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Largest triangles in a polygon®

Seungjun Lee' Tackang Eom? Hee-Kap Ahn®

Abstract

We study the problem of finding maximum-area triangles that can be inscribed in a
polygon in the plane. We consider eight versions of the problem: we use either convex
polygons or simple polygons as the container; we require the triangles to have either one
corner with a fixed angle or all three corners with fixed angles; we either allow reorienting the
triangle or require its orientation to be fixed. We present exact algorithms for all versions of
the problem. In the case with reorientations for convex polygons with n vertices, we also
present (1 — g)-approximation algorithms.

1 Introduction

We study the problem of finding maximume-area triangles that are inscribed in a polygon in the
plane. When the shape of the triangle is fully prescribed, this problem is related to the polygon
containment problem, which for given two polygons P and @, asks for the largest copy of ) that
can be contained in P using rotations, translations, and scaling. The problem is related to the
problem of inscribing polygons if the shape is partially prescribed. In inscribing polygons, we are
given a polygon P and seek to find a best polygon with some specified number of vertices that
can be inscribed in P with respect to some measures.

Problems of this flavor have a rich history and are partly motivated by the attempt to
reduce the complexity of various geometric problems, including the shape recognition and
matching problems, arising in various applications in pattern recognition, computer vision and
computational geometry |7, 13, 21]. Chapter 30.5 in the Handbook of Discrete and Computational
Geometry [20] provides a survey on the related works.

There has been a fair amount of work on inscribing a maximum-area convex k-gon in a polygon.
A maximum-area convex k-gon inscribed in a convex n-gon can be computed in O(kn + nlogn)
time [2), [I5]. The best algorithm for computing a maximum-area convex polygon inside a simple
n-gon takes O(n”) time and O(n®) space [9]. Hall-Holt et al. [I8] gave an O(nlogn)-time
O(1)-approximation algorithm for finding a maximum-area convex polygon inscribed in a simple
n-gon. Melissaratos et al. [I7] gave an algorithm for finding a maximum-area triangle inscribed
in a simple n-gon in O(n*) time. When the maximum-area triangle is restricted to have all its
corners on the polygon boundary, and it takes O(n?) time.
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Convex polygons Simple polygons

Fixed angles All ‘ One All ‘ One
- O(logn) [16] O(nlogn) 9
Axis-aligned 1 1
sTalighe (homothet) Ollogn) (homothet) On"logn)
2 3
Reorientations 7l0(n ) L 1 o) L 1 O(n?logn)| O(n%)
O(e 2logn+e7") | O(e 2logn+e " loge™2)

Table 1: Time complexities of the algorithms. All algorithms use O(n) space.

For finding a maximum-area copy of a given polygon () that can be inscribed in a polygon
P, there are results known for cases of convex, orthogonal, and simple polygons, possibly with
holes. A maximum-area copy of a convex k-gon that can be inscribed in a convex n-gon can
be computed in O(n + klogk) time [19, 14] under translation and scaling, and in O(nk?log k)
time [I] under translation, scaling, and rotation. For a maximum-area homothetE] of a given
triangle inscribed in a convex polygon P with n vertices, Kirkpatrick and Snoeyink gave an
O(log n)-time algorithm to find one [I6], given the vertices are stored in order along the boundary
in an array or balanced binary search tree. The maximum-area equilateral triangles of arbitrary
orientation inscribed in a simple n-gon can be computed in O(n?) time [11].

There also have been works on finding a maximum-area partially prescribed shape that can be
inscribed in a polygon. Amenta showed that a maximum-area axis-aligned rectangle inscribed in
a convex n-gon can be found in linear time by phrasing it as a convex programming problem [6].
When the vertices are already stored in order along the boundary in an array or balanced
binary search tree, the running time was improved to O(log?n) [12], and then to O(logn) [4].
Cabello et al. [§] considered the maximum-area and maximum-perimeter rectangle of arbitrary
orientation inscribed in a convex n-gon, and presented an O(n?)-time algorithm. Very recently,
Choi et al. [10] gave O(n?logn)-time algorithm for finding maximum-area rectangles of arbitrary
orientation inscribed in a simple n-gon, possibly with holes. However, little is known for the
case of partially prescribed triangles inscribed in convex and simple polygons, except a PTAS
result by Hall-Holt et al. [18] for finding a maximum-area fatE] triangle that can be inscribed in a
simple n-gon.

1.1 Our results

We study the problem of finding maximum-area triangles that can be inscribed in a polygon in
the plane. We consider eight versions of the problem: we use either convex polygons or simple
polygons as the container; we require the triangles to have either one corner with a fixed interior
angle or all three corners with fixed interior angles; we either allow reorienting the triangle or
require its orientation to be fixed. We study all versions of the problem in this paper and present
efficient algorithms for them. Table [I| summarizes our results.

We assume that the vertices of the input polygon are stored in order along its boundary in
an array or a balanced binary search tree. We say a triangle is awis-aligned if one of its sides is
parallel to the z-axis, and we call the side the base of the triangle. We say a triangle has one
fixed angle if one of the two interior angles at corners incident to the base of the triangle is fixed.

For a convex polygon P with n vertices, a maximum-area homothet of a given triangle that
can be inscribed in P can be computed in O(logn) time [16]. For axis-aligned triangles with one
fixed angle, we present an algorithm that computes a maximum-area such triangle that can be

!Two shape are homothetic if one can be obtained from the other by scaling and translation.
2A triangle is d-fat if all three of its angles are at least some specific constant §.



inscribed in P in O(logn) time using O(n) space.

When reorientations are allowed, we present an algorithm that computes a maximum-area
triangle with fixed interior angles that can be inscribed in P in O(n?) time using O(n) space.
We also present an (1 — ¢)-approximation algorithm that takes O(E*% logn + e~ 1) time. For
triangles with one fixed angle, we present an algorithm to compute a maximum-area triangle that
can be inscribed in P in O(n?) time using O(n) space. We also present an (1 — ¢)-approximation
algorithm that takes 0(87% logn + e !log 57%) time.

For a simple polygon P with n vertices, we present an algorithm that computes a maximum-
area homothet of a given triangle that can be inscribed in P in O(nlogn) time using O(n) space.
We also present an algorithm to compute a maximum-area axis-aligned triangle with one fixed
angle that can be inscribed in P in O(n?logn) time using O(n) space.

When reorientations are allowed, we present an algorithm to compute a maximum-area
triangle with fixed interior angles that can be inscribed in P in O(n?logn) time using O(n)
space. For triangles with one fixed angle, we present an algorithm to compute a maximum-area
triangle that can be inscribed in P in O(n*) time using O(n) space.

Whenever we say a largest triangle, it refers to a maximum-area triangle inscribed in P. We
denote the triangle with three corners p, ¢, r (counterclockwise order) by Apgr, where pq is base.
For two fixed angles «, 8 > 0, we call the triangle with Zrpg = a an a-triangle and the triangle
with Zrpqg = a and Zpgr =  an («, B)-triangle. Let area(T) denote the area of a triangle T'.

