Linear Size Planar Manhattan Network for Convex Point Sets

Satyabrata Jana ${ }^{\text {a,* }}$, Anil Maheshwari ${ }^{\text {b }}$, Sasanka Roy ${ }^{\text {a }}$
${ }^{a}$ Indian Statistical Institute, Kolkata, India
${ }^{b}$ School of Computer Science, Carleton University, Ottawa, Canada

Abstract

Let $G=(V, E)$ be an edge weighted geometric graph such that every edge is horizontal or vertical. The weight of an edge $u v \in E$ is its length. Let $W_{G}(u, v)$ denote the length of a shortest path between a pair of vertices u and v in G. The graph G is said to be a Manhattan network for a given point set P in the plane if $P \subseteq V$ and $\forall p, q \in P, W_{G}(p, q)=\|p q\|_{1}$. In addition to P, graph G may also include a set T of Steiner points in its vertex set V. In the Manhattan network problem, the objective is to construct a Manhattan network of small size for a set of n points. This problem was first considered by Gudmundsson et al. [1]. They give a construction of a Manhattan network of size $\Theta(n \log n)$ for general point set in the plane. We say a Manhattan network is planar if it can be embedded in the plane without any edge crossings. In this paper, we construct a linear size planar Manhattan network for convex point set in linear time using $\mathcal{O}(n)$ Steiner points. We also show that, even for convex point set, the construction in Gudmundsson et al. 1] needs $\Omega(n \log n)$ Steiner points and the network may not be planar.

Keywords: Convex point set, L_{1} norm, Manhattan Network, Histogram, Planar Graph, Steiner points, Plane Graph

[^0]
1. Introduction

In computational geometry, constructing a minimum length Manhattan network is a well-studied area 2. A graph $G=(V, E)$ is said to be a Manhattan network for a given point set P in the plane if $P \subseteq V$ and $\forall p, q \in P, W_{G}(p, q)=\|p q\|_{1}$, where $W_{G}(u, v)$ denotes the length of a shortest path between a pair of vertices u and v in G. The graph G may also include a set T of Steiner points in its vertex set V. A Minimum Manhattan network (MMN) problem on P is to construct a Manhattan network of minimum possible length. Below in Figure 1(a) and Figure 1(b), we show examples of a Manhattan network and a Minimum Manhattan network on the same set of points.

(a)

(b)

Figure 1: (a) A Manhattan network, and (b) A minimum Manhattan network.

MMN problem has a wide number of applications in city planning, network layouts, distributed algorithms [3, VLSI circuit design [2, and computational biology [4]. The MMN problem was first introduced in 1999 by Gudmundsson et al. [2]. Several approximation algorithms (with factors 4 [1], 2 [5], and 1.5 [6]) with time complexity $\mathcal{O}\left(n^{3}\right)$ have been proposed in the last few years. Also, there are $\mathcal{O}(n \log n)$ time approximation algorithms with factors 8 [1], 3 [7], and 2 [8. Recently Chin et al. 9] proved that the decision version of the MMN problem is strongly NP-complete. Recently, Knauer et al. [10] showed that this problem is fixed parameter tractable.

In 2007, Gudmundsson et al. [1] considered a variant of the MMN problem where the goal is to minimize the number of vertices(Steiner) and edges. In $\mathcal{O}(n \log n)$ time, they construct a Manhattan network with $\mathcal{O}(n \log n)$ ver-
tices and edges using divide and conquer strategy. They also proved that there are point sets in \mathbb{R}^{2} where every Manhattan network on these points will need $\Omega(n \log n)$ vertices and edges.

A set of points is said to be a convex point set if all of the points are vertices of their convex hull. A plane Manhattan network is a Manhattan network without non-crossing edges. Gudmundsson et al. [1] showed that there exists a convex point set for which a plane Manhattan network requires $\Omega\left(n^{2}\right)$ vertices and edges. Now we explain the construction of the plane Manhattan network given by Gudmundsson et al. [1]. To keep it simple, we would use the same notations as they use. Let P be a set of points in the plane as follows:

$$
P=\bigcup_{i=1}^{n-1}\left\{\left(\frac{i}{n}, 0\right),\left(\frac{i}{n}, 1\right),\left(0, \frac{i}{n}\right),\left(1, \frac{i}{n}\right)\right\}
$$

If G is a plane Manhattan network of P then there must be a shortest L_{1} path between every pair of points $\left(\frac{i}{n}, 0\right),\left(\frac{i}{n}, 1\right)$ and $\left(0, \frac{i}{n}\right),\left(1, \frac{i}{n}\right)$. These paths need to be orthogonal straight line segments because in the first case the x coordinates are the same and in the second case the y-coordinates are the same. This would force us to add Steiner points at all the $\Theta\left(n^{2}\right)$ intersection points. For an illustration, see Figure 2(a).

(a)

(b)

(c)

Figure 2: (a) Lower bound construction of plane Manhattan network of P (b) Planar Manhattan network G^{*} of P and (c) Planar embedding of G^{*}. Blue circles represent the points in P and red circles represent Steiner points.

A natural question that arises is what if we want the network to be planar
(and not necessarily plane). We say a Manhattan network is planar if it can be embedded in the plane without any edge crossings. For the above example, we can construct a planar Manhattan network $G=(V=P \cup T, E)$ of $\mathcal{O}(n)$ size as follows: Note that, P lies on the boundary of a square $Q=[(0,0),(0,1)] \times$ $[(1,0),(1,1)]$ (see Figure 2(b)). We add four Steiner points $q_{00}=(0,0), q_{01}=$ $(0,1), q_{10}=(1,0), q_{11}=(1,1)$, and we define $T=\left\{q_{00}, q_{01}, q_{10}, q_{11}\right\}$. For $i=1,2, \ldots, n-1$, we add the edges between every pair of consecutive points (including these four Steiner points) on the boundary of Q. We also add the edges between every pair of points $\left(\frac{i}{n}, 0\right),\left(\frac{i}{n}, 1\right)$ and $\left(0, \frac{i}{n}\right),\left(1, \frac{i}{n}\right)$. To show that G is a Manhattan network, we prove that $\forall p, q \in P, W_{G}(p, q)=\|p q\|_{1}$. Following is the description of all these paths in G. The paths between every pair of points $\left(\frac{i}{n}, 0\right),\left(\frac{i}{n}, 1\right)$ and $\left(0, \frac{i}{n}\right),\left(1, \frac{i}{n}\right)$ is a straight line segment (horizontal and vertical). The paths between every pair of points $\left(\frac{i}{n}, 0\right),\left(0, \frac{j}{n}\right)$ go through q_{00}. Likewise, the paths between every pair of points $\left(0, \frac{i}{n}\right),\left(\frac{j}{n}, 1\right)$ go through q_{01}, the paths between every pair of points $\left(0, \frac{i}{n}\right),\left(\frac{j}{n}, 1\right)$ go through q_{10}, the paths between every pair of points $\left(\frac{i}{n}, 1\right),\left(1, \frac{j}{n}\right)$ go through q_{11}. Between every pair of points $\left(\frac{i}{n}, 0\right),\left(\frac{j}{n}, 1\right)$ there exists a path through $\left(\frac{i}{n}, 1\right)$. Similarly, between every pair of points $\left(0, \frac{i}{n}\right),\left(1, \frac{j}{n}\right)$ there exists a path through $\left(1, \frac{i}{n}\right)$. To show that G is planar, we provide its planar embedding. For the planar embedding of G, we keep the edges between every pair of points $\left(\frac{i}{n}, 0\right)$ and $\left(\frac{i}{n}, 1\right)$ inside the interior face of Q and draw the edges between $\left(0, \frac{i}{n}\right)$ and ($1, \frac{i}{n}$) in the exterior face of Q. For an illustration, see Figure 2(c).

A closely related problem is to construct geometric spanner from a given point set. For a real number $t \geq 1$, a geometric graph $G=(S, E)$ is a t-spanner of S if for any two points p and q in $S, W_{G}(p, q) \leq t|p q|$. The stretch factor of G is the smallest real number t such that G is a t-spanner of S. A large number of algorithms have been proposed for constructing t-spanners for any given point set [3]. Keil et al. [11] showed that the Delaunay triangulation of S is a 2.42 -spanner of S. For convex point sets, Cui et al. 12 proved that the Delaunay triangulation has a stretch factor of at most 2.33. Xia 13 provides a 1.998 -spanner for general point sets. Steiner points have also been
used for constructing spanners. For example, Arikati et al. [14] use Steiner points to answer exact shortest path queries between any two vertices of a geometric graph. Authors [14] consider the problem of finding an obstacleavoiding L_{1} path between a pair of query points in the plane. They find a $(1+\epsilon)$ spanner with space complexity $\mathcal{O}\left(n^{2} / \sqrt{r}\right)$, preprocessing time $\mathcal{O}\left(n^{2} / \sqrt{r}\right)$ and $\mathcal{O}(\log n+\sqrt{r})$ query time, where ϵ is an arbitrarily small positive constant and r is an arbitrary integer, such that $1<r<n$. Recently, Amani et al. [15] show how to compute a plane 1.88-spanner in L_{2} norm for convex point sets in $\mathcal{O}(n)$ time without using Steiner points. For a general point set of size n, Gudmundsson et al. 11 construct a $\sqrt{2}$-spanner (may not be planar) in L_{2} norm and its size is $\mathcal{O}(n \log n)$. But as a corollary of our construction in this paper, for a convex point set, we obtain a planar $\sqrt{2}$ spanner in L_{2} norm using $\mathcal{O}(n)$ Steiner points. The MMN problem for a point set is same as the problem of finding a 1 -spanner in L_{1}-metric [9]. Given a rectilinear polygon with n vertices, in linear time, Schuierer [16] constructs a data structure that can report the shortest path (in L_{1}-metric) for any pair of query points in that polygon in $\mathcal{O}(\log +k)$ time where k is the number of segments in the shortest path. De Berg [17] shows that given two arbitrary points inside a polygon, the L_{1}-distance between them can be reported in $\mathcal{O}(\log n)$ time. In this paper, we consider the following problem.

