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Abstract

According to a result of Arkin et al. (2016), given n point pairs in the plane, there exists
a simple polygonal cycle that separates the two points in each pair to different sides; more-
over, a Op

?
nq-factor approximation with respect to the minimum length can be computed in

polynomial time. Here the following results are obtained:
(I) We extend the problem to geometric hypergraphs and obtain the following characteriza-

tion of feasibility. Given a geometric hypergraph on points in the plane with hyperedges of size
at least 2, there exists a simple polygonal cycle that separates each hyperedge if and only if the
hypergraph is 2-colorable.

(II) We extend the Op
?
nq-factor approximation in the length measure as follows: Given a

geometric graph G “ pV,Eq, a separating cycle (if it exists) can be computed in Opm` n log nq
time, where |V | “ n, |E| “ m. Moreover, a Op

?
nq-approximation of the shortest separating

cycle can be found in polynomial time. Given a geometric graph G “ pV,Eq in R3, a separating
polyhedron (if it exists) can be found in Opm`n log nq time, where |V | “ n, |E| “ m. Moreover,
a Opn2{3q-approximation of a separating polyhedron of minimum perimeter can be found in
polynomial time.

(III) Given a set of n point pairs in convex position in the plane, we show that a p1 ` εq-

approximation of a shortest separating cycle can be computed in time nOpε´1{2
q. In this regard,

we prove a lemma on convex polygon approximation that is of independent interest.

Keywords: Minimum separating cycle, traveling salesman problem, geometric hypergraph,
2-colorability, convex body approximation.

1 Introduction

Given a set of n pairs of points in the plane with no common elements, tppi, qiq | i “ 1, . . . , nu,
a shortest separating cycle is a plane cycle (a closed curve, a.k.a. tour) of minimum length that
contains inside exactly one point from each of the n pairs. The problem Shortest Separating
Cycle is that of finding such a cycle, given the input pairs. It was introduced by Arkin et al. [3]
motivated by applications in data storage and retrieval in distributed sensor networks. The authors
gave a Op

?
nq-factor approximation for the general case and better approximations for some special

cases. On the other hand, using a reduction from Vertex Cover, they showed that the problem
is hard to approximate for a factor of 1.36 unless P “ NP, and is hard to approximate for a factor
of 2 assuming the Unique Games Conjecture; see, e.g., [24, Ch. 16] for technical background.

The assumption that no point appears more than once, i.e., |tp1, . . . , pnu Y tq1, . . . , qnu| “ 2n,
is sometimes necessary for the existence of a separating cycle; i.e., there are instances of sets of
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pairs with common elements and no separating cycle; see for instance Fig. 2 (the edges in these
graphs represent pairs of input points). For convenience, points on the boundary of the cycle are
considered inside; it is easy to see that requiring points to lie strictly in the interior or also on the
boundary are equivalent variants in regards to the existence of a separating cycle. Moreover, the
equivalence is almost preserved in the length measure: given any positive ε ą 0, and a separating
cycle C for n pairs, enclosing P “ tp1, . . . , pnu (after relabeling each pair, if needed), with some
of the points of P on its boundary, a separating cycle of length at most p1 ` εq lenpCq can be
constructed, having all points of P in its interior.

In this paper we study the extension of the concept of separating cycle to arbitrary graphs and
hypergraphs, and to higher dimensions; in the original version introduced by Arkin et al. [3], the
input graph is a matching, i.e., it consists of n edges with no common endpoints; see Fig. 1 for an
example. Two instances with 8 and respectively 3 point pairs that do not admit separating cycles
are illustrated in Fig. 2; the common reason is that both graphs contain odd cycles and odd cycles
do not admit separating cycles.

Figure 1: A shortest separating cycle for a matching.

We observe that for arbitrary input graphs, one cannot use the algorithm from [3]. That
algorithm (in [3, Subsec. 3.5]) first computes a minimum-size square Q containing at least one
point from each pair, and then computes a constant-factor approximation of a shortest cycle (tour)
of the points contained in Q, in the form of a simple polygon. In the end, this tour is refined to
a separating cycle of the given set of point pairs with only a small increase in length. Here we
note that there exist instances, such as that in Fig. 2 (right), for which there is no separating cycle
confined to Q; moreover, the length of a shortest separating cycle can be arbitrarily larger than any
function of diampQq and n, and so a new approach is needed for the general version with arbitrary
input graphs, or its extension to hypergraphs; i.e., the current Op

?
nq-factor approximation does

not carry through to these settings.

