
Evacuating Equilateral Triangles and Squares in the Face-to-Face
Model∗

Huda Chuangpishit1, Saeed Mehrabi2, Lata Narayanan3, and Jaroslav Opatrny3

1Department of Mathematics, Ryerson University, Toronto, Canada.
hoda.chuang@gmail.com

2School of Computer Science, Carleton University, Ottawa, Canada.
saeed.mehrabi@carleton.ca

3Department of Computer Science, Concordia University, Montreal, Canada.
{lata,opatrny}@cs.concordia.ca

Abstract

Consider k robots initially located at a point inside a region T . Each robot can move
anywhere in T independently of other robots with maximum speed one. The goal of the robots
is to evacuate T through an exit at an unknown location on the boundary of T . The objective
is to minimize the evacuation time, which is defined as the time the last robot reaches the exit.
We consider the face-to-face communication model for the robots: a robot can communicate
with another robot only when they meet in T .

In this paper, we give upper and lower bounds for the face-to-face evacuation time by k
robots that are initially located at the centroid of a unit-sided equilateral triangle or square.
For the case of a triangle with k = 2 robots, we give a lower bound of 1 + 2/

√
3 ≈ 2.154, and

an algorithm with upper bound of 2.3367 on the worst-case evacuation time. We show that
for any k, any algorithm for evacuating k ≥ 2 robots requires at least

√
3 time. This bound

is asymptotically optimal, as we show that even a straightforward strategy of evacuation by k
robots gives an upper bound of

√
3 + 3/k. For k = 3 and 4, we give better algorithms with

evacuation times of 2.0887 and 1.9816, respectively. For the case of the square and k = 2, we
give an algorithm with evacuation time of 3.4645 and show that any algorithm requires time
at least 3.118 to evacuate in the worst-case. Moreover, for k = 3, and 4, we give algorithms
with evacuation times 3.1786 and 2.6646, respectively. The algorithms given for k = 3 and 4 for
evacuation in the triangle or the square can be easily generalized for larger values of k.

1 Introduction

Searching for an object at an unknown location in a specific domain in the plane is a well-studied
problem in theoretical computer science [1, 4, 5, 25, 26]. The problem was initially studied when
there is only one searcher, whom we refer to as a robot. The target is assumed to be a point in the
domain, and the robot can only find the target when it visits that point. The goal then is to design
∗A preliminary version of this paper appeared in proceedings of the 21st International Conference on Principles

of Distributed Systems (OPODIS 2017) [9]. Research of Lata Narayanan and Jaroslav Opatrny is supported in part
by Natural Sciences and Engineering Research Council of Canada (NSERC).

1

ar
X

iv
:1

81
2.

10
16

2v
1

 [
cs

.C
G

]
 2

5
D

ec
 2

01
8

a trajectory for the robot that finds the target as soon as possible. Recent work has focused more
on parallel search by several robots, which can reduce the search time as the robots can distribute
the search effort among themselves. The search time by k robots is generally defined to be the time
the first robot reaches the target.

A natural generalization of the parallel search problem, called the evacuation problem, was
recently proposed in [11]: consider several robots inside a region that has a single exit at an unknown
location on its boundary. All robots need to reach the exit; i.e., evacuate the region, as soon as
possible. This is essentially the parallel search problem where the exit is the search target, however
we are interested in minimizing the time the last robot arrives at the exit. Since then, the evacuation
problem have been studied in several papers for different regions and types of communication among
the robots [6, 7, 14, 15].

The time needed for evacuation substantially depends on the way robots can communicate among
themselves. Two models of communication have been proposed: in the wireless model, each robot
can communicate wirelessly with the other robots instantaneously, regardless of their locations. In
the face-to-face model, two robots can communicate with each other only when they meet; i.e.,
when they occupy the same location at the same time. Since in the wireless model robots can
communicate with each other regardless of their locations, as soon as a robot finds the exit, it can
announce it to the other robots, which can then take a straight-line path to the exit. This is not
possible in the face-to-face communication model. In this case either a robot that found the exit
must intercept other robot(s), or the trajectories of robots need to have a possibility of meeting
so that information about the location of the exit can be shared. This limited communication
capability makes the design of trajectories of robots of the evacuation problem more challenging.

In this paper, we study the problem of evacuating a unit equilateral triangle and a unit-side
square in the face-to-face model with k ≥ 2 robots, all of which are initially located at the centroid
of the triangle or the square. Our objective is to design the trajectories of the robots so as to
minimize the worst-case evacuation time, which is defined as the time it takes for all the robots to
reach the exit.

Related work. A classical problem related to our paper is the well-known cow-path problem
introduced by A. Beck [4], in which a cow searches for a hole in an infinite linear fence. An optimal
deterministic algorithm for this problem and for its generalization to several fences is known, e.g.,
Baeza-Yates et al. [2]. Since then several variants of the problem have been studied [3, 6, 8, 15, 19,
20, 22, 21, 24].

Lopez-Ortiz and Sweet [24] asked for the worst-case trajectories of a set of robots searching in
parallel for a target point at an unknown location in the plane. Feinerman et al. [18] (see also [17])
introduced a similar problem in which a set of robots that are located at a cell of an infinite grid and
being controlled by a Turing machine (with no space constraints) need to find the target at a hidden
location in the grid. In these two models of multi-robot searching, the robots cannot communicate
at all. By controlling each robot by an asynchronous finite state machine, Emek et al. [16] studied
this problem in which the robot can have a “local” communication in some sense and proved that
the collaboration performance of the robots remains the same, even if they possess a constant-size
memory. Lenzen et al. [23] extended this problem by introducing the selection complexity measure
as another factor in addition to studying the time complexity of the problem.

The evacuation problem with several robots has been studied in recent years under wireless and
face-to-face models of communications. For the wireless model, Czyzowicz et al. [11] studied the

2

problem of evacuating a unit disk, starting at the center of the disk. They gave a tight bound of
1+2π/3+

√
(3) ≈ 4.83 for the evacuation time of two robots, as well as upper and lower bounds of,

respectively, 4.22 and 4.159 for three robots. These bounds for k robots become 3+π/k+O(k−4/3)
and 3+π/k, respectively [11]. Czyzowicz et al. [15] also studied the evacuation problem for k robots
for unit-side squares and equilateral triangles in the wireless model. For a unit-side square, they
gave optimal algorithms for evacuating k = 2 robots when located at the boundary of the square.
Moreover, for an equilateral triangle, they gave optimal evacuation algorithms for k = 2 robots in
any initial position on the boundary or inside the triangle. They also showed that increasing the
number of robots cannot improve the evacuation time when the starting position is on the boundary,
but three robots can improve the evacuation time when the starting position is the centroid of the
triangle. Recently, Brandt et al. [6] considered the evacuation problem for k robots on m concurrent
rays under the wireless model. Finally, the evacuation problem on a disk with three robots at most
one of which is faulty was recently studied by Czyzowicz et al. [12], the case of several exit on a
disk with two robots was considered in [10], and the priority evacuation of a specific robot in [13],
all these under the wireless model.

For the face-to-face model, Czyzowicz et al. [11] gave upper and lower bounds of, respectively,
5.74 and 5.199 for the evacuation time of two robots initially located at the center of a unit disk.
Both the upper and lower bounds were improved by Czyzowicz et al. [14] to 5.628 and 5.255,
respectively. A further improvement of the upper bound by 0.003 is given in [7]. Closing the gap
between upper and lower bounds remains open. When k = 3 the upper and lower bounds for the
face-to-face model are 5.09 and 5.514, respectively, and 3 + 2π/k and 3 + 2π/k − O(k−2) for any
k > 3 [11].

Our results. In this paper, we study the evacuation of k robots from an equilateral triangle and
unit-side square under the face-to-face model. We prove the following results for an equilateral
triangle T :

• For k = 2 we prove a lower bound of 2.154 on the evacuation time. We use Equal-Travel
with Detour strategy to get an evacuation algorithm with evacuation time of 2.3866 in which
trajectories include a detour inside the triangle before the entire boundary is explored by the
robots. We then show that a further improvement can be obtained by algorithms that uses
detours recursively. The algorithm with two detours improves the evacuation time for two
robots to 2.3367.

• For k ≥ 3, we show that any algorithm for evacuating k robots from triangle T requires at least√
3 time. We prove that this bound is asymptotically optimal by giving a simple algorithm

that achieves an upper bound of
√
3 + 3/k.

• We show that a significant improvement on the above upper bound can be obtained using the
Equal-Travel Early-Meeting strategy. In this strategy the trajectories of all robots are of the
same length and they include a meeting point inside the triangle for all robots before the entire
boundary is explored to share information about the exploration results so far. Applying this
strategy we design algorithms for k = 3, 4, and 5 with evacuation times of ≈ 2.0887, 1.982,
and 1.876, respectively.

