example, it determines the location
of any given point with respect to the convex hull; we use this information to
obtain an O(n log n)-time algorithm to decide whether a set of points is a nested
almost convex set. This map also determines the orientation of any given triplet
of points. This implies that for every n there exists essentially at most one nested
almost convex set. We further apply this information to obtain a linear-time
algorithm that produces a representation of a nested almost convex set of n
points on a small integer grid of size O(nlog2 5).

The order type of a point set X = {x1, x2, . . . xn} is a mapping that assigns
to each ordered triplet (xi, xj , xk) an orientation. If xk is to the left of the
directed line from xi to xj , the orientation of (xi, xj , xk) is counterclockwise. If
xk is to the right of the directed line from xi to xj , the orientation of (xi, xj , xk)
is clockwise. We say that two set of points have the same order type, if there
exist a bijection between these sets that preserves the orientation of all triplets.

The order type was introduced by Goodman and Pollack in [10], and it
has been widely used in Combinatorial Geometry to classify point sets; two
sets of points are essentially the same if they have the same order type. As a
consequence of the characterization of nested almost convex sets presented in
Section 2, we have the following.

Theorem 1.2. If n = 2k−1−2 or n = 3 ·2k−1−2 there is exactly one order type
that correspond to a nested almost convex set with n points; for other values of
n, nested almost convex sets with n points do not exist.

In previous papers, two constructions of nested almost convex sets have been
presented. The first construction was introduced by Károlyi, Pach and Tóth in
[14]. The second construction was introduced by Valtr, Lippner and Károlyi in
[17] six years later.

Construction 1: LetX1 be a set of two points. Assume that j > 0 and thatXj

has been constructed. Let z1, . . . zr denote the vertices of Rj in clockwise order.
Let Pj be the polygon with vertices in Rj . Let εj , δj > 0. For any 1 ≤ i ≤ r,
let `i denote the line through zi orthogonal to the bisector of the angle of Pj at
zi. Let z′i and z′′i be two points in `i at distance εj of zi. Finally, move z′i and
z′′i away from Pj at distance δj , in the direction orthogonal to `i, and denote
the resulting points by u′i and u′′i , respectively. Let Rj+1 = {u′i, u′′i : i = 1 . . . r}
and Xj+1 = Xj ∪Rj+1. It is easy to see that if εj and

εj
δj

are sufficiently small,

then Xj+1 is an almost convex set. See Figure 1a.

Construction 2: Let X1 be a set of one point. Let R2 be a set of three points
such that, the point in X1 is in the interior of the triangle determined by
R2. Let X2 = X1 ∪ R2. Now recursively, suppose that Xj and Rj have been
constructed and construct the next convex layer Rj+1 as in Construction 1.
See Figure 1b.

Computers are frequently used to decide whether particular sets satisfy some
properties. Thus, a representation of large nested almost convex sets could be
necessary. Construction 1 and Construction 2 provide such representations;
however, the coordinates of the points in those constructions are not integers or
are too large with respect to the value of n. This is prone to rounding errors
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(a) Construction 1 (b) Construction 2

Figure 1: Examples of Almost Convex Sets

or incrases the cost of computation. Thus, it is better if the coordinates of the
points in the representations are small integers.

A drawing of X is a set of points with integer coordinates and with the same
order type than X . The size of a drawing is the maximum of the absolute values
of its coordinates. Other works on point sets drawings are [3, 4, 11, 13].

In Section 3, we prove that a nested almost convex set of n points (if it exists),
can be drawn in an integer grid of size O(nlog2 5) ' O(n2.322). Furthermore,
we provide a linear time algorithm to find this drawing. A lower bound of
Ω(n1.5) on the size of any drawing of a nested almost convex set of n points
can be derived from the following observations. Any drawing of an n-point set
in convex position has size Ω(n1.5) [13]; and every nested almost convex set of
n points has a Θ(n) points in convex position. This is presented in detail in
Section 2.

In Section 4, we are interested in finding an algorithm to decide whether a
given point set is a nested almost convex set. A straightforward O(n4)-time al-
gorithm for this problem can be given using Definition 1.1. This can be improved
to O(n2) as follows. Using the algorithm presented in Section 3 an instance of
nested almost convex set can be constructed. Recently in [2], Aloupis, Iacono,
Langerman, Öskan and Wuhrer gave an O(n2)-time algorithm to decide whether
two given sets of n points have the same order type. Thus, using their algorithm
and our instance solves the decision problem in O(n2) time. We further improve
on this by presenting O(n log n) time algorithm.

2 Characterization of Nested Almost Convex
Sets.

In this section we prove Theorem 2.1, in which the nested almost convex sets
are characterized. First we introduce some definitions.