Figure 2: Left and center: instances with no separating cycle. Right: instance where the minimum axis-
parallel square (or rectangle) that contains at least one point from each pair does not lead to a solution; a
solution is indicated by the red cycle.

We first show that a planar geometric graph G “ pV,Eq admits a separating cycle (for all its
edge-pairs) if and only if it is bipartite. This result can be extended to hypergraphs in Rd. Given
a geometric hypergraph on points in Rd with no singleton edges1, there exists a simple polyhedron

1A singleton edge is an edge with one vertex.
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that separates each hyperedge if and only if the hypergraph is 2-colorable.

Definitions and notations. A hypergraph is a pair H “ pV,Eq, where V is finite set of vertices,
and E is a family of subsets of V , called edges. H is said to be 2-colorable if there is a 2-coloring
of V such that no edge is monochromatic; see, e.g., [2, Ch. 1.3].

For a polygonal cycle C, let 8C and C denote the interior and exterior of C, respectively; and
BC denote its boundary. Consider a geometric hypergraph H “ pV,Eq on points in the plane with
no singleton edges. A polygonal cycle C is said to be a separating cycle for H if (i) C is simple
(i.e., with no self-intersections); and (ii) each edge of H has points inside C (in its interior or on
its boundary) and points in the exterior of C; that is, for each edge A P E, both AXp 8C YBCq and
AX C are nonempty.

A simple polygonal cycle is said to have zero area, if AreapCq ď ε, for a sufficiently small given
ε ą 0. Similarly, a polyhedron P is is said to have zero volume, if VolpP q ď ε, for a sufficiently
small given ε ą 0.

For r ą 0, let Bprq denote the ball (i.e., disk in the plane) of radius r. For two convex bodies,
A and B let A`B denote their Minkowski sum, namely A`B “ ta` b | a P A, b P Bu.

Preliminaries and related work. Let S be a finite set of points in the plane. According to an
old result of Few [11], the length of a minimum spanning path (resp., minimum spanning tree) of
any n points in the unit square is at most

?
2n ` 7{4 (resp.,

?
n ` 7{4). Both upper bounds are

constructive; for example, the construction of a short spanning path works as follows. Lay out about
?
n equidistant horizontal lines, and then visit the points layer by layer, with the path alternating

directions along the horizontal strips. In particular, the length of the minimum spanning tree of
any n points in the unit square is bounded from above by the same expression. An upper bound
with a slightly better multiplicative constant for a path was derived by Karloff [19]. Fejes Tóth [10]
had observed earlier that for n points of a regular hexagonal lattice in the unit square, the length
of the minimum spanning path is asymptotically equal to p4{3q1{4

?
n, where p4{3q1{4 “ 1.0745 . . ..

As such, the maximum length of the minimum spanning tree of any n points in the unit square
is Θp

?
nq, for a small constant (close to 1). The Op

?
nq upper bound also holds for points in a

convex polygon of diameter Op1q, in particular for n points in a rectangle of diameter Op1q. In
every dimension d ě 3, Few showed that the maximum length of a shortest path (or tree) through n
points in the unit cube is Θpn1´1{dq; the Opn1´1{dq upper bound is again constructive and extends
to rectangular boxes of diameter Op1q.

The topic of “separation” has appeared in multiple interpretations; here we only give a few
examples: [1, 6, 7, 13, 15, 16, 17]. Some results on watchman tours relying on Few’s bounds can
be found in [8]; others can be be found in [4]. For instance, in the problem of finding a separating
cycle for a given set of segment pairs, that we study here, it is clear that the edges of the cycle must
hit all of the given segments. As such, this problem is related to the classic problem of hitting a
set of segments by straight lines [16]. In a broader context, coloring of geometric hypergraphs has
been studied, e.g., in [23].

2 Separating cycles for graphs and hypergraphs

By adapting results on hypergraph 2-colorability to a geometric setting, we obtain the following.

Theorem 1. Let H “ pV,Eq be a geometric hypergraph on points in the plane with no singleton
edges. Then H admits a separating cycle if and only if H is 2-colorable.
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Proof. For the direct implication, assume that C is a separating cycle: then for each A P E, both
AX 8C and AXC are nonempty. Color the points in the interior of C by red and those in its exterior
by blue. As such, the hypergraph H is 2-colorable.

