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Abstract

Location area planning (LAP) is an important issue in the design of high-performance PCS networks. It could have a

serious impact on the total mobility management cost of mobile terminals. Most of the previous works either explored

the LAP problem as a 0–1 linear programming problem or used adopted techniques, such as simulated annealing, taboo

search, and genetic algorithms [IEEE Trans. Vehicular Technol. 49 (2000) 1678; Proceedings of 1999 Vehicular

Technology Conference, vol. 4, 1999, pp. 2119–2123; IEEE Vehicular Technol. Conf. 3 (1996) 1835; Proceedings of

IEEE INFOCOM’01, Anchorage, Alaska, April 2001; IEEE Trans. Vehicular Technol. 47 (1998) 987], to derive a

solution to minimize the location update cost. In this paper, we model and resolve the LAP problem as a set-covering

problem. The main advantage of this approach is that it can adapt to the changing mobility patterns of the mobile

terminals. We propose the set-covering-based location area planning (SCBLP) algorithm to minimize the total number

of location updates, in which the cost-benefit functions are defined based on the coupling and cohesive functions among

neighboring cells. We then apply SCBLP to the location database system with a hierarchical structure to further im-

prove the overall system performance in searching and updating the location databases. Extensive simulation experi-

ments have been conducted, and the experimental results show that our proposed algorithms can significantly reduce

the location management costs, compared to the greedy algorithm and the random algorithm.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The number of personal communication service

(PCS) subscribers increases rapidly in recent years.
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With limited radio resources in a cell, one of the

major solutions to support the growing number of
mobile terminals (MTs) is to use small cells so as

to increase the degree of radio frequency reuses.

For example, the Taiwan Cellular Corporation has

built 2500 base stations in Taiwan [19], and the

number of base stations keeps growing rapidly. An

important problem associated with the use of
ed.
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small cells is the high cost in mobility manage-

ment.

In a PCS network, location databases are used

to record the locations of MTs. The location

information is important to efficient delivery of

connection calls. The whole system service area of
a PCS network is divided into location areas

(LAs), and each LA consists of a group of neigh-

boring cells. A location database is responsible for

recording the MTs residing in an LA or within a

group of neighboring LAs. The data items in a

location database are real-time data since their

values may change rapidly with time due to the

movement of the MTs. In order to maintain the
validity of location data such that they truly reflect

the current locations of the MTs, the MTs have to

generate location updates periodically, especially

when an MT enters into a new LA.

The cost in mobility management can be di-

vided into two major parts: location update cost

and searching cost (or paging cost). In general, the

minimizing of the location update cost might in-
crease the paging cost and paging delay. If the

location update frequencies of MTs are low, then

the database may contain out-dated location

information of the MTs. Thus, the paging cost and

paging delay for searching the exact locations of

the MTs will be large since the system needs to

search a large number of cells before it can identify

the current locations of the MTs. High paging cost
and delay is very much undesirable to future PCS

networks. High update frequencies of MTs can

also be a heavy burden to the PCS networks since

the number of MTs is increasing rapidly. How to

provide a balance between these two factors is an

important system design issue, and it has attracted

a lot of research work in recent years [24–26].

Two important factors affecting the number of
location updates and the update processing costs

are: (1) how the cells are grouped into location

areas, and (2) how the location databases are or-

ganized. Apparently, the solutions for solving

these two problems depend on how the MTs move

among the cells. It is the focus of this paper to

resolve these two problems to minimize the total

location management cost. As shown in the pre-
vious work that if the cells are not grouped

appropriately, the number of location updates will
be very large. The problem how to group the cells

into location areas is called the location area

planning (LAP) problem. It is a NP-complete

problem [4]. In last decade, various methods have

been proposed to resolve this problem. Some of

them resolve it using 0–1 linear programming
algorithms while the others adopt techniques, such

as simulated annealing, taboo search, and genetic

algorithms [3,4,8,10,14], with the objective to de-

rive a feasible solution to minimize the location

update cost without increasing the paging cost.

Another way to resolve the problem is to min-

imize the cost for update processing which is

highly related to how the location databases are
organized. In existing PCS networks, location

databases are organized in a two-tier structure: the

home location register (HLR) and a number of

visitor location registers (VLRs) [12]. The home

location register (HLR) contains the locations of

all the MTs subscribed to the system. A visitor

location register (VLR) maintains the location

information of the MTs currently within the group
of cells managed by it. In searching an MT, the

current VLR of the caller will be searched first and

then HLR will be looked up if the MT cannot be

found in the current VLR.

Although a two-tier structure [2,6] is simple and

easy to implement, it could have a serious perfor-

mance problem in the next generation PCS net-

works such as the scalability problem and the
heavy workload problem at the HLR (which in-

cludes the workload for processing a location up-

date signal and the network traffic), especially if

the number of MTs is large and their mobility is

high [21–23]. The processing cost of a location

update is not only the cost of executing the data-

base operations for installing the update but also

the transmission overheads of the update in the
network. The transmission overheads really de-

pend on the location of a mobile terminal from the

location registers. In addition to that, the search-

ing delay for a mobile terminal could be long when

there is a large location database in the system.

