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Abstract

In a visibility representation of a graph G, the vertices are represented by non-
overlapping geometric objects, while the edges are represented as segments that
only intersect the geometric objects associated with their end-vertices. Given
a set P of n points, an Anchored Visibility Representation of a graph G with
n vertices is a visibility representation such that for each vertex v of G, the
geometric object representing v contains a point of P . We prove positive and
negative results about the existence of anchored visibility representations under
various models, both in 2D and in 3D space. We consider the case when the
mapping between the vertices and the points is not given and the case when it
is only partially given.

1. Introduction1

A visibility representation (VR) of a graph G maps the vertices of G to2

non-overlapping geometric objects and the edges of G to segments, called vis-3

ibilities, that only intersect the geometric objects associated with their end-4

vertices. Various models of visibility representations have been studied in the5

plane using different types of objects to represent the vertices and different6

rules to represent the edges. Some examples are: Bar Visibility Representations7

(BVRs) [29, 45, 50, 51, 54], where the vertices are horizontal segments and the8
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Figure 1: (a) A BVR of K4. (b) A ZPR of K4.

edges are vertical segments (see Fig. 1(a)), Rectangle Visibility Representations9

(RVRs) [8, 11, 19, 21, 38, 48], which use axis-aligned rectangles and segments10

to represent vertices and edges, respectively, and Orthopolygon Visibility Rep-11

resentations [23, 41, 42], which generalize RVRs by using general orthogonal12

polygons.13

Visibility representations in the three-dimensional space have also been con-14

sidered. One of the first 3D models is the so-called Z-parallel Visibility Rep-15

resentations (ZPRs) [2, 12, 47], where vertices are represented by axis-aligned16

rectangles parallel to the xy-plane and edges are segments parallel to the z-axis17

(see Fig. 1(b)). Fekete and Meijer [33] considered the Box Visibility Representa-18

tions where vertices are 3D boxes and visibilities are parallel to one of the three19

axis. Recently, 2.5D box visibility representations have been proposed [3, 4]; in20

this model vertices are 3D boxes whose bottom faces lie in the plane z = 0 and21

visibilities are parallel to the x- and y-axis. A similar 2D variant where vertices22

are horizontal bars whose left end points all have the same x-coordinate have23

been studied by Cobos et al. [17] and by Felsner and Massow [35].24

We remark that each visibility model can be studied in two variants; in the25

strong variant (see, e.g., [19, 20, 21, 33, 38, 50, 54]) two vertices are adjacent26

if and only if the corresponding objects are visible (i.e. they can be connected27

by a visibility segment); in the weak variant (see, e.g., [8, 13, 23, 32, 41, 46])28

visibilities between objects representing non-adjacent vertices may exist.29

In this paper we study weak visibility representations with additional con-30

straints on the “positions” of the vertices. More precisely, given a set P of31

n points with distinct coordinates along one of the directions parallel to the32

visibilities, an Anchored Visibility Representation (AVR) of a graph G with n33

vertices is a VR such that for each vertex v of G, the geometric object represent-34

ing v contains a point of P . In particular, we consider Anchored Bar Visibility35

Representations (ABVRs) and Anchored Z-parallel Visibility Representations36

(AZPRs) (see Fig. 2). AVRs can be studied in different variants depending on37

whether the mapping between the vertices and the points is given or not. It is38

also possible that this mapping is only partially specified. We capture all these39
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Figure 2: (a) A 3-colored graph G. (b) A 3-colored ABVR of G on a given set of points.
(c) A 3-colored AZPR of G on a given set of points.

variants within a unique framework, described in terms of colors. Given a graph40

whose vertices are colored with k colors and a set of points also colored with41

k colors, a k-colored AVR of G on P is an AVR such that each point p ∈ P42

belongs to a geometric object representing a vertex with the same color as p43

(see Fig. 2 for an example with three colors). With this framework if k = n44

we have a complete mapping; if k = 1 there is no mapping; for any value of45

k between 1 and n we have a partial mapping. A similar framework based on46

colors has been used in the study of point-set embedding, where one wants to47

compute a 2D polyline drawing of a graph such that the vertices are represented48

by the points of a given point set [5, 25, 26, 27, 37]. We also remark that the49

problem of computing drawings with constraints on vertex positions is a clas-50

sical subject in Graph Drawing (see, e.g., [9, 10, 39, 40, 43]). In particular,51

Chaplick et al. [14, 16] have studied the problem of deciding whether a given52

graph G = (V,E) admits a BVR when the bars representing a subset V ′ ⊂ V53

are given as a part of the input. They prove that the problem is NP-complete54

in general [14, 16] and it is polynomially-time solvable if V ′ = V [14]. The BVRs55

studied in this paper, where the bars representing the vertices are not fixed but56

are constrained to include the given points, can be considered as a relaxation of57

those considered by Chaplick et al. An even more relaxed version where only58

the y-coordinate of each bar is given has also been considered [14].59

The contributions of this paper are the following:60

• We first study AVRs in 2D space and prove that every 1-colored sub-61

Hamiltonian graph (i.e., a subgraph of a planar Hamiltonian graph) admits62

a 1-colored ABVR on every set of points in the plane. We show that the63

converse is also true if the points are collinear. As a consequence, deciding64

whether a graph admits a 1-colored ABVR on a given set of points is NP-65

complete. We also show that an ABVR always exists for every planar66

graph if all the points have distinct x- and y-coordinates.67

• Concerning 1-colored AVRs in 3D we first show that every 1-colored graph68

with page number 4 admits a 1-colored AZPR on every given set of points.69
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This extends the previous results on 1-colored sub-Hamiltonian graphs70

since these are exactly the graphs that have page number 2. We then show71

that Kn has a 1-colored ZPR on every set of points if and only if it admits72

a ZPR. This, together with known results about ZPRs of Kn, implies that73

Kn admits an AZPR on any set of points if n ≤ 22 while it does not admit74

an AZPR if n ≥ 51. We finally prove that every 1-colored graph that is75

3-connected 1-planar or that has geometric thickness 2 admits a 1-colored76

AZPR on any given point set P .77

• Still in 3D, we consider the 2-colored version of the problem and prove78

that every properly 2-colored tree T admits a 2-colored AZPR on any79

given 2-colored point set P .80

The rest of the paper is organized as follows. Preliminary definitions are81

given in Section 2. The results about AVRs in the plane are presented in Sec-82

tion 3, while those in 3D are in Section 4. In particular, Subsection 4.1 is about83