We then study the face-to-face evacuation problem in a unit-side square S:

3

• For k = 2, we first prove a lower bound of 3.118 on the evacuation time of any deterministic
algorithm. Then, we give an Equal-Travel with Detour algorithm that achieves the evacuation
time of 3.46443. The possibility of recursive application of detours is pointed out.

• For k = 3, 4, we give Equal-Travel Early-Meeting algorithms with evacuation times of 3.178
and 2.664, respectively.

Organization. We first specify some preliminaries and notation in Section 2. Then, we present
our results for the equilateral triangle; we give the proofs of our lower bounds in Section 3.1, and
our evacuation algorithms in Section 3.2. Section 4 contains our lower and upper bounds results for
the unit-side square. Finally, we conclude the paper with a summary of our results and a discussion
of open problems in Section 5.

2 Preliminaries

For two points p and q in the plane, we denote the line segment connecting p and q by pq and its
length by |pq|. We assume the robots are initially all located at a point in the given region, the
exit is located at an unknown location on the boundary of the region, and the robots communicate
using the face-to-face model. Every robot moves at maximum speed 1.

A deterministic algorithm for the evacuation problem by k robots takes as input a specification
of the given region (a triangle or a square in our case) and the point O where the k robots located
initially. It outputs for each robot a fixed trajectory consisting of a sequence of connected line
segments or curves to be followed. We assume every robot knows the trajectories of all the robots.
A robot R follows its trajectory unless:

• R sees the exit: R may then quit its trajectory and go to a point where it can intercept
another robot (or other robots) and inform it (or them) about the exit.

• R meets another robot who has found the exit: R then quits its trajectory and proceeds
directly to the exit.

Observe that the robots are initially co-located, and the initial part of their trajectories may be
identical; i.e., when going to the boundary of the triangle or the square. Later on, the trajectories
of two or several robots may intersect and the intersection point may be reached by all robots at
the same time. We call such a point a meeting point. A meeting point might be in the interior of
the triangle or the square, and it can serve as a place for the robots to exchange information about
the progress in the search for exit until this time. The meeting point can be reached by robots
before the whole boundary is explored. When the robots meet, if one of the robots has found the
exit, they can all proceed towards it. Otherwise, the robots can continue in the search for the exit
separately or together. As shown in [15], and in Section 3.2, an algorithm with a meeting point in
the interior of the region can improve the evacuation time in some cases.

If we have two robots; i.e., k = 2, then the trajectories do not have to contain a meeting point in
order to improve the evacuation time. The trajectory of each robot can leave the boundary of the
region and return to the boundary without intersecting the other trajectory. We say that the robot
makes a detour. The detour part of the trajectory is designed so that the robot can be intercepted
during the detour by the other robot in case the other robot has found the exit already. In the
absence of such an interception, the robot has gained information about the absence of the exit in

4

B C

A

1 1

H

O

h

y

x

Figure 1: Our triangle notation.

some part of the boundary. Since the trajectories do not need to intersect, it allows the trajectories
to be shorter. The trajectories of two robots with one detour was used in [11], and also in [7] to
improve the evacuation time of two robots in the circle. We use this strategy in Subsection 3.2.2 as
well as in Section 4, and show it can be used recursively for a further improvement.

3 Evacuation of the Equilateral Triangle

Throughout this section we denote an equilateral triangle by T and its vertices by A,B, and C.
Thus we sometimes write ABC to refer to T . We always assume that the sides of T have length 1.
Throughout the paper we use the following triangle terminology, see Figure 1:

• By h we denote the height of the equilateral triangle. Observe that h =
√
3/2.

• We denote by O the centroid of T (i.e., the intersection point of the three heights of T).

• We use x, and y to denote the distance of O to a vertex, and to the side of the triangle,
respectively; notice that x = 2h/3 =

√
3/3 and y = h/3 = x/2 =

√
3/6 ≈ 0.288.

We define EA(T, k) to be the worst-case evacuation time of the unit-sided equilateral triangle
T by k robots using algorithm A, and we define E∗(T, k) to be the optimal evacuation time of the
triangle by k robots in the face-to-face model.

3.1 Lower Bounds

In this subsection, we prove lower bounds on the evacuation time of the equilateral triangle. We
first show that regardless of the number of robots,

√
3 is a lower bound on the evacuation time.

This bound holds even if the exit is a priori known to be at one of the three vertices of the triangle.

Theorem 3.1. Consider k robots R1, R2, . . . , Rk, initially located at the centroid of an equilateral
triangle T . In the face-to-face model, the evacuation time of k robots E∗(T, k) ≥

√
3 ≈ 1.732.

Proof. Consider an arbitrary evacuation algorithm A for k robots. We first run the algorithm to
see which vertex is the last one visited by the robots (two or even three vertices could be visited at

5

the same time, as the last ones in which case we choose an arbitrary one as last). Assume without
loss of generality that A is the last vertex visited by any of the robots; let I1 be the input in which
the exit is at A. Consider the execution of the algorithm on input I1, and let t be the time the
second of the three vertices is visited by some robot R. Without loss of generality, let this second
vertex be B; that is, R visits vertex B at time t on input I1. Let I2 be the input where the exit is
at the remaining vertex C. We argue that the evacuation time of the algorithm must be ≥ 3x on
one of these two inputs, where x is the distance of the centroid to a vertex.

If t ≥ 3x − 1, then it takes additional time 1 for robot R to reach the exit at A, leading to
a total evacuation time of at least 3x on input I1. Therefore, assume that t < 3x − 1. We claim
that since R has to reach B before time 3x − 1, it is impossible for R to meet a robot R′ that
has already visited A or C before R reaches B at time t. Suppose R was able to meet R′ that
had visited A (without loss of generality) at some meeting point M at time tM . Then clearly
tM ≥ x+ |AM |. After meeting R′, the robot R needs time at least |MB| to get to B. We conclude
that t ≥ tM + |MB| ≥ x + |MB| + |MA| ≥ x + 1. However, x + 1 > 3x − 1, a contradiction.
Thus, R’s trajectory to B, reaching B at time t < 3x − 1 cannot allow a meeting between R and
any robot that has already visited A or C. Therefore, the behaviour of the robot R must be the
same on inputs I1 and I2 until time t when R arrives at B. Observe now that t ≥ x. At time 2x, if
the robot R is at distance > x from A, the adversary puts the exit at A (input I1), and if it is at
distance > x from C, it puts the exit at C. Combined with the fact that at time 2x, the robot R
can travel at most distance 2x− t ≤ x from B, we have the desired result.

The above bound is asymptotically optimal, as we will describe in Section 3.2 a simple algorithm
that evacuates k robots in

√
3+3/k time from an exit situated anywhere on the boundary. We remark

also that in the wireless communication model, E∗(T, 6) = 2
√
3

3 (D. Krizanc, private communication,
2015), showing that for the equilateral triangle, evacuation even with arbitrarily many robots takes
much more time in the face-to-face model, than evacuating only six robots in the wireless model.

When k = 2, we are able to prove a better lower bound of 1 + 2
√
3 ≈ 2.15. The argument

used for the lower bound is an adversary argument: depending on what the algorithm does, the
adversary places the exit in such a way so as to force at least the claimed evacuation time. The
key insight can be summarized as follows: if an algorithm is to do better than the claimed lower
bound, either the robots cannot meet in a useful way to shorten the time to reach the exit, or they
simply cannot finish the exploration. To this end, we first prove the following technical lemma. We
first need some notation. For the equilateral triangle ABC, let D,E and F denote the midpoints
of sides AB,AC and BC, respectively, and let S = {A,B,C,D,E, F}. We say two points in S
have opposite positions if one point is a vertex of the triangle T and the other point is located on
the opposite side of that vertex. For example, the vertex C and a point in {A,D,B} have opposite
positions.

Lemma 3.1 (Meeting Lemma). Consider a deterministic algorithm A for evacuating two robots in
an equilateral triangle T , and let p1, p2 ∈ S have opposite positions. If A specifies a trajectory for
one of the robots in which it visits p1 at time t′ and a trajectory for the other robot in which it visits
p2 at time t such that |t− t′| < h, then the two robots cannot meet between time t and t′.

Proof. We may assume that t′ < t. Suppose for a contradiction that the robots meet at time tm at
some point z, where t′ < tm ≤ t. Since p1 and p2 have opposite positions |p1p2| ≥ h. Therefore,
|p1z|+ |zp2| ≥ h. Moreover |p1z| ≤ tm − t′ and |zp2| ≤ t− tm. This implies that

h ≤ |p1z|+ |zp2| ≤ (tm − t′) + (t− tm) = t− t′ < h

6

A

D

B
F

C = v5

E

tm

t′

t

A

B
F

C

E = v5

(a) (b)

D = v6

t

tm

Figure 2: (a) An illustration in support of the proof of the Meeting Lemma. (b) An illustration in
support of case 2 in the proof of Theorem 3.2.

which is a contradiction.