Because of that, researchers started proposing

different location database structures to improve

the scalability of the system in recent years. The
objective is to minimize the processing cost and

searching cost for updates. One of the promising
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methods is to organize the location database

hierarchically. In a hierarchical location database

structure, location databases are organized into a

tree structure with each leaf node of a location

database responsible for managing the location

information of the MTs within an LA (or a group
of LAs) [1]. It has been shown being a good

solution for the next generation PCS networks [1].

Compared to the two-tier structure, the hierar-

chical structure is more reliable and scalable be-

cause a hierarchical structure tends to distribute

the location updating and searching workloads

over multiple servers. The searching cost is smaller

since mobile users tend to call and move among
geographically neighboring areas, and most con-

nections are between mobile terminals maintained

at lower-level databases in the hierarchical tree.

In this paper, we propose to resolve the LAP

problem as a set-covering (SC) problem. We pro-

pose an algorithm, called set-covering-based loca-

tion area planning (SCBLP), to group the cells

into location areas. The objective is to minimize
the total location update cost. The main advantage

of the proposed scheme is its adaptability to dy-

namic mobility patterns of mobile terminals. Note

that the mobility patterns of MTs can be highly

dynamic and may change rapidly with time. If we

can reduce the update cost, more updates may be

generated to improve the accuracy in tracking the

mobile terminals. The consequence will be lower
paging cost in searching a mobile terminal when a

connection call request is received. We then apply

SCBLP to organize the location databases in a

hierarchical location database structure to further

minimize the processing costs for updating and

searching the location databases. Simulation re-

sults have shown that the proposed algorithms can

significantly reduce the PCS network traffics and
location management cost, compared to other

methods, i.e., random and greedy algorithms.

The rest of this paper is organized as follows:

Section 2 summarizes the related work. Section 3

defines the LAP problem. In Section 4, we propose

our approach in location planning and define the

benefit functions for determining how to group the

cells into location areas. Section 5 extends the re-
sults in Section 4 for a hierarchical database

structure to minimize the update processing and
searching costs. Section 6 shows the experiment

results on evaluating the performance of the pro-

posed algorithms as comparing with other algo-

rithms. Section 7 is the conclusions.
2. Related work

Location area planning (LAP) is an important

issue to mobility management. Some researchers

modeled the LAP as a 0–1 linear programming

problem [3,4,8,10,14], in which searching tech-

niques, such as taboo search, genetic algorithms,

and simulated annealing, were employed to derive
a proper planning for location areas to minimize

the total number of location updates.

The simulated annealing (SA) [4,10] randomly

moves a cell from one location area to another

area to generate a neighboring solution and com-

pares the neighboring solution to the local optimal

solution. The neighboring solution will be ac-

cepted if it improves the local optimal solution.
The taboo search (TS) [3,4] can be used to resolve

the 0–1 linear programming problem. The TS

treats a solution space as a connected graph, in

which each node denotes a feasible solution. The

genetic algorithms (GA) [4,8,14] are similar to the

SA and TS in the searching mechanisms, except

that they generate a neighboring solution using

two existing feasible solutions. One of the major
problems of these algorithms is the heavy pro-

cessing overhead due to the high complexity of the

algorithms and the difficulty in determining the

optimal parameters for calculating the optimal

solution. If the mobility patterns of the mobile

terminals change rapidly, these algorithms are

usually not suitable to location area planning,

especially in an on-line fashion [7,13].
A greedy algorithm was proposed by Plehn [15]

to merge two LAs (i.e., groups of cells) in each

iteration using the maximum profit to minimize

the number of location updates. Munguia-Maca-

rio et al. [13] proposed to use a constrained max-

imum spanning tree to partition a geographic area

into LAs. Varsampoulos and Gupta [12] proposed

to dynamically adjust the coverage of location
areas based on mobility patterns of the mobile

terminals. Researchers in location planning, in
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general, agree that the roadmap and the traffic

flows have significant impacts on the mobility

patterns. For example, mobile terminals that move

in the same direction on a highway tend to have a

similar mobility pattern. Bejerano and Cidon [6]

proposed to dynamically adjust the coverage of
LAs by predicting the speed of the mobile termi-

nals on highways. Although these approaches may

reduce the network traffic by moving or overlap-

ping the coverage areas of LAs to fit the traffic

speed and movement of mobile terminals, how to

partition the coverage area appropriately is still an

open problem.

The previous works on location area planning,
e.g., [2–6,8,10–15], mainly assumed the use of the

traditional HLR–VLR database structure to

manage the location databases. To minimize the

workload at the HLR and to improve the system

performance, a hierarchical location database

structure is proposed to organize the location da-

tabases in the system [20]. However, it is still an

open problem on how to organize the databases
into a hierarchical structure with the objective to

minimize the update processing cost. It has been

shown that variations in the number of neighbor-

ing nodes at different levels may seriously affect the

system efficiency in processing location updates. Li

et al. [17] proposed and summarized methods for

location updates over a hierarchical location

database structure. They explored the possibility
in delaying the location updates of mobile termi-

nals to reduce update traffics and database work-

loads. In order to reduce the location update cost,

some previous works suggested to using location

pointers [20]. However, the main concern of this

method is that it has additional problem for

managing the location pointers. Furthermore, the

forwarding pointers may be maintained at any
level of the hierarchical location databases. It is

difficult to determine the best level to set the for-

warding pointers.
Fig. 1. Location updates and searching of MTs in a hierar-

chical location database.
3. The location area planning (LAP) problem

In this section, we first use an example to
illustrate the location area planning (LAP) prob-

lem and show how the LAP affects the location
update cost in a hierarchical location database

system. In the next section, we will propose the

SCBLP algorithm to resolve the problem. In Sec-

tion 5, we will discuss how to apply the SCBLP

algorithm to organize the hierarchical databases to

minimize the update and searching cost in mobility
management.