2 Largest Triangles in a Convex Polygon

Consider a convex polygon P with n vertices in the plane. We show for fixed angles o and (8
how to find largest («, §)-triangles and largest a-triangles, aligned to the z-axis or of arbitrary
orientation, that can be inscribed in P.

2.1 Largest (o, §)-triangles

Since all interior angles of an («, §)-triangle are fixed, this problem is to find a largest copy of a
given triangle that can be inscribed in P using rotations, translations, and scaling. When the
orientation of triangles is fixed, the problem reduces to finding a largest homothet of a given
triangle that can be inscribed in P. A homothet of a figure is a scaled and translated copy of the
figure.

A largest homothet of a given triangle that can be inscribed in P can be computed in O(logn)
time [16]. Thus, we focus on the case in which arbitrary orientations are allowed. This problem is
similar to finding a largest equilateral triangle in a convex polygon [I1]. A largest («, 5)-triangle
in a convex polygon P must have at least one corner lying on a vertex of P by the same argument
for largest equilateral triangles in Theorem 1 of [11].

Consider an (o, 8)-triangle Atot1te. Let @,(s,d) denote the affine transformation that scales
s and rotates 9 in counterclockwise direction around a vertex v of P. Let

sin(a + f) sin «
sin « N

Po,v = (pv(ﬁaa)v Ploy = (I)v(

For ¢; lying on a vertex v of P, we observe that t;11,t;4o € P if and only if t;190 € PN ;,(P)
with indices under modulo 3. See Figure [I|a) for an illustration. Thus, for a fixed vertex v of
P, we can compute a largest triangle Atgt1te with ¢y at v in O(n) time by finding the longest
segment vt; o contained in P N ¢;,(P). By repeating this for every vertex v of P such that
corner t; lies on v for i = 0,1,2, a largest («, 8)-triangle can be computed in O(n?) time.



Theorem 1. Given a convex polygon P with n vertices in the plane and two angles «, B, we can
compute a mazximum-area (o, 3)-triangle of arbitrary orientations that can be inscribed in P in
O(n?) time.

We give an example of a convex polygon with ©(n?) combinatorially distinct candidates of
an optimal triangle with o = 8 = 60°. Let P be a convex polygon with 3n vertices such that 2n
vertices of P are placed uniformly on a circular arc of interior angle 120°, and the remaining n
vertices are placed densely in the neighborhood of the center of the arc as shown Figure [Ij(b).
If v is one of the n vertices near the center, P N g, (P) has 2n — 1 vertices along by the arc,
and thus there are ©(n) candidates of ty for each such vertex v to consider for the longest vts in
P N ¢o(P). This gives ©(n?) candidates for the longest vty of similar lengths, and thus ©(n?)
combinatorially distinct (v, 8)-triangles with side vts. Any algorithm iterating over all such
triangles takes (n?) time.

@0,7;(P)

(a) (b) (c)

Figure 1: (a) A largest (v, §)-triangle Atot1ta with tg lying on a vertex v of P is determined by the
longest segment vty contained in P N ¢ ,(P). (b) An example of ©(n?) combinatorially distinct
(a, B)-triangles with side vto to consider for an optimal triangle. (c¢) The largest axis-aligned
right triangle with m, < 0 and m. < 0.

2.2 Largest a-triangles

This problem is to find a largest triangle with one corner angle fixed to a constant « that can
be inscribed in a convex polygon P. We consider a-triangles that are either axis-aligned or of
arbitrary orientations.

2.2.1 Largest axis-aligned a-triangles

We start with an algorithm to compute a largest axis-aligned a-triangle for a = 90°. Alt et
al. [5] presented an algorithm of computing a largest axis-aligned rectangle that can be inscribed
in a convex polygon. We follow their approach with some modification. If two corners of the
triangle are on the polygon boundary, the algorithm by Alt et al., works to compute a largest
axis-aligned right triangle that can be inscribed in P.

So in the following, we focus on the case that a largest axis-aligned right triangle has all
its corners on the boundary of P. Consider a largest axis-aligned right triangle Abac with all
three corners on the boundary of P. See Figure (c) for an illustration. Let m, and m. denote
the slopes of the polygon edges where a and c lie, respectively, and let m,. denote the slope of
ac. Then, either (1) m, < 0 or m, < 0, or (2) m, > 0 and m,. > 0. Observe that no rectangle
containing a largest axis-aligned right triangle belonging to case (1) is contained in P, and thus
the algorithm by Alt et al. fails to find a largest axis-aligned right triangle belonging to the case.
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Figure 2: Modified tests associated with functions f and h.

We compute a largest axis-aligned right triangle in O(logn) time using the tentative prune-
search algorithm [5] by replacing the tests associated with functions f and h by the ones in
Figure Using the tests, we can determine a half of the candidate triples of polygon edges
in which a largest axis-aligned right triangle cannot have their corners, and continue to find a
largest axis-aligned right triangle on the remaining half of the candidate triples of polygon edges.

The algorithm to compute a largest axis-aligned right triangle can compute the axis-aligned
a-triangle using linear transformation L, = ((1) CO{"‘)_l for ao. Then, L, (T) is an axis-aligned
right triangle for an a-triangle 7. Observe that T is a largest axis-aligned a-triangle inscribed
in P if and only if L, (7T) is a largest axis-aligned right triangle inscribed in L, (P), a convex
polygon. However, it takes O(n) time for computing entire description of L, (P). To reduce the
time complexity, we compute L, (p) only when we need the slope of the polygon edge containing
p or the right side of an a-triangle with corner at p on the polygon boundary. Since there are
O(logn) decision steps in the algorithm and each decision step uses only a constant number of
points on the polygon boundary, we have following theorem.

Theorem 2. Given a convex polygon P of n vertices in the plane and an angle o, we can find a
mazimum-area azis-aligned a-triangle that can be inscribed in P in O(logn) time.

2.2.2 Largest a-triangles of arbitrary orientations

We can compute a largest a-triangle of arbitrary orientations by simply iterating over all triples
of edges of P. For each triple of edges of P, we can find a largest a-triangle T" with corners on
the edges of the triple in O(1) time.

Theorem 3. Given a convex polygon P of n vertices in the plane and an angle o, we can find a
mazimum-area a-triangle of arbitrary orientation that can be inscribed in P in O(n3) time using
O(n) space.

One may wonder if the running time can be improved. Cabello et al. showed a construction
of a convex polygon with n vertices that has ©(n3) combinatorially distinct rectangles that can
be inscribed in the polygon. By using a similar construction, we can show that there are ©(n?)
combinatorially distinct a-triangles that can be inscribed in a convex polygon with n vertices.
Thus, any algorithm iterating over all those combinatorially distinct triangles takes Q(n3) time.



2.3 FPTAS in arbitrary orientations

Let Topt be a largest (o, §)-triangle that can be inscribed in P. We can compute an («, 3)-triangle
inscribed in P whose area is at least (1 —¢) times area(T,pt) in O(a_% logn + & 1) time using
e-kernel [8]. For any ¢ € (0,1), an e-kernel for a convex polygon P is a convex polygon P. such
that for all unit vectors u in the plane, (1 — e)w (P, u) < w(P:,u), where w(P,u) is the length of
the orthogonal projection of P onto any line parallel to u.