Throughout this section: X will denote a set of n points in general position;
k will denote the number of convex layers of X ; Rj will denote the set of points
in the j-th convex layer of X , R1 being the most internal; and Xj will denote
the set of points in X , that are in Rj or in the interior of its convex hull.

T1(k): We define T1(k) as the complete binary tree with 2k+1 − 1 nodes. The
j-level of T1(k) is defined as the set of the nodes at distance j from the
root.

Type 1: We say that X is of type 1 if |Rj | = 2j for 1 ≤ j ≤ k − 1. Note that
if X is of Type 1, then for every 1 ≤ j ≤ k, the number of points in Rj is
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equal to the number of nodes in the j-level of T1(k).

Type 1 labeling: An injective function ψ : X → T1(k) is a type 1 labeling, if
X is Type 1 and ψ labels the nodes (different to the root) of T1(k) with
different points of X .

T2(k): We define T2(k) as the tree that, its root has three children, and each
child is the root of a complete binary tree with 2k−1−1 nodes. The j-level
of T2(k) is defined as the set of the nodes at distance j − 1 from the root.

Type 2: We say that X is of type 2 if |R1| = 1 and |Rj | = 3·2j−2 for 2 ≤ j ≤ k.
Note that if X is of Type 2, the for every 1 ≤ j ≤ k, the number of points
in Rj is equal to the number of nodes in the j-level of T2(k).

Type 2 labeling: An injective function ψ : X → T2(k) is a Type 2 labeling, if
X is Type 2 and ψ labels the nodes (also the root) of T2(k) with different
points of X .

Labeling: Let T be equal to T1(k) or T2(k). We say that a map ψ : X → T is
a labeling, if ψ is a Type 1 labeling or a Type 2 labeling. Note that, if X
admits a labeling then n = 2k−1 − 2 or n = 3 · 2k−1 − 2.

In the following, when the map ψ : X → T is clear from the context, we say
that a point is the label of a node of T if the point is mapped to the node by
ψ. This way, given a node u of T , we denote by xu its label. We denote by u(l)
and u(r) the left and right children of u in T , respectively.

Nested: We say that a labeling is nested if, for 1 ≤ j ≤ k, the left to right
order of labels of the nodes in the j-level of T , corresponds to the coun-
terclockwise order of the points in Rj .

Adoptable: Given a point p in Rj and two points q1, q2 in Rj+1, we say that
q1, q2 are adoptable from p if, for every other point q3 in Rj+1, p is in
the interior of the triangle determined by q1, q2, q3. We say that a nested
labeling is adoptable if, for every node u in T , xu(l) and xu(r) are adoptable
from xu.

We denote by Rj(u) the set of points in Rj that label a descendant of u. With
respect to the counterclockwise order, we denote by: first[Rj(u)], the first point
in Rj(u); last[Rj(u)], the last point in Rj(u); previous[Rj(u)], the point in Rj
previous to first[Rj(u)]; and next[Rj(u)], the point in Rj next to last[Rj(u)].
See figure 2.

Well laid: We say that a nested labeling is well laid if, for every u in T , xu is in
the intersection of the triangle determined by previous[Rk(u)], first[Rk(u)],
last[Rk(u)] and the triangle determined by first[Rk(u)], last[Rk(u)],
next[Rk(u)].

Let u be a node of T . We denote by Xu the set of points xv such that v is
descendant of u in T . We denote by Xu the set Xu ∪ {xu}. Given two sets of
points A and B, we call any directed line from a point in A to a point in B, an
(A,B)-line.
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Figure 2: Illustration of Rj(u), first[Rj(u)], last[Rj(u)], previous[Rj(u)], and
next[Rj(u)].

Internal separation: We say that a nested labeling is an internal separation
if for every node u of T , every point in X/Xu is to the left of every
(Xu(l),Xu(r))-line `.

External separation: We say that a nested labeling is an external separation
if for every node u of T , every point in X/Xu is to the left of every
(Xu(l), {xu})-line and to the left of every ({xu},Xu(r))-line.

Theorem 2.1. Let X be a point set in general position. Then the following
statements are equivalent:

1. X is a nested almost convex set.

2. X admits a labeling that is nested, adoptable and well laid.

3. X admits a labeling that is an internal separation and an external separa-
tion.

Proof of Theorem 2.1

The proof of Theorem 2.1 is divided into three parts: first we prove that 1 =⇒
2; afterwards we prove that 2 =⇒ 3; and finally we prove that 3 =⇒ 1.

1 =⇒ 2

In this part we assume that X is a nested almost convex set, and we introduce
a labeling ψ′ that is nested, adoptable and well laid.