Manhattan network problem

Input: A set S of n points in convex position.
Goal: To construct a linear size planar Manhattan network.

1.1. Our Contributions

- In linear time, we construct a planar Manhattan network G for a convex point set S of size n. G uses $\mathcal{O}(n)$ Steiner points as vertices.
- We show that the construction in Gudmundsson et al. 1] needs $\Omega(n \log n)$ points even for a convex point set and may not result in a planar graph.

1.2. Organization

In Section 2, we sketch the $\mathcal{O}(n \log n)$ construction of Gudmundsson et al. [1]. We prove that, even for convex point set, their construction needs $\Omega(n \log n)$ points. We also show that their construction is not planar by considering a convex point set of 16 points for which their Manhattan network has a minor homeomorphic to $K_{3,3}$. In Section 3, we provide our construction of $\mathcal{O}(n)$ size planar Manhattan network G for a convex point set S.

2. Manhattan Network for General Point Sets

For general point sets, Gudmundsson et al. [1] proved the following theorem.

Theorem 1. [1] Let P be a set of n points. A Manhattan network of P consisting of $\Theta(n \log n)$ vertices and edges can be computed in $\mathcal{O}(n \log n)$ time.

Figure 3: Construction of the Manhattan network for S. Points in S are in blue color and Steiner points are in red color.

Their construction is as follows: Sort the points in P according to their x coordinate. Let m be the median x-coordinate in P. Then draw a vertical line L_{m} through ($m, 0$). For each point p of S, take an orthogonal projection on the line L_{m}. Add Steiner points at each projection and join p with its corresponding projection point. Then recursively do the same, on the $\frac{n}{2}$ points that have less x-coordinate than p and $\frac{n}{2}$ points that have greater x-coordinate than p. Add a Steiner point at each projection. Figure 3 illustrates the algorithm of Gudmundsson et al. 1.

Now we show that even for convex point set, this construction will need $\Omega(n \log n)$ Steiner points. In Figure 4 , for a set of sixteen points in convex position, we show that their network is not planar as it has a minor homeomorphic to $K_{3,3}$ and the network uses 38 Steiner points.

Figure 4: (a) Manhattan network G_{A} of a convex point set $A=\left\{p_{1}, p_{2}, \ldots, p_{16}\right\}$ (blue color). Points colored in red are Steiner points, and (b) G_{A}^{\prime}, subgraph of G_{A}, that is homeomorphic to $K_{3,3}$.

3. Planar Manhattan Network for a Convex Point Set

In this section, we construct a linear size planar Manhattan network G for a convex point set S. G uses $\mathcal{O}(n)$ Steiner points and can be constructed in linear time. We organize this section as follows: After introducing some definitions and notations in Section 3.1, we construct a histogram partition $\mathcal{H}(\mathcal{O C P}(S))$ of an ortho-convex polygon $\mathcal{O C P}(S)$ of the convex point set S in Section 3.2.

In Section 3.3 we construct our desired graph $G=(V, E)$ where $S \subseteq V$. In Section 3.4 we prove that G is a Manhattan network for S. In Section 3.5 we show that G is planar. In Section 4 we draw conclusions and state some interesting open problems.

3.1. Preliminaries

A polygonal chain, with n vertices in the plane, is defined as an ordered set of vertices $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, such that any two consecutive vertices v_{i}, v_{i+1} are connected by the line segment $\overline{v_{i} v_{i+1}}$, for $1 \leq i<n$. It is said to be closed when it divides the plane into two disjoint regions. A polygon is a bounded region which is enclosed by a closed polygonal chain in \mathbb{R}^{2}. A line segment is orthogonal if it is parallel either to the x-axis or y-axis.

Definition 1. (Orthogonal polygon) A polygon is said to be an orthogonal polygon if all of its sides are orthogonal.

Definition 2. (Ortho-convex polygon) [18] An orthogonal polygon \mathcal{P} is said to be ortho-convex if every horizontal or vertical line segment connecting a pair of points in \mathcal{P} lies totally within \mathcal{P}.

Definition 3. (Shortest L_{1} path) A path between two points p and q is said to be a shortest L_{1} path between them if the path consists of orthogonal line segments with total length $\|p q\|_{1}$.

Lemma 1. [19] For all pair of points in an ortho-convex polygon \mathcal{P}, there exist a shortest L_{1} path between them in \mathcal{P}.

3.2. $\mathcal{O C P}(S)$ and $\mathcal{H}(\mathcal{O C P}(S))$

Let $S=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ be a convex point set of size n in \mathbb{R}^{2}. For any point $p \in S$, let $x(p)$ and $y(p)$ be its x and y-coordinate, respectively. We assume that the points in S are ordered with respect to an anticlockwise orientation along their convex hull. Without loss of generality let this ordering be $p_{1}, p_{2}, \ldots, p_{n}$ and also we assume that p_{1} is the top most point in S, i.e., point having the largest y-coordinate in S (for multiple points having largest y-coordinate, we
take the one that has smallest x-coordinate). We denote the right most point of S as r. Analogously, let l, t, and b denote the left most, the top most and the bottom most point of S, respectively. So $t=p_{1}$. We will consider the point set for the case that $x\left(p_{1}\right)<x(b)$. For the case of $x\left(p_{1}\right) \geqslant x(b)$, both the construction and the proof are symmetric (by taking the mirror image of the point set with respect to the line $y=y\left(p_{1}\right)+1$).

A polygonal chain is said to be a $x y$-monotone if any orthogonal line segment intersects the chain in a connected set. Now we will construct an orthoconvex polygon $\mathcal{O C P}(S)$, where points in S lie on the boundary of $\mathcal{O C P}(S)$. $\mathcal{O C P}(S)$ consists of four $x y$-monotone chains. Let us denote these chains as $C_{r t}, C_{t l}, C_{l b}$, and $C_{b r} . C_{r t}$ defines a $x y$-monotone chain with the endpoints at r and t. Analogously, $C_{t l}, C_{l b}$, and $C_{b r}$ are defined. While constructing the chain $C_{r t}$, we do the following: For any pair of consecutive points p, q, if $x(p)>x(q)$ then we draw two line segments $\overline{p p^{\prime}}, \overline{q p^{\prime}}$, where $p^{\prime}=(x(p), y(q))$, else we extend the chain upto the next point. In Algorithm 1 and Algorithm 2 , we describe the construction of $C_{r t}$ and $C_{b r}$ respectively. Construction for the all other monotone chains follows the same set of rules. See Figure 5 for an illustration.

```
Algorithm 1 Construction of the chain \(C_{r t}\)
Input: A set of \(k\) points \(p_{i}(=r), p_{i+1}, \ldots, p_{i+k-1}(=t)\) such that
    \(x\left(p_{j+1}\right) \leqslant x\left(p_{j}\right), y\left(p_{j+1}\right) \geqslant y\left(p_{j}\right)\) for \(i \leqslant j<(i+k-1)\)
```

Output: The chain $C_{r t}$
for $j=i$ to $(i+k-2)$ do if $x\left(p_{j}\right)=x\left(p_{j+1}\right)$ or $y\left(p_{j}\right)=y\left(p_{j+1}\right)$ then

Join the line segments $\overline{p_{j} p_{j+1}}$ else

Create a Steiner point $p_{j, j+1}=\left(x\left(p_{j}\right), y\left(p_{j+1}\right)\right)$
Join the line segments $\overline{p_{j} p_{j, j+1}}$ and $\overline{p_{j, j+1} p_{j+1}}$

(a)

(b)

Figure 5: Construction of chains (a) $C_{r t}$ and (b) $C_{b r}$ from a given convex point set (blue color)

```
Algorithm 2 Construction of the chain \(C_{b r}\)
Input: A set of \(m\) points \(p_{i}(=b), p_{i+1}, \ldots, p_{i+m-1}(=r)\) such that
\[
x\left(p_{j+1}\right) \geqslant x\left(p_{j}\right), y\left(p_{j+1}\right) \geqslant y\left(p_{j}\right) \text { for } i \leq j<(i+m-1)
\]
```

Output: The chain $C_{b r}$
for $j=i$ to $(i+m-2)$ do if $x\left(p_{j}\right)=x\left(p_{j+1}\right)$ or $y\left(p_{j}\right)=y\left(p_{j+1}\right)$ then Join the line segments $\overline{p_{j} p_{j+1}}$ else

Create a Steiner point $p_{j, j+1}=\left(x\left(p_{j+1}\right), y\left(p_{j}\right)\right)$
Join the line segments $\overline{p_{j} p_{j, j+1}}$ and $\overline{p_{j, j+1} p_{j+1}}$
In Figure 6, we illustrate an example of a convex point set S of size 15 and the ortho-convex polygon $\mathcal{O C} \mathcal{P}(S)$ is shown in Figure 6(b)

Definition 4. (Histogram) A histogram H is an orthogonal polygon consisting of a boundary edge e, called as its base, such that for any point $p \in H$, there exists a point $q \in e$ such that the line segment $\overline{p q}$ is orthogonal and it lies completely in H.