Theorem 4. Given a convex polygon P with n vertices in the plane, two angles o, 3, and € > 0,
we can find an («, §)-triangle that can be inscribed in P and whose area is at least (1 — ) times

the area of a maximum-area («, 8)-triangle inscribed in P in O(s_% logn + e~ 1) time.

Proof. By Lemma 1 in [8], an e-kernel P: of P has O(af%) vertices and it can be computed in
0(57% logn) time. A largest (o, 3)-triangle inscribed in P= has area at least (1 — ¢) times the

area of the largest («, §)-triangle inscribed in P by Lemma 8 in [8], and it can be computed in
O(e71) time. O

2.3.1 Largest a-triangles of arbitrary orientations

Let T,y denote a largest a-triangle that can be inscribed in . We can compute an a-triangle
inscribed in P whose area is at least (1 — ¢) times area(Top¢) in O(a_%logn + s_%) time
using the algorithm by Cabello et al. [§]. We can improve the time complexity further to
0(57% logn + e~ !log 57%) using the approximation method by Ahn et al. [3].

We use d to denote the diameter of a convex polygon P which is the maximum distance between
any two points in P, and w to denote the width of P which is the minimum distance between
two parallel lines enclosing P. Let ¢; = min{ 1—16, M, “a%fo‘l} and ¢y = 2 min{l_‘i%, H;‘%io‘
be the constants defined by .

Lemma 5. area(Tqp) > cidw.

Proof. Let pq be a diameter of P, and let R be a rectangle circumscribed to P with two sides
parallel to pg such that P touches all four sides of R. Let w’ be the side of R orthogonal to pq.
See Figure [3(a).

Consider two interior-disjoint triangles with pg as the base and total height w’ that are
inscribed in P. Let Apgr be one of the triangles whose height is at least %, Without loss
of generality, assume that the bisecting line of pq intersects the boundary of ¢r at s and let
Zpgs = .

If « < yora>m— 2y, then either Agtp (with area(Agtp) = “"%ap) or Atpq (with
area(Atpq) = MC[Z) is an a-triangle, where ¢ is the point on the bisecting line of pg achieving
Zpqt = « or Zqtp = . See Figure (b) If vy <a<m— 2y, Atgs (with area(Atgs) > 1—16dw) is
an a-triangle inscribed in P, where t is the point on pq achieving /stq = a or Zgst = «, while
satisfying Zstq < 5*. See Figure (c) Since w < d, the lemma holds. O

Let @ be one of the directions of the lines defining the width of P. Let ¢ be the angle from U
to the ray from p bisecting Zrpq for a largest a-triangle Apgr inscribed in P in counterclockwise
direction, where —7 < ¢ < 7. Then we have the following technical lemma.

Jr =5 =W} < 5%

Lemma 6. min{||J| — e

Proof. Clearly, Topy is contained in the strip of w. Then area(Apgr) < %W .
UJ2

T = Temaasysay See Figure[d
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Figure 3: (a) Proof of Lemmalj] (b) a <yora>n—2y. (c)y<a <7 —2y.

For 6 € [0, %], | cos o — cos 20| > 2 min{1=¢osa 1icosa}ig_ &| Observe also that the graph of
2

| cos a — cos 20| is symmetric with respect to 6 = 7. Therefore, c;dw < area(Tj,pt) < mmi"w,

and do min{|[9| — §|, |7 — § — 9|} < |cosa—cos|219|| <% O

w

Figure 4: area(Top) < area(Apgr) if (a) § <[J| <7 — G, or (b) [J] < §orm—5 <|J|

Let Topt(0)(—m < 6 < ) denote a largest a-triangle Apgr such that the angle from o to
the ray from p bisecting Zrpq in counterclockwise direction is 6.

Lemma 7. Given e > 0, area(Topi (9 4 6)) > (1 — e)area(Topt () for |6] < min{§, 5%, G2}

Proof. Let Apgr be Topi (). Without loss of generality, assume |pg| < [pr|. Let p’ and ¢’ be
points on pg and gr, respectively, and let Zp'rp = Zq'pq = |5]. Also, let ¢ be the intersection
point of pg’ and rp’. See Figure [5|for an illustration.

If |§] < min{§, 5}, then

area(Topt (V) — area(Tope (9 4 8)) < area(Apgr) — area(Atq'r)
< area(Arpp') + area(Apqq)
1 sin o 9 N .
< (e J
< 2(Sin(a+|5\)’pr| + |pal*) sin |0]
< (Ipal* + lprf*) sin[6] < 2max(|pg|*, |pr|*) sin4].
Topt (9+6 2 2 lpr?) .
By Lemma 1-— ar:rz(a(ifil(t(ﬁ)))) < f;liz((%lt(lg;)l )81n\5| < 2dd sin |d| < 2d |0] < e, and the
lemma follows. O



Figure 5: area(Apqr)—area(Atq'r) < area(Arpp')+area(Apqq’) and area(T'(9+9)) > area(Atq'r)
in proof of Lemmal[7}

Lemma 8. Given a convex polygon P with n vertices in the plane, an angle o, and € > 0, we
can find an a-triangle that can be inscribed in P and whose area is at least (1 — e)area(Topt) in
O(etlogn) time.

Proof. We sample all orientations 6 in —7 < 6 < 7 at interval min{$§, "5% ¥} that satisfy
min|10] — 3| |7~ ~16]]} < 722

For each sampled orientation 6, L g(Topt(6)) is a largest axis-aligned right triangle in L, ¢(P)
for the linear transformation Lap = (§ Cofa)flR (§ —6), where R(¢) = (Z?ﬁi _C;isnf). So,
we can compute Tope(0) in O(logn) time using the same technique used for the axis-aligned
a-triangles.

We can obtain an orientation 6 such that area(T,p(0)) > (1 — ¢)area(T5pt) for at least
one of the sampled orientations by Lemmas [6] and []] The running time of the algorithm is

O(etlogn). O

After applying the inner approximation using an e-kernel, we can obtain the following
theorem.

Theorem 9. Given a convex polygon P with n vertices in the plane, an angle o, and € > 0, we
can find an a-triangle that can be inscribed in P and whose area is at least (1 — €) times the area

of a maximum-area a-triangle inscribed in P in O(s_% logn + & tlog 6_%) time.

Proof. By Lemma 1 in [8], an e-kernel P: of P has O(Ef%) vertices and it can be computed in
0(57% logn) time. A largest a-triangle in P< has arca at least (1 — 5)area(Topt) by Lemma 8 in
[8]. Then, an (1 — §)-approximation to the largest a-triangle in Pe is an (1 —¢) -approximation
of the largest a-triangle in P. We can compute an (1 — §)-approximation to the largest a-triangle

inscribed in Pe in O(elog 57%) time by Lemma O

3 Largest (a, §)-triangles in a Simple Polygon

In this section, we show how to find a largest (a, 8)-triangle that can be inscribed in a simple
polygon P with n vertices in the plane. Without loss of generality, we assume no three vertices
of P are collinear.