We now prove the converse implication. Let V “ R Y B be a partition of the points into red
and blue points, such that no edge in E is monochromatic. We construct a simple polygonal cycle
containing only the red points in its interior. To this end, we first compute a minimum spanning tree
T for the points in R; T is non-crossing [22, Ch. 6], however there could be blue points contained
in edges of T . Replace each such edge s with a two-segment polygonal path rs connecting the same
pair of points and lying very close to the original segment, and so that rs is not incident to any
other point.

The resulting tree, rT is still non-crossing and spans all points in R. By doubling the edges of
rT and adding short connection edges, if needed, construct a simple polygonal cycle C of zero area
that contains it and lies very close to it; as such, C contains all red points and none of the blue
points, as required.

Since hypergraph 2-colorability is NP-complete [14], Theorem 1 yields the following.

Corollary 1. Given a geometric hypergraph H “ pV,Eq on points in the plane with no singleton
edges, the problem of deciding whether H admits a separating cycle is NP-complete.

We next present an approximation algorithm for computing a shortest separating cycle of a
geometric graph. A key fact in our algorithm is the following observation.

Lemma 1. Let G be connected bipartite graph. Then (apart from a color flip), G admits a unique
2-coloring.

Proof. Recall that a graph is bipartite if and only if it contains no odd cycle [18, Ch. 3.3]. Consider
an arbitrary vertex s and color it red. Then the color of any other vertex, say v, is uniquely
determined by the parity of the length of the shortest path from s to v in G: red for even length
and blue for odd length. Indeed, the vertices are colored alternately on any path, and since any
cycle has even length, all lengths of paths from s to v have the same parity, as required.

Let G “ pV,Eq be the input geometric graph no isolated vertices, where |V | “ n, |E| “ m. Let
G1, . . . , Gk denote the connected components of G, where Gi “ pVi, Eiq, for i “ 1, . . . , k.

Theorem 2. (i) Given a geometric graph G “ pV,Eq, a separating cycle (if it exists) can be
computed in Opm ` n log nq time, where |V | “ n, |E| “ m. (ii) Further, a Op

?
nq-approximation

of the shortest separating cycle can be found in polynomial time.

Proof. (i) The graph is first tested for bipartiteness and the input instance is declared infeasible if
the test fails (by Theorem 1). This test takes Opm`nq time; see, e.g., [18, Ch. 3.3]. We subsequently
assume that G is bipartite, with vertices colored by red and blue: V “ RYB. Then the algorithm
constructs a plane spanning tree T of the red points (for instance, a minimum spanning tree or a
strictly monotone path), and outputs a simple cycle by doubling its edges and avoiding the blue
points on its edges by bending those edges as indicated in the proof of Theorem 1.

To this end, the following parameters are computed: For each red point r P R, δ1prq is the
minimum distance to a blue point. For each edge e of T , δ2peq ě 0 is the minimum distance from
e to a blue point (δ2peq “ 0 if e is incident to a blue point); and δ3peq ą 0 is the minimum nonzero
distance from e to a blue point (δ3peq “ 8 if no blue point is close to e, as explained below). The
set of values δ2peq, δ3peq, e P T , are used for doubling T , and the set of values δ1prq, r P R, are
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used to determine the separating cycle in the vicinity of red vertices; here we omit the details. The
set of values δ1prq, r P R, and δ2peq, δ3peq, e P T , can be determined using point location for the
blue points (as query points) in a planar triangulated subdivision containing the edges of T , all in
Opn log nq time [5, Ch. 6]. The overall time complexity of the algorithm is Opm` n log nq.

(ii) The algorithm above is modified as follows; the first step is the same bipartiteness test. The
algorithm 2-colors the vertices in each connected component by red and blue: Vi “ Ri Y Bi, for
i “ 1, . . . , k. By Lemma 1, the 2-coloring of each component is unique (apart from a color flip).
The initial coloring of a component may be subsequently subject to a color flip if the algorithm so
later decides. Obviously, the coloring of each component is done independently of the others.

Then, the algorithm guesses the diameter of OPT, as determined by one of the
`

n
2

˘

pairs of
points in V (by trying all such pairs). In each iteration, the algorithm may compute a separating
cycle and record its length; the shortest cycle found in the process will be output by the algorithm;
some iterations may be abandoned earlier, without the need for this calculation.