Consider the example shown in Fig. 1, in which

the location databases are organized in a three-

layer hierarchy. Let each leaf node (a location

database) contain the location information of the

MTs in an LA. As shown in Fig. 1, if an MT

moves from location area B to location area F , the
system has to insert the location information of the
MT into the location databases labeled as 1.2.2

and 1.2, and then delete the corresponding records

in the databases labeled as 1.1 and 1.1.1. If an MT

at location area A requests a connection call to the

MT located at location area B, the system has to

query the location databases upward from the

location database responsible for location area A
to the least common ancestor (LCA) of location
areas A and B, and then go along the proper links

of the tree to the leaf node which is responsible for

location area B (in which the called MT currently
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resides). We call the length of the path traveling

from location areas A to B as the distance between

the two location areas, i.e., disðA;BÞ. The location
update cost and the searching cost depends value

of disðA;BÞ. If the distance is larger, the searching

cost will be heavier.
As shown in Fig. 1, the distance between two

location areas in a location database tree depends

on how the location databases are organized in the

hierarchy. For example, although location area C is

geographically next to location area F , the location
update cost could be high for an MT moving from

location area C to location area F , i.e., the system
needs to update the location databases labeled as
1.1.3, 1.1, 1.2 and 1.2.2. This example shows that in

order to minimize the mobility management cost,

in organizing the cells into LAs (and the location

database tree), the system needs to consider the

mobility patterns of the MTs, the population of

MTs in each LA, and the call frequency of the MTs

in each LA. In principles, at each level of a hier-

archy, we should group the nodes which have a
large number of crossover traffics (due to the

movement of mobile terminals) together into the

same hierarchy (or sub-tree) to minimize the loca-

tion update and searching costs.
4. The set-covering-based location area planning

(SCBLP) algorithm

4.1. The basic approach

We propose to resolve the LAP problem as a

set-covering problem in which the relationships

among the cells are represented by a graph. We

apply the greedy set-covering approximation algo-

rithm [9,16,18] with proper benefit functions to
determine how to group the cells into location

areas to minimize the number of boundary cross-

ings among the LAs. Each edge in the graph is

associated with a weight to denote the traffic vol-

ume of MTs between the two neighboring cells. It

is assumed that the base stations in the system

periodically generate the boundary crossing

information of the MTs in the cells, and the sta-
tistics are used to define the weight of each edge in

the graph. The objective of the LAP problem is to
find a location area design to minimize the total

number of boundary crossings among the LAs

such that the number of location updates can be

minimized under the constraints of the system and

user requirements, such as the maximum number

of cells in each location area. For location area
planning, limiting the maximum number cells in a

location area can limit the paging cost. Once the

location area of a mobile terminal is identified, the

next job is to page the cells in the location area. If

a location area contains more cells, the paging cost

will be higher.
4.2. Set covering problem

The LAP problem could be formally defined as

follows:

Definition 1. The location area planning problem.An

instance G ¼ ðV ;E;mÞ of the LAP problem consists

a set of vertices which are numbered from 1 to n (i.e.,
V ¼ f1; 2; 3; . . . ; ng). An edge ði; jÞ in E indicates
that an MT may move from cell i to cell j directly,
and vice versa. Each edge is associated with a weight

mði; jÞ to denote the traffic volume between cell i and
cell j. A location area planning problem is to deter-

mine a location area design to partition V into dis-

joint subsets v1; v2; . . ., and vn, where
Sn

i¼1vi ¼ V , so

that the total value of
P

LAi 6¼LAj

P
x2LAi;y2LAj mðx; yÞ is

minimized.

We propose to resolve the LAP problem as a

weighted set-covering problem which can be for-

mally defined as follows.
Definition 2. The weighted set-covering problem.
An instance ðS;C;W Þ of the weighted set-covering
problem consists of a finite set S of items, a col-
lection C of subsets of S, and a weight function

W : C ! Zþ
0 such that each component of C has a

positive weight. The problem is how to find a

subset c0 of C such that the union of all the subsets

in c0 is equal to S, and the total weight of c0 is
minimized.

Let us take Fig. 2 as an example to illustrate the

LAP problem. Suppose we have six cells in the



Fig. 2. The number of boundary crossings between cells.
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service area under consideration. Each number on

the boundary between two neighboring cells rep-

resents the average number of boundary crossings

between the two cells per unit time. It is assumed

that each LA may have three cells in maximum.

Therefore, there are C6
3=2 possible combinations

for grouping the cells into two LAs with each

one has three cells C6
3=2 ¼ 6!=ð3!� 3!� 2Þ

� �
. For

example, we may group them into two LAs, e.g.,

ffA;B;Dg; fC;E; F gg. The update cost for differ-

ent location area designs are listed in Table 1. Note

that the number of possible combinations is an

exponential function of the number of cells.