A triangle T inscribed in P may touch some boundary elements (vertices and edges) of P.
We call an edge of P that a corner of T" touches a corner contact of T', and a vertex of P that a
side of T" touches in its interior a side contact of T'. We call the set of all corner and side contacts
of T' the contact set of T. We say a triangle T' satisfies a contact set C' if C' is the contact set of
T.



We use 1y(p) to denote the ray emanating from p that makes angle § from the positive z-axis
in counterclockwise direction. The inclination of line (or segment) is the angle that the line
makes from the positive z-axis in counterclockwise direction.

3.1 Largest axis-aligned («, §)-triangles

Finding a largest axis-aligned («, 3)-triangle is equivalent to finding a largest homothet inscribed
in P. For an axis-aligned (a, 8)-triangle T" inscribed in P, we use r(T") to denote the left endpoint
of the base of T', and call it the anchor of T. For an axis-aligned (c, 3)-triangle T inscribed in P
and satisfying a contact set C, we say 1" is mazimal if there is no axis-aligned («, f)-triangle
of larger area inscribed in P and satisfying a contact set C/ with C' C C’. For a point r in the
interior of P, consider the largest axis-aligned («, 5)-triangle, denoted by T'(r), with r at its
anchor. For ease of description, we say C' is the contact set of r and r satisfies C, for the contact
set C of T'(r). We use C(r) to denote the contact set of . We also say r is maximal if T(r) is
maximal.

To compute a largest axis-aligned («, §)-triangle that can be inscribed in P, we consider all
maximal axis-aligned («, §)-triangles and find a largest triangle among them. To find all maximal
(a, B)-triangles, we construct a subdivision of P by («, ) such that a maximal («a, 8)-triangle T
has r(T") at a vertex of the subdivision.

3.1.1 Subdivision of P by angles («, )

&/\/\/\ Are

A/
A B C D A
Fi AL
R >R ~ 8 \
C B/ D
A A BE A
E F G
(a) (b)

Figure 6: (a) Contact sets of type 3. Symmetric cases are omitted. (b) Subdivision of a polygon
for a« = § and 8 = 7. Each vertex of the subdivision is labeled by its corresponding contact set

in (a). A’ is the symmetric case of A. Point r has a contact set of type 1 and it is in a cell of the
subdivision. Point 7’ has a contact set of type 4 and it is in an edge of the subdivision.

For a point r in the interior of P, consider the contact set C of r, which may consist of
polygon edges that a corner of T'(r) touches and polygon vertices that a side of T'(r) touches in
its interior. We classify the contact set C of r into four types as follows.

1. C consists of exactly one edge of P.

2. C consists of one or two reflex vertices of P that the side of T'(r) opposite to 7 touches in
its interior.

3. C belongs to one of the configurations shown in Figure @(a) or their symmetric configurations
with respect to the anchor of T'(r). A superset of C also belongs to this type.



4. Other than types 1, 2, and 3.

Observe that each interior point r of P has a contact set, which belongs to one of the four
types defined above. For a contact set C, consider the set R(C) of the points r in the interior of
P such that C remains to be the contact set of T'(r) under translations and scaling. Then the
classification of contact sets above induces a subdivision of P into cells, edges, and vertices. A
vertex of the subdivision has degree 1 (endpoint of a subdivision edge on the boundary of P) or
larger.

Lemma 10. Let S be the subdivision of P by («a, 3), and let C' be the contact set of a point in
the interior of P. Then R(C) is a cell of S if C' is of type 1 or 2, a vertex of S if C is of type 3,
and an edge of S if C is of type 4.

Proof. Observe that R(C') is a cell of S if C is of type 1 or 2, a vertex of S if C' is of type 3. A
contact set C' of type 4 is (1) a proper subset of a configuration in [f](a), (2) the set consists of
a contact set C’ belongs in (1) and additional side contacts on the side which contains a side
contact in C’; and (3) the set consists of corner contacts on one corner ¢, except the anchor, and
side contacts on both sides incident to ¢. Since type 1 and 2 contains all the contact set which
contains exactly one element, C' contains at least two elements. Then R(C') for C' belongs in (1)
is line segment. The additional side contacts on the side which contains a side contact does not
restrict R(C'). Thus, R(C') for C belongs in (2) is also line segment. It is obvious that R(C) for
C belongs in (3) is line segment. Therefore, R(C') is an edge of S if C is of type 4. O

See Figure @(b) that illustrates the subdivision of P for a = § and 3 = 7§ into cells, edges
and vertices. Any point 7 in a cell has the same contact set of type 1 or 2. (The gray cell has a
contact set of type 1.) Any point on an edge of the subdivision has the same contact set of type 4.
(The edge labeled with e corresponds to a contact set of type 4.) Each vertex of the subdivision
has a contact set of type 3 and is labeled by its corresponding contact set in Figure @(a).

Observe that an axis-aligned (a, 3)-triangle is not maximal if its anchor lies in a cell or edge
of S. Thus, we have the following lemma.

Lemma 11. Every mazimal azis-aligned (o, §)-triangle has its anchor at a vertex of the subdivi-
sion of P.

Now we explain how to construct the subdivision S for P. We use a plane sweep algorithm
with a sweep line L which has inclination m — 5 and moves downwards. The status of L is the
set of rays and edges of P intersecting it, which is maintained in a balanced binary search tree T
along L. While L moves downwards, the status in 7 changes when L meets particular points.
We call each such particular point an event point of the algorithm. To find and handle these
event points, we construct a priority queue Q as the event queue which stores the vertices of P
in the beginning of algorithm as event points. As L moves downwards from a position above P,
some event points are newly found and inserted to @ and some event points are removed from Q.

The invariant we maintain is that at any time during the plane sweep, the subdivision above
the sweep line L has been computed correctly. Consider the moment at which L reaches a vertex
v of P. If v is convex vertex, we add a ray 7,(v) to S and update 7 and Q if it is contained in P
locally around v. Since every point in 7,(v) near v has the same contact set of type 4 consisting
of the two edges, v is determined uniquely by the two edges. If v is a reflex vertex, we add at
most two rays, nz+q(v) and 7 (v) from v, to S and update 7 and Q accordingly if the ray is
contained in P locally around v and every point in the ray near v has the same contact set of
type 4. Consider the moment at which L reaches the intersection of a ray with the boundary of P.
Then the ray simply stops there. Consider now the moment at which L reaches the intersection
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point x of two rays n; and 72. Then the two rays stop at x. We add one ray n emanating from
x to S and update 7 and Q accordingly. Observe that the contact set of points on 7 near x is
of type 4 consisting of contact elements of the points in 7; and 7s. Thus, the orientation of 7
is uniquely determined in O(1) time. If 1; or 172 emanates from a reflex vertex of P, n makes
counterclockwise angle m 4+ « or 7 from the positive xz-axis. Imagine we move a point p from
x along 7. Then the contact set of p may change at some point g € n to another contact set
consisting of contact elements of the points in 77 and 7. We call such a point ¢ a bend point of
7. Again a bend point of a ray can be found in O(1) time. We add ¢ to Q as an event point.
Finally, consider the moment at which L reaches a bend point ¢ of a ray 1 which emanates from
the intersection of two rays. Then 7 stops at ¢. We add a new ray n’ emanating from ¢ to S
and update 7 and Q accordingly. The orientation of 1’ is uniquely determined by the contact
elements of the points in 7 in O(1) time. Observe that 1’ makes a counterclockwise angle other
than m + o and 7 from the positive z-axis.