If the base is horizontal (respectively, vertical) we say it is a horizontal (respectively, vertical) histogram. If its interior is above the base it is called an upper histogram. Similarly, we can define the lower, left, and right histograms. Now we construct a histogram partition $\mathcal{H}(\mathcal{O C P}(S))$ of $\mathcal{O C P}(S)$.

Figure 6: (a) Example of a set S of 12 points in convex position, (b) $\mathcal{O C \mathcal { P }}(S)$ of S.

Let $L=\overline{p q}$ be a vertical line segment such that both the points p and q are on the boundary of $\mathcal{O C P}(S)$. We define H_{L}^{r} and H_{L}^{l} to denote a right-vertical and left-vertical histogram, respectively, with base $L=\overline{p q}$. Similarly, for a horizontal line segment $L^{\prime}=\overline{p^{\prime} q^{\prime}}$, where both the points p^{\prime} and q^{\prime} are on the boundary of $\mathcal{O C P}(S)$, we define $H_{L^{\prime}}^{u}$ and $H_{L^{\prime}}^{b}$, to denote an upper-horizontal and lower-horizontal histograms, respectively, with base $L^{\prime}=\overline{p^{\prime} q^{\prime}}$. Let $\operatorname{proj}_{L}(p)$ be the orthogonal projection of the point p on the line containing the segment L. For a set A of orthogonal line segments and a point set S, we say A can see S if $\forall p \in S$ there is at least one line segment $L \in A$ such that $\operatorname{proj}_{L}(p) \in L$. For a vertical (respectively, horizontal) line segment L, we define $x(L)$ (respectively, $y(L))$ to be the x-coordinate (respectively, y-coordinate) of L.

We obtain a histogram partition $\mathcal{H}(\mathcal{O C P}(S))$ of $\mathcal{O C P}(S)$ by recursively drawing vertical and horizontal lines as follows (see Figure 8):

Step 1 Let $q_{1}\left(\in C_{l b}\right)$ be the intersection point of the boundary of $\mathcal{O C P}(S)$ with the vertical line containing p_{1}. First, we draw a vertical line segment $L_{1}=\overline{p_{1} q_{1}}$. We define two sets $S\left(H_{L_{1}}^{l}\right)$ and $S\left(H_{L_{1}}^{r}\right)$ such that $S\left(H_{L_{1}}^{l}\right)=$ $\left\{q \in S: y(t) \geq y(q) \geq y\left(q_{1}\right)\right.$ and $\left.x(q) \leq x\left(q_{1}\right)\right\}, S\left(H_{L_{1}}^{r}\right)=\{q \in S: y(t) \geq$ $y(q) \geq y\left(q_{1}\right)$ and $\left.x(q) \geq x\left(q_{1}\right)\right\}$. In this step, we construct two vertical histograms $H_{L_{1}}^{l}$ and $H_{L_{1}}^{r}$. If $S\left(H_{L_{1}}^{l}\right) \cup S\left(H_{L_{1}}^{r}\right)=S$, i.e., L_{1} can see S we
stop, else we proceed to Step 2.
Step 2: Let $q_{2}\left(\notin C_{l b}\right)$ be the intersection point of the boundary of $\mathcal{O C P}(S)$ with the horizontal line containing q_{1}. Then we draw a horizontal line segment $L_{2}=\overline{q_{1} q_{2}}$. Here we define the set $S\left(H_{L_{2}}^{b}\right)=\left\{z \in S: x\left(q_{1}\right) \leq\right.$ $x(z) \leq x\left(q_{2}\right)$ and $\left.y(z) \leq y\left(q_{2}\right)\right\}$. In this step, we construct the lower histogram $H_{L_{2}}^{b}$ with base L_{2}. If $S\left(H_{L_{1}}^{l}\right) \cup S\left(H_{L_{1}}^{r}\right) \cup S\left(H_{L_{2}}^{b}\right)=S$, i.e., $\left\{L_{1}, L_{2}\right\}$ can see S we stop, else we proceed to the next step.

Step 3: Let $q_{3}\left(\notin C_{r t}\right)$ be the intersection point of the boundary of $\mathcal{O C P}(S)$ with the vertical line containing q_{2}. Then we draw a vertical line segment $L_{3}=\overline{q_{2} q_{3}}$. Here we define the set $S\left(H_{L_{3}}^{r}\right)=\left\{w \in S: y\left(q_{2}\right) \geq y(w) \geq y\left(q_{3}\right)\right.$ and $\left.x(q) \geq x\left(q_{3}\right)\right\}$. In this step, we construct the right histogram $H_{L_{3}}^{r}$ with base L_{3}. If $S\left(H_{L_{1}}^{l}\right) \cup S\left(H_{L_{1}}^{r}\right) \cup S\left(H_{L_{2}}^{b}\right) \cup S\left(H_{L_{3}}^{r}\right)=S$, i.e., $\left\{L_{1}, L_{2}, L_{3}\right\}$ can see S we stop, else we proceed in the similar manner.

We assume that this process terminates after k steps, and we obtain a set \mathcal{L} of orthogonal line segments $\left\{L_{1}, L_{2}, \ldots L_{k}\right\}$ for some $k \in \mathbb{N}$ such that $\left\{L_{1}, L_{2}, \ldots, L_{k}\right\}$ can see S. In this process, we add k Steiner points $\left\{q_{i}: 1 \leq i \leq k\right\}$. Each q_{i} belongs to the boundary of $\mathcal{O C P}(S)$.

The process terminates in one of the four following configurations which are based on the position of the points b and r (see Figure 7).

Type-1 $\quad L_{k}$ is vertical and $\operatorname{proj}_{L_{k-1}}(b) \in L_{k-1}$, i.e., L_{k-1} sees b.
Type-2 $\quad L_{k}$ is vertical and $\operatorname{proj}_{L_{k-1}}(b) \notin L_{k-1}$.
Type-3 L_{k} is horizontal and $\operatorname{proj}_{L_{k-1}}(r) \in L_{k-1}$, i.e., L_{k-1} sees r.
Type-4 L_{k} is horizontal and $\operatorname{proj}_{L_{k-1}}(r) \notin L_{k-1}$.
From now onwards, we assume that $L_{1}, L_{2}, \ldots L_{k}$ are the segments inserted in $\mathcal{O C P}(S)$ while constructing $\mathcal{H}(\mathcal{O C P}(S))$. Let $\mathcal{L}=\cup_{i=1}^{n} L_{i}$. So for any point $p \in S$, there is at least one line segment $L \in \mathcal{L}$ such that $\operatorname{proj}_{L}(p) \in L$ and the segment $\overline{p \operatorname{proj}_{L}(p)}$ completely lies in $\mathcal{O C P}(S)$.

Figure 7: Types of the histogram containing b and r in $\mathcal{O C P}(S)$.

Lemma 2. $\mathcal{H}(\mathcal{O C P}(S))$ can be constructed in linear time.
Proof. Let $L_{i}(S)=\left\{p \in S: L_{i}\right.$ can see $\left.p\right\}$. First we show that $\mathcal{H}(\mathcal{O C P}(S))$ is a histogram partition in $\mathcal{O C P}(S)$, i.e., $\cup_{i=1}^{k} L_{i}(S)=S . L_{1}$ sees all points $q \in S$ having the property that $y\left(q_{1}\right) \leq y(q) \leq y(t)$ as $\mathcal{O C P}(S)$ is an ortho-convex polygon and these points are part of $x y$-monotone chains $\left\{C_{r t}, C_{t l}, C_{l b}, C_{b r}\right\}$. So $L_{1}(S)$ consists of all the points in S that lie above L_{2}. Moreover, all the points above L_{2} are part of the histogram defined by the base L_{1}. Now our concern is only about the points of S that are below L_{2}. Now L_{2} can see the points $q \in\left(S \backslash L_{1}(S)\right)$ having the property that $x\left(q_{1}\right) \leq x(q) \leq x\left(q_{2}\right)$. These points are part of the histogram with the base L_{2}. Now we can apply the same argument inductively. This leads to the claim that $\cup_{i=1}^{k} L_{i}(S)=S$, i.e., $\mathcal{L}=\left\{L_{1}, \ldots L_{k}\right\}$ can see S. Observe that the segments in \mathcal{L} can be computed by walking around the boundary of $\mathcal{O C P}(S)$ in linear time. Hence, $\mathcal{H}(\mathcal{O C P}(S))$ can be constructed in linear time.