4.3. The algorithm

The weighted set-covering problem is a well-

known NP-complete problem [9,16,18]. It is

difficult to get the optimal solution and the com-
Table 1

The total location update costs of grouping the six cells into two

LAs

LAs Number of updates

ffA;B;Dg; fC;E; F gg 324) 17) 23) 13) 19) 29¼ 223

ffA;D;Cg; fB; F ;Egg 324) 23) 2) 7) 29¼ 263

ffA;D; F g; fB;C;Egg 324) 23) 5) 19¼ 277

ffC;E;Dg; fA;B; F gg 324) 19) 2) 3) 17¼ 283

324 is to total sum of all the boundary crossings amongst the

cells in the figure.
putation overhead will be expensive since the

number of cells in the service area could be large.

In this section, instead of finding an optimal

solution in LAP, we propose a heuristic algorithm

called set-covering-based location area planning

(SCBLP) to resolve the problem in polynomial
time so that the average performance measured in

terms of number of locations updates can be sig-

nificantly reduced comparing to other existing

techniques. We will study the performance of the

proposed algorithm in Section 6 through a series

of simulation experiments in which we had varied

the system parameters to test its performance

under different system workload characteristics
and system settings as compared with other algo-

rithms, i.e., greedy algorithm. The proposed

algorithm is designed based on the greedy-set-

cover [9,18] algorithm. It consists of two phases:

1. In the first phase, each location area consists of

one cell initially, i.e., one vertex. SCBLP then

nine iteratively adds a cell into a location area
to maximize the total benefit of the set of loca-

tion areas under the system constraints, e.g., the

maximal number of cells in an LA. Note that

there may be a non-empty intersection between

two location areas in some cases.

2. In the second phase, we apply the greedy-set-

cover algorithm [7] to remove any non-empty

intersection between any two LAs. The details
of the algorithm are shown in Fig. 3.

The time complexity of the first phase of

SCBLP is Oðn � mÞ where m ¼ fmaxðj Vi jÞ
j i ¼ 1; . . . ; j V jg. The time complexity of the sec-

ond phase is OðnÞ. As a result, the time complexity

of SCBLP is Oðn � mÞ. Because there is usually a

constant to bound the maximum number of cells
in an LA, m is bounded by the constant. In 10

other words, the time complexity of SCBLP

should be OðnÞ.

4.4. Benefit functions

As shown in Fig. 3, Step 4 determines which

cells in the neighboring cells of a location area Vi
should be merged into Vi . Because there is an

intersection area between neighboring location



Fig. 4. The example of cohesion function.
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Algorithm SCBLP

INPUT:G=(V,E,m)

OUTPUT: A set of location areas

Phase1:

FOR each vertex vi in V

Vi = { v i}

WHILE Vi does not violate the systemconstraints

Select a vertex vj such that the benefit of (Vi∪ {vj}) is maximized

Vi = Vi∪ {vj}

Phase2:

result-set = ∅
size-of-result-set = 0

WHILE size-of-result-set? |V|

FOReach Vi

IF benefit(Vi) has the maximum benefit

result-set = result-set ∪ Vi

FOR any two different Vj and Vi

IF (Vi ∩ Vj) ≠ ∅
Vj = Vj- Vi

Re-calculate the benefit of Vj

I F Vj = ∅
DEL E T E Vj

DEL E T E Vi

size-of-result-set = size-of-result-set + | Vi |

OUTPUT result-set

Fig. 3. The SCBLP algorithm.
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areas, Step 15 in Fig. 3 re-calculates the benefit of
the grouping. In this section, we will propose three

benefit functions for cell grouping in SCBLP:

cohesion function, coupling function and cost-benefit

function.

4.4.1. Cohesion function

The objective of the cohesion function is to

group the cells which have a large number of
boundary crossings into the same location area:

benefitcohðVxÞ
¼ fsumðmði; jÞÞ for different cells vi and vj 2 Vxg

where mði; jÞ is the number of boundary crossings

between cell i and cell j. benefitcohðVxÞ is the total

number of boundary crossings amongst the cells in

Vx. It denotes the benefits in mobility management

if the cells in Vx are in the same group. (Note that

an MT which crosses a cell boundary within a

location area does not need to report its new po-

sition.) Our objective is to maximize benefitcohðVxÞ
since a larger value of benefitcohðVxÞ implies a
greater saving in location updates (smaller update

cost).

The cohesion function can be illustrated with
the example shown in Fig. 4 (which is extracted

from Fig. 2). The benefit in grouping cells A, B,
and D into the same group is benefitcohðfA;
B;DgÞ ¼ 17þ 13þ 23 ¼ 53. Notice that the cohe-

sion function only considers the internal traffic

within a group. Similarly, we have the following

values for different groupings for the cells in Fig.

2: benefitcohðfC;E; F gÞ ¼ 19þ 29 ¼ 48, benefitcoh
ðfA;C;EgÞ ¼ 7þ 19 ¼ 26, and benefitcohðfB;D;
F gÞ ¼ 13þ 5 ¼ 18.

The objective of SCBLP using cohesion func-

tion is to increases the degree of cohesion amongst

the cells within the same location area. Although

the cohesion function does not directly address the

main purpose in location area planning, i.e., to

minimize the total number of boundary crossings
among location areas, the cohesion function min-

imizes the degree of coupling among the location

areas.