At each of these event points, we update 7 and Q as follows. At an event point where a
ray 7 is added to S, we insert 1 to 7, compute the event points at which 7 intersects with its
neighboring rays along L and with the boundary of P, and add the event points to Q. At an
event where a ray 7 stops, we remove it from 7 and remove the events induced by 1 from Q. We
also compute the event at which the two neighboring rays of n along L intersect and add them
to Q.

After we have treated the last event, we have computed the subdivision of P.
Lemma 12. We can construct the subdivision S of P in O(nlogn) time using O(n) space.

Proof. First we show that the number of event points in the plane sweep algorithm is O(n). A
polygon vertex induces at most two rays and generates at most three events at the vertex and two
points where the rays intersect the boundary of P for the first time. Thus, there are O(n) rays
induced by polygon vertices and they generate O(n) event points. At an event, either (a) two
neighboring rays merge into one at their intersection point or (b) a ray making counterclockwise
angle m + o or m with the positive z-axis has at most one bend point, and every ray emanating
from a bend point makes a counterclockwise angle other than m + «, 7 from the positive x-axis.
An event of case (a) generates O(1) new event points and the number of rays decreases by 1.
Thus, the total number of event points of case (a) is O(n). An event point of case (b) generates
O(1) new events, but only once for a ray making counterclockwise angle m + « or = with the
positive z-axis. Again, the total number of event points of case (b) is O(n).

For each event in the plane sweep algorithm, we stop at most two rays and add at most two
rays to S in O(1) time. Then we update 7 and Q accordingly in O(logn) time since there are
O(n) elements in 7 and O(n) events in Q. Thus, we can handle an event in O(logn) time, and
we can construct S in O(nlogn) time. The data structures S, 7 and Q all use O(n) space. [

3.1.2 Computing a largest axis-aligned («, 5)-triangle

By Lemma it suffices to check all vertices of S to find all maximal axis-aligned («, 3)-triangles.
For each vertex w of S, the triangle T'(w) is a maximal axis-aligned (a, §)-triangle satisfying
C(w) by definition. We can compute the area of T'(w) in O(1) time by storing C(w) to w when
it is added into S. Then, we can find a largest axis-aligned (a, 8) triangle by choosing a largest
one among all maximal axis-aligned (a, §)-triangles. By Lemmas |11| and we have following
theorem.

Theorem 13. Given a simple polygon P with n vertices in the plane and two angles «, 5, we
can find a mazimum-area (., 5)-triangle that can be inscribed in P in O(nlogn) time using O(n)
space.
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3.2 Largest («, §)-triangles of arbitrary orientations

We describe how to find a largest («, 5)-triangle of arbitrary orientations that can be inscribed
in a simple polygon P with n vertices. We use Cy to denote the coordinate axes obtained by
rotating the standard xy-Cartesian coordinate system by 6 degree counterclockwise around the
origin. We say a triangle T' with base b is #-aligned if b is parallel to the z-axis in Cy.

We use S(6) to denote the subdivision of P in Cg. We construct the subdivision S(#) of P at
Co using the algorithm in Section and maintain it while rotating the standard zy-Cartesian
coordinate axes from angle 0 to 2. During the rotation, we maintain the combinatorial structure
of S(A) (not the embedded structure S(#)) and update the combinatorial structure for each
change so that the changes of S(f) are handled efficiently. We abuse the notation S(f) to refer
the combinatorial structure of S(#) if understood in the context. For each vertex of S(), we
store the function which returns the actual coordinate of the vertex in the embedded structure
S(#). Thus, an edge of S(#) is determined by the functions stored at its two endpoints. For each
edge of S(0), we store the contact set of the points in the edge.

We say a contact set C' is feasible at an angle 6 if there exists a fp-aligned (o, §)-triangle
inscribed in P and satisfying C’ D C. For a contact set C, consider all angles at which C' is
feasible. Then these angles form connected components in [0, 27) which are disjoint intervals.
We call each such interval a feasible interval of C.

For a fixed angle 0, consider a y-aligned («, §)-triangle satisfying a contact set C. Let
I = [61, 65] be a feasible interval of C' containing 6. For 0y € I, we say a fp-aligned («, 5)-triangle
T satisfying a contact set C7 D C' is maximal for I if there is no #’ € I such that a #’-aligned
(a, B)-triangle satisfying a contact set Cy O C' has larger area.

3.2.1 DMaintaining subdivision under rotations
v
v
e
(91 u U/
v
j—\/

ﬁﬁ
v
v
92 U,
w
v
v v v
03
v w

(a) (b) (c) (d)

Figure 7: Changes of the subdivision S(#) during the rotation with 6 at 61, 62, 65 with 61 < 03 < 5.
(a) An edge event at which edge uv of S(61) becomes a vertex of S(f2) and then it splits into two
with edge uv/v" in between them in S(3). (b) A vertex event at which an edge of S(#) incident to
a reflex vertex v’ suddenly appears in S(f3) and an edge of incident to a reflex vertex v suddenly
disappears from S(#3). (c¢) An align event at which a subdivision edge e splits into two edges
with vertex w in between. (d) A boundary event at which w meets the boundary of P in S(62).



The combinatorial structure of S(f) changes during the rotation. Each change is of one of
the following types:

Edge event: an edge of S(f) degenerates to a vertex of S(6). Right after the event, the
vertex splits into two with an edge connecting them in S(6). See Figure [7]a).

Vertex event: an edge of S(6) incident to a reflex vertex v suddenly appears or disappears
on S(#). This event may occur only when an edge e of P incident to v has inclination 0, a,
or 7 — 3. See Figure[7|(b).

Align event: an edge e of S(#) with inclination 0 or « splits into two edges with a vertex w
of S(0) in between or two such edges merge into one. This event may occur only for vertex
w of S(#) such that the maximal #-aligned (o, 5)-triangle T'(w) = Awpq (or its symmetric
one) has a reflex vertex of P on ¢, a reflex vertex of P on its base wp, and an edge on p, or
T(w) has a vertex of P on p and ¢, with one of them being reflex. See Figure [7](c).

Boundary event: a vertex of S(f) with degree 2 or larger meets the boundary of P or a
vertex of S(#) with degree 1 meets a vertex of P on the boundary of P. See Figure [7[(d).

VI D

X1 X X3 X4 Xs

Figure 8: Classification of contact sets of («, )-triangles with anchor at the vertex at which an

edge,

align, boundary event occurs.

Recall that the set C(p) for a point p on an edge of S(6) has at least two elements and C(v)
for a vertex v of S(A) has at least three elements. We classify all the contact sets of the vertices
of S(f) at which an event (except a vertex event) occurs. For a vertex w of S(6), C'(w) belongs
to one of the following types. See Figure [§ for an illustration.