Figure 8: $\mathcal{H}(\mathcal{O C P}(S))$ of a convex point set S

3.3. Construction of Planar Manhattan Network

Now we describe our construction of planar Manhattan network $G=(V, E)$ for a convex point set S. For an illustration of the steps of Algorithm 3, see Figure 9. Recall that $\operatorname{proj}_{L}(p)$ denotes the orthogonal projection of the point p on the line containing the segment L and $q(H)$ denotes the histogram containing $q \in S$ in $\mathcal{H}(\mathcal{O C P}(S))$. Let e_{1}, e_{2}, e_{3} be the bases of $l(H), b(H)$, and $r(H)$, respectively, where $l(H)$ (respectively $b(H)$ and $r(H)$) denotes the histogram containing l (respectively b and r) of S. First, we draw the segments $e_{1}^{\prime}=$ $\overline{l \operatorname{proj}_{e_{1}}(l)}, e_{2}^{\prime}=\overline{b \operatorname{proj}_{e_{2}}(b)}$, and $e_{3}^{\prime}=\overline{r \operatorname{proj}_{e_{3}}(r)}$ in $\mathcal{O C P}(S)$. Let $\mathcal{L}^{\prime}=\mathcal{L} \cup$ $\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right\}$. Next, for each $q \in S$, if $\operatorname{proj}_{L}(q) \in L$ where $L \in \mathcal{L}^{\prime} \cap q(H)$, we draw the line segment $\overline{q \operatorname{proj}_{L}(q)}$ in $\mathcal{O C P}(S)$. Then if both $H_{L_{k}}^{r}$ and e_{2} exist, we draw the segments $\operatorname{proj}_{e_{2}}(z)$, for each point $z \in S \cap H_{L_{k}}^{r}$. Also if both $H_{L_{k}}^{b}$ and e_{3} exist, we draw the segments $\operatorname{proj}_{e_{3}}(w)$, for each point $w \in S \cap H_{L_{k}}^{b}$. In this process, all the line segments we join, we add them into edges of T. Also all the extra points we created to make an orthogonal projection, we add them into the set T of Steiner vertices. Our algorithm ends with removing some specific line segments, that is stated in the Steps 28-32 in Algorithm 3. We illustrate this algorithm in Figure 11(a).

```
Algorithm 3 Construction of \(G=(V=S \cup T, E)\)
Input: \(\mathcal{H}(\mathcal{O C P}(S))\) of a convex point set \(S=\left\{p_{1}(=t), p_{2}, \ldots, p_{n}\right\}\).
```

Let $\left\{L_{1}, L_{2}, \ldots L_{k}\right\}$ be the segments and $\left\{q_{i}: 1 \leq i \leq k\right\}$ be the set of points inserted in $\mathcal{O C P}(S)$ during the construction of $\mathcal{H}(\mathcal{O C P}(S))$.
Output: A planar Manhattan network $G=(V=S \cup T, E)$ of S.
1: $S \leftarrow\left\{p_{i}: 1 \leq i \leq n\right\}$;
2: $T \leftarrow\left\{p_{i, i+1}: \quad 1 \leq i \leq n\right\} \cup\left\{q_{i}: \quad 1 \leq i \leq k\right\} ;$
$E \leftarrow\left\{\overline{p_{i} p_{i, i+1}}: 1 \leq i \leq(n-1)\right\} \cup\left\{\overline{p_{i+1} p_{i, i+1}}: 1 \leq i \leq(n-1)\right\} \cup \overline{p_{n} p_{n, 1}} \cup$
$\overline{p_{1} p_{n, 1}} ; \quad \triangleright$ see Figure 9(a)
4: Draw the line segments (if they do not exist) $e_{1}^{\prime}=\overline{l \operatorname{proj}_{e_{1}}(l)}, e_{2}^{\prime}=\overline{b \operatorname{proj}_{e_{2}}(b)}$,
and $e_{3}^{\prime}=\overline{r \operatorname{proj}_{e_{3}}(r)} \triangleright e_{1}, e_{2}$, and e_{3} are the bases of the histograms
$l(H), b(H)$, and $r(H)$, respectively.
$T=T \cup\left\{\operatorname{proj}_{e_{1}}(l), \operatorname{proj}_{e_{2}}(b), \operatorname{proj}_{e_{3}}(r)\right\}$
$\mathcal{L}^{\prime}=\left\{L_{1}, L_{2}, \ldots, L_{k}, e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right\}$
for each point $q \in S$ do
for each line $L \in \mathcal{L}^{\prime} \cap q(H)$ do
if $\operatorname{proj}_{L}(q) \in L$ then
$T=T \cup \operatorname{proj}_{L}(q) ;$
$E=E \cup \overline{q \operatorname{proj}_{L}(q)}$
\triangleright see Figure 9(b)
if Both $H_{L_{k}}^{r}$ and e_{2} exist then
for each point $z \in S \cap H_{L_{k}}^{r}$ do

$$
T=T \cup \operatorname{proj}_{e_{2}}(z)
$$

$$
E=E \cup \overline{z \operatorname{proj}_{e_{2}}(z)} \quad \triangleright \text { see Figure 9(c) }
$$

if Both $H_{L_{k}}^{b}$ and e_{3} exist then
for each point $w \in S \cap H_{L_{k}}^{b}$ do

$$
T=T \cup \operatorname{proj}_{e_{3}}(w)
$$

$$
E=E \cup \overline{w \operatorname{proj}_{e_{3}}(w)} \quad \triangleright \text { see Figure } 9(\mathrm{~d})
$$

for each horizontal line segment $L \in \mathcal{L}^{\prime}$ do
Let L contains k_{1} vertices $a_{1}, a_{2}, \ldots, a_{k_{1}}$, where $x\left(a_{i}\right)<x\left(a_{i+1}\right)$ for
$1 \leq i<k_{1}$
22: \quad for $1 \leq i \leq\left(k_{1}-1\right)$ do
23: $\quad E=E \cup \overline{a_{i} a_{i+1}} \quad \triangleright$ see Figure 9(e)

for each vertical line segment $L \in \mathcal{L}^{\prime}$ do

Let L contains k_{2} vertices $b_{1}, b_{2}, \ldots, b_{k_{2}}$, where $y\left(b_{i}\right)<y\left(b_{i+1}\right)$ for $1 \leq$ $i<k_{2}$

26: \quad for $1 \leq i \leq\left(k_{2}-1\right)$ do
27: $\quad E=E \cup \overline{b_{i} b_{i+1}}$

$$
\triangleright \text { see Figure } 9(\mathrm{~g})
$$

28: Delete the following three edges if they exist.
29: (i) The edge $\left(u_{1}, \operatorname{proj}_{e_{1}}(l)\right)$ on the line e_{1}^{\prime} provided that $u_{1} \neq l$. \triangleright see Figure 9(f)
30: (ii) For the Types 1 or 4 , the edge $\left(u_{2}, \operatorname{proj}_{e_{2}}(b)\right)$ on the line e_{2}^{\prime} provided that $u_{2} \neq b$.
\triangleright see Figure 9(h)
31: (iii) For the Types 2 or 3, the edge $\left(u_{3}, \operatorname{proj}_{e_{3}}(r)\right)$ on the line e_{3}^{\prime} provided that $u_{3} \neq r . \quad \triangleright$ see Figure 9(i)

32: For the Types 1 or $\mathbf{3}$, delete all the vertices v on the line L_{k} where $v \notin$ $\left\{\operatorname{proj}_{e_{3}}(r), \operatorname{proj}_{e_{2}}(b)\right\}$ and v is not a point on the boundary of $\mathcal{O C P}(S)$.
33: return $G=(S \cup T, E)$
Notice that for each point in S, Algorithm 3 adds at most three Steiner vertices in G. Specifically, $|V(G)| \leq 4 n$ and $|E(G)| \leq 5 n$. So both the number of vertices and edges in G are $\mathcal{O}(n)$. Now we prove the following lemma.