1-colored AZPRs, and Subsection 4.2 contains results about 2-colored trees.84

Conclusions and open problems can be found in Section 5.85

2. Preliminaries86

A Bar Visibility Representation (BVR) of a graph G is a 2D visibility rep-87

resentation where the vertices of G are mapped to horizontal segments, called88

bars, while visibilities are vertical segments. A Z-parallel Visibility Represen-89

tation (ZPR) is a 3D visibility representation where vertices are mapped to90

axis-aligned rectangles belonging to planes parallel to the xy-plane, while visi-91

bilities are parallel to the z-axis.92

In the rest of the paper, we will often transform BVRs into ZPRs; to keep93

the direction of the visibilities consistent between BVRs and ZPRs, we assume94

that a BVR is realized in the yz-plane with visibilities parallel to the z-axis. See,95

e.g., Fig. 3(c). Given a BVR (respectively a ZPR) Γ, the (partial) order of the96

bars (respectively of the rectangles), along the vertical direction is called the z-97

ordering of Γ. Throughout the paper we adopt the so-called weak visibility model98

where visibilities between bar/rectangles representing non-adjacent vertices may99

exist.100

Let G be a graph with n vertices and let P be a set of n points in R2 or101

R3 with distinct z-coordinates (recall that in 2D we use the yz-plane). For102

each type of visibility representation defined above (BVR and ZPR), we define103

a constrained version in which for each vertex v of G, the object representing104

v contains a point of P . We will refer to these constrained versions as An-105

chored Bar Visibility Representations (ABVRs) and Anchored Z-parallel Visi-106

bility Representations (AZPRs). We require that the points in P have different107

z-coordinates because bars or rectangles with the same z-coordinate cannot108

be connected by a visibility segment (recall that visibilities are parallel to the109

z-axis). This avoids instances that trivially do not admit anchored visibility110
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representations. For example, the complete graph Kn does not admit such a111

representation if at least two points have the same z-coordinate.112

Let G = (V,E) be a graph with n vertices. A k-coloring of G is a partition113

{V1, . . . , Vk} of V where integers {1, . . . , k} are called colors. A graph G with114

a k-coloring is called a k-colored graph. A graph is properly k-colored if it is a115

k-colored graph and no two vertices of the same color are adjacent. Let P be116

a set of n points in R2 or R3 with distinct z-coordinates. A k-coloring of P117

is a partition {P1, . . . , Pk} of P . A set of points P with a k-coloring is called118

a k-colored set. A k-colored set P is compatible with a k-colored graph G if119

|Vi| = |Pi| for every i. Let G be a k-colored graph and let P be a k-colored set120

of points compatible with G (k ≥ 1). A k-colored ABVR of G on P is an ABVR121

of G on P such that for each vertex v of G, the bar representing v contains a122

point of P with the same color as v. Analogous definitions hold for k-colored123

AZPRs. The assumption that the points of P have distinct z-coordinates avoids124

straightforward negative instances where adjacent vertices of G are forced to be125

mapped to points with the same z-coordinate.126

A k-colored sequence λ is a sequence of (possibly repeated) colors c1, . . ., cn127

such that cj ∈ {1, 2, . . . , k} for every j ∈ {1, 2, . . . , n}. Let G be a k-colored128

graph and let λ be a k-colored sequence; λ is compatible with G if the number129

of elements in λ colored i is equal to |Vi|, for every i = 1, 2, . . . , k. A total130

order ρ of the vertices of G is consistent with λ if the sequence of the colors131

defined by ρ coincides with λ. Given a k-colored point set P , we denote by132

λ(P ) the sequence of colors of the points of P according to their order along133

the z-direction (this order is a total order because the points of P have distinct134

z-coordinates). Finally, given a set of n points p1, p2, . . ., pn we denote by x(pi),135

y(pi), and z(pi) the x-, y-, and z-coordinate of point pi ∈ P and by xm and136

xM the values minni=1{x(pi)} and maxni=1{x(pi)}, respectively. We analogously137

define ym, yM , zm, and zM .138

3. Anchored Visibility Representations in 2D139

A book embedding of a graph G = (V,E) consists of a total order ρ of V140

and a partition of E into k disjoint sets, called pages, such that no two edges141

in the same page cross; that is, there are no two edges (u1, v1) and (u2, v2) in142

the same page with u1 <ρ u2 <ρ v1 <ρ v2 (see Fig 3(a)). The minimum k for143

which a graph G admits a book embedding with k pages is the page number144

of G. A graph has page number one if and only if it is outerplanar [7]. This145

also means that the graph induced by each page of a k-page book embedding146

is an outerplanar graph. A graph is Hamiltonian if it has a simple cycle that147

contains all its vertices. A graph is sub-Hamiltonian if it is a subgraph of a148

planar Hamiltonian graph. A graph has page number two if and only if it is149

sub-Hamiltonian [7]. A semi-bar visibility representation of a planar graph G is150

a BVR of G such that the left endpoints of all the bars representing the vertices151

of G belong to a vertical line. Cobos et al. [17] proved that a graph has a152

semi-bar visibility representation if and only if it is outerplanar.153
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Figure 3: (a) A 2-page book embedding of a (sub-Hamiltonian) graph G = (V,E);
(b) The same book embedding with pages represented as semi-bar visibility; (c) An
ABVR of G on a set P of n = |V | points with distinct z-coordinates.