It is clear from the definition of labeling that a necessary condition for X to
admit a labeling is that X must be type 1 or type 2. In the following lemma we
prove that, if X is a nested almost convex, then X is type 1 or type 2.

Lemma 2.2. If X is a nested almost convex set then we have one of the fol-
lowing cases:

1. |Rj | = 2j for 1 ≤ j ≤ k − 1.

2. |R1| = 1 and |Rj | = 3 · 2j−2 for 2 ≤ j ≤ k.
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Proof. Suppose that R1 has three or more points. In this case, the interior of
the convex hull of R1 has at least one point of X ; this contradicts that R1 is
the first convex layer of X . Thus R1 = X1, and X1 has one or two points. This
proves the lemma for j = 1.

Any triangulation of Rj+1, has |Rj+1| − 2 triangles and each triangle has
exactly one point of Xj in its interior; thus |Xj | = |Rj+1| − 2. In particular, if
|X1| = 2 or |X1| = 1 then |X2| = 4 or |X2| = 3, respectively. This proves the
lemma for j = 2.

For the other cases, note that

|Rj+1| = |Xj |+ 2 = |Rj |+ |Xj−1|+ 2 = 2|Rj |.

Now we define ψ′ on a subset of nodes of T depending on whether X is of
type 1 or type 2.

• If X is of type 1: ψ′ labels the two nodes in the 1-level of T1(k), with the
two points in R1.

• If X is of type 2: ψ′ labels the node in the 1-level of T2(k), with the point
in R1; ψ′ labels the three nodes in the 1-level of T2(k), with the three
points in R2 (such that, the left to right order of labels of the nodes in the
2-level of T , coincides to the counterclockwise order of the points in R2).

To define ψ′ on the other nodes of T , we use the following Lemma.

Lemma 2.3. Let p0, . . . pt be the set of points in Rj in counterclockwise order.
Then, the points in Rj+1 can be listed in counterclockwise order as q0, q1, . . . q2t+1,
where the points q2i, q2i+1 are adoptable from pi for 0 ≤ i ≤ t.

Proof. Let T be the set of triangles determined by three consecutive points of
Rj+1 in counterclockwise order. We first show that:

Claim 2.3.1. Each point of Rj is in exactly two consecutive triangles of T .

Assume that j ≥ 2 (and note that Claim 2.3.1 holds for j = 1). Let 4 be
the interior of a triangle of T . By the almost convex set definition, there is
one point of Xj in 4. This point must be in Rj , since the convex hull of Rj+1

without 4 (and its boundary) is convex. Thus, there is one point of Rj in the
interior of each triangle of T . As the triangles of T are defined by consecutive
points of Rj+1, each point of Rj is in at most two triangles of T . Thereby
Claim 2.3.1 follows from |T | = |Rj+1| = 2|Rj |.

The two triangles of T that contain p0, are defined by four consecutive points
of Rj+1; let q0 be the second of these points. Let q0, q1, . . . q2t+1 be the points of
Rj+1 in counterclockwise order. Note that, for each pi, the middle two points of
the four points that define the two triangles that contain pi, are q2i and q2i+1.
Thus q2i and q2i+1 are adoptable from pi.

Now we define ψ′ on the other nodes of T recursively. For each labeled node
u, ψ′ labels u(l) and u(r) with the two points adoptable from the label of u. We
do this so that, the left to right order of the labels of the nodes in the (j+1)-level
of T , correspond to the counterclockwise order of the points in Rj+1. Note that
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ψ′ is nested and adoptable. It remains to prove that ψ′ is well laid. We prove
this in Lemma 2.5.

Lemma 2.4. If u is a node of T , the label of every descendant of u is contained
in the convex hull of Rk(u).

Proof. We claim that every set Rj−1(u), with at least two points, is contained
in the convex hull of Rj(u). Let p be a point in Rj−1(u) and let q and q′ be the
labels of the children of the node labeled by p. By construction of ψ′, q and q′

are adoptable from p. As Rj−1(u) has at least two points, Rj(u) has at least
four points. Let 4 be a triangle determined by q, q′ and another point of Rj(u).
By definition of adoptable, p is in the interior of 4 and in consequence in the
interior of the convex hull of Rj . An inductive application of the previous claim
proves this lemma.

Lemma 2.5. Let u be a node of T . Then xu is in the intersection of the trian-
gle determined by previous[Rk(u)], first[Rk(u)] and last[Rk(u)] and the triangle
determined by first[Rk(u)], last[Rk(u)] and next[Rk(u)].