Consider the iteration in which the guess is correct, with pair a, b P V ; we may assume for
concreteness that ab is a horizontal segment of unit length; refer to Fig 3. As such, we have that
lenpOPTq ě 2|ab| “ 2. In this iteration, the algorithm computes a separating cycle whose length
is bounded from above by Op

?
nq. First, the algorithm computes a rectangle Q of unit width and

height
?

3 centered at the midpoint of ab. By the diameter assumption, OPT is contained in Q. In
the next step the algorithm computes a separating cycle C containing only red points in Q in its
interior (however, the initial coloring of some of the components may be flipped, as needed). Note
that any separating cycle must contain for each component either all red points or all blue points
but not a mix of two colors. By Lemma 1, the coloring of each component is unique (modulo a
color flip) and so for each component at least one of its color classes is entirely contained in Q. As
such, all points in V not contained in Q can be discarded from further consideration.

baba

Q

Figure 3: Left: input bipartite graph. Center: a separating cycle can be computed from the MST of the red
points (after color flips). Right: a shortest separating cycle.

Each of the components Gi, i “ 1, . . . , k is checked against this containment condition: if a
component is found where neither of its two color classes lies in Q, the algorithm abandons this
iteration (and assumed diameter pair, ab “ diampOPTq). For each component Gi: (i) if Ri Ă Q,
then the coloring of this component remains unchanged, regardless of whether Bi Ă Q or Bi Ć Q.
(ii) if Ri Ć Q and Bi Ă Q, then the coloring of this component is flipped: Ri Ø Bi, so that Ri Ă Q
after the color flip.

Once the recoloring of components is complete, the algorithm computes a minimum spanning
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tree T of the red points in Q. Its length is bounded from above by the length of the spanning
tree computed by Few’s algorithm. Since the number of red points does not exceed n, we have
lenpT q “ Op

?
nq. Finally, T is converted into a separating cycle C by a factor of at most 2 ` ε

increase in length, for any given ε ą 0, as in the proof of part (i). Recalling that lenpOPTq ě 2, it
follows that C is a Op

?
nq-factor approximation of a shortest separating cycle.

An instance on which our algorithm—as well as that of Arkin et al. [3]—performs poorly appears
in Fig. 4.

Figure 4: An instance for which the Op
?
nq-approximation ratio is tight; the left and respectively the

right segment endpoints are each enclosed in a unit square and form the vertices of a
?
n ˆ

?
n uniform

grid. Left: a shortest separating cycle. Right: a minimum spanning tree of the red points (as basis for the
separating cycle constructed by the algorithm).

3 Separating cycles for matchings in convex position in the plane

A matching of n point pairs is said to be in convex position if the 2n points are in convex position.
In this section we develop a polynomial time approximation scheme (PTAS) for this setting; given
n point pairs in convex position and ε ą 0, the algorithm computes a p1 ` εq-approximation of a
shortest separating cycle. Denoting an optimal solution by OPT, note that OPT is a convex polygon
with n vertices. Moreover, observe that a shortest separating cycle is a shortest TSP tour for the
set of neighborhood pairs tpi, qiu, i “ 1, . . . , n; see [20, Sec. 7.4] for an overview of the traveling
salesman problem (TSP).

Theorem 3. Given a set of n point pairs in convex position, a p1` εq-approximation of a shortest

separating cycle can be computed in time nOpε
´1{2q.

We need the following technical lemma for convex polygon approximation. Our lemma is clearly
of independent interest; while it answers a basic question, we could not find such a result in the
literature; there exist however related results, see, e.g., [12].

Lemma 2. Given a convex polygon P and any ε ą 0, there exists a subpolygon Q Ă P with
Op1{

?
εq vertices, such that P Ă convpQq ` Bpε ¨ diampP qq. Apart from the constant factor, this

bound cannot be improved.

Proof. Observe that the number of vertices of Q does not depend on the number of vertices of
P , it only depends on ε. We will assume without loss of generality that diampP q “ 1. Let
P “ p1, p2, . . . , pm be the vertices of P labeled clockwise.