Theorem 3.2. Consider 2 robots R1, R2, initially located at the centroid of an equilateral triangle
T . If the robots communicate using the face-to-face model, then the evacuation time of the two robots
E∗(T, 2) ≥ 1 + 4y = 1 + 2/

√
3 ≈ 2.154.

Proof. Suppose for the purpose of contradiction, that there is an algorithm A for evacuation by
two robots, such that EA(T, 2) < 1 + 4y. We first focus attention on the set of points S =
{A,B,C,D,E, F}. There exists some input I on which the exit is the last point in S to be visited
by either of the robots, according to the trajectories specified by A. Let t5 be the time the fifth
point of S is visited by a robot on input I. Let v1, v2, . . . , v6 be the order in which the points in
M are visited by the robots, on input I; the exit is at v6. Without loss of generality assume that
v5 is visited by robot R1. Thus, v6 is not yet visited before time t5; it may be visited at or after
time t5. First, note that since at least five points are visited at or before time t5, one of the robots
must have visited at least three points in M . It follows that t5 ≥ 1 + y. If t5 ≥ 0.5 + 4y, since the
exit is at v6, which is at least 0.5 away from R1, we obtain EA(T, 2) ≥ 1 + 4y, a contradiction. We
conclude that 1 + y ≤ t5 < 0.5 + 4y.

We now consider the following exhaustive cases depending on whether v5 is a vertex of T or a
midpoint of a side of T .
Case 1. v5 is a vertex of T . Without loss of generality assume that v5 is C. See Figure 2(a). If
v6 is any of A,D,B, then at time t5, robot R1 needs time at least h to arrive to v6, which implies
that E∗(T, 2) ≥ t5 + h ≥ 1 + 4y, a contradiction. So we conclude that v6 is at either E or F . Since
t5 < 0.5 + 4y, robot R1 could have visited at most one of A,D,B by time t5. This means that R2

must have visited at least two of A,D,B. Let v be the second vertex of the set A,D,B to be visited
by R2, and assume it arrives there at time t′. Note that 0.5 + 4y > t′ ≥ 0.5 + y. By the Meeting
Lemma, the two robots do not meet at any time between t′ and t5 on input I.

Now consider an input I ′ in which the exit is at v. Clearly the robots behave identically on both
inputs I and I ′ until time t′. After this time, R2 on seeing the exit at v may behave differently;
however robot R1 must behave exactly as in I unless it meets robot R2, which by the Meeting

7

Lemma, cannot happen before time t5. Therefore, after time t5, it takes at least an additional h to
reach the exit at v, giving a total evacuation time of at least t5 + h ≥ 1 + 4y, a contradiction.
Case 2. v5 is a midpoint of a side of T , and v6 is another midpoint: Without loss of generality
assume that v5 is E, and v6 is D; see Figure 2(b). Then, all three vertices must have been visited
before or at time t5. Since R1 cannot visit two vertices before arriving at E at time t5 < 0.5+h+y =
0.5+ 4y, we conclude that R2 must visit two vertices by time t5. Referring to Figure 2(b), consider
the second vertex visited by R2. Observe that R2 cannot arrive there before time 1 + x. (i) If it
is B, then we put the exit at E. This way, R2 needs time at least h to get to E from B and so
E∗(T, 2) ≥ 1 + x + h = 1 + 5y. (ii) If it is C, then we put the exit at D. Then, R2 needs time at
least h to get to D from C and so E∗(T, 2) ≥ 1 + x+ h = 1 + 5y.

We conclude that the second vertex visited by R2 must be A. We first note that R2 cannot have
visited all of F,B,A or all of F,C,A by time t5, as visiting either set of three points takes time
at least 0.5 + x + h > 0.5 + y + h > t5. So, R1 must have visited F and C (or F and B) before
coming to E. Let P be the second of the two points visited by R1 before going to E. Note that
P could be F , C, or B, and suppose R1 visits P at time t′. Clearly, t′ ≥ 0.5 + y. Since R2 must
visit A at or before time t5 < 0.5+4y, by the Meeting Lemma, the robots cannot meet at any time
t′ ≤ tm ≤ t5. In other words, R1 cannot meet R2 after the latter has visited P and reach A on time.
Now consider the input I ′ in which the exit is at P . On input I ′, the robot R2 will have the same
behavior as on input I until it reaches A at time t > 1+ x and then needs to get to the exit (which
is at F or C or B). Therefore we have E∗(T, 2) ≥ 1 + x+ h = 1 + 5y, a contradiction.
Case 3. v5 is a midpoint of a side of T , and v6 is a vertex: Without loss of generality assume that
v5 is E. In what follows, we use tp to denote the time a point p was visited for the first time by a
robot. Then clearly tE = t5. If v6 is B, then R1 needs time ≥ h to reach the exit, so on input I,
the evacuation time is at least t5 +h ≥ 1+h+ y. Therefore, assume without loss of generality that
v6 is A; see Figure 2(b). If a single robot visits both B and C, it takes time at least 2 + x > 1 + 4y
to reach vertex A. Therefore, B and C must be visited by different robots. We consider separately
the two cases: R1 visits C and R2 visits B; and R1 visits B and R2 visits C.

Suppose R1 visits C before visiting E, and R2 visits B. First observe that R1 cannot also visit
D, as visiting C, D, and E takes time at least 0.5+ 4y, a contradiction to tE < 0.5+ 4y. Therefore
R2 must visit D in addition to B. Either R1 or R2 must visit F . If R2 visits F , Lemma 3.2 assures
that EA(T, 2) ≥ 1 + 4y and if R2 does not visit F , Lemma 3.3 does the same.

Suppose instead that R1 visits B before visiting E and R2 visits C. Then R1 cannot visit both
D and F , as visiting D,B,F,E takes time at least 1.5 + y > 0.5 + 4y, Lemmas 3.4, 3.5, and 3.6
now assure that EA(T, 2) ≥ 1 + 4y for the cases when R1, in addition to visiting B and E, visits
F , visits D, and visits neither, respectively.

For all the lemmas below, we assume that according to algorithm A, we have v5 = E and v6 = A,
and robot R1 visits E at time 1 + y ≤ tE < 0.5 + 4y. We start with a simple observation that is
used repeatedly.

Observation 3.1. Let p be a point on the boundary. If at time 1 + 4y − |Ap|, both A and p are
unvisited then EA(T, 2) ≥ 1 + 4y.

Proof. Put the exit at whichever of the two points is visited later. Since at time 1 + 4y − |Ap|,
neither is visited, the time to evacuate is at least 1 + 4y − |Ap|+ |Ap| = 1 + 4y.

Lemma 3.2. If R2 visits B,D and F , and R1 visits C and E, then EA(T, 2) ≥ 1 + 4y.

8

Figure 3: An illustration of possible trajectories of R1 and R2, in support of Lemma 3.2.

Proof. First, observe that if B is not visited first of the three points B,D,F , then tB ≥ 0.5 + y.
Then, since E is visited by R1 and 0.5+4y > tE ≥ 1+y, by the Meeting Lemma, R1 and R2 cannot
meet between tB and tE . Thus if the exit is at B, it will take R1 time at least tE + h ≥ 1 + 4y to
reach there. We conclude that B must be visited first. If R2 visits B, D, and F in that order, then
tF ≥ 1 + x, so by Observation 3.1, we have EA(T, 2) ≥ 1 + 4y. So, R2 must visit B,F and D in
this order.

Let P be the closest point from B on the BD line segment that is not visited by R2 before it visits
F . Then the time for R2 to reach F is at least |OP |+ |PB|+ |BF | (Figure 3, the blue trajectory).
Therefore, the earliest time R2 can reach P is |OP |+ |PB|+ |BF |+ |FP |. It can be verified that
for any point M on the BD line segment, this time is more than 1 + 4y − |AM |, therefore it is
true for the point P defined above. Also, R1 cannot visit P on time: if it visits P before C (Figure
3, the green trajectory), we have tE ≥ |OP | + |PC| + |CE| ≥ |OD| + |DC| + |CE| = 0.5 + 4y,
and if it visits C before P (Figure 3, the red trajectory), we have tE ≥ |OC| + |CP | + |PE| ≥
|OC| + |CD| + |DE| = 2y + 3y + 0.5. Thus neither robot can visit P before time 1 + 4y − |AP |.
The lemma now follows from Observation 3.1.

Lemma 3.3. If R2 visits B and D and R1 visits C,F, and E, then EA(T, 2) ≥ 1 + 4y.