Proof. Let j be the index such that the j-level of T contains u. Let R′k be the
set that contains first(Rk(v)) and last(Rk(v)) for all nodes v in the j-level of T .
Let T be the set of triangles determined by three consecutive points of R′k in
counterclockwise order. We first show the following claim.

Claim 2.5.1. Each point of Rj is in exactly two consecutive triangles of T .

Note that every point of X \Xj , is the label of some descendant of a node v
in the j-level of T . Thus, by Lemma 2.4, every point of X \ Xj is in the convex
hull of Rk(v) for some node v in the j-level of T . Let A be the region obtained
from the convex hull of X , by removing the convex hull of Rk(v) for each v in
the j-level of T . Note that the set of points of X that are in A is Xj .

Let 4 be the interior of a triangle of T . By the nested almost convex set
definition, there is one point of X in 4. As 4 is contained in A, this point
must be in Xj . This point must also be in Rj , since A without 4 (and its
boundary) is convex. Thus, there is one point of Rj in the interior of each
triangle of T . As the triangles of T are defined by consecutive points of R′k,
each point of Rj is in at most two triangles of T . Thereby Claim 2.5.1 follows
from |T | = |R′k| = 2|Rj |.

Let 4′ be the intersection of the triangle determined by previous[Rj+1(u)],
first[Rj+1(u)] and last[Rj+1(u)], with the triangle determined by first[Rj+1(u)],
last[Rj+1(u)] and next[Rj+1(u)]. Note that first[Rj+1(u)] and last[Rj+1(u)] are
the labels of the children of u. By definition of ψ′, xu is in the interior of every
triangle determined by first[Rj+1(u)], last[Rj+1(u)] and every other point of
Rj+1; thus xu is in 4′. By Claim 2.5.1, xu is in the interior of two triangles
of T , but there are only two triangles of T that intersect 4′; these are the
triangles determined by previous[Rk(u)], first[Rk(u)] and last[Rk(u)], and the
triangle determined by first[Rk(u)], last[Rk(u)], next[Rk(u)].

2 =⇒ 3

In this part we assume that there is a labeling ψ′ of X that is nested, adoptable
and well laid; and we prove that ψ′ is an internal separation and an external
separation.
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Lemma 2.6. ψ′ is an internal separation.

Proof. Let u be a node of T and recall that u(l), u(r) are the left and right
children of u, respectively. We need to prove that every point in X/Xu is to the
left of every (Xu(l),Xu(r))-line.

Let ` be the directed segment from first[Rk(u(l))] to last[Rk(u(r))]. By
Lemma 2.5, each point in X/Xu is in the interior of a triangle whose vertices
are to the left of, or on `; thus every point in X/Xu is to the left of `. By
Lemma 2.4, every point in Xu(l) ∪ Xu(r) is to the right of `. We claim that:

Claim 2.6.1. No (Xu(l),Xu(r))-line intersects `.

As the end points of `, first[Rk(u(l))] and last[Rk(u(r))], are in the boundary
of the convex hull of X ; to prove that every point in X/Xu is to the left of every
(Xu(l),Xu(r))-line, it is enough to show Claim 2.6.1.

Let P1 be the polygonal chain that starts at q1 := first[Rk(u(l))], follows the
points of Rk(u(l)) in counterclockwise order, and ends at q2 := last[Rk(u(l))].
Similarly, let P2 be the polygonal chain that starts at q3 := first[Rk(u(r))],
follows the points of Rk(u(r)) in counterclockwise order, and ends at q4 :=
last[Rk(u(r))]. To prove Claim 2.6.1 it is enough to show that every (Xu(l),Xu(r))-
line intersects both P1 and P2.

Let q be the intersection point of the diagonals of the quadrilateral defined
by q1, q2, q3 and q4. By Lemma 2.4 and Lemma 2.5, Xu(l) is contained in the

convex hull of P1 ∪ {q}, and Xu(r) is contained in the convex hull of P2 ∪ {q}.
Let `′ be an (Xu(l),Xu(r))-line. Note that the slope of `′, is in the range from
the slope of the line define by q1 and q3, to the slope of the line define by q2
and q4, in counterclockwise order. Thus `′ intersects both P1 and P2.

Lemma 2.7. ψ′ is an external separation.

Proof. Let u be a node of T . We need to prove that every point in X/Xu, is to
the left of every (Xu(l), {xu})-line and to the left of every ({xu},Xu(r))-line. We

prove that every point in X/Xu is to the left of every (Xu(l), {xu})-line. That

every point in X/Xu is to the left of every ({xu},Xu(r))-line can be proven in a
similar way.