Lemma 3. For the point set S, G can be constructed in $\mathcal{O}(n)$ time.
Proof. The construction of G from S consists of three Steps. In Step 1, we construct $\mathcal{O C P}(\mathcal{S})$ from S. As for each point $p \in S$, we add exactly one Steiner point and draw two edges, $\mathcal{O C P}(S)$ consists of $2 n$ points including S. So, Step 1 takes $\mathcal{O}(n)$ time. In Step 2, we construct a histogram partition $\mathcal{H}(\mathcal{O C P}(S))$ of $\mathcal{O C P}(S)$. By Lemma 2, it needs $\mathcal{O}(n)$ time. In the final Step, we apply Algorithm 3 in $\mathcal{H}(\mathcal{O C P}(S))$ to construct our desired graph $G=(V, E)=(S \cup$ $T, E)$. Now we show Algorithm 3 runs in $\mathcal{O}(n)$ time. In this algorithm, Steps 1-4 take linear time. In Steps 7-11, for each point $q \in S$, we perform orthogonal

Figure 9: Illustration of the Steps in Algorithm 3 We maintain following convention of colors. We use purple color while drawing the line segment of the set \mathcal{L}^{\prime}. We use dashed black and dashed cyan line to denote vertical and horizontal projections, respectively of the points S to lines of \mathcal{L}^{\prime}. Blue and red color points identify points from S and Steiner points, respectively.
projections at most two times, i.e., we add at most two Steiner vertices and two edges. The points of S are given in sorted order along their convex hull. Also, we have an ordered set of k line segments $L_{1}, L_{2}, \ldots, L_{k}$ with the ordering based on the construction of $\mathcal{H}(\mathcal{O C P}(S))$. Now, for any pair of points p_{i} and p_{i+1},
where $1 \leq i \leq n$ if the point p_{i} has an orthogonal projection on L_{m} for some m then p_{i+1} can not have an orthogonal projection onto any line segment in $\mathcal{L} \backslash\left\{L_{m-1}, L_{m}, L_{m+1}\right\}$. So it takes $\mathcal{O}(n+k)$ time to perform all the projections in Steps 7-11 by walking around the boundary of $\mathcal{O C P}(S)$ once. The Steps 12-15 occur only when both $H_{L_{k}}^{r}$ and e_{2} exist. Now we have to do one more projection for each point of $S \cap H_{L_{k}}^{r}$ to e_{2}. So Steps 12-15 take linear time. Similarly, Steps 16-19 take linear time. In Steps 20-25, we add edges to E by looking at each line segment of $\left\{L_{1}, L_{2}, \ldots, L_{k}, e_{1}, e_{2}, e_{3}\right\}$. As the number of projections is linear so the number of edges we add in Steps 20-25 is also linear. In Step 26, we delete some edges from $\left\{e_{1}, e_{2}, e_{3}, L_{k}\right\}$. So the total time complexity is $\mathcal{O}(n+k)$. As $k \leq n$, Algorithm 3 produces G in $\mathcal{O}(n)$ time. Hence the proof.

3.4. G is a Manhattan Network

To show that G is a Manhattan network, we have to prove that G contains a shortest L_{1} path between every pair of points in S. Recall that $p(H)$ denotes the histogram containing $p \in S$ in $\mathcal{H}(\mathcal{O C P}(S))$ and $\mathcal{L}=\left\{L_{1}, L_{2}, \ldots L_{k}\right\}$ denotes the set of k segments inserted in $\mathcal{O C P}(S)$ while constructing $\mathcal{H}(\mathcal{O C P}(S))$. First we prove the following lemma.

Lemma 4. For any two points w and z in S, if $w(H) \neq z(H)$ then there always exist lines L and L^{\prime} such that $(i) \operatorname{proj}_{L}(w) \in L, \operatorname{proj}_{L^{\prime}}(z) \in L^{\prime}$ and (ii) if we draw a line L^{*} that contains line L (respectively, L^{\prime}) then w and z belong to opposite sides of L^{*}.

Proof. Let w and z be two points in S such that $w(H) \neq z(H)$. Without loss of generality we assume that $x(w)<x(z)$. By our construction of $\mathcal{H}(\mathcal{O C P}(S))$, $x\left(L_{1}\right)<x\left(L_{3}\right)<\ldots$ and $y\left(L_{2}\right)>y\left(L_{4}\right)>\ldots$ If $x(w) \leq x\left(L_{1}\right)$ then $L=L_{1}$. Let $x(w) \geq x\left(L_{1}\right)$ and i be the largest integer such that $x\left(L_{i}\right) \leq x(w)$. If L_{i+2} exists and $\operatorname{proj}_{L_{i+2}}(w) \in L_{i+2}$ then $L=L_{i+2}$, else $L=L_{i+1}$. Similarly let j be the largest integer such that $x\left(L_{j}\right) \leq x(z)$. If $\operatorname{proj}_{L_{j}}(z) \in L_{j}$ then $L^{\prime}=L_{j}$, else $L^{\prime}=L_{j+1}$.

Now we prove the following lemma.

Lemma 5. For each pair of points p_{i} and p_{j} of S where $1 \leq i, j \leq n$, there exists a shortest L_{1} path in G between them.

Proof. $\mathcal{O C P}(S)$ consists of four $x y$-monotone chains $C_{r t}, C_{t l}, C_{l b}$, and $C_{b r}$. Let p_{i} and p_{j} be two arbitrary points of S where $1 \leq i, j \leq n$. Let $\pi_{G}(a, b)=$ $\left\langle a, \ldots, v_{i}, \ldots, b\right\rangle$ denotes a shortest L_{1} path between a pair of vertices a and b in G. Let P_{1} and P_{2} be two paths from a to b and b to c, respectively. By $P_{1} \rightsquigarrow P_{2}$ we mean the path from a to c that is obtained by concatenating the paths P_{1} and P_{2}. The proof of this theorem can be divided into Case A and Case B.

Case A: Both $\boldsymbol{p}_{\boldsymbol{i}}$ and $\boldsymbol{p}_{\boldsymbol{j}}$ belong to the same $x y$-monotone chain: Each $x y$-monotone chain of the ortho-convex polygon $\mathcal{O C P}(S)$ is a Manhattan network for the points it contains.

Case B: $\boldsymbol{p}_{\boldsymbol{i}}$ and $\boldsymbol{p}_{\boldsymbol{j}}$ belong to different chains: We divide this case into two subcases B.1. and B.2.

Case B.1. $p_{i}(H)=p_{j}(H)$, i.e., p_{i}, p_{j} belong to the same histogram

(1) $\boldsymbol{p}_{\boldsymbol{i}}, \boldsymbol{p}_{\boldsymbol{j}} \in \boldsymbol{l}(\boldsymbol{H}):$ If $p_{i} \in C_{t l}, p_{j} \in C_{l b}$ then $\pi_{G}\left(p_{i}, p_{j}\right)=\left\langle p_{i}, \operatorname{proj}_{e_{1}^{\prime}}\left(p_{i}\right)\right\rangle$ $\rightsquigarrow \pi_{G}\left(\operatorname{proj}_{e_{1}^{\prime}}\left(p_{i}\right), \operatorname{proj}_{e_{1}^{\prime}}\left(p_{j}\right)\right) \rightsquigarrow\left\langle\operatorname{proj}_{e_{1}^{\prime}}\left(p_{j}\right), p_{j}\right\rangle$.
(2) $\boldsymbol{p}_{\boldsymbol{i}}, \boldsymbol{p}_{\boldsymbol{j}} \in \boldsymbol{r}(\boldsymbol{H}):$ For Types 1,2 , or 3 , if $p_{i} \in C_{r t}$ and $p_{j} \in C_{b r} \cup C_{l b}$, then $\pi_{G}\left(p_{i}, p_{j}\right)=\left\langle p_{i}, \operatorname{proj}_{e_{3}^{\prime}}\left(p_{i}\right)\right\rangle \rightsquigarrow \pi_{G}\left(\operatorname{proj}_{e_{3}^{\prime}}\left(p_{i}\right), \operatorname{proj}_{e_{3}^{\prime}}\left(p_{j}\right)\right) \rightsquigarrow$ $\left\langle\operatorname{proj}_{e_{3}^{\prime}}\left(p_{j}\right), p_{j}\right\rangle$. For Type 3, if $p_{i} \in C_{l b}$ and $p_{j} \in C_{b r}$ then $\pi_{G}\left(p_{i}, p_{j}\right)=$ $\left\langle p_{i}, \operatorname{proj}_{L_{k}}(b)\right\rangle \rightsquigarrow \pi_{G}\left(\operatorname{proj}_{L_{k}}(b), p_{j}\right)$. For Type 4, if $p_{i} \in C_{l b}$ and $p_{j} \in$ $C_{b r}$ then $\pi_{G}\left(p_{i}, p_{j}\right)=\left\langle p_{i}, \operatorname{proj}_{e_{2}^{\prime}}\left(p_{i}\right)\right\rangle \rightsquigarrow \pi_{G}\left(\operatorname{proj}_{e_{2}^{\prime}}\left(p_{i}\right), \operatorname{proj}_{e_{2}^{\prime}}\left(p_{j}\right)\right)$ $\rightsquigarrow\left\langle\operatorname{proj}_{e_{2}^{\prime}}\left(p_{j}\right), p_{j}\right\rangle$.
(3) $\boldsymbol{p}_{\boldsymbol{i}}, \boldsymbol{p}_{\boldsymbol{j}} \in \boldsymbol{b}(\boldsymbol{H}):$ For Types 1 or 3 , if $p_{i} \in C_{l b}$ and $p_{j} \in C_{b r} \cup C_{r t}$, then $\pi_{G}\left(p_{i}, p_{j}\right)=\left\langle p_{i}, \operatorname{proj}_{e_{2}^{\prime}}\left(p_{i}\right)\right\rangle \rightsquigarrow \pi_{G}\left(\operatorname{proj}_{e_{2}^{\prime}}\left(p_{i}\right), \operatorname{proj}_{e_{2}^{\prime}}\left(p_{j}\right)\right) \rightsquigarrow$ $\left\langle\operatorname{proj}_{e_{2}^{\prime}}\left(p_{j}\right), p_{j}\right\rangle$. For Type 1, (i) if $p_{i} \in C_{r t}$ and $p_{j} \in C_{b r}$ then $\pi_{G}\left(p_{i}, p_{j}\right)=\left\langle p_{i}, \operatorname{proj}_{L_{k}}(r)\right\rangle \rightsquigarrow \pi_{G}\left(\operatorname{proj}_{L_{k}}(r), p_{j}\right)$ or $\pi_{G}\left(p_{j}, p_{i}\right)=$ $\left\langle p_{j}, \operatorname{proj}_{L_{k-1}}\left(p_{j}\right)\right\rangle \rightsquigarrow \pi_{G}\left(\operatorname{proj}_{L_{k-1}}\left(p_{j}\right), p_{i}\right)$. (ii) if $p_{i} \in C_{l b}$ and $p_{j} \in$
$C_{r t}$ then the shortest L_{1} path between $\boldsymbol{p}_{\boldsymbol{i}}$ and $\boldsymbol{p}_{\boldsymbol{j}}$ in G is $\pi_{G}\left(p_{i}, p_{j}\right)=$ $\left\langle p_{i}, \operatorname{proj}_{e_{2}^{\prime}}\left(p_{i}\right)\right\rangle \rightsquigarrow \pi_{G}\left(\operatorname{proj}_{e_{2}^{\prime}}\left(p_{i}\right), \operatorname{proj}_{e_{2}^{\prime}}\left(p_{j}\right)\right) \rightsquigarrow\left\langle\operatorname{proj}_{e_{2}^{\prime}}\left(p_{j}\right), p_{j}\right\rangle$ or $\pi_{G}\left(p_{j}, p_{i}\right)=\left\langle p_{i}, \operatorname{proj}_{L_{k-1}}\left(p_{i}\right)\right\rangle \rightsquigarrow \pi_{G}\left(\operatorname{proj}_{L_{k-1}}\left(p_{i}\right), p_{j}\right)$. For Types 2 or 4 as $b(H)=r(H)$, it is similar as subcase (2) of B.1.
(4) $\boldsymbol{p}_{\boldsymbol{i}}, \boldsymbol{p}_{\boldsymbol{j}} \notin\{l(\boldsymbol{H}), \boldsymbol{b}(\boldsymbol{H}), \boldsymbol{r}(\boldsymbol{H})\}$: Let these histograms contain two elements say L and L^{\prime} of \mathcal{L}. In this case $\pi_{G}\left(p_{i}, p_{j}\right)=\left\langle p_{i}, \operatorname{proj}_{L}\left(p_{i}\right)\right\rangle \rightsquigarrow$ $\pi_{G}\left(\operatorname{proj}_{L}\left(p_{i}\right), \operatorname{proj}_{L}\left(p_{j}\right)\right) \rightsquigarrow\left\langle\operatorname{proj}_{L}\left(p_{j}\right), p_{j}\right\rangle$ or $\pi_{G}\left(p_{i}, p_{j}\right)=$ $\left\langle p_{i}, \operatorname{proj}_{L^{\prime}}\left(p_{i}\right)\right\rangle \rightsquigarrow \pi_{G}\left(\operatorname{proj}_{L^{\prime}}\left(p_{i}\right), \operatorname{proj}_{L^{\prime}}\left(p_{j}\right)\right) \rightsquigarrow\left\langle\operatorname{proj}_{L^{\prime}}\left(p_{j}\right), p_{j}\right\rangle$.