Theorem 1. Let G be a 1-colored sub-Hamiltonian graph and let P be a 1-154

colored point set in R2; G has a 1-colored ABVR on P .155

Proof. Since G is sub-Hamiltonian, it admits a book embedding γ with two156

pages [7]. Let p1, p2, . . . , pn be the points of P in the order as they appear157

along the z-axis and let v1, v2, . . . , vn be the vertices of G according to the total158

order ρ of γ. The bar bi representing vi is drawn as a segment parallel to the159

y-axis with z-coordinate z(pi), with minimum y-coordinate less than ym and160

maximum y-coordinate greater than yM . This guarantees that bi contains the161

point pi (refer to Fig. 3 for an illustration). The amount of the extension of162

each bi in the half-planes y < ym and y > yM is chosen to realize the visibilities163

that represent the edges. In other words, we realize in each of the half-planes164

y < ym and y > yM two semi-bar visibility representations, one for each page165

of γ. Such semi-bar visibility representations exist by the result of Cobos et166

al. [17]. For completeness, we give a detailed description of the construction,167

which will be also useful to extend the result in the 3D scenario.168

Denote by b−i (resp. b+i ) the length of the portion of bi that lies in the half-169

plane y < ym (resp. y > yM ). For each edge (vi, vj), the span of (vi, vj) in γ170

is |j − i|. The length b−i (resp. b+i ) is chosen equal to the maximum span of171

an edge incident to vi in the first (resp. second) page. With this choice every172

pair of adjacent vertices vi and vj are visible. Suppose, as a contradiction, that173

vi and vj , with i < j, are not visible, i.e., there exists a bar bk with i < k < j174

such that b−i , b
−
j < b−k and b+i , b

+
j < b+k . Without loss of generality assume175

that (vi, vj) is in the first page in γ. This implies that b−i , b
−
j ≥ |j − i|. On176

the other hand, b−k > b−i , b
−
j implies that there is an edge (vk, vh) in the first177

page with |h − k| > |j − i|, but this implies that vi <ρ vk <ρ vj <ρ vh or178

vh <ρ vi <ρ vk <ρ vj , which is impossible because (vi, vj) and (vk, vh) are in179

the same page in γ. 2180

If the points are aligned in the z-direction the converse of Theorem 1 holds.181
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Theorem 2. Let G be a 1-colored planar graph and let P be a 1-colored point182

set in R2 such that each point in P has the same y-coordinate; G admits a183

1-colored ABVR on P if and only if G is sub-Hamiltonian.184

Proof. The proof of sufficiency follows from Theorem 1. Consider now the185

necessity. Let Γ be an ABVR of G on P and let b1, b2, . . . , bn be the bars of Γ186

according to the z-ordering of Γ. Since all points have the same y-coordinate187

ȳ, every bi sees bi+1 along the line y = ȳ. Thus, we can add the visibilities188

(if not already present) between bi and bi+1 (i = 1, 2, . . . , n). Moreover, we189

can add a visibility between b1 and bn. To this aim, let ymin be the minimum190

y-coordinate of a bar in Γ; we extend b1 and bn in the half-plane y < ymin and191

add a visibility between them. The resulting representation is an ABVR of a192

planar Hamiltonian supergraph G′ of G and therefore G is sub-Hamiltonian. 2193

We remark that sub-Hamiltonian graphs include various sub-families of pla-194

nar graphs, such as 2-trees (and therefore series-parallel graphs, outerplanar195

graphs and trees) [44], Halin graphs [18], 4-connected planar graphs [52], and196

planar graphs with maximum vertex degree 4 [6]. On the other hand, testing a197

graph for sub-Hamiltonicity is NP-complete [53], and therefore a consequence198

of Theorem 2 is that testing whether a given planar graph admits an ABVR on199

a given set of collinear points is NP-complete.200

Corollary 1. The problem of deciding whether a 1-colored planar graph admits201

an ABVR on a given 1-colored point set is NP-complete.202

In contrast to the NP-hardness result about vertically aligned points, if the203

points of P are not vertically nor horizontally aligned, then an ABVR exists for204

every planar graph G. The next theorem is a consequence of a paper by Fel-205

sner [34] about floorplans (see also [15] for a similar proof). A generic floorplan206

is a partition of a rectangle into a finite set of interiorly disjoint rectangles that207

have no point where four rectangles meet. Two floorplans F and F ′ are weakly208

equivalent if there exist a bijection φH between the horizontal segments and φV209

between the vertical segments, such that a horizontal (resp. vertical) segment210

s has an endpoint on a vertical (resp. horizontal) segment t in F if and only if211

φH(s) (resp. φV (s)) has an endpoint on φV (t) (resp. φH(t)) in F ′. A set P of212

points in R2 is generic if no two points from P have the same x- or y-coordinate.213

The following theorem has been proved by Felsner [34].214

Theorem 3. [34] If P is a generic set of k points in a rectangle R and F is215

a generic floorplan with n > k segments and S is a prescribed subset of the216

segments of F having size k, then there exists a generic floorplan F ′ that is217

weakly equivalent to F and such that every segment of F ′ that corresponds to a218

segment of S contains exactly one point of P and no point is contained in two219

segments.220

Theorem 4. Let G be a 1-colored planar graph and let P be a generic 1-colored221

point set in R2; G admits a 1-colored ABVR on P .222
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Figure 4: (a) A generic point set P and a BVR Γ of a planar graph G; (b) A floorplan
F obtained from Γ; (c) A floorplan F ′ weakly equivalent to F and covering P ; (d) An
ABVR of G on P .