Type X;: C(w) contains a corner contact at a corner ¢ and side contacts on both sides
incident to c.

Type Xz: C(w) contains no side contact on a side s and a corner contact on each corner
incident to s.

Type X3: C(w) contains two side contacts on a side s and a corner contact on a corner
incident to s.

Type X4: C(w) contains two corner contacts on a corner, i.e. a corner is on a vertex of P,
except the case that it contains a corner contact on each corner.

Type Xs: C(w) contains two side contacts on a side, one side contact on another side, and
no corner contact on the corner shared by the sides.

Since there are no two vertices of S(6) such that the contact sets of them are same, a vertex where
an event (except a vertex event) occurs has contact set containing more than three elements.
Observe that an (o, 3)-triangle T is not maximal if there is a side s of T" such that no contacts
are on both s and corners incident to s. Thus, for a vertex w of S(f) at which an event (except a
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vertex event) occurs, T'(w) has no side s such that no contacts on both s and corners incident
to s. Observe that C'(w) belongs to a type defined above. Thus, the number of events other
than vertex events is at most the number of maximal («, §)-triangles which have a contact set of
one of the types above. We need the following two technical lemmas to bound the number of
(a, B)-triangles satisfying types X; and Xj.

Lemma 14. Let F = {f; | 1 <i < n} be a finite family of real value functions such that every f;
is of single variable and continuous, any two functions f; and f; intersect in their graphs at most
once, every function f; has domain D; of size d. If there is a constant ¢ such that ||JD;| = cd,
then the complexity of the lower envelope of F is O(n).

Proof. Let Dp = |JD;. Since there is a constant ¢, we can construct a finite partition A of
Dp such that each element of A has size d, except one element of size smaller than or equal to
d. Then every D; intersects at most two elements of A. Let [; be the left endpoint of t; € A
and assume [; < I for all j < j'. Let L(l;) and R(l;) be the sets of functions f; which are
functions f; restricted to D; N [lj_1,1;] and D; N [l},1j41], respectively. Since any two functions

. f1. € L(l;) (or two in R(l;)) intersect in their graphs at most once and their domains have
the same start point or end point, the sequence of the lower envelope of L(l;) (or R(l;)) is a
Davenport-Schinzel sequence of order 2. Then the lower envelope of set L(l;) (and of set R(l;))
has complexity O(k), where k = |L(l;)| (or k = |R(l;)|). Since ||J L(;)| = | U R(l;)| = O(n), the
lower envelope of | J L(l;) and |J R(l;) has complexity O(n).

Now, consider a new partition of Dp obtained by slicing it at every point at which the lower
envelopes of | J L(l;) and |J R(l;) change combinatorially. Since there are O(n) such points and
the lower envelope of F' restricted to a component of the new partition has constant complexity,
the complexity of the lower envelope of F' is O(n). O

(a) (b)

Figure 9: (a) For a fixed angle 6, T1 C T, or T> C T} for any two f-aligned triangles T} and
T, with u at a corner ¢ and a vertex v; and ve on the side opposite to ¢, respectively. (b) An
(o, B)-triangle T satisfying a contact set C' = {u, v, e} of type X; contains an («, 3)-triangle T”
which shares a corner ¢ with T lying on e, has a corner at u, and has v on the side opposite to c.

Lemma 15. For a fized vertex u of P, there are O(n) mazimal (c, 5)-triangles T' with a corner
at u such that T has a corner on the interior of an edge of P and has a vertex of P on the side
opposite to u.

Proof. For a fixed u, consider a maximal («, #)-triangle 7" with a corner at u such that 7" has a
corner on the interior of an edge e of P and has a vertex v of P on the side opposite to u. Let
07 denote the angle of rotation such that the base of T"is parallel to the z-axis of Cy,.

To count such triangles, let 7, denote all nontrivial («, 5)-triangles with a corner at w, with
another vertex of P on the side opposite to u. Observe that for a fixed angle 6, T3 C T5 or
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T, C T for any two 6-aligned triangles 77,75 € 7,. Moreover, no #-aligned triangle of 7, except
the smallest one, is inscribed in P. See Figure[df(a). Let F,(6) be the function that returns the
area of the smallest f-aligned triangle of 7, at angle 6. Let 7. denote all nontrivial («, 5)-triangles
with a corner at u, and another corner on the interior of an edge of P which can be inscribed in
P. Observe that for a fixed angle 6, there is at most one f-aligned triangle in 7. as it is required
to satisfy the constraint to be inscribed in P. Let F,(6) be the function that returns the area
of the #-aligned triangle of 7. at angle 8. Then T occurs at the angle of an intersection of the
graphs of F, and Fg.

Now we count the intersections of the graphs of F,, and F,. For any vertex v of P, the domain
of area(T,(0)) has size m — o — 3, where T),(0) is the #-aligned (o, 5)-triangle with u at a corner
and v on its side opposite to u. For any pair of vertices v, v of P, (area(T,()), area(T,,(9))
have at most one intersection. The union of all domains of area(7;(#))’s is [0,27). Thus, by
Lemma |14} the complexity of F, is O(n).

For any two edges e1, ea of P, the portions of the graph of F, corresponding to area(7e, (6))
and area(T¢,(6)) are disjoint since 1r4q(u) hits only one edge at an angle 6, where T, () denotes
the #-aligned (v, B)-triangle with u at a corner and e on its anchor.

For any pair of a vertex v and an edge e of P, the graphs of area(7,(0)) and area(T.(6))
intersect at most twice since the trajectory of point ¢ such that Zacv = § forms a circular arc,
and a circular arc intersects a line segment at most twice. Thus, the graphs of F;, and F, intersect
O(n) times for a fixed vertex u. O

In the following lemma, we bound the number of («, 3)-triangles satisfying one of the types
X; for i = 1,...,5.

Lemma 16. There are O(n?) events that occur to S(0) during the rotation.

Proof. Observe that there are O(n) align events. Consider an («, )-triangle T satisfying a
contact set C' belonging to type Xj. Then T contains an («, 3)-triangle 7" which shares a corner
¢ with T lying on an edge, has a corner at a vertex u € C, and has a vertex of P on the side
opposite to c. See the gray triangle in Figure |§|(b) Thus, we find all such triangles T for every
vertex u. By Lemma [15] there are O(n) such triangles for a vertex u of P, and in total O(n?)
(a, B)-triangles satisfying the contact sets of type Xj.

Consider an (o, §)-triangle T satisfying a contact set C' belonging to type X;. Then there is
at least one vertex v of P such that the boundary of P contains v. It is obvious that the number
of (o, B)-triangles with corner at v and satisfies a contact set of type Xp. Thus, assume v is side
contact of T'. Let e; and es be two edges that C contains and x be the vertex or edge of P which
is contained in C' and distinct to v, ej, and es. We can consider two f-aligned («, 3)-triangles
T1(0) and T»(0) which satisfies the contact set consists of {v,z,e;} and {v, z,ea} respectively.
Similar to Lemma |15, we consider the number of intersection of the graphs of area(77(6)) and
area(T5(6)). Then we can prove that the number of such intersection is O(n?). Thus, the number
of (a, B)-triangles satisfying a contact set of X4 is O(n?).