Case B.2. $\boldsymbol{p}_{\boldsymbol{i}}(\boldsymbol{H}) \neq \boldsymbol{p}_{\boldsymbol{j}}(\boldsymbol{H})$: First, we find line segments $L, L^{\prime} \in \mathcal{L}$ such that
(i) L can see p_{i}, L^{\prime} can see p_{j}, and (ii) if we draw a line L^{*} that contains line L (respectively, L^{\prime}) then p_{i} and p_{j} belong to opposite sides of L^{*}. By Lemma 4 both L and L^{\prime} exist in \mathcal{L} but it may happen that $L=L^{\prime}$ e.g., for the points p_{2} and $p_{n}, p_{2}(H) \neq p_{n}(H)$ with $L=L^{\prime}$. By the construction of G, both $\operatorname{proj}_{L}\left(p_{i}\right)$ and $\operatorname{proj}_{L^{\prime}}\left(p_{j}\right)$ belong to $T \subset V$. We complete this case by proving following lemma.

Lemma 6. Let w and z be two points in S such that $w(H) \neq z(H)$. Also let L and L^{\prime} be two segments such that $(i) \operatorname{proj}_{L}(w) \in L, \operatorname{proj}_{L^{\prime}}(z) \in L^{\prime}$ and (ii) if we draw a line L^{*} that contains line L (respectively, L^{\prime}) then w and z belong to opposite sides of L^{*}. Then there exist a shortest L_{1} path between $\operatorname{proj}_{L}(w)$ and $\operatorname{proj}_{L^{\prime}}(z)$ in G.

Proof. Without loss of generality, we assume that $x(w)<x(z)$. If $L=L^{\prime}$ then $\pi_{G}\left(\operatorname{proj}_{L}(w), \operatorname{proj}_{L^{\prime}}(z)\right)$ is along the line L. For example, if we take $w=p_{2}$ and $z=p_{n}$ then $L=L^{\prime}=L_{1}$. So we are left with the case when $L \neq L^{\prime}$. For example, in Figure 11(a), considering l as w and r as z we find $L=L_{1}$ and $L^{\prime}=L_{k}$. Rest of the proof can be divided into two cases. Recall that $\left\{L_{1}, L_{2}, \ldots L_{k}\right\}$ are the segments inserted in $\mathcal{O C P}(S)$ while constructing $\mathcal{H}(\mathcal{O C P}(S))$. The point set $\left\{q_{i}: 1 \leq i \leq k\right\}$ comes from the construction of $\mathcal{H}(\mathcal{O C P}(S))$. Assuming $l=q_{0}, L_{i}$ is the segment with end points q_{i-1} and q_{i}, where $1 \leq i \leq k$.

Case 1. L is vertical: Let $L=L_{m}$ for some $m, 1 \leq m \leq k$. So $L_{m}=$ $\overline{q_{m-1} q_{m}}$. By the construction of $\mathcal{H}(\mathcal{O C P}(S)), q_{m}$ is not only a point on the boundary of $\mathcal{O C P}(S)$ but also there exists a point say p_{j} in S such that $q_{m} \in \overline{p_{j, j-1} p_{j}}$. Now we divide this case into following two subcases.

Case 1.1 L^{\prime} is vertical: By similar argument as L, there exists a point $p_{j^{\prime}}$ such that $y\left(p_{j^{\prime}}\right) \geq y(z)$ and $p_{j^{\prime}} \in L^{\prime}$. For this case, a shortest L_{1} path between $\operatorname{proj}_{L}(w)$ and $\operatorname{proj}_{L^{\prime}}(z)$ in G is $\pi_{G}\left(\operatorname{proj}_{L}(w), q_{m}\right) \rightsquigarrow$ $\pi_{G}\left(q_{m}, p_{j}\right) \rightsquigarrow \pi_{G}\left(p_{j}, p_{j^{\prime}}\right) \rightsquigarrow \pi_{G}\left(p_{j^{\prime}}, \operatorname{proj}_{L^{\prime}}(z)\right)$. By repeatedly applying this argument we can find $\pi_{G}\left(p_{j}, p_{j^{\prime}}\right)$. For an illustration, see Figure 10(a).

Figure 10: (a) Both L and L^{\prime} are vertical. (b) L is vertical, L^{\prime} is horizontal.

Case $1.2 L^{\prime}$ is horizontal: By similar argument as L, there exists a point $p_{j^{\prime \prime}}$ such that $x\left(p_{j^{\prime \prime}}\right) \geq x(w)$ and $p_{j^{\prime \prime}} \in L^{\prime}$. Rest of this case is similar as case 1.1. Here a shortest L_{1} path between $\operatorname{proj}_{L}(w)$ and $\operatorname{proj}_{L^{\prime}}(z)$ in G is $\pi_{G}\left(\operatorname{proj}_{L}(w), q_{m}\right) \rightsquigarrow \pi_{G}\left(q_{m}, p_{j}\right) \rightsquigarrow \pi_{G}\left(p_{j}, p_{j^{\prime \prime}}\right) \rightsquigarrow$ $\pi_{G}\left(p_{j^{\prime \prime}}, \operatorname{proj}_{L^{\prime}}(z)\right)$. By repeatedly applying this argument we can find $\pi_{G}\left(p_{j}, p_{j^{\prime \prime}}\right)$. For an illustration, see Figure 10(b).

Case 2. L is horizontal : Proof for this case is similar as case 1.

3.5. Planarity of G

In this section, we show that the graph $G=(V, E)$ is planar by providing a planar embedding. For an illustration, see Figure 11(b).

(a)

(b)

Figure 11: (a) Output G of Algorithm 3 for point set in blue color. (b) Planar embedding of G.

The union of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is defined as the graph $\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$ [20]. We will make use of the following theorem regarding planar graphs.