Proof. Let Γ be a BVR of G. We now construct a generic floorplan starting223

from Γ (see Fig. 4(a)). Let bb and bt be the bottommost and the topmost bars224

in Γ; we extends bb and bt so that their left endpoints and their right endpoints225

can be connected by two vertical segments sl and sr. The four segments bb,226

bt, sl and sr are the boundary of a rectangle. Extending every bar of Γ until227

its endpoints touch a vertical segment, we obtain a floorplan F (see Fig. 4(b)).228

Let S be the set of horizontal segments of F . By Theorem 3, there exists a229

floorplan F ′ that is weakly equivalent to F and such that every point of P230

belongs to exactly one horizontal segment (see Fig. 4(c)). Since F ′ and F are231

weakly equivalent the adjacencies between vertical and horizontal segments are232

the same. We shorten the horizontal segments so to remove the adjacencies233

that are in F but not in Γ and we also remove the two segments sl and sr.234

We thus obtain a new BVR Γ′ of G (see Fig. 4(d)). Moreover, since no point235

of P belongs to two segments of F ′, every point of P is an internal point of a236

horizontal segment; this means that we can shorten the horizontal segments in237

such a way that they still contain the points of P . This implies that Γ′ is in238

fact an ABVR of G on P . 2239

We conclude this section with a result about k-colored ABVR, for 2 ≤ k ≤ n,240

that is an immediate consequence of Theorem 2. By Theorem 2 every non-sub-241

Hamiltonian graph G does not admit an ABVR on a given set P of verti-242

cally aligned points. This implies that any k-colored graph G′ that has G as243

a monochromatic subgraph does not admit an ABVR on any set of points P ′244

that contains P as a monochromatic subset (with the color of the vertices of G245

only occurring in P ).246

Corollary 2. For every 1 ≤ k ≤ n there exists a k-colored planar graph G and247

a k-colored point set P such that G does not admit a k-colored ABVR on P .248

4. Anchored Visibility Representations in 3D249

In this section we study anchored visibility representations in 3D, in partic-250

ular AZPRs, and present results about the 1-colored version (Subsection 4.1)251
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and the 2-colored version of the problem (Subsection 4.2). We start with two252

lemmas that will be useful in both subsections.253

Lemma 1. Let G be a graph with n vertices and let P be a set of n points254

in R3 with distinct z-coordinates. If G has a ZPR Γ such that each rectangle255

representing a vertex has nonempty intersection with the z-axis, then G admits256

an AZPR on P whose z-ordering is the same as Γ.257

Proof. We show that Γ can be modified to an AZPR Γ′ on P with the same258

z-ordering as Γ. Let p1, p2, . . . , pn be the sequence of the points of P ordered259

by increasing z-coordinate; let r1, r2, . . . , rn be the sequence of the rectangles260

ordered according to the z-ordering of Γ. First, we translate the rectangles261

r1, r2, . . . , rn so that ri has z-coordinate z(pi). Since the order of the rectangles262

in the z-direction is not changed, the visibilities of Γ are preserved. Denote by263

x′(ri) and y′(ri) the maximum x- and y-coordinate of ri, respectively and by264

x′′(ri) and y′′(ri) the minimum x- and y-coordinate of ri, respectively. Note265

that (x′(ri), y
′(ri), z(pi)) and (x′′(ri), y

′′(ri), z(pi)) are two opposite corners of266

ri.267

In order to obtain an AZPR of G on P we extend each rectangle ri in such a268

way that the coordinates of its two opposite corners become (xm +x′′(ri), ym +269

y′′(ri), z(pi)) and (xM + x′(ri), yM + y′(ri), z(pi)), respectively. Moreover, each270

visibility segment sj whose x- and y-coordinate are x(sj) and y(sj), respectively,271

is translated as follows. If x(sj) ≥ 0, then sj is translated so that its x-coordinate272

is xM + x(sj), while if x(sj) < 0, then sj is translated so that its x-coordinate273

is xm + x(sj). Analogously, if y(sj) ≥ 0, then sj is translated so that its y-274

coordinate is yM + y(sj), while if y(sj) < 0, then sj is translated so that its275

y-coordinate is ym+y(sj). See Fig. 5 for an illustration. Let Γ′ be the resulting276

representation. We denote by r′i the rectangle of Γ′ obtained by extending the277

rectangle ri of Γ; analogously, we denote by s′j the segment of Γ′ obtained by278

translating the visibility segment sj of Γ.279

We now prove that Γ′ is a valid AZPR of G on P . Clearly, point pi belongs to280

r′i because it is contained in the rectangle with opposite corners (xM , yM , z(pi))281

and (xm, ym, z(pi)), which is contained in r′i. Also, each segment s′j of Γ′ is282

a valid visibility segment. Namely, assume that x(sj) ≥ 0 and y(sj) ≥ 0 (the283

other cases are analogous). The coordinates of s′j are xM+x(sj) and yM+y(sj).284

If s′j is not a valid visibility segment in Γ′, then there exists a rectangle r′k that285

intersect s′j at an interior point (xM + x(sj), yM + y(sj), z(pk)). This implies286

that xM +x′(rk) ≥ xM +x(sj) and yM +y′(rk) ≥ yM +y(sj), i.e., x′(rk) ≥ x(sj)287

and y′(rk) ≥ y(sj). But this means that sj intersects rk in Γ, contradicting the288

fact that sj is a valid visibility segment in Γ. 2289

The next lemma explains how to transform a BVR into a ZPR with the290

additional properties that it is completely contained in the region of space with291

x ≥ 0 and y ≥ 0 and such that all rectangles representing vertices have a corner292

on the z-axis. Any such ZPR will be called cornered ZPR.293

Lemma 2. Let G be a graph that has a BVR Γ where vertices have distinct294

z-coordinates; G admits a cornered ZPR whose z-ordering is the same as Γ.295
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Figure 5: Illustration for the proof of Lemma 1. (a) The projection of a rectangle ri
on the xy-plane. (b) The projection on the xy-plane of the bounding box of the point
set P . (c) The projection of the rectangle r′i on the xy-plane.