Let P be the polygonal chain that starts at next[Rk(u)], follows the points
of Rk in counterclockwise order, and ends at previous[Rk(u)]. Note that, by
Lemma 2.5, X/Xu is contained in the convex hull of P . Thus, to prove that
every point in X/Xu is to the left of every (Xu(l), {xu})-line, it is enough to show
that xu is to the right of the directed line from last[Rk(u(l))] to next[Rk(u)].
See Figure 3.

Let j be the index such that the j-level of T contains u. For j < i ≤ k,
let `i be the directed line from last[Ri(u(l))] to next[Ri(u)]. We show that xu
is to the right of `i by induction. As xu(l) and xu(r) are adoptable from xu,
and xu(l) = last[Rj+1(u(l))]; xu is in the interior of the triangle determined
by last[Rj+1(u(l))], xu(r) and next[Rj+1(u)]. Thus the induction holds for i =
j + 1. Suppose that xu is to the right of `i. Let last[Ri+1(u(l))] and p be the
two children of last[Ri(u(l))]. Let next[Ri+1(u)] and q be the two children of
next[Ri(u)]. Let � be the quadrilateral determined by last[Ri+1(u(l))], p, q and
next[Ri+1(u)]. As last[Ri+1(u(l))], p, q and next[Ri+1(u)] are in Ri+1, and any
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Figure 3: Illustration of the proof of Lemma 2.7

triangulation of � has two triangles; there are two points of Xi in �. As those
points are last[Ri(u(l))] and next[Ri(u)], xu is not in the interior of �. Thus
xu is not between `i and `i+1, and therefore xu is to the right of `i+1.

3 =⇒ 1

In this part we finish the proof of Theorem 2.1. We assume that there is a
labeling ψ′ of X that is an internal separation and an external separation, and
we prove that X is a nested almost convex set. For this it is enough to prove
Lemma 2.8. As consequence of Lemma 2.8 and Theorem 2.1, Theorem 1.2 holds.

Lemma 2.8. Let X be an n-point set that admits a labeling ψ : X → T that is
an internal separation and an external separation. Then the order type of X is
is determined by T and:

• If n = 2k−1 − 2, then X has the same order type than any n-point set
obtained from Construction 1.

• If n = 3 · 2k−1 − 2, then X has the same order type than any n-point set
obtained from Construction 2.

Proof. The labeling that X admits can be a type 1 labeling or a type 2 labeling.
If X admits a type 1 labeling, |X | = 2k+1 − 2 for some integer k; in this case,
an almost convex set with the same cardinality than X can be obtained using
Construction 1. If X admits a type 2 labeling, |X | = 3 ·2k−1−2 for some integer
k; in this case, an almost convex set with the same cardinality than X can be
obtained using Construction 2. Let Y be an almost convex set with |X | points
obtained from Construction 1 or Construction 2. We prove that X and Y have
the same order type, and that this order type is determined by T .

Assume that X admits a type 1 labeling. The case when X admits a type 2
labeling can be proven in a similar way. As Y is an almost convex set, Y
admits a labeling that is an internal separation and an external separation. Let
ψY : Y → T be such type 1 labeling.

Let f := ψ−1Y (ψ′). We prove that f : X → Y is a bijection that preserves the
orientation of all triplets. Let x1, x2, x3 be different points in X , let u1, u2, u3
be the nodes of T that x1, x2, x3 label in ψ′, and let y1, y2, y3 be the labels of
u1, u2, u3 in ψY . Note that f(x1) = y1, f(x2) = y2 and f(x3) = y3. To prove
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that (x1, x2, x3) and (y1, y2, y3) have the same orientation, we show that the
position of u1, u2 and u3 in T determines the orientation of any labeling of u1,
u2 and u3.

Given a node w of T , denote by Tw the subtree of T that contains every
descendant of w. Let w be the farthest node from the root of T , such that at
least two of u1, u2, u3 are in Tw. If two of u1, u2, u3 are in the left subtree of
Tw or, two of u1, u2, u3 are in the right subtree of Tw; the orientation of the
labels of u1, u2, u3 is determined by an external separation. If there are not two
of u1, u2, u3 in the left subtree of Tw or in the right subtree of Tw; there is one
of u1, u2, u3 in the left subtree of Tw, one u1, u2, u3 in the right subtree of Tw,
and the other one is not in the left or right subtree of Tw. In this case, the
orientation of the labels of u1, u2, u3 is determined by an internal separation.

3 Drawings of Nested Almost Convex Sets with
Small Size.

Let X ′ be a nested almost convex set with n points, and let k be the number
of convex layers of X ′. In this section we construct a drawing of X ′ of size
O(nlog2 5). This section is divided into three parts. First, we construct a 2k+1−2
point set X with integer coordinates and size 2 · 5k+1. Afterwards, we prove
that X is a nested almost convex set. Finally, we obtain a subset of X that is
a drawing of X ′.