Theorem 2. [21] A planar embedding of a graph can be transformed into another planar embedding such that any specified face becomes the exterior face.

Relation to \boldsymbol{k}-plane graphs [22]. A geometric graph $G=(V, E)$ is said to be k-plane garph for some $k \in N$ if E can be partitioned into k disjoint subsets, $E=$ $E_{1} \uplus E_{2} \cup \cdots \uplus E_{k}$, such that $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right), \ldots, G_{k}=\left(V, E_{k}\right)$ are all plane graphs, where \bullet represents the disjoint union. For a finite general point
set P in the plane, $\mathcal{G}_{k}(P)$ denotes the family of k-plane graphs with vertex set P. As per as our constrcution, the graph we construct to form a Manhattan network for convex point set is basically a 2 -plane graph.

Theorem 3. Graph G computed in Algorithm 3 is planar.

Proof. We decompose G into two subgraphs H and K such that $G=H \cup$ K. This decomposition depends on the line L_{k-1}. In order to construct the histogram partition in $\mathcal{O C P}(S), L_{k-1}$ may be horizontal or vertical. For Types 1 and $2, L_{k-1}$ is horizontal. For Types 3 and $4, L_{k-1}$ is vertical. We analyse each of the following two cases.

(a)

(b)

Figure 12: (a) The subgraph \boldsymbol{K} of G for Type 1 with the exterior face containing V^{\prime}. (b) planar embedding of \boldsymbol{K}. The edges of E_{b} are shown by dashed cyan segment.

Case 1. $\boldsymbol{L}_{\boldsymbol{k}-\mathbf{1}}$ is horizontal: H and K are the subgraphs of G induced by the vertices lying above and below, respectively of the line segment L_{k-1}, i.e., $V(H)=\left\{v: v \in V, y(v) \geq y\left(L_{k-1}\right)\right\}$, where $y\left(L_{k-1}\right)$ is the y-coordinate of any point on the segment L_{k-1}. Similarly, $V(K)=\left\{v: v \in V, y(v) \leq y\left(L_{k-1}\right)\right\}$. Let $V^{\prime}=V(H) \cap V(K)$. We want to show that G is planar, i.e., there exists a planar embedding G^{\prime} of G. If we are able to show that there exist two planar embeddings, H^{\prime} for H and K^{\prime} for K, such that V^{\prime} belongs to the exterior faces of both H^{\prime} and K^{\prime}, then we can obtain a planar embedding G^{\prime} of G by attaching
the embeddings of H^{\prime} and K^{\prime} along the exterior face. Now our target is to show that H and K have planar embeddings H^{\prime} and K^{\prime}, respectively, such that V^{\prime} is contained in the exterior face of both H^{\prime} and K^{\prime}. We define $V^{f} \subseteq V$ to denote the set of vertices of G along the boundary of $\mathcal{O C P}(S)$. To Get a planar embedding of G, we prove following two lemmas.

(a)

(b)

Figure 13: (a) The subgraph \boldsymbol{K} of G for Type 2 with the exterior face containing V^{\prime}. (b) planar embedding of \boldsymbol{K}. The edges of E_{k} are shown by dashed cyan segment.

Lemma 7. K has a planar embedding K^{\prime} such that V^{\prime} is contained in the exterior face of K^{\prime}.

Proof. Let $V_{k}^{f} \subseteq V$ be the set of vertices in G along the exterior face of K. So $V_{k}^{f}=\left(V^{f} \cap V(K)\right) \cup V^{\prime}$. For Type 1 , let E_{b} be the set of horizontal edges that have at least one adjacent vertex on the segment $e_{2}^{\prime}=\overline{b \operatorname{proj}_{L_{k-1}}(b)}$. In this case, we draw the edges E_{b} in the exterior face of K in such a way that we obtain a planar embedding of K. In the planar embedding, all Steiner points on the line segment $\overline{b u_{2}}$ will go to the exterior of the polygon along with its adjacent edges. For Type 2, let E_{k} be the set of horizontal edges that have at least one adjacent vertex on the line L_{k}. In this case, we draw the edges E_{k} in the exterior faces of K in such a way that we obtain a planar embedding of K. In the embedding, all Steiner points on the line segment L_{k} will go to the exterior of the polygon along with its adjacent edges. In this planar embedding, V^{\prime} still remains in the exterior face. Hence, we get a planar embedding K^{\prime} of
K such that V^{\prime} is contained in the exterior face of K^{\prime}. For an illustration see Figure 12 and Figure 13.

Lemma 8. H has a planar embedding H^{\prime} such that V^{\prime} is contained in the exterior face of H^{\prime}.

Proof. We prove this by weak induction. As L_{k-1} is horizontal, $(k-1)$ must be even. Let $(k-1)=2 m$ for some $m \in \mathbb{N}$. Let V_{i} consists of all the vertices in G on the line segment $L_{2 i}$ and G_{i} be the subgraph induced by the vertices lying on or above the line segment $L_{2 i}$, where $2 i \leq(k-1)$. So $G_{m}=H$. By induction, we prove that G_{m} is planar and it has a planar embedding H^{\prime} such that V^{\prime} is contained in the exterior face of H^{\prime}. Let $P(i)$ be the following statement: G_{i} is planar and it has a planar embedding G_{i}^{\prime} such that V_{i} is contained in the exterior face of G_{i}^{\prime}. Now we need to show $P(m)$ is true. We first show that the base case is true. Next we show the inductive step.

Figure 14: (a) The graph G_{1}. (b) A planar embedding of G_{1} with the exterior face containing V_{2}.

Base Case: $P(1)$ is true: We divide the edges of G_{1} into three sets E_{11}, E_{12}, and $E_{13} . \quad E_{11}$ is the set of edges in G_{1} that are along the boundary of the exterior face of G_{1}. E_{12} consists of all the edges in G_{1} that have one endpoint on the segment $L_{1} . E_{13}=E\left(G_{1}\right) \backslash\left(E_{11} \cup E_{12}\right)$. Let G_{11} be the subgraph of G_{1} consisting of the edges $E_{11} \cup E_{12}$, and G_{12} be the subgraph of G_{1} consisting of the edges $E_{11} \cup E_{13}$. So $G_{1}=G_{11} \cup G_{12}$, where both G_{11} and G_{12} are plane
graphs. In G_{11} there exists an interior face containing V_{1}. Let V_{12}^{f} be the set of vertices in the exterior face of G_{12}. By Theorem 2, we can transform the planar embedding G_{12} into another planar embedding G_{12}^{\prime} such that there exists an interior face, say f_{1}, that contains V_{12}^{f}. As V_{12}^{f} is the set of vertices in the exterior face of G_{11}, so we can attach G_{11} in f_{1} and obtain a planar embedding $G_{1}^{\prime \prime}$ of G_{1}. In $G_{1}^{\prime \prime}$ there exists an interior face containing V_{1}. Applying Theorem 2 we get a planar embedding G_{1}^{\prime} of G_{1} such that V_{1} is contained in the exterior face of G_{1}^{\prime}. We illustrate this step in Figure 14.

Figure 15: (a) The graph G with planar embedding G_{i}^{\prime} having exterior face containing V_{i}. (b) The graph G with planar embedding G_{i+1}^{\prime} having exterior face containing V_{i+1}.

Inductive Case: $P(i)$ is true $\Rightarrow P(i+1)$ is true: Assume that $P(i)$ is true, i.e., G_{i} has a planar embedding G_{i}^{\prime} such that V_{i} is contained in the exterior face of G_{i}^{\prime} (see Figure 15).

Let H_{1} be the subgraph of G_{i+1} induced by the vertices lying on or below the line containing $L_{2 i}$. Now $V_{i}=G_{i}^{\prime} \cap H_{1}$, also V_{i} is contained in the exterior face of G_{i}^{\prime}. As $G_{i+1}=G_{i} \cup H_{1}$ so in G_{i+1}, we can replace G_{i} by its planar embedding G_{i}^{\prime}. Now $G_{i+1}=G_{i}^{\prime} \cup H_{1}$. Now we divide the edges of G_{i+1} into three sets $E_{(i+1) 1}, E_{(i+1) 2}, E_{(i+1) 3}$. $E_{(i+1) 1}$ consists of edges in G_{i+1} that are along the boundary of the exterior face of $H_{1} . \quad E_{(i+1) 2}$ consists of edges in H_{1} that have one endpoint on the line containing $L_{2 i+1} . E_{(i+1) 3}=E\left(H_{1}\right) \backslash$ $\left(E_{(i+1) 1} \cup E_{(i+1) 2}\right)$. Let $G_{(i+1) 1}$ be the subgraph of G_{i+1} consisting of the edges
$E_{(i+1) 1} \cup E_{(i+1) 2} \cup E\left(G_{i}^{\prime}\right)$, and $G_{(i+1) 2}$ be the subgraph of G_{i+1} consisting of the edges $E_{(i+1) 1} \cup E_{(i+1) 3} \cup E\left(G_{i}^{\prime}\right)$. So $G_{i+1}=G_{(i+1) 1} \cup G_{(i+1) 2}$, where both $G_{(i+1) 1}$ and $G_{(i+1) 2}$ are plane graphs. In $G_{(i+1) 1}$ there exists an interior face containing V_{i+1}. Let $V_{(i+1) 2}^{f}$ be the set of vertices in the exterior face of $G_{(i+1) 2}$. By Theorem 2, we can transform the planar embedding $G_{(i+1) 2}$ into another planar embedding $G_{(i+1) 2}^{\prime}$ such that there exists an interior face, say f, that contains $V_{(i+1) 2}^{f}$. As $V_{(i+1) 2}^{f}$ is also the set of vertices in the exterior face of $G_{(i+1) 1}$, so we can attach $G_{(i+1) 1}$ in f and obtain a planar embedding $G_{i+1}^{\prime \prime}$ of G_{i+1}. In $G_{i+1}^{\prime \prime}$ there exists an interior face containing V_{i+1}. Applying Theorem 2, we get our desired planar embedding G_{i+1}^{\prime} of G_{i+1} such that V_{i+1} is contained in the exterior face of G_{i+1}^{\prime}.