Observe that there are constant number contact set C' of type Xz if two vertices of P which
lies on a same side is given. And each C has constant number of feasible orientations. The
number of contact sets of type Xg, except the case of contact set contain two side contacts vq
and v on the side opposite to the corner which is on a vertex u of P, is also O(n?) because of
the same reason. The number of contact set of excepted case can be considered in a similar way
to Lemma [I5] by considering two triangles T, and T, such that both T, and T,, has a corner
at u and v; is on the side opposite to u of T,,. Thus, the number of («, §)-triangles satisfying a
contact set of Xq is O(n?).
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An (a, f)-triangle T satisfying a contact set of type Xs contains an (o, S-triangle 77 which
has a corner at v, where v is a side contact of T' similar to type Xi. Since the contact set of T” is
of type X4, the number of contact set of Xs is O(n?).

Therefore, the number of events that occurs to S() during the rotation is also O(n?). [

To capture the combinatorial changes and maintain S(#) during the rotation, we construct
and maintain the following data structures: (1) An event queue Q which is a priority queue
that stores events indexed by their angles. (2) A planar graph representing the combinatorial
structure of S(6). (3) For each edge e of P, a balanced binary search trees 7 (e). The tree store
degree-1 vertices of S(f) in order along e.

In the initialization, we construct S(0), and then 7 (e) for each edge of P. Then we initialize
Q with the events defined by the vertices of S(0) and the vertex events and boundary events
defined by the polygon vertices. For each vertex v of S(0), we compute the angle at which v
and a neighboring vertex of v meet (edge event), an edge incident to v splits into two (align
event), or v meets a polygon vertex (boundary event). These angles can be computed in O(1)
time for each v using the contacts corresponding to v. Then the size of Q is O(n) which can be
constructed in O(nlogn) time.

We update each data structure whenever an event occurs. Note that each event changes a
constant number of elements of S(f), creates a constant number of events to Q, and removes a
constant number of events from Q. Thus we can update the subdivision in O(1) time, and the
tree T (e) in O(logn) time for edge e where a boundary event occurs.

Lemma 17. We can construct the subdivision of P and maintain it in O(n?logn) time using
O(n) space during rotation.

Proof. By Lemma [12 we can construct S(0) in O(nlogn) time using O(n) space. We can
construct all the data structures for maintaining S(6) in O(nlogn) time using O(n) space. By
Lemma there are O(n?) events during the rotation. Each event, except vertex events, can be
handled in O(logn) time. For each vertex event, we reconstruct S(), Q and 7 (e) for each edge
e of P. Since there are O(n) vertex events and it takes O(nlogn) time for the reconstruction,
it takes O(n?logn) time to handle all vertex events. The space complexity remains to be O(n)
since the complexity of the data structures is O(n). O

3.2.2 Computing a largest (a, 3)-triangle

Whenever a vertex w appears on the subdivision or C'(w) changes at 6y by an event occurring
at angle 0y, we store 6y at w. Whenever C'(w) changes or w disappears from the subdivision at
angle 61, we compute the largest #-aligned (v, §)-triangle satisfying C'(w) for 6 € [0y, 0], where
0o is the angle closest from #; at which w appears or C'(w) changes with 6y < #;. We do this on
every vertex w of the subdivision, and then return the largest triangle among the triangles on
the vertices. We can compute the largest one among all f-aligned («, 3)-triangles satisfying C(w)
for 6 € [0p,01] in O(1) time using the area function of the #-aligned («, 3)-triangle satisfying
C(w). Thus, from Lemma (17, we have the following theorem.

Theorem 18. Given a simple polygon P with n vertices in the plane and two angles a, 5, we
can find a mazimum-area (o, B)-triangle that can be inscribed in P in O(n?logn) time using
O(n) space.

4 Largest a-triangles in a Simple Polygon

In this section, we compute a largest a-triangle that can be inscribed in a simple polygon P with
n vertices in the plane. Without loss of generality, we assume no three vertices of P are collinear.
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4.1 Largest axis-aligned a-triangles

We consider a largest axis-aligned a-triangle that can be inscribed in P. We use S(6) to denote
the subdivision of P defined for two angles a and 6. We say a contact set C' is feasible at an
angle 6 if there exists an axis-aligned (a, p)-triangle inscribed in P satisfying C’ 2 C. For
a feasible interval I of a contact set C' and 0y € I, we say an axis-aligned («,p)-triangle T
satisfying a contact set C; O C'is mazimal in I if there is no 6’ € I such that an axis-aligned
(c, 0")-triangle satisfying a contact set Cy O C' has larger area. The point at which 7y(p) meets
the boundary of a simple polygon @) C P for the first time other than its source point is called
the foot of ng(p) on @ and denoted by dg(Q, p). In an a-triangle, we say the side opposite to the
anchor is the diagonal of the triangle. For a point p € P, we define the wvisibility region of p as
Vis(p) = {z € P | px C P}. For a ray n and an angle 0, we define the §-visibility region Visg(n)
of n as the set of points x in the segment ydy(P,y) contained in P for every y € n.

First, we find the largest axis-aligned («, 75 )-triangle 7" using the algorithm in Section
Let d be the diameter of P. Since every side of a triangle inscribed in P has length less than or
equal to d, any (a, )-triangle that can be inscribed in P has area less than or equal to %.
Thus it suffices to consider (a, #)-triangles for § > 67 to find a largest axis-aligned a-triangle,

d?sinasinfr
2sin(a+6r) area(T)

an angle 0y < fp, construct S(fy) and maintain it while increasing 6 from 6y to m — «. Note
that we can compute T in O(n log n) time by Theorem [13] and we can find 6y in O(1) time.
The combinatorial structure of S() changes while increasing . We use the definitions for the

where 01 satisfies . To find a largest axis-aligned a-triangle, we choose

i %\E 3,

Figure 10: Changes of the subdivision S(#) while increasing 6 at 61, 69, 65 with 61 < 05 < 03. (a)
An edge event. (b) A vertex event. (¢) An align event. (d) A boundary event.

combinatorial changes of S(f) in Section : edge, vertex, align and boundary events. See
Figure Note that a vertex event occurs at § = m — ~y, where +y is the inclination of an edge of
P.

4.1.1 The number of edge and vertex events

We count all a-triangles satisfying a contact set of a vertex at which an event occurs. Figure
shows a classification of all contact sets of vertices of S(6) at which an event (except vertex events)
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Figure 11: Classification of contact sets. Symmetric cases are omitted.

occurs. No contact set of types Y1 or Y, contains a diagonal contact, while contact sets of other
types contain a diagonal contact. We first show that the number of a-triangles satisfying contacts
sets of types Y1 and Y3 is O(n?). Then we show that the number of a-triangles satisfying contact
sets of other types is also O(n?).

Lemma 19. There are O(n?) awis-aligned a-triangles satisfying a contact set of type Y1 or Ya.