Construction of X .
Recall that T1(k) is the complete binary tree with 2k+1−1 nodes, and the j-level
of T1(k) is the set of nodes at distance j from the root of T1(k). Before defining
X , we will construct a point set Y in convex position, and for each node u in
T1(k), we will define a set Yu ⊂ Y of consecutive points of Y in counterclockwise
order. The point xu will denote the midpoint between the first and last points
of Yu in counterclockwise order. The set X will be the set of points xu such
that u is a node of T1(k) different from the root.

Let p, o and q be points in the plane and let c ∈ [0, 1]. We denote by op
and oq the segments from o to p and from o to q, respectively. We say that
α = (q, o, p) is a corner, if the angle from op to oq counterclockwise is less than
π. Let α := (q, o, p) be a corner. We denote by LeftPoint(α, c) the point in the
segment oq at distance c|oq| from o. We denote by RightPoint(α, c) the point
in the segment op at distance c|op| from o. See Figure 4.

Recursively, we define a corner αu for each node u of T1(k). The corner
of the root of T1(k) is defined as ((0, 2 · 5k+1), (0, 0), (2 · 5k+1, 0)). Let u be a
node for which its corner αu has been defined; the corners of its left and right
children, u(l) and u(r), are defined as follows (See Figure 4):

αu(l) = (LeftPoint(αu, 2/5),LeftPoint(αu, 1/5),RightPoint(αu, 1/5))

αu(r) = (LeftPoint(αu, 1/5),RightPoint(αu, 1/5),RightPoint(αu, 2/5))

11



Figure 4: Illustration of corners αu, αu(l) and αu(r), where αu = (q, o, p).

Let v be a leaf of T1(k + 1). Note that v is a child of a leaf u of T1(k). If
v is the left child of u, let yv := LeftPoint(αu, 1/5). If v is the right child of
u, let yv := RightPoint(αu, 1/5). We define Y as the set of points yv such that
v is a leaf of T1(k + 1). Given a node u of T1(k), we define Yu as the set of
points yv such that v is a descendant of u, and v is a leaf of T1(k + 1). With
respect to the counterclockwise order, we denote by: first[Yu], the first point
in Yu; last[Yu], the last point in Yu; previous[Yu], the point in Yu previous to
first[Yu]; and next[Yu], the point in Yu next to last[Yu].

Lemma 3.1. Let u be a node of T1(k). Let v1, v2, . . . , vt be the leaves of T1(k+
1), that are descendant of u, ordered from left to right. Then yv1 , yv2 , . . . , yvt
are in convex position, and are the points in Yu in counterclockwise order.

Proof. Let (q, o, p) := αu; q′ := LeftPoint(αu, 2/5); and p′ := RightPoint(αu, 2/5).
Let 4(u) be the triangle determined by q′, o and p′. inductively from the leaves
to the root of T1(k), it can be proven that:

1. The set of points of Y in 4(u) is Yu; from which: first[Yu] is on the
segment from o to q′, last[Yu] is on the segment from o to p′, and the
other points are in the interior of 4(u).

2. The points q′, yv1 , yv2 , . . . , yvt , p
′ are in convex position, and appear in this

order counterclockwise.

This proof follows from 2.

By Lemma 3.1, Y is in convex position, and for each node u in T1(k), Yu is
a subset of consecutive points of Y in counterclockwise order. We denote by xu
the midpoint between first[Yu] and last[Yu]. Let X be the set of points xu such
that u is a node of T1(k) different from the root.

Let u be a node of T1(k) at distance j from the root, let (q, o, p) := αu and
let v be a leaf of T1(k + 1). Recursively note that, the coordinates of q, o and
p are divisible by 2 · 5k+1−j . Thus, the coordinates of yv are divisible by 2, xu
has integer coordinates, and X has size 2 · 5k+1.

X is a nested Almost Convex Set.

In this subsection we prove that X is a nested almost convex set. By The-
orem 2.1, it is enough to prove that X admits a labeling that is an internal
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separation and an external separation. Let ψ : X → T1(k) be the type 1 label-
ing that labels each node u of T1(k) different from the root, with xu. We prove
that ψ is both an internal separation and an external separation.

Lemma 3.2. If u is a node of T1(k) at distance j from the root, then first[Yu] =
LeftPoint(αu, cj) and last[Yu] = RightPoint(αu, cj), where

cj =
1

4

(
1− 5(j−k−1)

)
.

Proof. Note that

cj =

j∑
i=k

(
1

5

)k+1−j

.