Proof. First observe that in this case tE ≥ 1 + y. If R1 and R2 do not meet between tB and tE ,
and if the exit is at B, then R1 needs time at least tE + h ≥ 1 + 4y to reach the exit at B, and
EA(T, 2) ≥ 1 + 4y. We conclude that R1 and R2 must meet between tB and tE . However, if R2

visits D before B, then tB ≥ 0.5 + y. Since tE < 0.5 + 4y, by the Meeting Lemma, R1 and R2

cannot meet between tB and tE . Therefore, R2 must visit B before D.
Now consider R1’s trajectory, and assume that R1 visits C,F , and E in that order. Using a

similar argument as in Lemma 3.2, we can see that there exists an unvisited point P ′ on the CE
segment at time 1 + 4y − |AP ′|. It follows from Observation 3.1 that EA(T, 2) ≥ 1 + 4y.

We conclude that R1 visits F before C. Notice that tC ≥ 0.5+ y, and tD ≤ tE < 0.5+4y, so by
the Meeting Lemma, R1 and R2 cannot meet between tC and tD. Consider now the possibility of
a meeting after tC and after tD, as in Figure 4. Clearly, at this time all of segment BC must have
been visited; if a point p on BC is unvisited at time tD, then neither A nor p can be visited before
time tD +

√
3/4, which by Observation 4 gives a contradiction. Thus there must exist a point p on

9

A

pB C

D E

Fb

q

a M

b

O

Figure 4: Trajectories when R2 must visit B before D and R1 visits F before C.

BC such that robot R1 explored the segment pC and R2 explored the segment Bp. Let x = |Bp|.
Thus tB ≥

√
(0.5− x)2 + y2 + x, and tC ≥

√
(0.5− x)2 + y2 + 1− x.

Suppose the exit is at C. If R2 proceeds to A without meeting R1, then clearly, R2 cannot reach
the exit at C before time tb+2 > 1+4y. So R1 must be able to meet R2 before the latter can reach
A. Then note that R1 cannot intercept R2 on the line segment AB, since the time to go there and
return to C is at least 0.5 + y + 6y ≥ 2.5. So R1 must meet R2 at some point M in the interior
of the triangle. Thus, at some point on the segment AB robot R2 must leave the segment AB to
travel to M ; let q be the last point on the AB segment visited by R1 before it arrives at M at time
tM . Further, let a = |qM | and let b = |MC| as shown in Figure 4.

Now, notice that:

• For R1 and R2 to get back to the exit at C in time, it must be that tM + b ≤ 1+4y and since
tM ≥ tc + b, we obtain:

b < (1 + 4y − tc)/2 ≤ (1 + 4y − (
√
(0.5− x)2 + y2 + 1− x))/2

• Consider now a point q′ infinitesimally close to q on the qA segment. Suppose it is visited at
time tq′ . Then if tq′ ≥ 1 + 4y − |Aq′|, by Observation 4, we obtain a contradiction. Therefore
tq′ < 1+ 4y− |Aq′|. However, we also have tq′ ≥ tM + a ≥ tB + |Bq′|+2a, which implies that

a < (1 + 4y − |Aq′| − |Bq′| − tB)/2 ≤ (1 + 4y − (
√
(0.5− x)2 + y2 + x+ 1))/2

This yields

a+ b < (1 + 4y − (
√
(0.5− x)2 + y2 + x+ 1))/2 + (1 + 4y − (

√
(0.5− x)2 + y2 + 1− x))/2

= 4y −
√

(0.5− x) + y2 ≤ 3y,

a contradiction, since a+ b is at least the height of the triangle. We conclude that there can be no
such meeting point M , and therefore, evacuation cannot take place in the claimed time.

Lemma 3.4. If robot R1 visits B,F and E, and R2 visits C and D, then EA(T, 2) ≥ 1 + 4y.

10

Figure 5: (a) An illustration of possible trajectories of R1 and (b) possible trajectories of R2, in
support of Lemma 3.4.

Proof. First observe that E must be visited last, and if R1 visits F before B then tE ≥ 0.5 + 4y.
So B must be visited before F . Now let P be a point at distance 0.3 from B on the BD segment,
and Q a point at distance 0.34 from C on the CE segment. It can be verified that if R1 visits a
point on the PD segment before arriving at B, then tE ≥ 0.5 + 4y. Similarly, R1 cannot visit any
point in the QC line segment if it is to reach E by time 0.5 + 4y. See Figure 5 (a). Therefore the
entire PD line segment and the entire QC line segments must be visited by R2. Now we consider
the order of visiting D,Q,C, P . If D or P are visited before C, then C cannot be reached before 4y
which means that if the exit is at A, R2 cannot reach it before time 1+ 4y. So, C has to be visited
before P or D, Figure 5 (b). Regardless of whether Q or C is visited first, it can be verified that
it is impossible for R2 to reach P before time 1 + 4y − |AP |, yielding the desired conclusion, using
Observation 3.1.

Lemma 3.5. If robot R1 visits B,D and E, and R2 visits C and F , then EA(T, 2) ≥ 1 + 4y.

Proof. R2 must visit F before C, as otherwise as shown in the proof of Lemma 3.2, there will
be a point P on the CE segment that cannot be visited before time 1 + 4y − |AP |. If R1 visits
D before B, then tE ≥ 0.5 + 4y. So R1 must visit B before D. By Observation 3.1, the entire
BC edge must be visited at or before time 1 + y. Let Q be the leftmost point on the BC edge
that is not visited by robot R1. Then R2 must visit the entire QC segment. Since R2 must visit
C before time 4y, we see that |BQ| > 0.236. As a result tD ≥ 1.13155. Let R be the point at
distance 0.05 from D on the the DA segment, and S be the point at distance 0.03 from E on the
EC segment. Using the assumption that it reaches E before time 0.5 + 4y, it can be verified that
R1 cannot visit either R or S before time 1.657 > 0.5 + 4y, and 1.661 > 0.5 + 4y respectively.
Then since the SE segment must be visited by R2 before time 0.5 + 4y, R2 cannot reach R before
time |OF | + |FC| + |CS| + |SR| > 1.75 > 1 + 4y − |AR|. It follows from Observation 3.1 that
EA(T, 2) ≥ 1 + 4y.

Lemma 3.6. If robot R1 visits B and E, and R2 visits C,F, and D, then EA(T, 2) ≥ 1 + 4y.

Proof. We observe that D must be visited last; if F is visited last, tF ≥ 0.5+4y, and if C is visited

11

last, then tC ≥ 1 + y > 4y. In both cases, Observation 3.1 gives the desired result. The rest of the
proof is analogous to the case when robot R1 visits B,F,E.

3.2 Evacuation Algorithms

In this subsection, we give evacuation algorithms for k robots, k = 2, 3, 4, and 5 that are initially
located on the centroid O of an equilateral triangle, and derive upper bounds on the evacuation
time by analyzing their performance.

3.2.1 Equal-Travel Strategy

Consider a straightforward strategy for evacuating k ≥ 2 robots, that we call the Equal-travel
strategy: divide the boundary into k contiguous sections and assign each robot to explore a unique
section of the boundary. Each robot goes to one endpoint of its assigned section, it explores it, and
then it returns to a meeting point at the centroid to meet the other robots to share the result of its
exploration.

First notice that the time to travel from and to the centroid can vary by almost a factor of 2
for different robots. In particular, robots that are assigned a section of the boundary starting or
ending close to a midpoint have to travel a much smaller distance to or from the centroid, than
robots that are assigned a section of the boundary that starts/ends close to a vertex. Thus, we
divide the boundary into sections in such a way that any two trajectories of robots are of the same
length and also as short as possible. In other words, we aim to equalize and minimize the travel
time of all robots. Finally, after meeting at the centroid all robots travel together to the exit that
one of them found on the boundary, taking additional time at most x. Clearly, at least one of the
robots explores at most 3/k of the boundary, and needs to travel at most 2x to get to and from the
boundary; its trajectory from O and back to O, and therefore every robot’s trajectory, is thus of
length at most 2x+ 3/k. Thus, this algorithm has evacuation time less than 3x+ 3/k =

√
3 + 3/k.

Although very simple, by Theorem 3.1, this bound is asymptotically optimal. As such, we have the
following:

Observation 3.2. The Equal-Travel strategy for k robots has worst case evacuation time less than√
3 + 3/k.

In what follows, we propose several improvements of the above strategy by allowing the robots
to meet before the whole boundary of the region is explored using an Equal-Travel Early-meeting
strategy for k ≥ 3, or an Equal-Travel with Detours strategy for k = 2.