4.4.2. Coupling function

The coupling function is to minimize the total

number of boundary crossings of the cells in an

LA with the cells in the other LAs:

costcouðVxÞ ¼ f1=sumðmði; jÞÞ j vi 2 Vx and vj 62 Vxg
where mði; jÞ is the number of cell boundary

crossings between cell i and cell j. costcouðVxÞ is the
total number of boundary crossings between a

cell in Vx and a cell outside Vx. costcouðVxÞ is the



Table 2

The location update cost of each configuration

ffA;B;Dg; fC;E; F gg ffA;C;Eg; fB;D; F gg
Cohesion 53+48¼ 101 26+18¼ 44

Coupling 1/98+ 1/142¼ 0.017 1/158+ 1/196¼ 0.011

Cost-benefit 0.541+ 0.338¼ 0.879 0.165+ 0.092¼ 0.256
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reciprocal of sumðmði; jÞÞ. It should be maximized

such that the total number of boundary crossings

is minimized. Note that this benefit function ad-

dresses the objective of SCBLP directly.

The coupling function can be illustrated with
the example shown in Fig. 5. The benefit in

grouping cells A, B, and D into the same group is

costcouðfA;B;DgÞ ¼ 1=ð7 þ 2 þ 3 þ 5 þ 13 þ 6 þ 3

þ 16þ 17þ 11þ 10þ 5Þ ¼ 1=98. Note that the

coupling function only considers the outward

traffic of a group. Similarly, we have the following

values for different groupings for the cells in Fig. 2:

costcouðfC; E; F gÞ ¼ 1=ð7 þ 2 þ 3 þ 5 þ 19 þ 21þ
15 þ 12 þ 11 þ 3 þ 22 þ 6 þ 7 þ 9Þ ¼ 1=142,
costcouðfA;C;EgÞ ¼ 1=ð17þ 23þ 2þ 3þ 29þ 11þ
3 þ 22 þ 6 þ 7 þ 9 þ 5 þ 10 þ 11Þ ¼ 1=158, and
costcouðfB;D;F gÞ ¼ 1=ð17þ 23þ 2þ 3þ 29þ 12þ
15þ 21þ 19þ 13þ 6þ 3þ 16þ 17Þ ¼ 1=196.

4.4.3. Cost-benefit function

The cost-benefit function is an integration of
the cohesion function and the coupling function. It

has the advantages of the two functions. It is de-

fined as:

benefitc-bðVxÞ ¼ benefitcohðVxÞ � costcouðVxÞ
benefitc-bðVxÞ is the multiplication of benefitcoh to

costcou to balance the benefits of boundary cross-
ings within a location area and amongst location

areas. The determination of the values for

benefitcohðVxÞ and costcouðVxÞ can be done accord-

ing to the formulas introduced in Sections 4.4.1

and 4.4.2.

The cost-benefit function may be illustrated

using the example shown in Fig. 2. The benefit of
Fig. 5. The example of the coupling function.
grouping cells A, B, and D into the same group
is benefitc-bðfA;B;DgÞ ¼ benefitcohðfA;B;DgÞ�
costcouðfA;B;DgÞ ¼ 53=98 ¼ 0:541. Similarly, we

have the following values for the cost-benefit

functions for different groupings: benefitc-bðfC;E;
F gÞ ¼ benefitcohðfC; E; F gÞ � costcouðfC;E;FgÞ ¼
48=142 ¼ 0:338; benefitc-bðfA;C;EgÞ ¼ benefitcoh
ðfA;C;EgÞ � costcouðfA;C;EgÞ ¼ 26=158 ¼ 0:165;
benefitc-bðfB; D; F gÞ ¼ benefitcohðfB; D; F gÞ �
costcouðfB;D; F gÞ ¼ 18=196 ¼ 0:092.

The three benefit functions introduced in this

Section 4.4 are to group the cells into location areas

to minimize the total cost in location updates. The

rationale behind the cohesion function benefitcoh is

to have two cells in the same location area if the

number of boundary crossings between them is

high. The coupling function costcou is to group two
adjacent cells into different location areas if the

number of outward boundary crossings is small.

The cost-benefit function benefitc-b is to balance

the cell grouping benefits considered in the cohe-

sion function benefitcoh and the coupling function

costcou. Based on the examples in Section 4.4, it has

been shown that all benefit functions suggest that

cells A, B and D should be in the same group since
the traffics amongst them are heavy. However, in

the other cases, the three cost functions might

suggest different cell groupings. As a result, SCBLP

using different benefit functions may result in dif-

ferent location area designs. The values of the

benefit functions for the example in Fig. 2 are

summarized in Table 2. The values of the benefit

functions for the two groupings of the cells in the
example are calculated. We use a pair of brackets

to denote the cells in the same location area.
5. Hierarchical location database organization

In this section, we propose an algorithm which

applies SCBLP to organize location databases into



1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11. 

12.

13.

14.