Proof. By possibly translating it, we can assume that Γ is contained in the296

first quadrant of the yz-plane (see Fig. 6). Let ei be an edge of G, we denote297

by si the visibility segment representing ei in Γ. We enumerate the visibility298

segments from right to left and we assign to the segments integer numbers that299

increase from right to left. More precisely, we assign to each visibility segment300

si a number n(si) ∈ N+ so that n(si) < n(sj) if there exists a y-parallel straight301

line that intersects both si and sj , and si is to the right of sj . We assign to302

each bar bi a number n(bi) ∈ N+ equal to the maximum number of a visibility303

segment incident to bi.304

We now extend each bar bi of Γ so that it touches the z-axis. Let Γ′ be the305

resulting representation. We denote by b′i the bar obtained by extending bi and306

we set n(b′i) = n(bi). Observe that the visibility segments of Γ′ are the same as307

those of Γ. In Γ′ bars can intersect the visibility segments. However, if a bar308

b′i intersects a visibility segment sj , then n(b′i) < n(sj). Namely, since bi did309

not intersect sj before the extension, every point of bi has a y-coordinate larger310

than the y-coordinate of sj ; hence any visibility segment sk incident to bi has311

a y-coordinate greater than the y-coordinate of sj and therefore n(sk) < n(sj).312

Since n(bi) is equal to the maximum number of a visibility segment incident to313

bi and n(b′i) = n(bi), we have n(b′i) < n(sj).314

In order to construct a ZPR with the desired properties, we transform the315

bars representing the vertices into rectangles by extending them in the positive316

x-direction. In particular, a bar b′i is transformed into a rectangle ri with317

a side coincident with b′i and whose dimension in the x-direction is equal to318

n(b′i). We also translate the visibility segments in the x-direction. A visibility319

segment si is moved so that its x-coordinate is n(si). Denote by Γ′′ the resulting320

representation. By construction, all the rectangles of Γ′′ are in the region of321
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Figure 6: (a) A BVR Γ where each visibility si (each bar bi) is associated with a number
in black (gray) according to the partial order ≺. (b) The drawing Γ′ obtained from Γ
by extending each bar so that it touches the z-axis. (c) A cornered ZPR Γ′′ of Γ′.

space with x ≥ 0 and y ≥ 0 and have a corner on the z-axis. Furthermore, no322

rectangle ri intersects a visibility segment sj . Namely, if b′i (i.e. the bar that has323

been extended to create ri) and sj did not intersect each other in Γ′, then they324

do not intersect in Γ′′. If b′i and sj intersected in Γ′, then n(b′i) < n(sj), and it325

follows that in Γ′′ sj has a x-coordinate n(sj) while the maximum x-coordinate326

of ri is n(b′i), which implies that ri and sj do not intersect. 2327

4.1. 1-colored AZPRs328

We start with a theorem that is the 3D counterpart of Theorem 1 and that329

can be proven similarly.330

Theorem 5. Let G be a 1-colored graph with page number four and let P be a331

1-colored point set in R3; G admits a 1-colored AZPR on P .332

Proof. Let p1, p2, . . . , pn be the points of P in the order they appear along333

the z-axis and let v1, v2, . . . , vn be the vertices of G according to the total order334

ρ of a given 4-page book embedding of G. Vertex vi will be represented by a335

rectangle ri parallel to the xy-plane whose z-coordinate is z(pi) and such that its336

minimum x-coordinate (respectively y-coordinate) is less than xm (respectively337

ym) and its maximum x-coordinate (respectively y-coordinate) is greater than338

xM (respectively yM ). This guarantees that ri contains the point pi. The339

visibilities to represent the edges in each page are realized by choosing the340

amount of the extension of each ri in the half-planes x < xm, x > xM , y < ym341

and y > yM , analogously to what done in the proof of Theorem 1. 2342

In Section 3 we showed (Theorem 2) that if a graph admits an ABVR on343

a set of collinear points, then it is sub-Hamiltonian and therefore has page344
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number two. In other words, when restricted to collinear points the converse of345

Theorem 1 holds. We now show that this is not the case for Theorem 5. Indeed,346

using results from [12] and [47] we can prove that Kn, which has page number347

dn2 e, admits an AZPR on any given set of points (even if collinear or coplanar)348

for n ≤ 22.349

Theorem 6. The complete graph Kn admits a 1-colored AZPR on any given350

set of 1-colored points if and only if it admits a ZPR.351

Proof. The only-if direction is trivial. Suppose then that Kn admits a ZPR Γ;352

as observed by Bose et al. [12] if a ZPR of Kn exists, then all rectangles intersect353

a line parallel to the visibilities. By possibly translating Γ we can assume that354

this line is the z-axis and therefore by Lemma 1 Kn admits an AZPR on any355

given set of points. 2356

Bose et al. [12] construct a ZPR of K22 and prove that a ZPR cannot exist357

for Kn with n ≥ 56. Afterwards, Štola [47] lowered the upper bound to 51.358

Hence we have the following.359

Corollary 3. Let P be a set of 1-colored points in R3. If n ≤ 22, then Kn360

admits a 1-colored AZPR on P ; if n ≥ 51 a 1-colored AZPR of Kn on P does361

not exist.362

In the rest of this section we will describe two families of graphs that admit a363

1-colored AZPR on every set of points, namely the 3-connected 1-planar graphs364

and the graphs with geometric thickness two. A graph is 1-planar if it has365

a drawing where each edge is crossed at most once; a graph has geometric366

thickness two if it has a straight-line drawing whose edges can be partitioned367

into two sets and no two edges in the same set cross. This latter family includes368

the RAC graphs [28] (i.e. graphs that have a straight-line drawing where each369

edge crossing forms a right angle) and the graphs with maximum vertex-degree370

4 [30]. Both the results are proved using a common approach based on the fact371

that a graph G belonging to the families above can be decomposed into two372

planar graphs. The idea is to combine two cornered ZPRs of the two planar373

graphs whose union is G to create an AZPR of G on a given set of points P .374

The next lemma explains how to achieve this, provided that the z-orderings of375

the two cornered ZPRs is the same.376

Lemma 3. Let G be a 1-colored graph that is the union of two planar graphs377

G1 and G2 with the same vertex set and let P be a 1-colored point set in R3. If378