3.2.2 Equal-Travel with Detour(s) Algorithms for Two Robots.

In the Equal-Travel strategy algorithm, when we have two robots, the robots would go together to
the center of a side of the triangle and the two robots would meet at the opposite vertex of the
triangle at the end of the exploration. However, if the exit is at one of the two vertices explored
earlier, this would give an evacuation time of y + 1.5 + 1 ≈ 2.788. To eliminate this bad case we
have to adjust the trajectories so that the robot can receive early information about the exit being
located in the initial part of the trajectory. This could be done by creating trajectories that meet
before the exploration is completed. However, with two robots, there is no need for the robots to
meet. Instead, we can add detour(s) to the trajectories. As in the Equal-Travel strategy, trajectories

12

q1 q2

r1 r2

p1
p2

O

A

B C

z z

Figure 6: The trajectories of two robots with one detour for each robot.

of both robots in the Equal-Travel with Detour(s) strategy have the same length. The trajectory
for each robot consists of multiple sections of the boundary, with a detour inside the region between
any two sections. Each robot starts with reaching the boundary and exploring a section of the
boundary. At some point, the robot leaves the boundary and makes a detour inside the triangle
(see Figure 6 for an example). The detour is designed so that if a robot found the exit in its first
boundary section, it can intercept the other robot on the other robot’s corresponding detour. If it
is not intercepted by the other robot during the detour, the robot concludes that the exit was not
found by the other robot in its first section, and goes back to the boundary to explore its second
section of the boundary. After the robot has finished exploring its second section of the boundary,
it can make another detour, and so on.

The idea of using a detour to improve the evacuation time was first proposed in the context of
evacuating a disk with two robots in [11]. In this paper, we show that a detour can also improve
the evacuation time in an equilateral triangle, and multiple detours can improve it further.

We summarize below the salient features of the detour strategy.

• The trajectories of the robots are disjoint except for the initial part to get to the boundary
of the triangle, and at the very end. Thus, the detour part of trajectories of robots inside the
triangle only get close to each other.

• Each robot is assigned to explore more than one section of the boundary to explore.

• A detour is added between every two adjacent sections of the boundary to be explored by a
robot.

• A robot can do multiple detours.

• The worst case evacuation time is made the same in each section of the boundary.

We first give the details of an Equal-Travel with Detour algorithm with a single detour.

13

Theorem 3.3. Consider two robots initially located at the centroid of a triangle T with side length
1. There is an Equal-Travel with Detour evacuation algorithm for two robots that uses a single
detour for each robot with the evacuation time ≤ 2.3866.

Proof. The trajectories of the robots are shown in Figure 6. Points q1 and q2 are located sym-
metrically on the sides AB and AC at distance z > 0.5 (the exact value to be determined later)
from B and C, respectively. Since the trajectories of robots are symmetric, we specify below the
trajectory of R2 only. R2 is assigned two sections of the boundary: the section from the midpoint
of BC to C and from C to q2, and the section from q2 to A. The detour between the two sections
consists of segments q2r2, r2p2, and p2q2. Point r2 is located on the segment q2B and chosen so that
z+ |q2r2| = |r2B|. Point p2 is located on the segment p2q1 and chosen so that |q2r2|+ |r2p2| = |p2q1|.
Thus the positions of points on the detour are uniquely determined by z.

By the definition of r2 and p2, if R1 finds the exit at B, or q1, then R1 can intercept R2 at r2, or
p2, respectively. Thus if R1 finds the exit on the segment Bq1 then R1 can intercept R2 at a point
on the segment r2p2.

Let t1 = y + 0.5 + z + |q2B|, and t2 = y + 0.5 + z + |q2r2|+ |r2p2|+ |p2q2|+ 2(1− z). We argue
below that the worst case evacuation time of this algorithm is max(t1, t2). We consider all possible
locations for the exit on the sections of the boundary explored by R1 (the case when the exit is
discovered by R2 is symmetric).

Clearly, if the exit is located on the line segment q1A, then the evacuation time is at most t2. If
the exit is found by R1 on the side BC, then it can intercept R2 at point r2 since z+ |q2r2| = |r2B|,
and the robots reach the exit in time at most t1. Assume now that R1 finds the exit on the line
segment q1A at D as on Figure 7. Consider the triangle with sides y1, y2, y3 formed by segment
BD = y1, side BA and a line though point D parallel with the line going through q1 and r2. Since
z > 0.5, it is easy to see that |q1r2| < |Bq1| < |Br2| and by the similarity of triangles y3 < y1 < y2.
Let D′ be the intersection point of the line going through q1 and r2 with the line drawn through
D and parallel with Br2. Since y1 + |DD′| < y2 + |DD′| = |Br2|, when R2 reaches r2 robot R1

is at D′ to intercept R2, and the distance traveled by R2 from r2 to D is y3 + |DD′| < |Br2|, and
so the total time to reach D is less then t1. Notice that if the value of y1 is so that the parallel
line through D would not intersect the line segment r2p2 then R1 can intercept R2 at p2 and the
evacuation time remains less than t1.

We have shown that the worst-case evacuation time is max(t1, t2). We optimize the evacuation
time by equating t1 = t2. Solving this we obtained z = 0.70745, which gives t1 = 2.3866. Thus the
worst-case evacuation time of this algorithm is 2.3866.

Consider the Equal-Travel with Detour algorithm described above and suppose that the robots
do not find the exit in the first phase. That is, the robots will go back to points q1 and q2 to start
the exploration of the rest of the boundary of T ; i.e., the line segments q1A and q2A. Observe that
at this time in triangle 4Aq1q2, the robots are in the same situation as they were when visiting
vertices B and C in the triangle 4ABC. Furthermore, like for the triangle 4ABC, where the worst
case evacuation time occurs at B and C, the worst case for triangle 4Aq1q2 occurs when the exit is
located in the neighbourhood of q1 or q2. Therefore, we can use an additional detour in the triangle
Aq1q2 and improve the evacuation time in the top part as illustrated in Figure 8.

Now, each robot is assigned to explore three sections of the boundary. For R1 the first section
ends at q1, the second is q1q′1 and the third q′1A, with one detour added between the sections.
Using the same reasoning as in the proof of Theorem 3.3, the maximum evacuation time in the

14

C

q

rr

pp
1 2 2

q
1

1 2

y

A

B

D

D’

1
3

y
2

y

Figure 7: Evacuation time for exit at D is less than that for B

first, second, third section is when the exit is at B, close to q1, close to q′1, respectively. We derive
the expressions t1, t2, and t3 for the maximum evacuation time in each section, and by solving
the equations t1 = t2, t2 = t3 we calculated the optimized positions of q1, q2, q′1, q′2 using numerical
calculations, obtaining |Bq1| = 0.666, Bq′1 = 0.9023 and the evacuation time 2.3367. Thus we have
the following improved evacuation time.

Theorem 3.4. Consider two robots initially located at the centroid of triangle T with side length 1.
There is an Equal-Travel with Detour evacuation algorithm for two robots that uses two detours for
each robot with the evacuation time at most 2.3367.

It is easy to see that the reasoning we used to add a second detour can be applied to the
triangle q′1Aq′2 in the algorithm with two detours per robot to obtain an Equal-Travel with Detour
evacuation algorithm with 3 detours and, recursively, we can obtain an evacuation algorithm for
two robots with j detours for any j ≥ 2. With j detours, the trajectory of a robot consists of j + 1
segments of the boundary, any two segments separated by a detour. The maximal evacuation time
in each segment is when the exit is found at the beginning of a segment, and we have to make the
maximal evacuation times equal. This leads to a system of j equations for the optimal partitioning
of the boundary into segments. However, with each additional detour the upper part of the triangle
becomes much smaller and the additional segments very short. Already after the second detour,
|q′1A| < 0.1, and thus the improvement in the evacuation time is getting extremely tiny for more
than two detours.

3.2.3 Equal-Travel Early-Meeting Algorithms for k ≥ 3 Robots

We derive here better upper bounds for k ≤ 5, however, our strategies can be easily extended to
obtain evacuation algorithms for other values of k.

In the simple Equal-Travel strategy used to derive an upper bound on the evacuation of the
triangle by k robots, the robots meet in the interior of the triangle after the entire boundary has

15

A

B C

O

q1 q2

q′1 q′2

r1 r2

r′2r′1

p′2p′1

p1 p2

Figure 8: Trajectories of two robots with two detours.

been explored, and then travel together to the exit. For two robots the evacuation time was improved
by adding a detour(s) to the trajectories before the entire boundary was explored, as shown in the
previous subsection. This allowed the robot that found the exit to inform the other robot about the
exit early, making the travel to the exit shorter. The idea of detours cannot be used with k ≥ 3,
since the robot that found the exit would need to intercept the all other robots on their disjoint
detours, leading to a significant delay. In the following we show that for k ≥ 3 the evacuation time
of a triangle can be improved if the robots stop the exploration of the boundary early and go to
a common meeting point before the boundary is explored entirely. After this early meeting, either
the robots go together to the exit, or they all go together to explore the rest of the boundary where
the exit is now known to be.