Now by the induction hypothesis, $P(m)$ is true, i.e., G_{m} is planar and it has a planar embedding G_{m}^{\prime} such that V_{m} is contained in the exterior face of G_{m}^{\prime}. Now V_{m} consists of all the vertices on the line $L_{2 m}$. Now $2 m=k$ implies that $V_{m}=V^{\prime}$. Also $G_{m}=H$. So H has a planar embedding $H^{\prime}\left(=G_{m}^{\prime}\right)$ such that V^{\prime} is contained in the exterior face of H^{\prime}.

Case 2. $\boldsymbol{L}_{\boldsymbol{k}-\mathbf{1}}$ is vertical: Proof of the planarity of G for this case is similar to Case 1. When L_{k-1} is vertical, we partition G into H and K as follows: H and K are the subgraphs of G induced by the vertices lying to the left and right, respectively of the line L_{k-1}. Both H and K must include the vertices on L_{k-1}. Here, we only prove planarity for K. The rest of proof is similar to case 1 .

Lemma 9. K has a planar embedding K^{\prime} such that V^{\prime} is contained in the exterior face of K^{\prime}.

Proof. Let $V_{k}^{f} \subseteq V$ be the set of vertices in G along the exterior face of K. So $V_{k}^{f}=\left(V^{f} \cap V(K)\right) \cup V^{\prime}$. For Type 3, let E_{r} be the set of vertical edges that have at least one adjacent vertex on the line $e_{3}^{\prime}=\overline{r \operatorname{proj}_{L_{k-1}}(r)}$. In this case, we draw the edges E_{r} in the exterior faces of K in such a way that we obtain a planar embedding of K. In the embedding, all Steiner points on the line segment $\overline{r u_{3}}$ will go to the exterior of the polygon along with its adjacent

Figure 16: (a) The subgraph \boldsymbol{K} of G for Type 3 with the exterior face containing V^{\prime}. (b) Planar embedding of \boldsymbol{K}. The edges of E_{r} are shown by dashed black segment.

(a)

(b)

Figure 17: (a) The subgraph K of G for Type 4 with the exterior face containing V^{\prime}. (b) Planar embedding of \boldsymbol{K}. The edges of E_{k} are shown by dashed black segment.
edges (see Figure 16). For Type 4, let E_{k} be the set of vertical edges that have at least one adjacent vertex on the line L_{k}. In this case, we draw the edges E_{k} in the exterior faces of K in such a way that we obtain a planar embedding of K. In the embedding, all Steiner points on the line segment L_{k} will go to the exterior of the polygon along with its adjacent edges (see Figure 17). In this planar embedding V^{\prime} still remains in the exterior face. Hence, we get a planar embedding K^{\prime} of K such that V^{\prime} is contained in the exterior face of K^{\prime}.

4. Conclusion

In this paper, we construct a planar Manhattan network G for a given convex point set S of size n in linear time, where G contains $\mathcal{O}(n)$ Steiner points. Our construction works for more general point set where it is possible to construct an ortho-convex polygon $\mathcal{O C P}(S)$ such that S lies on the boundary of $\mathcal{O C P}(S)$. For example, any convex point set satisfies the aforesaid property. It is also clear that there exists convex point set S for which planar Manhattan network G needs $\Omega(n)$ Steiner points. Let $S=\{(1,1),(2,2), \ldots,(n, n)\}$ be a convex point set of size n. Then S would need $\Omega(n)$ Steiner points. In that sense, our construction is optimal for convex point sets. As a corollary of our construction, for a convex point set, we obtain a $\sqrt{2}(\sim 1.41)$ planar spanner in L_{2} norm using $\mathcal{O}(n)$ Steiner points. It remains an open question, if it is possible to construct a planar Manhattan network for general point sets using subquadratic number of Steiner points.

References

References

[1] J. Gudmundsson, O. Klein, C. Knauer, M. Smid, Small Manhattan networks and algorithmic applications for the Earth movers distance, in: Proceedings of the 23rd European Workshop on Computational Geometry, 2007, pp. 174-177.
[2] J. Gudmundsson, C. Levcopoulos, G. Narasimhan, Approximating minimum Manhattan networks, in: Randomization, Approximation, and Combinatorial Optimization. Algorithms and Techniques, Springer, 1999, pp. 28-38.
[3] G. Narasimhan, M. Smid, Geometric spanner networks, Cambridge University Press, 2007.
[4] F. Lam, M. Alexandersson, L. Pachter, Picking alignments from (steiner) trees, Journal of Computational Biology 10 (3-4) (2003) 509-520.
[5] R. Kato, K. Imai, T. Asano, An improved algorithm for the minimum Manhattan network problem, in: International Symposium on Algorithms and Computation, Vol. 2518 of LNCS, Springer, 2002, pp. 344-356.
[6] S. Seibert, W. Unger, A 1.5-approximation of the minimal Manhattan network problem, in: International Symposium on Algorithms and Computation, Vol. 3827 of LNCS, Springer, 2005, pp. 246-255
[7] M. Benkert, A. Wolff, F. Widmann, The minimum Manhattan network problem: a fast factor-3 approximation, in: Japanese Conference on Discrete and Computational Geometry, Springer, 2004, pp. 16-28.
[8] Z. Guo, H. Sun, H. Zhu, Greedy construction of 2-approximation minimum Manhattan network, in: International Symposium on Algorithms and Computation, Vol. 5369 of LNCS, Springer, 2008, pp. 4-15.
[9] F. Y. Chin, Z. Guo, H. Sun, Minimum Manhattan network is NP-complete, Discrete \& Computational Geometry 45 (4) (2011) 701-722.
[10] C. Knauer, A. Spillner, A fixed-parameter algorithm for the minimum Manhattan network problem., Journal of Computational Geometry 2 (1).
[11] J. M. Keil, C. A. Gutwin, The delaunay triangulation closely approximates the complete euclidean graph, in: Lecture Notes in Computer Science, Springer Berlin Heidelberg, 1989, pp. 47-56.
[12] S. Cui, I. A. Kanj, G. Xia, On the stretch factor of delaunay triangulations of points in convex position, Computational Geometry 44 (2) (2011) 104109.
[13] G. Xia, The stretch factor of the delaunay triangulation is less than 1.998, SIAM Journal on Computing 42 (4) (2013) 1620-1659.
[14] S. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. Smid, C. D. Zaroliagis, Planar spanners and approximate shortest path queries among obstacles in
the plane, in: European Symposium on Algorithms, Vol. 1136 of LNCS, Springer, 1996, pp. 514-528.
[15] M. Amani, A. Biniaz, P. Bose, J.-L. De Carufel, A. Maheshwari, M. Smid, A plane 1.88-spanner for points in convex position, Journal of Computational Geometry 7 (1) (2016) 520-539.
[16] S. Schuierer, An optimal data structure for shortest rectilinear path queries in a simple rectilinear polygon, International Journal of Computational Geometry \& Applications 6 (02) (1996) 205-225.
[17] M. De Berg, On rectilinear link distance, Computational Geometry 1 (1) (1991) 13-34.
[18] A. Datta, G. Ramkumar, On some largest empty orthoconvex polygons in a point set, in: International Conference on Foundations of Software Technology and Theoretical Computer Science, Vol. 472 of LNCS, Springer, 1990, pp. 270-285.
[19] V. Chepoi, K. Nouioua, Y. Vaxes, A rounding algorithm for approximating minimum Manhattan networks, Theoretical Computer Science 390 (1) (2008) 56-69.
[20] D. B. West, et al., Introduction to graph theory, Vol. 2, Prentice Hall Upper Saddle River, NJ, 1996.
[21] A. Gibbons, Algorithmic graph theory, Cambridge university press, 1985.
[22] A. García, F. Hurtado, M. Korman, I. Matos, M. Saumell, R. I. Silveira, J. Tejel, C. D. Tóth, Geometric biplane graphs ii: Graph augmentation, Graphs and Combinatorics 31 (2) (2015) 427-452.

[^0]: ${ }^{*}$ Corresponding author
 Email addresses: satyamtma@gmail.com (Satyabrata Jana), anil@scs.carleton.ca (Anil Maheshwari), sasanka.ro@gmail.com (Sasanka Roy)