First construct a subpolygon R Ă P iteratively. Set i Ð 1 and include pi into R. Scan P
clockwise until we find the first vertex, pj such that at least one vertex among pi`1, . . . , pj´1 is at
distance at least ε from the chord pipj . Include pj into R. Set i Ð j and continue in the same
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manner, scan P clockwise until we find the first vertex, pj such that at least one vertex among
pi`1, . . . , pj´1 is at distance at least ε from the chord pipj , and so on. Suppose that the scanning
ends after r phases; then R has either r or r ` 1 vertices; see Fig. 5 (left). Note that the last side
of R can be unconstrained, i.e., with no guarantee of a vertex of P at distance at least ε from it.

p4

p5

p6

p7

p8

p9

p15

p16

p17

p18

p2
p21

p20

p19

p1

p13

p16

p17

p4

p5

p6

p7

p8

p9

p15

p18

p2
p21

p20

p19

p1

p13p10
p14 p14

p10
p12 p12p11p11

p3p3

Figure 5: Convex polygon approximation; here m “ 21, r “ 5. R “ tp1, p4, p8, p13, p17u is drawn in blue
lines. Q “ tp1, p3, p4, p7, p8, p12, p13, p16, p17, p21u is drawn in magenta lines. The angles αpσq are shaded
(left side of figure): αpp1p4q “ =p2p1p4, αpp4p6q “ =p5p4p8, and so on.

Each side of R is a chord or side of P . A side of R is said to be short if its length is at most
?
ε and long otherwise. Write r “ r1 ` r2, where r1 and r2 are the number of short and long sides

of R, respectively.
Since diampP q “ 1, we have perpP q ď π by the classic isoperimetric inequality. Since R is

a subpolygon of P , we have perpRq ď perpP q by the triangle inequality; thus perpRq ď π. This
further implies that r2 ď perpRq{

?
ε ď π{

?
ε.

When scanning P clockwise, let σ be a side of R that is a nontrivial chord of P ; let αpσq
denote the angle made by the chord with the first clockwise edge of P on the boundary of P .
By convexity, the angles αpσq corresponding to all nontrivial chords of P that are edges in R are
pairwise non-overlapping if their apices are placed at a common point; see Fig. 5 (left). As such,

ÿ

σPR

αpσq ď 2π. (1)

Recall that tanx ď 2x, for 0 ď x ď π{3. Consider any short side σ P R that is a chord of P ; we
thus have

2αpσq ě tanαpσq ě
ε

|σ|
ě

ε
?
ε
“
?
ε, or αpσq ě π{3. (2)

It follows from (1) and (2) that

r1 ď
2π
?
ε{2

`
2π

π{3
“

4π
?
ε
` 6.

Consequently,

r “ r1 ` r2 ď
4π
?
ε
` 6`

π
?
ε
“

5π
?
ε
` 6.
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To obtain Q we further subdivide each polygonal arc of P spanned by edges of R (with the
possible exception of the last arc) as follows: the arc pipj is subdivided at pj´1, that is, this vertex
is included along with pi and pj into Q. Observe that Q has at most

2pr ` 1q ď

R

10π
?
ε
` 14

V

“ Opε´1{2q

vertices. (In particular, Q has at most 32?
ε

vertices, if ε ą 0 is sufficiently small.) In addition, by

construction, Q’s enlargement contains P : recall that vertices in R are iteratively chosen so that
the corresponding arcs of P are minimally breaking the inclusion property stated in the lemma,
and so the subdivision of each arc described above will satisfy this property. In particular, each
vertex of P is at distance at most ε from the corresponding side of Q.

The case of a regular polygon shows that the bound is tight. Let P be a regular m-gon inscribed
in a circle of unit radius, and Q Ă P be a subpolygon, such that every vertex of P is at distance at
most ε from the corresponding side of Q. Let 2β be the center angle spanned by the longest edge
of Q; for simplicity, assume that the number of vertices of P on the corresponding polygonal arc is
odd (the other case is similar). The distance condition requires 1´ cosβ « β2{2 “ ε, which solves
to β “

?
2ε. This implies that the number of vertices of Q is Ωpβ´1q “ Ωpε´1{2q, as required.

Remark. If P Ă convpQq ` Bpε ¨ diampP qq, i.e., Q is a suitable approximation as required in
Lemma 2, then diampQq ě diampP q{p1` 2εq, and consequently,

P Ă convpQq `Bpεp1` 2εq ¨ diampQqq.