In the sequel, we describe the salient features of an Equal-Travel Early-Meeting algorithm for k
robots that combines the equal travel strategy with an early meeting.

• It selects the location of the early meeting point.

• It divides the boundary into k+ 1 sections, of which k require the same travel times, and are
assigned to unique robots, and the last section is a common section, to be explored together
by all robots.

• In the first phase each robot first explores its assigned section (the last section remains un-
explored) and returns to the meeting point. If the exit has been found by one of them, all
robots proceed to the exit.

• If the exit has not been found, it must lie in the unexplored last section. In the second phase
the robots go together to explore the common last section and evacuate together.

16

A

B C

O

p

r r

p
1

1
2

2

Figure 9: Equal-Travel Early-Meeting trajectories for three robots. The common part of trajectories
of the robots is shown as thick black line

By optimizing the position of the meeting point, the location of the sections, and the length of
the common section, we obtain Early-Meeting algorithms with better performance than those using
only the Equal-Travel strategy. Next we give the details of the Early-Meeting algorithm for each
k ∈ {3, 4, 5}.

Theorem 3.5. Consider three robots initially located at the centroid of triangle T with side length 1.
There are Equal-Travel Early-Meeting algorithm A for three robots with evacuation time EA(T, 3) ≤
2.0887.

Proof. Consider the following instance of the Early-Meeting strategy. Place points p1, r1, r2 on sides
BC,BA,AC as shown in Figure 9(b), the exact locations to be determined later. Centroid O is
designated as the meeting point of the robots. Point p2 is placed so that the distance |Op1|+|p1p2| =
x, the line segment p1p2 being designated as the common section. R1 is assigned the section of the
boundary from p1 to B and to r1, R2 the section from r1 to A to r2, and R3 the section from r2 to
C to p2. If one of the robots discovers the exit in its section, the other robots need to travel to it
from the meeting point at the centroid, which adds distance at most x. In this setup the maximum
distance robots travel are
t1 = |Op1|+ |p1B|+ |Br1|+ |r1O|+ x for R1,
t2 = |Op2|+ |p2C|+ |Cr2|+ |r2O|+ x for R2, and
t3 = |Or1|+ |r1A|+ |Ar2|+ |r2O|+ x for R3.
Solving the set of equations t1 = t2, t2 = t3 and then optimizing the position of p1, we get that
the optimal placement of points is |Bp1| ≈ 0.38601, |Br1| ≈ 0.5252 and |Cr2| ≈ 0.5454, and the
evacuation time of the algorithm at most 2.0888. All equations were solved and optimizations done
using the Maplesoft [27].

Clearly, the approach used in Theorem 3.5 can be generalized to any k > 3. Start with selecting
a position p1 for the beginning of the common section and partition arbitrarily the boundary by
placing points r1, r2, . . . , rk−1, see Figure 10 for k = 4 and 5. Point p2 is placed so that the
distance |Op1| + |p1p2| = x. Similarly as above, we obtain a system of k − 1 equations for the

17

C

A

p
1

C

A

B

r
3

B
(a) (b)

p

r
1

r
2

2

O

p
1

p
2

r
1

r
r

r

2
3

4

O

Figure 10: Establishing Equal-Travel Early-Meeting Trajectories of (a) four robots, and (b) five
robots. The common part of trajectories of the robots is shown as thick black line

values of r1, r2, . . . , rk−1 that produce equal travel time for all robots in the first phase. Finally, by
optimizing the value of p1 we get the final assignment of the trajectories of robots. In this manner
we obtained the following theorem.

Theorem 3.6. There are Equal-Travel Early-Meeting algorithms for k = 4 and 5 robots with
E∗(T, 4) ≤ 1.9816 and E∗(T, 5) ≤ 1.8760, respectively.

Proof. The proof is similar to that of Theorem 3.5 and so it is omitted.

Unlike for two robots, where we could obtain better evacuation algorithms by recursively adding
more detours, we do not have any evacuation algorithm for three or more robots in which the
evacuation time is improved by having more than one meeting point. This is due to the fact that
after reaching the meeting point, the remaining exploration is not similar to the initial configuration
and is thus not amenable to recursion.

4 Evacuation of the Square

In this section, we consider the problem of evacuating k = 2, 3, 4 robots from a square S with side
length one. We denote the centroid of S by O and denote the vertices of S by A,B, C and D as in
Figure 11. Thus we sometimes write ABCD to refer to S. We define EA(S, k) to be the worst-case
evacuation time of the unit-side square S by k robots using algorithm A, and we define E∗(S, k) to
be the optimal evacuation time of the square by k robots in the face-to-face model. We apply to the
square the techniques and strategies that we developed for the equilateral triangle in the preceding
section. However important details of proofs and algorithms are different and thus the square needs
to be considered separately.

18

A B

CD

R1

R2

A B

CD

R1

R2

tm

tmA

(a) (b)

Figure 11: An illustration in support of the proof of Theorem 4.1.

4.1 Lower Bound

Theorem 4.1. Consider two robots R1 and R2 initially located at the centroid of square S. If the
robots communicate using the face-to-face model, then the evacuation time of these two robots is
E∗(S, 2) ≥ 1 + 3

√
2/2 ≈ 3.121.

Proof. Suppose for a contradiction that there exists an algorithm A that evacuates two robots R1

and R2 from S before time 1+ 3
√
2/2. Let v1, v2, v3, v4 be the order in which the four vertices of S

are visited by the algorithm, at times t1, t2, t3, t4 respectively. If t3 ≥ 3
√
2/2, then if the exit is at

v4, since dist(v3, v4) ≥ 1, we obtain an evacuation time of at least 1 + 3
√
2/2, a contradiction. So

we conclude that t3 < 3
√
2/2. Since a single robot requires time at least 2+

√
2/2 > 3

√
2/2 to visit

3 vertices, and time at least 3
√
2/2 to visit two diagonally opposite vertices, it must be that one

robot visited 2 adjacent vertices and the other robot the remaining one of {v1, v2, v3} at or before
time t3. Without loss of generality, we assume that R1 visited D and then A. Let tv denote the
time of first visit for vertex v. Notice that 1+

√
2/2 ≤ tA < 3

√
2/2. If v4 is B, and the exit is at B

then clearly R1 needs time 1+3
√
2/2 to arrive at B, a contradiction. Therefore it must be that R2

visited B at time ≤ t3 and v4 = C. We now claim (as in the Meeting Lemma for the triangle) that
the trajectory for R1 cannot be such that R1 meets R2 after R2 visits B and before tA, because this
would imply that tA ≥ tB + |BM | + |MA| ≥

√
2/2 +

√
2 = 3

√
2/2, a contradiction. Therefore, if

the exit is at B, R1 cannot reach B before time tA +
√
2 ≥ 1 + 3

√
2/2.

4.2 Evacuation Algorithms

In this subsection we derive upper bounds on the evacuation time by giving the evacuation algo-
rithms for specific values of k. Similarly as for the triangle, we give an Equal-Travel with Detour
algorithm for k = 2, and Equal-Travel with Early Meeting algorithms for k ≥ 3.

4.2.1 Equal-Travel with Detour for Two Robots

For k = 2 the simple equal travel algorithm, which goes initially to the center of side DC, has
the maximal evacuation time of 2.5, achieved when the exit is located at C or D. Consider the
Equal-Travel with Detour algorithm evacuation algorithm A shown in Figure 12. We first explain
the trajectories of each robot and then will discuss the details of each section of the trajectories,
depending on where the exit is located.

19

O

F

A

CD

J

KE

G I

α

J ′

R1 R2

p

q

B

H

E′

I ′ G′

M

Figure 12: Trajectories of two robots for evacuating a square.

Starting from the centroid O, the robots go together to F . Then, R1 explores the boundary
from F to D, to A, and then to E. There it takes the detour in the direction of C to G, from
G in the direction of J until I, and then returns to E. From E it explores the second section of
the boundary to M . The positions of E, G, I, and J are specified below. Robot R2 follows the
symmetric trajectory that explores the other part of the boundary with one symmetric detour.

1. The positions of E and J are parameters whose values are optimized by numerical calculations,
p < 0.25 and q < 1− |EH|.

2. The point G is chosen so that |DA| + |AE| + |EG| = |CG|. This ensures that if the exit is
found on the segment FC, then R2 intercepts R1 at G and informs it about the exit.

3. The point I is chosen such that |CJ |+ |JI| = |DA|+ |AE|+ |EG|+ |GI|. This ensures that
if the exit is somewhere on the segment CJ , then R2 intercepts R1 at point I and informs it
about the exit.