Algorithm H_SCBLP 

INPUT: G = (V, E, m)

OUTPUT: A set ofLocation Areas 

IF|V| = 1 THENRETURN∅
SLAD = SCBLP(V, E, m)

Label each element of SLAD from P1 to P|SLAD|

FOR each Pi in SLAD 

Create a vertex v’i for Pi

V’ = V’∪ {v’i}

FOR each v’i in V’

FOR each v’jin V’

IFv’i≠v’j

Create an edge e’i,j which connects v’itov’j

m’(i, j)= {sum(m(x, y)) for different vertex vx∈Piand vy∈Pj } 

IFm’(i, j) ≠ 0 

E’ = E’∪ {ei,j}

RETURN {SLAD} ∪ H_SCBLP(V’, E’, m’) 

Fig. 6. The H_SCBLP algorithm.
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a hierarchical structure to minimize the total cost

in location update cost and in location searching.

In a hierarchical location database structure, each

leaf node database maintains the location infor-

mation of the mobile terminals within an LA or

several LAs. We propose to organize the leaf
nodes into groups (sub-trees) to minimize the cost

in processing location updates. The grouping

process is repeated until there is only one group

left, and it is the root node of the location database

tree. We call a node as an internal node if it is not a

leaf node. If we group several nodes into a new

group, we call the node that denotes the new group

as the parent node of the nodes being grouped to-
gether, which are called child nodes of the parent

node. The coverage area of an internal node is the

union of the cover areas of all its child nodes.

The technical question, which we are interested

in, is how to group the cells (location databases) to

form a hierarchical location database tree with

minimum processing cost. We extend the SCBLP

algorithm iteratively to group the cells as described
in the previous paragraphs. The hierarchical ver-

sion of the SCBLP algorithm is called the

H_SCBLP algorithm as shown in Fig. 6.

Steps 2–3: SCBLP derives a location area design

as the input for H_SCBLP and the

output of the location area design

from SCBLP is a set of location areas.
In the third statement, each location

area is labeled from Pi to PjSLADj where
jSLADj is the size of the set SLAD.

Steps 4–6: Create a vertex for each element in

SLAD. The set V 0 of vertices will be

used to invoke H_SCBLP.

Steps 7–13: Construct E0 and assign m0ði; jÞ for all
edges in E0. H_SCBLP creates an edge
e0i;j in E0 whenever the nodes which

correspond to vertices v0i 6¼ v0j in V 0

have a common edge between them.

The weight m0ði; jÞ of e0i;j is the sum

of the crossing edges which connect

nodes in v0i and v0j, i.e., Pi and Pj.
Step 14: Return a collection of location areas

(i.e., a set of groups). Note that the re-
sult of each invocation creates a level

in the hierarchy. The later invocations
create upper levels of in the hierarchi-

cal tree. The first location area is de-

rived from this invocation, and the

others are produced by the remaining

recursive calls.
6. Performance evaluation

6.1. Simulation model, parameters setting, and

performance metrics

In this section, we report the performance

evaluation of SCBLP and H_SCBLP when differ-

ent benefit functions were adopted. We compared

their performance with that of a random algorithm
and a greedy algorithm. In the random algorithm,

each location area initially contains only one cell.

It then randomly merges neighboring location

areas into LAs under the constraints of an LA, i.e.,

the maximum number of cells in an LA. Note that

the random algorithm is easy in implementation

and is served as the baseline method for perfor-

mance comparison. The greedy algorithm, which is
also called hill-climbing algorithm in [14] or

LOAD-CMST in [2], is similar to the random

algorithm. Initially each location area contains

only one cell. In each iteration, two neighboring



Table 3

Parameters of experiments

Parameters Baseline value

The maximum number of cells

in an LA

6

The maximum number of

neighboring cells of a cell

6

The size of the service area 30 cells· 30 cells

The weight distribution of cell

boundary crossings for each

pair of neighboring cells

[4–36] uniformly

distributed

The number of simulation runs 200

Confidence level ±1% with 99.95% level

of confidence
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cells with the maximum number of boundary

crossings are merged into a location area. Note

that the heuristics adopted by the greedy algorithm

are similar to the cohesion function introduced in

Section 4.

In the experiments, the whole service area was
partitioned into a number of interconnected cells.

We used an n� n array to represent the cells in the

service area. It is assumed that the cells had the

same size. Each cell had six neighboring cells ex-

cept the cells at the system boundary. In the

experiments, we had studied the impacts of vary-

ing the number of neighboring cells on the per-

formance of the algorithms. We modeled the
movements of MTs by varying the number of cell

boundary crossings using a random number gen-

erator. The number of cell boundary crossings for

each pair of neighboring cells was generated ran-

domly within the range of 4 and 36 following a

uniform distribution.

The primary performance measure was the

total number of location area boundary cross-
ings per unit time in the whole system (UT). A

location update was generated whenever an MT

entered into a new location area. Thus, UT was

an indicator of the number of location updates

generated, and the location update cost was

proportional to the value of UT. A smaller value

of UT implied a better performance and a better

location area design. In the experiments, we used
the random algorithm as the baseline method.