If j = k, then: u is a leaf of T1(k); cj = 1/5; and first[Yu] = LeftPoint(αu, cj)
and last[Yu] = RightPoint(αu, cj). Suppose that j < k, and that this lemma
holds for larger values of j. Let u(l) and u(r) be the left and right children of
u. Note that by induction,

first[Yu] = LeftPoint(αu(l), cj+1) = LeftPoint(αu, c∗)

where c∗ = (1/5)cj+1+1/5 = cj ; thus first[Yu] := LeftPoint(αu, cj). In a similar
way last[Yu] := RightPoint(αu, cj).

Lemma 3.3. ψ is an internal separation.

Proof. Let u be a node of T1(k) different from the root, and let u(l), u(r) be
the left and right children of u, respectively. We need to prove that every point
in X/Xu is to the left of every (Xu(l),Xu(r))-line.

Let ` be the directed segment from first[Yu(l)] to last[Yu(r)]. As each point in
X/Xu, is the midpoint between two points that are not to the right of `, every
point in X/Xu is not to the right of `. As every point in Xu(l) ∪ Xu(r), is the
midpoint between a point to the right of ` and a point that is not to the left of
`, every point in Xu(l) ∪ Xu(r) is to the right of `. We claim that:

Claim 3.3.1. No (Xu(l),Xu(r))-line intersects `.

As the endpoints of `, first[Yu(l)] and last[Yu(r)], are in the boundary of
the convex hull of Y; to prove that every point in X/Xu is to the left of every
(Xu(l),Xu(r))-line, it is enough to show Claim 3.3.1.

Let P1 be the polygonal chain that starts at first[Yu(l)], follows the points
of Yu(l) in counterclockwise order, and ends at last[Yu(l)]. Similarly, let P2

be the polygonal chain that starts at first[Yu(r)], follows the points of Yu(r) in
counterclockwise order, and ends at last[Yu(r)]. To prove Claim 3.3.1 it is enough

to show that every (Xu(l),Xu(r))-line intersects P1 and P2. This follows from

the fact that Xu(l) is contained in the convex hull of P1, and Xu(r) is contained
in the convex hull of P2.

Lemma 3.4. Let u be a node of T1(k) at distance j from the root, and let
(q, o, p) := αu. Suppose that the nodes in the j-level of T1(k), are ordered from
left to right.

1. If u is not the first node, then the points o, first[Yu], previous[Yu] and q
are collinear, and previous[Yu] = LeftPoint(u, c) for some c > 3/5.
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2. If u is not the last node, then the points o, last[Yu], next[Yu] and p are
collinear, and next[Yu] = RightPoint(u, c) for some c > 3/5.

Proof. To prove 1 and 2, note that, for any two consecutive nodes in the j-
level of T1(k), there is a segment that contains one side of each the corners
corresponding to these nodes; then apply Lemma 3.2.

Lemma 3.5. ψ is an external separation.

Proof. Let u be a node of T1(k) and u(l), u(r) be the left and right children of
u, respectively. We need to prove that every point in X/Xu, is to the left of
every (Xu(l), {xu})-line and to the left of every ({xu},Xu(r))-line. We prove that

every point in X/Xu is to the left of every (Xu(l), {xu})-line. That every point

in X/Xu is to the left of every ({xu},Xu(r))-line can be proven in a similar way.
Let P be the polygonal chain that starts at next[Yu], follows the points

of Y in counterclockwise order, and ends at previous[Yu]. Note that X/Xu is
contained in the convex hull of P . Thus, to prove that every point in X/Xu is
to the left of every (Xu(l), {xu})-line, it is enough to show that next[Yu] is to
the left of the directed line from last[Yu(l)] to xu.

Let ` be the directed line from last[Yu(l)] to xu and let (q, o, p) := αu. Note
that xu and last[Yu(l)] are in the interior of the wedge determined by αu, from
op to oq in counterclockwise order. By Lemma 3.4-2, next[Yu] is on op and
next[Yu] = RightPoint(u, c) for some c > 3/5. To finish this proof we show that
` intersects op at a point RightPoint(u, c′) for some c′ < 3/5.

Consider the following coordinate system, o is the origin, p has coordinates
(1, 0) and q has coordinates (0, 1). Assume that this is the new coordinate
system. Let t be such that the intersection point between ` and the abscissa is
the point (t, 0); thereby, we need to prove that t < 3/5.

By Lemma 3.2, first[Yu] and last[Yu] have coordinates (0, cj) and (cj , 0);
thus, xu has coordinates (cj/2, cj/2). By construction of αu(l) and Lemma 3.2,
last[Yu(l)] is in the segment from (0, 1/5) to (1/5, 0) in RightPoint(u(l), cj+1).