Now, consider the case when the exit is at a point J ′ located on segment JB arbitrarily close
to point J (i.e., |JJ ′| = ε for some small ε > 0). Then R2 can intercept R1 only after R1 finishes
its detour, since |JI| < |JJ ′| + |J ′I|. That is, R2 can intercept R1 at some point K on segment
EM and inform it about the exit. Clearly, K must be to the left of M , since even without taking a
shortcut the trajectories of the two robots are of the same length and they meet at M . Notice that
this implies a discontinuity in the evacuation time in at J from above J .

If the exit is at a point on segment JB then R2 can intercept R1 on the segment KM . If the
exit is somewhere on BM , then the two robots meet at M and then go to the exit together from
there.

We first show that due to our selection of the trajectories, the maximum evacuation time occurs
at one of the three points C, J,B, or is equal to lime←0EvacuationT ime(J

′). By constraint (1), the

20

G

J

C

P

N

P ′

Q

Figure 13: An illustration supporting the proof of Lemma 4.1.

maximum evacuation time when the exit is located on FC occurs when it is at C. In Lemma 4.1
below, we show that the maximum evacuation time when the exit is on CJ occurs when it is at C.
However, as mentioned above, the evacuation time is greater than that at J if the exit is just above
J , say at J ′ (i.e., at a point that is right above J); this is because R2 will then need to intercept
R1 at a point K on EB. After this the evacuation time decreases as R2 finds the exit further away
from C up to J . Finally, it is easy to see that after this jump the evacuation time decreases as R2

approaches B, and also from B to M .

Lemma 4.1. Assume that R2 finds the exit at P on segment CJ where P 6= C. Then the evacuation
time at P is less than the evacuation time at C.

Proof. If the exit is found at P then R2 intercepts R1 at point N on the segment GI as in Figure
13. Consider the triangle GJC. Obviously, ∠GJC > π/2. Let Q be a point on GJ such that PQ
and CG are parallel. Consider the line passing through P and parallel to GJ and let P ′ be the
intersection point of this line and GC; see Figure 13. Since ∠P ′PC > π/2, the edge P ′C has the
largest length among all the three edges of triangle PP ′C; hence, |P ′C| > |PP ′|. Therefore,

|GC| = |GP ′|+ |P ′C| = |QP |+ |P ′C| > |QP |+ |PP ′| = |QP |+ |GI| = |QP |+ |GN |+ |NQ|.

By the triangle inequality for triangle NQP , we have |NQ|+ |QP | > |NP |. Therefore,

|GC| > |GN |+ |NP |.

To complete the proof, observe that the evacuation time at C is 2 + |AE|+ |EG|+ |GC| while the
evacuation time at P is 2 + |AE|+ |EG|+ |GN |+ |NP |, proving the result.

We now compute the evacuation time for each of these critical points. Let p = |AE| and
q = |CJ |. Then, the angle ∠HEG as shown in Figure 12 is

α = arcsin(
1− p√

1 + (1− p)2
).

21

CD

A B

O

p

r

1
p
2

2

(a)

A

D

B

C

O

r r

p
1

p
2

1
3

(b)

r
2

1
r

Figure 14: Trajectories of three and four robots for evacuating a square. Section p1p2 is a common
part of trajectories of all robots.

By having α, we can compute |EG|, |GI| and |EI|, which gives us the time
detour = |EG|+ |GI|+ |EI| to traverse the detour. Then, we have the following evacuation times:

1 + 2 |GC| if the exit is at C,
1 + q + 2 |IJ | if the exit is at J ,
1 + q + 2 |KJ | if the exit is at J ′, and
3 + detour if the exit is at B,

where |GC|, |IJ | and |KJ | can be expressed only in terms of p and q. Using Python code, we
computed each of the above four evacuation times for 0.1 ≤ p ≤ 0.2 with step size 0.00005 and
0.2 ≤ q ≤ 0.8 with step size 0.00005 to find the values of p and q that optimize the evacuation
times. We obtained that for p ≈ 0.1556 and q ≈ 0.5010 the evacuation time is EA(S, 2) ≤ 3.4644.
Thus we have the following theorem.

Theorem 4.2. Consider two robots initially located at the centroid of square S with side length 1.
There is an Equal-Travel with Detour algorithm A for two robots with evacuation time EA(S, 2) ≤
3.4644 in the face-to-face model.

In our algorithm A, the evacuation time of 3.4644 is reached at C and also J ′ and is strictly lower
everywhere else. Notice that the evacuation time at J ′ can be decreased if R1 makes a “smaller”
second detour on EK just prior to reaching K, so that robot R2 can intercept R1 on the second
detour. By decreasing the evacuation time at J ′ we can then improve the evacuation times at
C, which slightly decreases the overall evacuation time. Thus, additional detour(s) can be used
recursively in the evacuation algorithms in the square for the k = 2, similarly as shown for the
triangle.

22

4.2.2 Equal-Travel Early-Meeting Algorithms for k ≥ 3 Robots

We now consider the case of more than two robots. We specify trajectories for the Equal-Travel
Early-Meeting strategy, and determine the evacuation time of these algorithms for k = 3 and k = 4.

Theorem 4.3. There are Equal-Travel Early-Meeting algorithms for three and four robots initially
located in the centroid of square S with side length 1 with evacuation times E∗(S, 3) ≤ 3.178 and
E∗(S, 4) ≤ 2.664, respectively.

Proof. The algorithms for both k = 3 and k = 4 are similar to the Equal-Travel Early-Meeting
algorithm for k = 3 in case of the equilateral triangle (see Theorem 3.5). The centroid O is used as
the meeting point. Place the points p1 and p2 on the side DC as shown in Figure 14(a); the exact
locations will be determined later. Let |Op1| + |p1p2| =

√
2/2. The remainder of the boundary is

divided using points r1, r2, . . . , rk into k segments.
When k = 3, robot R1 is assigned the section of the boundary from p1 to D, to r1, and then it

goes back to O, R2 is assigned the section from r1 to A, A to B, B to r2 and then r2 back to O, and
R3 is assigned the section form r2 to C, C to p2 and then p2 back to O. If the exit is discovered by
one of the robots in its section, then the other robots need to travel to it from the meeting point
at the centroid, which adds distance at most

√
2/2. Otherwise the robots travel together to p1 to

explore p1p2, also for time
√
2/2. Therefore, the maximum distance traveled by robots is one of

t1 = |Op1|+ |p1D|+ |Dr1|+ |r1O|+
√
2/2 for R1,

t2 = |Or1|+ |r1A|+ |AB|+ |Br2|+ |r2O|+
√
2/2 for R2, and

t3 = |Or2|+ |r2C|+ |Cp2|+ |p2O|+
√
2/2 for R3.

Solving the set of equations t1 = t2, t2 = t3 and then optimizing the position of p2 as we did in
the proof of Theorem 3.5, we get |Dp1| = |Cp2| = 0.4012 and |Dr1| = |Cr2| = 0.9124. This gives
us E∗(S, 3) ≤ 3.178.

When k = 4, the trajectories of the robots are shown in Figure 14(b). By an analogous calcula-
tions those above for k = 3, we get |Dp1| = |Cp2| = 0.4012, |Cr3| = |Dr1| = 0.5445 and |Ar2| = 0.5.
This gives us E∗(S, 4) ≤ 2.664.

Clearly, our algorithms for k = 3 and 4 can be easily generalized for any k > 4.

5 Discussion

We studied the evacuation of an equilateral triangle or a square by k robots, initially located at its
centroid, when the robots can communicate with each other only when they meet; i.e., they use
face-to-face communication.

For the triangle we showed a lower bound of
√
3 on the evacuation time by any number k of

robots, and gave a simple Equal-travel strategy that achieves this bound asymptotically. For k = 2
robots, we proved a lower bound of 1 + 2/

√
3 ≈ 2.154. We then showed that for k = 2 the Equal-

travel strategy can be improved by adding detours in the interior of the triangle, and obtained an
upper bound of 2.3367 on the evacuation time. This upper bound is achieved with two detours by
each robot. We showed that detours can be used recursively to improve the evacuation time. For
k ≥ 3, we studied the Equal-Travel Early-Meeting strategy for evacuation algorithms in which the
robots meet at an early meeting point inside the triangle before the whole boundary is examined.
This strategy gave us upper bounds of 2.08872, 1.9816, and 1.876 for k = 3, 4 and 5, respectively.

23

We then showed that the same strategies can be applied to obtain evacuation algorithms for a unit
square.

Our work points to a number of directions open for future work. First, closing the existing
gaps in our results for the evacuation time in the face-to-face model remains open for both the
equilateral triangle and the square. Moreover, although we limited our study to the evacuation of
the equilateral triangle and square of unit side, the lower bound and algorithmic strategies used in
this paper should be applicable to other convex search domains. Finally, a clear understanding of
the search domains in which early meetings or detours are provably useful remains elusive.