We defined the improvement percentage (im-

prove_%) of an algorithm (e.g., SCBLP,

H_SCBLP and the greedy algorithm) as the

difference in UT between the algorithm and the

random algorithm:

Improve %SCBLP ¼ ðUT;SCBLP � UT;randomÞ=UT;random:

We use the notations ‘‘costBenefit’’, ‘‘cohesion’’,

and ‘‘coupling’’ to denote the uses of the cost-ben-

efit, cohesion, and coupling functions, respectively,

in SCBLP and H_SCBLP. Table 3 summarizes the

model parameters and their baseline values. In

order to improve the confidence level of the results,

we repeated the simulation runs for the same set-

ting using different random number seeds.
We had performed two sets of simulation

experiments. The first set of experiments evaluated
the 16 performance of SCBLP when different
benefit functions were adopted as comparing with

the greedy algorithm and the random algorithm

(Section 6.2). In the experiments, we had studied

the impacts of the important factors, i.e., the

maximum number of cells in an LA, the maximum

number of neighboring cells of a cell, the size of

the system service area, and the bound of the

weights for generating cell boundary crossings for
each pair of neighboring cells, on the performance

of SCBLP, the greedy algorithm, and the random

algorithm. In addition, we had investigated the

performance of the algorithms when the genera-

tion of boundary crossings was following the

Weibull distribution [27] instead of a uniform

distribution. The purpose was to simulate some

hot cells where the traffic workloads were heavier.
The second set of experiments studied the perfor-

mance of H_SCBLP when it was applied to

organize a hierarchical location database (Section

6.3).

6.2. Performance evaluation of SCBLP

Figs. 7 and 8 shows the values of UT (location
update cost) for the five location area planning

algorithms when the number of cells in the system

are varied. As shown in Fig. 7, the SCBLP algo-

rithms, combined with different benefit functions,

significantly outperformed the random algorithm

and the greedy algorithm. The improvement per-

centages are shown in Fig. 8, compared to the

baseline method, i.e., the random algorithm. As
shown in Fig. 8, although the performance of the
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greedy algorithm is better than the random algo-

rithm, the degree of improvement is marginal. The

improvement is only around 10% for different

numbers of cells in the system. Amongst the three

benefits functions, costBenefit gives the best per-

formance, and the cohesion method has the least
improvement. However, it still has an improve-

ment of about 24% for different numbers of cells in

the system. As shown in Fig. 8, the improvement

percentage decreases slightly with an increase in

the number of cells in the system. It is due to the

decrease in the average number of neighboring

cells of a cell when the system has more cells. If a

cell is connected to a smaller number of neigh-
boring cells, the performance difference among

the algorithms is smaller as the choices for cell

groupings are smaller.
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Fig. 7. UT vs. different number of cells in the system.
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Fig. 8. Improve_% vs. number of cells in the system.
Fig. 9 depicts the performance results when the

bounds for generating the weights of cell boundary

crossings between neighboring cells are varied. As

shown in Fig. 9, except the random algorithm, the

value of UT of the algorithms decreases with an

increase in the value between the lower and upper
bounds for generation of the weights. That is

consistent with our expectation. If the range of the

bounds is larger, the improvement due to a better

grouping of cells will be higher. Similar to the re-

sults shown in Fig. 7, the performance of the

SCBLP algorithms is significantly better than that

of the random algorithm and the greedy algorithm

as shown in Figs. 9 and 10. The performance of the
greedy algorithm is consistently better than that of

the random algorithm as shown in Figs. 9 and 10.

Higher improvement percentages are obtained

when the range between the bounds is larger.

Again, costBenefit gives the best performance,

especially when the range of the bounds is large.

The improvement percentage of the costBenefit is

about 30% when the bounds are 0–40.
Fig. 11 shows the impacts of the constraint on

the maximum number of cells in an LA on the

performance of the algorithms. If the maximum

number of cells in an LA is larger, the improve-

ment percentages of the SCBLP algorithms are

greater. Consistent with the results shown in Figs.

8 and 10, costBenefit gives the best improvement

especially when the number of cells in a location
area is larger as shown in Fig. 11. The improve-

ment percentage of costBenefit is close to 28%
Fig. 9. UT vs. different upper and lower bounds for weight

generation.



Fig. 10. Improve_% vs. different upper and lower bounds for

weight generation.

Fig. 11. Improve_% vs. maximum number of cells in an LA.

Fig. 12. Improve_% vs. number of neighboring cells.
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when the maximum number of cells in an LA is 8

while that of the greedy algorithm is only about

11%. The performance of coupling is 19 better than

that of cohesion, especially when the maximum

number of cells in an LA is larger. It is because
when a location area is larger, the number of LA

boundary crossings will be smaller.

Fig. 12 shows the performance results when the

maximum number of neighboring cells of a cell is

varied. The improvement percentage of the algo-

rithms decreases with an increase in the number of

neighboring cells. costBenefit still gives the best

performance results when different number of
neighboring cells are used. As shown in Fig. 12,

the improvement percentage of the greedy algo-

rithm drops rapidly with an increase in number of
neighboring cells compared to the SCBLP algo-

rithms. In [14], Wang et al. proposed a genetic

algorithm for location area planning. The perfor-

mance of the proposed algorithm [14] was com-

pared with the greedy algorithm which was also

tested in this paper. It was shown in [14] that the

improvement of the proposed algorithm was only

10% when the number of cells was 91. Under the
similar constraints (the size of location area, the

variance of cell boundary crossing, and the cov-

erage area size), we found that the improvement of

our proposed costBenefit can be close to 20%,

compared to the results in [14].