G1 and G2 admit two BVRs whose z-ordering is the same, then G admits an379

AZPR on P .380

Proof. Consider two BVRs of G1 and G2 with the same z-ordering and denote381

by ρ this ordering. By Lemma 2, G1 and G2 admit two cornered ZPRs Γ1 and382

Γ2, respectively, whose z-ordering is ρ. We now explain how to combine Γ1383

and Γ2 to obtain a ZPR of G such that all rectangles representing vertices have384
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Figure 7: (a) A cornered ZPR Γ1 in the region x ≥ 0, y ≥ 0 (grey) and a cornered ZPR
Γ2 in the region x ≥ 0, y ≥ 0 (lightgrey). (b) A ZPR Γ of G obtained by combining
Γ1 and Γ2 while preserving visibilities.

nonempty intersection with the z-axis. By Lemma 1 this implies that G has an385

AZPR on P .386

Let r1i and r2i be the rectangles representing a vertex vi in Γ1 and Γ2, re-387

spectively. We first translate the rectangles of Γ2 so that r1i has the same388

z-coordinate zi of ri2, for every i = 1, 2, . . . , n. Since the z-ordering of Γ1 and389

Γ2 is the same, this translation does not change the z-ordering of Γ2. Next, we390

rotate Γ2 by 180◦ around the z-axis. In this way, Γ2 is completely contained in391

the region x ≤ 0 and y ≤ 0 and all its rectangles have a corner on the z-axis.392

Rectangles r1i and r2i (after the rotation) only share the point (0, 0, zi). Let393

(x1i , y
1
i , zi) be the corner of r1i opposite to (0, 0, zi) and let (x2i , y

2
i , zi) be the394

corner of r2i opposite to (0, 0, zi). Vertex vi is represented in Γ by a rectangle395

whose opposite corners are (x1i , y
1
i , zi) and (x2i , y

2
i , zi) (see Fig. 7). Γ is a ZPR396

of G because the visibilities of Γ1 and Γ2 have not been destroyed: those of Γ1397

still exist in the region x ≥ 0 and y ≥ 0, while those of Γ2 have been moved to398

the region x ≤ 0 and y ≤ 0 by the rotation. 2399

Let Γ be a drawing of a graph G. Γ has thickness k ≥ 1 if the edges of Γ can400

be colored with k colors so that no two edges of the same color cross in Γ. Let G401

be a directed graph; an upward planar drawing of G is a planar drawing where402

the edges are monotonically increasing in the vertical direction (the z-direction403

in our case).404

Lemma 4. Let G be a graph that admits a drawing with thickness two that can405

be oriented to become an upward drawing; G admits an AZPR on any given set406

of points P in R3.407

Proof. Let Γ be a drawing of G with thickness two that can be oriented to408

become an upward drawing
−→
Γ . Since Γ has thickness two, the edges of

−→
Γ can409

be partitioned to obtain two upward planar drawings
−→
Γ 1 and

−→
Γ 2 with the same410
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vertex set. The graph Gi represented by
−→
Γ i (i = 1, 2) admits a BVR whose411

z-ordering coincides with the vertical order ρ of the vertices in Γ. Namely,
−→
Γ i412

can be augmented to an upward planar drawing
−→
Γ
′
i of a supergraph G′i of Gi413

that is a planar st-graph (i.e., a planar digraph with a single source s and a414

single sink t, embedded so that s and t are on the external face) [22, Chapter415

6]; the order ρ is an st-numbering of G′i (i.e., a total order v1, v2, . . . , vn of the416

vertices of G′i such that s = v1, t = vn, and each vertex vj other than s and417

t is adjacent to at least two vertices vh and vk such that h < j < k). It is418

known that it is possible to compute a BVR of a graph whose z-ordering is a419

given st-numbering [49, 54]. Thus, it is possible to compute a BVR of G′i whose420

z-ordering is ρ. Since Gi is a spanning subgraph of G′i, the computed BVR421

contains a BVR of Gi with z-ordering ρ. In other words G is the union of two422

planar graphs that admit two BVRs whose z-ordering is the same and therefore,423

by Lemma 3, G admits an AZPR on any given set of points P in R3. 2424

We are now ready to prove the following.425

Theorem 7. Let G be an n-vertex 1-colored graph and let P be a 1-colored point426

set of size n in R3. If G is 3-connected 1-planar or has geometric thickness two,427

then G admits a 1-colored AZPR on P .428

Proof. By Lemma 4 it is sufficient to prove that G admits a drawing with429

thickness two that can be oriented to become upward.430

For the case of 3-connected 1-planar graphs, Alam et al. [1] proved that every431

3-connected 1-planar graph G = (V,E) admits a 1-planar drawing Γ where all432

edges are straight-line except one edge that has one bend. Since each edge433

crosses at most one other edge, the edges of Γ can be partitioned into two sets434

E1 and E2 such that the edges in each set do not cross. By possibly rotating Γ435

we can guarantee that all vertices have distinct z-coordinates and that the edge436

with one bend is monotone in the vertical direction. By orienting each edge437

from the vertex with lower z-coordinate to the vertex with higher z-coordinate438

we obtain the desired upward drawing.439

In the case where G = (V,E) has geometric thickness two, it admits a440

straight-line drawing Γ such that E can be partitioned into two sets E1 and E2441

each containing non-intersecting edges. By possibly rotating Γ we can guarantee442

that each vertex of Γ has a distinct z-coordinate. Also in this case we obtain443

the desired upward drawing by orienting each edge of Γ from the vertex with444

lower z-coordinate to the vertex with higher z-coordinate. 2445

4.2. 2-colored AZPRs446

In this section we study 2-colored AZPRs of properly 2-colored trees. The447

idea is to first compute a BVR whose z-ordering is consistent with λ(P ) and448

then to use Lemmas 1 and 2 to obtain an AZPR on P .449

Let T be a properly 2-colored tree and let λ be a 2-colored sequence com-450

patible with T . We construct a BVR of T whose z-ordering is consistent with451

λ. To this aim we first define a mapping of the vertices of T to the elements of452

14



v1
v2 v3

v8 v9 v10 v11

v4 v5 v6 v7 v12 v13

v14 v15 v18 v19 v20

v17

v23

v21 v22

v16

T

λ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 8: A properly 2-colored tree T and a 2-colored sequence λ compatible with T .
The color of the root is equal to the first element of λ. The labels associated with the
vertices are determined by the mapping.