Proof. Any contact set of type Y1 or Yo contains vertices of P. For a vertex v of P, there is
at most one axis-aligned a-triangle which satisfies a contact set of type Y; containing v. For
any two polygon vertices v; and wvg, there is at most one axis-aligned a-triangle which satisfies
a contact set of type Y, containing v; and ve. Thus, there are O(n?) axis-aligned a-triangles
satisfying a contact set of type Y1 or Ys. O

To count all axis-aligned a-triangles satisfying a contact set of a type Y; for i = 3,...,6, we
consider such triangles whose diagonal contains a reflex vertex of P. For a reflex vertex v of P,
let P'(v) = (Vis(v) N Visa (1 (v))) U (Vis(v) N Visg(Nrta(v))) U (Visrta(nx(v)) N Visz(r4a(v))).
See Figure (a). Then, every axis-aligned a-triangle with v on its diagonal is inscribed in P’(v).
The gray triangles and their contacts in Figure [11] show axis-aligned a-triangles T satisfying a
contact set of a type Y; for ¢ = 3,...,6 with their diagonals containing v and their contact sets
with respect to P’'(v).

Lemma 20. For a reflex vertex v of P, the number of axis-aligned a-triangles satisfying a contact
set of type Y; fori=3,...,6 and containing v on their diagonals is O(n).
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Vis(v) N Visa (1 (v))

Visapr (1x(v)) N Visz (Nrta(v)) \
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Figure 12: (a) Preprocessing for computing a-triangles satisfying a contact set of type Y;
for i = 3,...,6. (b) A quadruplet (v,eq,ez2,e3) that can be a contact set of type Yp. Let
t = 0r—p(P'(v),v).

Proof. Let T(v), R(v), and D(v) be the polygonal chains of P’(v) from d,(P,v) to v, from v to
Srta(P,v), and from dr1o(P,v) to d-(P,v) in clockwise, respectively. See Figure [12[b).

For a vertex r of T'(v), there is at most one axis-aligned a-triangle which satisfies a contact
set of type Y3, contains v on its diagonal, and contains a corner at r. Thus, there are O(n)
axis-aligned a-triangles satisfying a contact set of type Ys.

By the same reason, there are a constant number of a-triangles satisfying a contact set of
type Yy for each vertex of T'(v), and a constant number of a-triangles satisfying a contact set of
type Ys for each vertex of D(v).

Now we count the number of quadruplets of elements including v that can form a contact set of
type Ye. This quadruplet changes only if n:_g(v), n27—0(v), Nrta(0z—a(P'(v),v)) meets another
vertex of P'(v). Since n;_g(v) and no,_g(v) rotate clockwise around v, and 144 (d,—g(P'(v),v))
moves rightwards while increasing 6, each of the rays meets a vertex of P/(v) at most once.
See Figure (b) Thus, there are O(n) contact sets of type Y containing v as a diagonal
contact. For a contact set C' = {v, e, e, e3} of type Y containing v as a diagonal contact, we
can find the number of axis-aligned a-triangles satisfying C' in a way similar to the proof on
type Xz of Lemma [16] If there is an axis-aligned (o, 07)-triangle T satisfying C, then there are
two axis-aligned (o, 6)-triangles 77(0) and T"(6) such that T"(0) satisfies {v,e1,e2} and T"(0)
satisfies {v, e2, e3} and area(T') = area(T"(6r)) = area(T”(0r)). Since each area function consists
of a constant number of trigonometric functions with period 2, there are O(1) distinct angles at
which {v, e1, e, es} is feasible.

Therefore, the number of axis-aligned a-triangles satisfying a contact set of each type in
Figure except types Y1 and Y, and containing v on their diagonals is O(n) for each v. [

By Lemmas [19| and we can conclude with the following lemma.

Lemma 21. There are O(n?) events, except vertex events, that occur to S(0) while increasing 0
from 0y to ™ — .

19



4.1.2 Maintaining the subdivision while increasing 6

To capture the combinatorial changes and maintain S(#) while increasing 0, we maintain the
same data structures defined in Section but with different equations for computing angles
at which an event occurs. By following the same initialization and update steps in Section [3.2.1]
we can construct and maintain subdivision S(#) while increasing 6. By Lemmas 12| and ﬂ, we
have following lemma.

Lemma 22. We can construct the subdivision S(0) of P and maintain it in O(n?logn) time
using O(n) space while increasing 0 from Oy to ™ — a.

4.1.3 Computing the largest axis-aligned a-triangles

If an event occurs at a vertex w of the subdivision and an angle §, C'(w) changes. We find all
feasible intervals of contact sets while maintaining the subdivision. We can compute the maximal
axis-aligned a-triangle satisfying a contact set in O(1) time if a feasible interval is given. Thus,
we have the following theorem by Lemma [22]

Theorem 23. Given a simple polygon P with n vertices in the plane and an angle o, we can
compute a mazimum-area azis-aligned a-triangle that can be inscribed in P in O(n?logn) time
using O(n) space.

4.2 Largest a-triangles of arbitrary orientations

To find a largest a-triangle of arbitrary orientations, we follow the approach by Melissaratos
et al. [17] in computing a largest triangle with no restrictions in a simple polygon, with some
modification. Their algorithm considers all triangles but we consider a-triangles only. They
divide the cases by the number of corners of the triangle lying on the boundary of P. They
denote by m-case the case that m corners of a triangle lie on the boundary of P, for m =0, 1,2, 3.

Consider a contact set C' consisting of at most three elements. Then any a-triangle satisfying
C' can be enlarged into another a-triangle while satisfying C. So, the contact set of a largest
a-triangle consists of at least four elements. Also, for triangles of the 0O-case, their contact sets
consists of five elements and the side opposite to the fixed angle corner contains two side contacts.
See Figure [L3|i). This can be proved in a way similar to Lemma 6.3 in [I7].

Figure [T3] illustrates the classification of contact sets of the largest a-triangles for each case.

For cases (i) and (ii) of Figure we fix two reflex vertices C' and D lying on the same
side and find the points GG, H where the line containing C'D intersects the boundary of P with
GH C P. See Figure (a) and (b). Then by walking on the shortest-path maps of G and H
along the boundary of P in a way similar to [I7], we can compute a largest a-triangle for each
case using O(n?*) time.

For cases (iv), (vii), (x) of Figure we find the largest a-triangle satisfying a contact set
C without any restriction on the boundary of P. If the largest a-triangle satisfying C' is not
inscribed in P, then the maximum area is achieved at the boundary angles of the feasible intervals
of C, which are handled for other cases.

A contact set C' of the remaining cases contains at most one side contact for each side of the
a-triangle satisfying C. For each of these cases, we find a largest a-triangle that can be inscribed
in P using the method in [I7]. We decompose the problem into O(n*) simple optimization
problems and add a constraint such that one interior angle of triangles must be « to each
optimization problem. Since the original optimization problem can be solved in constant time,
our problem can also be solved in O(1) time.
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Figure 13: Classification of the largest a-triangles
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Figure 14: (a) Configuration (i) in Figure[I3] (b) Configuration (ii) in Figure [13]

Theorem 24. Given a simple polygon P with n vertices in the plane and an angle o, we can
compute a mazimum-area a-triangle inscribed in P in O(n*) time using O(n) space.
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