Another important factor on the performance

of the SCBLP algorithms is the distribution of the

traffic workload between neighboring cells. Figs.
13 and 14 show the results when the traffic work-

loads between neighboring cells are following the

Weibull distribution [27]. Compared to uniform

distribution, Weibull distribution has a higher

probability in generating extreme values (extreme

values mean hot-spots). The scale and the shape

parameters of Weibull distribution are 20 and 1,

respectively, and we set the mean value to be 20.
As shown in Figs. 13 and 14, the improvement

ratios comparing to the random algorithm are

higher comparing to the results from a uniform

distribution of traffic workloads (Figs. 7 and 8).

costBenefit is still the best algorithm and its

improvement is up to 40%. The trend of the results

of the algorithms is similar to the results showed in

Figs. 7 and 8. We conjecture that if the system
contains more hot-spots (a cell with a heavy traf-



Fig. 13. UT vs. different number of cells in the system (Weibull

distribution).

Fig. 14. Improve_% vs. number of cells in the system (Weibull

distribution).

Fig. 15. UT of the algorithms when different levels of hierarchy

are used.

S.-W. Lo et al. / Computer Networks 45 (2004) 715–730 727
fic), the improvement will be higher using the

proposed algorithm, SCBLP.

6.3. Performance evaluation of H_SCBLP

The purpose of this section is to compare the

performance of H_SCBLP to that of the H_ran-

dom and H_greedy algorithms in organizing a

hierarchical location database with different ben-

efit functions. In the experiments, the number of

cells was set to be 3600 (60 · 60). Each internal

node had up to six child nodes following the
grouping policy of child nodes for the H_SCBLP

algorithm defined in Section 5. The grouping pol-

icies for the H_greedy algorithm and the H_ran-

dom algorithm were similar to that of H_SCBLP.

The major difference was that H_SCBLP invoked

SCBLP to derive a location area design in Step 2,
and H_greedy and H_random greedily and ran-

domly group child nodes, respectively. As a result,

H_SCBLP, H_greedy, and H_random may have

different number of neighboring nodes at different

levels in a hierarchical database structure.

Two major performance metrics were consid-

ered. The first metric was the total number of

location area boundary crossings per unit time in
each level of a hierarchy. The second metric was

the height of a hierarchical location database tree

because it affected the maximum propagation

delay in searching the hierarchical location data-

base tree. Figs. 15 and 16 show the values of UT

and the improve_% of the algorithms for updating

the databases at different levels in the hierarchical

database tree. Since coupling and costBenefit tend
to have a hierarchy with a smaller height, the re-

sults for coupling (and costBenefit) are only up to

level 5.

As shown in Figs. 15 and 16, costBenefit is the

best algorithm when updates are installed at lower

levels. Coupling is slightly better than costBenefit

when updates are installed at levels higher than 4.

The performance improvement of costBenefit and
coupling comparing with H_random is significant

for updates installing at all levels in a hierarchical



Fig. 16. Improve_% of the algorithms when different levels of

hierarchy are used.
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database structure. We must point out that when

the number of internal nodes is small, a brute force
approach may be used to obtain an optimal solu-

tion. In the experiments, we did not take any brute

force approach for the algorithms in order to have

a fair comparison among them.

Fig. 17 shows that coupling and costBenefit can

build up hierarchies with no more than six levels

for most cases. Hierarchies may grow up to more

than seven levels, when greedy, random, and
cohesion are used. Since Figs. 15 and 16 have

shown that no algorithm can outperform any

other algorithm for all cases, we surmise that the

best strategy is to adopt costBenefit in constructing

internal nodes at lower levels of a location data-

base tree. Brute force algorithm can then be taken
Fig. 17. Number of internal nodes in each level of the hierar-

chy.
to have an optimal grouping quality of nodes at

higher levels, i.e., close to the root.
7. Conclusions

The number of personal communication service

(PCS) subscribers is increasing very rapidly. How

to resolve the traffics and performance problems

for mobility management becomes a critical issue.

The solutions should not just rely only on

deploying more base stations. Instead, the pro-

posal of an intelligent way for mobility manage-

ment is of paramount importance. In this paper,
we propose an algorithm for location area plan-

ning (LAP) to minimize the total number of

location updates. We consider the mobility pat-

terns of mobile terminals in deciding how to group

the cells into location areas and how to organize

the location areas into a hierarchical location

database structure to further reducing the update

processing and searching costs. Different from the
previous works in the area, we model the location

area planning (LAP) problem as a set-covering-

problem. The main advantage of using a set-cov-

ering approach is on the efficiency of the approach

for applications that need a dynamic adaptability

to the mobility patterns of mobile terminals. We

propose an efficient algorithm for location update

planning called set-covering-based location area
planning (SCBLP), and three benefit functions are

proposed for determining how to group the cells in

SCBLP. We also have extended the SCBLP algo-

rithm for a hierarchical location database struc-

ture. Simulation results have shown that our

proposed algorithms can significantly reduce the

PCS network traffics and the mobility manage-

ment cost, compared to the greedy algorithm and
the random algorithm.

For the future work, we will derive approxi-

mation bounds for various benefit functions to

provide guidelines for location area planning. We

shall further explore set-covering approaches in

the handling of the migrations between hierarchi-

cal structures so that the system could be quickly

adaptive to the mobility patterns of mobile ter-
minals.
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