λ. Root T at any vertex whose color is equal to the first element of λ and arbi-453

trarily order the children of each node from left to right. We visit the vertices454

of T level by level starting from the root and at each level we visit the vertices455

from left to right. The current vertex v is mapped to the first element of λ with456

the same color as v that has not yet been used. The resulting ordering of the457

vertices ρ is consistent with λ by construction and its first element is the root458

of T (see Fig. 8).459

We now explain how to use the defined mapping to construct a BVR Γ460

of T . First of all, we assign the z-coordinates to the vertices according to461

the ordering ρ = 〈v1, v2, . . . , vn〉. More precisely, we assign to vertex vj the462

z-coordinate z(vj) = j. This implies that the z-ordering of Γ will be ρ and463

therefore consistent with λ. The children of vj whose z-coordinates are less464

than z(vj) are called backward children, the others are called forward children.465

Observe that the grandchildren of a vertex vj (which have the same color as vj466

because T is properly 2-colored) have a z-coordinate larger than that of vj ; this467

property will be used to guarantee that there will be no crossings between bars468

and visibilities.469

In order to actually construct Γ, we consider the vertices level by level (start-470

ing from the root) and from left to right within each level. At each step we draw471

a set of vertices having the same parent, which has already been drawn because472

it is on the previous level (clearly the root is the first vertex to be drawn). We473

call a region of plane delimited by two straight lines parallel to the z-axis a474

strip and we say that a bar b crosses a strip σ if b intersects σ and both end-475

points of b are outside σ. For example, in Fig. 9(a) the bar bk crosses the strip476
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σ(bj) (shown in gray), while the bar bj does not. We assume that, during the477

construction, the following invariant holds. For each bar bj corresponding to478

a vertex vj whose children have not yet been drawn, there exists a strip σ(bj)479

such that:480

(P1) The endpoint of bj with minimum y-coordinate lies in the interior of σ(bj),481

while the other endpoint lies outside. Furthermore, the visibility between482

bj and its parent is outside σ(bj). See also Fig. 9(a).483

(P2) If σ(bj) is crossed by a bar bl, then z(vl) < z(vj).484

(P3) Let bk be the bar with the maximum z-coordinate among those that cross485

σ(bj). If vk is not the parent of vj , then the children of vj are forward486

children.487

Intuitively, the strip σ(bj) is a sort of a “tunnel” where the visibility between488

bj and its children is guaranteed.489

The root of T is drawn as a bar of arbitrary length not touching the z-axis.490

Clearly the invariant holds. Let vj be the parent of the vertices to be drawn at491

the generic step. We process the children of vj from left to right. If some back-492

ward child exists, then, by property P3, either σ(bj) is not crossed by any other493

bar or the bar crossing it with the maximum z-coordinate represents the parent494

vk of vj . Since the children of vj have the same color as vk (because the tree is495

properly colored), the backward children of vj have a z-coordinate greater than496

z(vk) (because they appear after vk in ρ). Thus, the bars representing backward497

children can be drawn inside σ(bj) so that they are visible from bj (refer also498

to Fig. 9(b)). More precisely, let vj1 , . . . , vjα be the backward children of vj499

ordered according to ρ (thus z(vji) < z(vji+1
)). The bars bj1 , . . . , bjα are drawn500

inside σ(bj) in such a way that y′′(bji) < y′′(bji+1
) < y′′(bj) < y′(bji+1

) < y′(bji),501

where y′′(bji) and y′(bji) represent the minimum and maximum y-coordinate of502

bji , respectively.503

Since each bar bji has a maximum y-coordinate larger than the maximum y-504

coordinate of the bars between it and bj , bji can be connected with a visibility to505

bj . The strip σ(bji) of bji is determined as follows. Let `ji , for i = 1, 2, . . . , α−1,506

be a z-parallel line having a y-coordinate between y′′(bji) and y′′(bji+1
), and507

let `jα be a z-parallel line between y′′(bjα) and y′′(bj). The strip σ(bji) with508

1 < i ≤ α is contained in the region of the yz-plane delimited by the two lines509

`ji and `ji−1
. Further, σ(bj1) is contained in the region between `j1 and a z-510

parallel line having a y-coordinate between the minimum y-coordinate of σ(bj)511

and y′′(bj1).512

We now explain how to draw the forward children (if necessary). Refer to513

Fig. 9(c) for an illustration. Let vk1 , vk2 , . . . , vkβ be the forward children of514

vj ordered according to ρ (thus z(vki) < z(vki+1
)). Since these vertices have515

z-coordinate larger than z(bj), by property P2, the bars representing forward516

children can be drawn inside σ(bj) so that they are visible from bj . More517

precisely, the bars bk1 , bk2 , . . . , bkβ are drawn inside σ(bj) in such a way that518

y′′(bj) < y′′(bki) < y′(bki) < y′′(bki+1) < y′(bki+1). With this construction each519
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Figure 9: The generic step of the construction of a BVR Γ of a tree T . (a) Vertex vj
and its parent vk have been already drawn; the strip σ(vj) is shown in gray; (b) the
backward children vj1 , vj2 , vj3 are drawn inside σ(bj) and their strips (dark grey) are
defined; (c) the forward children vk1 and vk2 of vj are drawn inside σ(bj) and their
strips (dark grey) are defined; (d) The strips of the children of vj satisfy the properties
P1–P3.

17



bar bki can be connected with a visibility to bj . The strip σ(bki) is contained520

in the region of the yz-plane delimited by two z-parallel lines, the first having a521

y-coordinate between y′(bki−1
) and y′′(bki) (if i = 1, between y′′(bj) and y′′(bki))522

and the second having a y-coordinate between y′′(bki) and the y-coordinate of523

the visibility between bki and bj .524

Fig. 10 shows a BVR of the tree T of Fig. 8 computed by the described525

algorithm. The next Lemma proves the correctness of the algorithm.526
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Figure 10: A BVR of tree T of Fig. 8 whose z-ordering is consistent with λ.