Indeed, ε ¨ diampP q ď εp1` 2εq ¨ diampQq, from which the inclusion follows.

Assume now that P is the unknown convex polygon OPT. Set k “ r10π?
ε
` 14s. By convexity,

P contains exactly one point from each pair; as such, |P | “ n. The algorithm finds a subpolygon
Q Ă P satisfying the property in Lemma 2 by generating all subpolygons Q with at most k vertices.
It does so by generating all

`

n
ďk

˘

subsets of at most k segments; for a subset of i ď k segments, it

goes through all 2i possible endpoint selections (one point from each pair). The reason is that the
shortest separating cycle of some i ď k endpoints (one point from each pair) may be an infeasible
candidate for Q; see Fig. 6, but generating shortest separating cycles for each choice of i ď k
endpoints will yield a feasible candidate, as required by Lemma 2.

p2

p1

q3

q6

p4

q1

p1

q3

p7

q6

p4

q1

p2q2 p5 p5q2q7 q7

p7

p6
q4

p3

p6
q4

p3
q5q5

Figure 6: Left: a set of seven pairs with points in convex position. Right: the shortest separating cycle
for the pairs tpi, qiu, i “ 1, 2, 3, Q “ tq1, q2, q3u (drawn in red) is an infeasible candidate, i.e., convpQq `
Bpε ¨diampOPTqq does not contain the optimal convex polygon P “ OPT “ tp1, p6, q4, p3, q5, p7, p2u. On the
other hand, Q “ tp1, p3, p2u (drawn in blue) is a valid candidate.
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Algorithm A1.

Step 1: Set k “
Q

10π?
ε
` 14

U

. Generate all
řk
i“1

`

n
i

˘

subsets of at most k segments.

Step 2: For a subset of size i, go through all 2i endpoint selections (one point from each
pair).

Step 3: For a subset Q of i ď k points as described above, if convpQq`Bpεp1`2εq¨diampQqq
contains at least one point from each of the n input pairs, keep one such point from each pair
(if both points of a pair are enclosed, choose one arbitrarily); then compute the perimeter of
the convex polygon made by these n points, i.e., the length of the separating cycle. Otherwise
skip this subset.

Step 4: Return the cycle of minimum length from among those computed in Step 3.

The running time of Algorithm A1 is determined by the number of candidates examined, namely

k
ÿ

i“1

ˆ

n

i

˙

2i ď nk “ nOpε
´1{2q.

The algorithm correctness follows from Lemma 2; indeed, P “ OPT is contained in

convpQq `Bpε ¨ diampP qq Ă convpQq `Bpεp1` 2εq ¨ diampQqq,

namely the enlargement of one of the candidates Q that are generated. The length of the separating
cycle that is returned is bounded from above by the perimeter of the enlargement. We employ the
following standard fact.

Lemma 3. Let Q be a planar convex body. Then perpconvpQq `Bprqq “ perpQq ` 2πr.

Proof. Let wpαq denote the width of Q in direction α, i.e., the minimum width of a strip of parallel
lines enclosing Q, whose lines are orthogonal to direction α. According to Cauchy’s surface area
formula [21, pp. 283–284], for any planar convex body Q, we have

ż π

0
wpαq dα “ perpQq. (3)

Observe that the width of convpQq `Bprq in direction α is wpαq ` 2r, for any α P r0, πq. Using
the stated formula we have

perpconvpQq `Bprqq “

ż π

0
pwpαq ` 2rq dα “

ż π

0
wpαq dα` 2πr “ perpQq ` 2πr,

as required.

By Lemma 3, the length of the separating cycle C returned by Algorithm A1 is bounded from
above (for ε sufficiently small) by

lenpCq ď perpconvpQq `Bpεp1` 2εq ¨ diampQqq

“ perpQq ` 2πεp1` εq ¨ diampQq

ď perpP q ` 2πεp1` εq ¨ diampP q

ď perpP q ` 2πεp1` εq ¨ perpP q{2

“ p1` πεp1` εqqperpP q “ p1` πεp1` εqq lenpOPTq

ď p1` 4εq lenpOPTq.