Acknowledgment. The authors thank Iman Bagheri for catching and helping to fix an error
in the proof of Lemma 6. The second author thanks Prosenjit Bose for useful discussions on the
problem.

References

[1] R. Ahlswede and I. Wegener. Search problems. Wiley-Interscience, 1987. 1

[2] R. A. Baeza-Yates, J. C. Culberson, and G. J. E. Rawlins. Searching with uncertainty (extended
abstract). In Proceedings of the 1st Scandinavian Workshop on Algorithm Theory (SWAT 88),
pages 176–189, 1988. 2

[3] R. A. Baeza-Yates and R. Schott. Parallel searching in the plane. Computational Geometry,
5:143–154, 1995. 2

[4] A. Beck. On the linear search problem. Israel Journal of Mathematics, 2(4):221–228, 1964. 1,
2

[5] A. Bonato and R. Nowakowski. The Game of Cops and Robbers on Graphs. American Mathe-
matical Society, 2011. 1

[6] S. Brandt, K.-T. Forster, B. Richner, and R. Wattenhofer. Wireless evacuation on m rays with
k searchers. In Proceedings of SIROCCO 2017, pages 140–157, 2017. 2, 3

[7] S. Brandt, F. Laufenberg, Yuezhou Lv, D. Stolz, and R. Wattenhofer. Collaboration without
communication: Evacuating two robots from a disk. In Proceedings of the 10th CIAC, pages
104–115, 2017. 2, 3, 5

[8] M. Chrobak, L. Gasieniec, T. Gorry, and R. Martin. Group search on the line. In Proceedings
of SOFSEM 2015: 41st International Conference on Current Trends in Theory and Practice of
Computer Science, pages 164–176, 2015. 2

[9] H. Chuangpishit, S. Mehrabi, L. Narayanan, and J. Opatrny. Evacuating an equilateral triangle
in the face-to-face model. In Proceedings of the 21st International Conference on Principles of
Distributed Systems (OPODIS 2017), pages 11:1–11:16, 2017. 1

[10] J. Czyzowicz, S. Dobrev, K. Georgiou, E. Kranakis, and F. MacQuarrie. Evacuating two robots
from multiple unknown exits in a circle. Theor. Comput. Sci., 709:20–30, 2018. 3

24

[11] J. Czyzowicz, L. Gasieniec, T. Gorry, E. Kranakis, R. Martin, and D. Pajak. Evacuating robots
via unknown exit in a disk. In Proceedings of the 28th International Symposium on Distributed
Computing (DISC 2014), Austin, TX, USA, pages 122–136, 2014. 2, 3, 5, 13

[12] J. Czyzowicz, K. Georgiou, M. Godon, E. Kranakis, D. Krizanc, W. Rytter, and M. Wlodar-
czyk. Evacuation from a disc in the presence of a faulty robot. In Proceedings of SIROCCO
2017, pages 158–173, 2017. 3

[13] J. Czyzowicz, K. Georgiou, R. Killick, E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny, and
S. M. Shende. Priority evacuation from a disk using mobile robots - (extended abstract). In
proceedings of the 25th International Colloquium on Structural Information and Communication
Complexity (SIROCCO 2018), Ma’ale HaHamisha, Israel, pages 392–407, 2018. 3

[14] J. Czyzowicz, K. Georgiou, E. Kranakis, L. Narayanan, J. Opatrny, and B. Vogtenhuber.
Evacuating robots from a disk using face-to-face communication. In Proceedings of CIAC
2015, pages 140–152, 2015. 2, 3

[15] J. Czyzowicz, E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny, and S. M. Shende. Wireless
autonomous robot evacuation from equilateral triangles and squares. In Proceedings of the 14th
International Conference on Ad-hoc, Mobile, and Wireless Networks (ADHOC-NOW 2015),
Athens, Greece, pages 181–194, 2015. 2, 3, 4

[16] Y. Emek, T. Langner, J. Uitto, and R. Wattenhofer. Solving the ANTS problem with asyn-
chronous finite state machines. In Proceedings of the 41st International Colloquium on Au-
tomata, Languages, and Programming, (ICALP 2014), Part II, pages 471–482, 2014. 2

[17] O. Feinerman and A. Korman. Theoretical distributed computing meets biology: A review.
In Proceedings of the 9th International Conference on Distributed Computing and Internet
Technology, (ICDCIT 2013), Bhubaneswar, India, pages 1–18, 2013. 2

[18] O. Feinerman, A. Korman, Z. Lotker, and J.-S. Sereni. Collaborative search on the plane
without communication. In ACM Symposium on Principles of Distributed Computing (PODC
2012), Funchal, Madeira, Portugal, pages 77–86, 2012. 2

[19] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of asynchronous robots
with limited visibility. Theor. Comput. Sci., 337(1-3):147–168, 2005. 2

[20] S. K. Ghosh and R. Klein. Online algorithms for searching and exploration in the plane.
Computer Science Review, 4(4):189–201, 2010. 2

[21] L. Hua and E. K. P. Chong. Search on lines and graphs. In Proceedings of the 48th IEEE
Conference on Decision and Control, CDC 2009, China, pages 5780–5785, 2009. 2

[22] A. Jez and J. Lopuszanski. On the two-dimensional cow search problem. Information Processing
Letters, 109(11):543–547, 2009. 2

[23] C. Lenzen, N. A. Lynch, C. C. Newport, and T. Radeva. Trade-offs between selection complexity
and performance when searching the plane without communication. In ACM Symposium on
Principles of Distributed Comp. (PODC 2014),, pages 252–261, 2014. 2

25

[24] A. López-Ortiz and G. Sweet. Parallel searching on a lattice. In Proceedings of the 13th
Canadian Conference on Computational Geometry (CCCG 2001), pages 125–128, 2001. 2

[25] P. Nahin. Chases and Escapes: The Mathematics of Pursuit and Evasion. Princeton University
Press, 2012. 1

[26] L. D. Stone. Theory of Optimal Search. Academic Press New York, 1975. 1

[27] I. Thompson. Understanding Maple. Cambridge University Press, 2016. 17

26

Appendix A

The Python source code for computing the evacuation time claimed in Theorem 4.2 is given below.

import math

p=0.1
q=0.2
bestP=p
bestQ=q
minimum=5
while p<0.2:

q=0.2
while q<0.8:

alpha=math.asin((1-p)/math.sqrt(1+math.pow(1-p,2)))
ec=math.sqrt(1+math.pow(1-p,2))
x=(ec-1-p)/2
eg=x
hg=x*math.sin(alpha)
gc=ec-eg
jc=q
gj=math.sqrt(gc*gc+jc*jc-2*gc*jc*math.cos(alpha))
#We must have 1+p+x+gi = q+ij
f=1+p+x

ij=(f-q+gj)/2
gi=gj-ij

#Time to meet:
t1=1+q+ij
t2=1+1+p+x+gi

#The remaining time:
#We need ic
cosBeta=(gc*gc-gj*gj-jc*jc)/(-2*gj*jc)
beta=math.acos(cosBeta)
ic=math.sqrt(ij*ij+jc*jc-2*ij*jc*cosBeta)

ei=math.sqrt(eg*eg+gi*gi-2*eg*gi*math.cos(alpha+beta))

detour=eg+gi+ei

lhs=1+detour-q
A=1+detour-q

r=(2+q*q-2*q-A*A)/(2*A+2)

27

kj=math.sqrt((1-r)*(1-r)+(1-q)*(1-q))

m1=max(1+2*gc, 1+q+2*ij)
m2=max(1+q+2*kj, 3+detour)
maximum=max(m1, m2)

if maximum<minimum:
minimum=maximum
bestP=p
bestQ=q

q+=0.00005
p+=0.00005

print(’The evacuation time is:’, minimum)
print(’The value of p is:’, bestP)
print(’The value of q is:’, bestQ)

The output of the above source code is shown below.

The evacuation time is: 3.4644205988599026
The value of p is: 0.15559999999999388
The value of q is: 0.5009999999999669

28

	1 Introduction
	2 Preliminaries
	3 Evacuation of the Equilateral Triangle
	3.1 Lower Bounds
	3.2 Evacuation Algorithms
	3.2.1 Equal-Travel Strategy
	3.2.2 Equal-Travel with Detour(s) Algorithms for Two Robots.
	3.2.3 Equal-Travel Early-Meeting Algorithms for k3 Robots

	4 Evacuation of the Square
	4.1 Lower Bound
	4.2 Evacuation Algorithms
	4.2.1 Equal-Travel with Detour for Two Robots
	4.2.2 Equal-Travel Early-Meeting Algorithms for k3 Robots

	5 Discussion