Lemma 5. Let T be a properly 2-colored tree, and let λ be a 2-colored sequence527

compatible with T ; T admits a BVR whose z-ordering is consistent with λ.528

Proof. Compute a BVR Γ of T by using the described algorithm. We prove529

that, during the construction, the strips defined for the newly drawn bars satisfy530

properties P1–P3 (see also Fig. 9(d)). Let bji be a bar representing a backward531

child of bj . The strip σ(bji) satisfies P1 by construction. For P2, we observe532

that σ(bji) is completely contained inside σ(bj) and the only bars that intersect533

σ(bj) and have a z-coordinate larger than the z-coordinate of bji are those534

representing the backward children bjl of bj with l > i and the forward children535

of bj . By construction all these bars have minimum y-coordinate larger than536
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`ji and therefore they do not cross σ(bji). For property P3, we observe that537

since bji is a backward child, it does not have backward children. Namely,538

its children have the same color as its parent vj and therefore they have a z-539

coordinate larger than z(vj) (because they appear after vj in ρ). It follows that540

property P3 holds.541

Let bki be a bar representing a forward child of bj . Also in this case, the542

strip σ(bki) satisfies P1 by construction. For P2, σ(bki) is completely contained543

in σ(bj) and the only bars that intersect σ(bj) and have a z-coordinate larger544

than the z-coordinate of bki are those representing the forward children bkl of545

bj with l > i. By construction all these bars have minimum y-coordinate larger546

than y′(bki) and therefore they do not cross σ(bki). For property P3, bki can547

have backward children. On the other hand, by construction, the bar with the548

largest z-coordinate that crosses σ(bki) is bj (the bars representing the forward549

children bkl of bj with l < i do not cross σ(bki)). Thus property P3 holds also550

in this case. 2551

We have the following theorem.552

Theorem 8. Let T be a properly 2-colored tree and let P be a 2-colored point553

set in R3 compatible with G; G admits a 2-colored AZPR on P .554

Proof. By Lemma 5, T admits a BVR whose z-ordering is consistent with555

λ(P ). By Lemma 2 T admits a cornered ZPR whose z-ordering is consistent556

with λ(P ). Finally, by Lemma 1 T admits an AZPR on P whose z-ordering is557

consistent with λ(P ), i.e., a 2-colored AZPR on P . 2558

5. Conclusions and Open Problems559

In this paper we introduced and studied colored anchored visibility repre-560

sentations in 2D and in 3D space. We used a framework based on colors to561

describe different variants concerning how the mapping of the vertices to the562

points is specified. In 2D we have proved that a 1-colored ABVR always exists563

for sub-Hamiltonian graphs with no restriction on the point set and that only564

sub-Hamiltonian graphs admit an ABVR on set of vertically aligned points.565

This implies that the problem of deciding whether a planar graph admits an566

ABVR is NP-complete. If we restrict the set of points to be generic (i.e., all567

the points have distinct x- and y-coordinates) then a 1-colored ABVR exists for568

every planar graph. The case when not all points are vertically aligned but not569

all have distinct y-coordinate remains open.570

As for the version with more than one color, we have used the results above571

to show that for every k > 1 there exists a k-colored planar graph that does572

not admit a k-colored ABVR on every set of k-colored points in the plane. A573

question arising from Theorem 1 and Corollary 2 is whether for k > 1 all k-574

colored sub-Hamiltonian graphs admit a k-colored ABVR on any given k-colored575

set of points.576

The result proving the existence of ABVRs of sub-Hamiltonian graphs has577

been extended in 3D to prove the existence of AZPRs of graphs with page578
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number four. We have also shown that an AZPR of Kn exists when n ≤ 22 and579

does not exist for n ≥ 51. These results derive from analogous results about580

ZPRs because, as stated by Theorem 6, Kn has an AZPR if and only if it has581

a ZPR. Hence, the longstanding open problem of investigating whether Kn for582

22 < n < 51 admits a ZPR or not, is of interest also for AZPRs.583

We have also proven the existence of an AZPR on any set of given points584

for specific families of graphs both in the 1-colored case (3-connected 1-planar585

graphs and thickness-two graphs) and in the 2-colored case (properly 2-colored586

trees). It would be interesting to prove analogous results for other families of587

graphs. In particular, can we extend our results to general 1-colored 1-planar588

graphs and to general 2-colored trees? What about more than two colors?589

Concerning the last question, we give a preliminary result for the case when590

the number of colors is equal to the number of vertices. A z-assignment of591

G = (V,E) is a one-to-one mapping φ : V → {1, 2, . . . , |V |}. G is unlabeled level592

planar (ULP) if for any given z-assignment φ, it admits a planar straight-line593

drawing with z(v) = φ(v) for every v ∈ V [24, 31, 36].594

Theorem 9. Let G be an n-colored n-vertex graph that is the union of two ULP595

graphs with the same vertex set and let P be an n-colored point set in R3; G596

admits an n-colored AZPR on P .597

Proof. Since both G and P are n-colored, λ(P ) defines a total order and598

therefore a z-assignment of G. Let G1 and G2 be the two ULP graphs whose599

union is G. Since each Gi (i = 1, 2) is ULP then it admits a planar straight-line600

drawing Γi such that z(v) = φ(v) for every v ∈ V . By orienting each edge of601

both Γ1 and Γ2 from the end-vertex with lower z-coordinate to the end-vertex602

with higher z-coordinate we obtain two upward planar drawings of G1 and G2603

with the same order ρ of the vertices in the vertical direction. Moreover, ρ is604

consistent with λ(P ). By Lemma 3, G has an AZPR Γ on P whose z-ordering605

is ρ. Since ρ is consistent with λ(P ), Γ is an n-colored AZPR of G on P . 2606
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