Thus last[Yu(l)] has coordinates ( 1
5cj+1,

1
5 (1− cj+1)) and the equation of ` is

x =
cj+1/5− cj/2

(1− cj+1)/5− cj/2
(y − cj/2) + cj/2

taking y = 0, s = k − j, and replacing cj and cj+1, we have that

t = − 1

40 · 5s
− 1

40(1 + 3/5s)
− 1

40(3 · 5s + 52s)
+

3

8(3/5s + 1)
+

1

8(3 + 5s)
+

1

8

finally, as 5s ≥ 1

t <
3

8
+

1

8(4)
+

1

8
=

17

32
<

3

5
.

Construction of a Drawing of X .
In this subsection we find a subset of X that is a drawing of X ′. By Theorem 1.2,
there are two cases: X ′ is of type 1 and has n = 2k+1−2 points; or X ′ is of type
2 and has n = 3 · 2k−1 − 2 points. By Theorem 1.2, if X ′ is type 1, X ′ and X
have the same order type and X is a drawing of X ′. Assume that X ′ is type 2.
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Let w be the root of T1(k); u and u′ be the children of w; u(l) and u(r) be
the children of u; and u′(l) and u′(r) be the children of u′. We define T as the
tree obtained from T1(k), by making u′(l) the third child of u and removing w,
u′, u′(r) and every descendant of u′(r). Recall that T2(k) is a tree such that,
its root has three children, and each child is the root of a complete binary tree
with 2k−1 − 1 points. Note that T and T2(k) are isomorphic.

Let X2 be the set of points xu such that u is in T . Let ψ′ : X2 → T be such
that ψ′(xu) = u. Note that: as ψ is an internal separation, ψ′ is an internal
separation; and as ψ is an external separation, ψ′ is external separation. Thus
by Theorem 2.1, X2 is a nested almost convex set.

By Theorem 1.2, as X2 has 3 · 2k−1 − 2 points, X2 and X ′ have the same
order type and X2 is a drawing of X ′.

4 Decision Algorithm for Nested Almost Con-
vexity.

Let X be a set of n points. In this section, we present an O(n log n) time
algorithm, to decide whether X is a nested almost convex set. This algorithm
is based in Theorem 2.1-2 and consists of four steps. At each step, it is verified
if X satisfies a certain property; X is a nested almost convex set if and only if
X satisfies each of these properties.

By Theorem 1.2, if X is a nested almost convex set, then n = 2k−1 − 2 or
n = 3 · 2k−1 − 2 for some integer k. The first step is to verify whether X has
one of those cardinalities. If n = 2k−1 − 2 let T := T1(k). If n = 3 · 2k−1 − 2 let
T := T2(k). Recall that: the j-level of T1(k) is defined as the set of the nodes
at distance j from the root; and the j-level of T2(k) is defined as the set of the
nodes at distance j − 1 from the root.

By Lemma 2.2, if X is a nested almost convex set then: for 1 ≤ j ≤ k, the
number of nodes in the j-level of T is equal to the number of nodes in the j-th
convex layer of X . The second step is to verify whether X satisfies Lemma 2.2.
Chazelle [8] showed that, the convex layers of a given an n-point set can be
found in O(n log n) time; thus the second step can be done in O(n log n) time.
We denote by Rj the set of points in the j-th convex layer of X .

The third step is to verify whether X satisfies Lemma 2.3. For 1 ≤ j ≤ k−1,
we do the following. Let p0, . . . pt be the points in Rj in counterclockwise order.
We search for two consecutive points in Rj+1 that are adoptable by p0. If
those points exist, they are the only pair of consecutive points in Rj+1 that are
adoptable by p0. Let q0, q1, . . . p2t+1 be the points in Rj+1 in counterclockwise
order, such that q0 and q1 are adoptable by p0. Then we verify whether q2i, q2i+1

are adoptable by pi for 0 ≤ i ≤ t.
Let p be in Rj , and let qr, qr+1, qr+2, qr+3 be four consecutive points in

Rj+1. Note that qr+1 and qr+2 are adoptable by p, if and only if, p is in the
intersection of the triangle determined by qr, qr+1 and qr+2, and the triangle
determined by qr+1, qr+2 and qr+3. Thus, we can verify whether q2i, q2i+1 are
adoptable by pi in constant time; the third step hence requires linear time.

If X satisfies Lemma 2.3, we can define a labeling ψ : X → T like the one
defined in Section 2-2. The fourth step is to verify if ψ is well laid, this requires
linear time.

15



According to the proof of Theorem 2.1, X is a nested almost convex set if
and only if X verifies the properties in previous four steps. This can be done in
O(n log n) time.
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