The required approximation follows by rescaling ε, and this completes the proof of Theorem 3.
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4 Concluding remarks

Remark 1. If the input is a set of pairs so that the corresponding graph is bipartite, it admits
a separating cycle by Theorem 1. (If the corresponding graph is not bipartite, no separating
cycle exists.) Similarly, if the input is a 2-colorable hypergraph, it admits a separating cycle. For
illustration, we recall some common instances of 2-colorable hypergraphs. A hypergraph H “ pV,Eq
is called k-uniform if all A P E have |A| “ k. A random 2-coloring argument gives that any k-
uniform hypergraph with fewer than 2k´1 edges is 2-colorable [2, Ch. 1.3]; as such, by Theorem 1,
it admits a separating cycle. Slightly better bounds have been recently obtained; see [2, Ch. 3.5].
Similarly, let H “ pV,Eq be a hypergraph in which every edge has size at least k and assume that
every edge A P E intersects at most ∆ other edges, i.e., the maximum degree in H is at most
∆. If ep∆ ` 1q ď 2k´1 (here e “

ř8
i“0 1{i! is the base of the natural logarithm), then by the

Lovász Local Lemma, H can be 2-colored [2, Ch. 5.2] and so by Theorem 1, it admits a separating
cycle; moreover, if a 2-coloring is given, it can be used to obtain a separating cycle. While testing
for 2-colorability can be computationally expensive in a general setting (recall that hypergraph
2-colorability is NP-complete [14]), it can be always achieved in exponential time.

Remark 2. Theorem 2 generalizes to 3-dimensional polyhedra. A polyhedron in 3-space is a
simply connected solid bounded by piecewise linear 2-dimensional manifolds. The perimeter perpP q
of a polyhedron P is the total length of the edges of P (as in [8]).

For part (i), a method similar to that used in the planar case can be used to construct a
separating polyhedron in R3 (or Rd). However, since computing minimum spanning trees in R3 is
more expensive [9, Ch. 9], we employ a slightly different approach (in particular, this approach is
also applicable to the planar case). We may assume a coordinate system so that no pair of points
have the same x-coordinate. First, the points in V are colored by red or blue as a result of the
bipartiteness test, in Opm ` nq time. The algorithm then computes a (spanning tree of the red
points in the form of a) x-monotone polygonal path P spanning the red points; this step takes
Opn log nq time. From P , it then obtains a x-monotone polygonal path rP spanning the red points
and not incident to any blue point (P “ rP if no blue points are incident to edges of P ); rP is
constructed in Opn log nq time.

To this end, P and all blue points are projected onto the xoy plane. Let σp¨q denote the
projection function. Note that σpP q is x-monotone and that the projection σpbq of a blue point b
can be incident to at most one edge of σpP q; given b, such an edge can be determined in Oplog nq
time by binary search. Checking the projection points σpbq against corresponding edges of σpP q
allows for testing whether the original edges of P are incident to the respective blue points. Further,
this test allows replacing each such edge s with a two-segment polygonal path rs connecting the
same pair of points and lying very close to the original segment, and so that rs is not incident to
any other point; see Fig 7. Such a replacement can be executed in Op1q time per edge. Finally the
algorithm computes a polyhedron of zero volume that contains rP ; as such, the polyhedron contains
all red points but no blue points; this step takes Opn log nq time.

Figure 7: Replacing two edges of the x-monotone path spanning the red points.
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For part (ii), instead of a rectangle based on segment ab as an assumed diameter pair, the
algorithm works with a rectangular box where ab is parallel to a side of the box and is incident
to its center. The upper bound on the perimeter of the separating polyhedron follows from Few’s
bound mentioned in the preliminaries: it is roughly three times the length of a shortest path (or
tree) spanning the red points.

Theorem 4. (i) Given a geometric graph G “ pV,Eq in R3, a separating polyhedron (if it exists)
can be found in Opm`n log nq time, where |V | “ n, |E| “ m. (ii) Further, a Opn2{3q-approximation
of a separating polyhedron of minimum perimeter can be found in polynomial time.

We offered a characterization of geometric hypergraphs that admit separating cycles and gave
several approximation algorithms. We conclude with the following questions regarding the shortest
separating cycle in the plane.

1. Can the Op
?
nq approximation factor for the general version of the problem be improved?

2. Can sharper results be obtained for plane (noncrossing) geometric graphs? For the case of a
plane matching?

3. What is the computational complexity of the problem for matchings in convex position? Does
the problem admit a polynomial-time algorithm?

Acknowledgment. The author is grateful to an anonymous reviewer for his careful reading of
the manuscript and pertinent remarks.
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