Kenneth J. Turner. Analysing Interactive Voice Services
(pre-publication version), Computer Networks, 45:665-685,
Copyright Elsevier Science Publishers, Amsterdam, March 2004.

Analysing Interactive Voice Services

Kenneth J. Turner

Computing Science and Mathematics, University of StiflBtiyling FK9 4LA, UK

Abstract

IVR (Interactive Voice Response) services are increagipgtvalent in automated tele-
phone enquiry systems. VoiceXML (Moice eXtensible Markignguage) has become one
of the leading languages for IVR. The nature of IVR servicemiroduced, along with an
explanation of how they are represented in VoiceXML. Howev®0biceXML description
is at a low level, so it is difficult to gain an overview of thengee that is offered. There is
also no rigorous way to check the integrity of an IVR applimat

CRrESs(Chisel Representation Employing Systematic Specifinti® a graphical no-
tation for describing services in an abstract, languadependent manner. For this paper,
IVR services are described withREss and translated into €tos (Language Of Tempo-
ral Ordering Specification) for automated analysis. Begaafsthe infinite state space, it
is not practicable to formally verify the generated speatfans. Instead, the focus is on
more practical solutions. The properties of a specificatios checked by including ob-
server processes to monitor undesirable situations ligeatedly prompting the user for
input. MUSTARD (Multiple-Use Scenario Test And Refusal Description) isaduced as
a language for defining scenario-based tests of servicesapproach is illustrated with
sample tests of IVR services. It is seen how8TARD helps to build confidence in an IVR
application.

The paper also introduces a feature concept for IVR, andiséss feature interaction in

this context. General categories of IVR feature interacice presented. It is shown how
CRrEssand MUSTARD combine to help discover interactions among IVR features.

Key words: Feature, IVR (Interactive Voice Responsepios(Language Of Temporal
Ordering Specification), Service, VoiceXML (Voice eXtdnsi Markup Language)

Email addresskjt@cs.stir.ac.uk (Kenneth J. Turner).

Preprint submitted to Elsevier Preprint 7 January 2004

1 Introduction

1.1 Interactive Voice Response

IVR (Interactive Voice Response) services have been dpedlauring the past
decade to provide a more satisfactory alternative to taank-systems. Touch-tone
enquiry systems (‘press 2 for sales’) are often disliked $grsi due to their inflex-
ible and crude interfaces. IVR allows users to do what thgyeekin a telephone
call, namely to speak and to listen. IVR is convenient forsigas the move, who
may have little more than a mobile telephone. Although WARréWss Access
Protocol) is intended to provide web browsing for mobilerasé& has seen only
limited use. Some categories of users (e.g. the partialligted or those without
Internet access) are also disadvantaged if informatioroigged only via the web.

Although IVR is not new, it was initially supported by a vagi®f proprietary solu-
tions. VoiceXML (Moice eXtensible Markup Language [30])sHzeen an important
development in the standardisation of IVR. There are comgstandards for IVR,
but VoiceXML seems to have attracted the most support. Thi ldea of Voice-
XML is that users ‘fill in’ fields of forms by speaking in respssto prompts. Voice-
XML platforms usually include sophisticated support forS{Text To Speech, i.e.
synthesised speech output) and STT (Speech To Text, ieclspecognition). The
completed information is then typically submitted to a piog or database for fur-
ther processing. VoiceXML lends itself to a wide variety pipécations such as
news and sports information, telephone banking, salesieesjand orders, and
travel bookings. For an application such as banking, VoMé&Xcould provide a
voice-based front-end to an existing bank system. Therkl@so be other front-
ends to the same system, e.g. for web browsing or WAP access.

1.2 Developing Interactive Voice Services

As an application of XML, VoiceXML is textual in form. Howevenost commer-
cial packages (e.g. Covigo Studio, Nuance V-Builder, Voke&signer) provide a
graphical representation. VoiceXML has a nested, hiereatistructure that most
packages reflect in graphical form. Some representatiomhasise the relation-
ship among VoiceXML elements, e.g. the flow of control amang fields of a
form. Commercial packages are (not surprisingly) very elsVoice XML since
their aim is direct support of scripting with VoiceXML. As aggramming lan-
guage, VoiceXML focuses on how an IVR service is realisedrastdvhat it does.
It can therefore be difficult to get a clear overview from \@xdVL of an IVR
service.

It is easy, and even common, to write VoiceXML scripts thatehanplicit loops

and complicated logic. To some extent, VoiceXML encourdyissecause its form
interpretation algorithm requires multiple passes thioaifprm. The consequences
of certain VoiceXML constructs may not be immediately olmspe.g. they may
cause an indefinite loop.

VoiceXML adopts a pragmatic and programmatic approach veldpment. There
is no way to formally check or analyse a VoiceXML script. ketl, VoiceXML
must be debugged using traditional software engineerirtyoas.

VoiceXML applications are essentially single scripts,upb these can be made up
from a number of individual documents (i.e. files). VoiceXMupports uncondi-
tional transfers doto) and subroutine-like callss@bdialog) to other documents.
However there is no equivalent of a feature. In fact, VoicdXddbes not even use
the term service.

In telephony, services are often composed from self-coathfeatures. A feature
is an additional function that is triggered automatica#lyg(call diversion or call
blocking). From the developer’s point of view, a featureiggered by certain con-
ditions and is not explicitly called at some point in the qaibcessing code. Fea-
tures can therefore easily add supplementary capabilgiéssic call processing.
The value of features has been amply demonstrated in thetdll{gent Network).

CRESs(Chisel Representation Employing Systematic Specifinqi®a front-end

for defining and formalising servicesREsswas initially based on the industrial
notation Chisel developed by BellCore [1]. HoweveRESs has been consider-
ably extended since its beginnings. In particular, it sufgpthe notion of plug-in
domains: the vocabulary and concepts required for eachcapiph area are de-
fined separately. Resshas been demonstrated on services from the IN (Intelligent
Network [24]), Internet telephony [25,27], and IVR (Intetize Voice Response
[27,28]).

CRESsaims to combine the advantages of an accessible graphitatiomg anal-
ysis via translation to formal languages, and realisati@ntranslation to imple-
mentation languages. That is, the same service diagramisecased for multiple
purposes. essis neutral with respect to the target language. For formalyais,
CREssdiagrams are automatically translated toTlos (Language Of Temporal
Ordering Specification [11]) or to SDL (Specification and Dgstion Language
[13]); see [28] and [26] respectively. For implementati@RESSdiagrams are au-
tomatically translated to Perl (for SIP services) or to ¥XMIL (for IVR services);
see [25] and [27,28] respectively.

For IVR services, BEssis intended to complement existing VoiceXML platforms.
In particular, Ressoffers the following:

e CRESSIs a platform-independent graphical notation for a suligth(but not
complete) proportion of IVR applications. ARESS service is represented at

a more abstract level than VoiceXML, making it easier to ganoverview of
the service. VoiceXML is merely a target language forgSS so it should be
possible to translateRESsdiagrams into other IVR languages.

e CRESssupports features and services. These are not directlgmeszd in IVR,
so their addition provides useful extra capabilities. Withfeatures, IVR appli-
cations have to explicitly call supplementary capabditie

e It can be difficult to check whether a realistic IVR applicatiwill behave cor-
rectly in all circumstances (e.g. will not stop prematurefyloop indefinitely).
Through translation to a formal languagerRE>S s supports rigorous analysis of

IVR services. RESsis also accompanied by a scenario-based testing language

that is used to validate IVR applications. The same apprasszhcontributes to
detecting feature interactions.

e \oiceXML is not formally defined. Some concepts are only vagudescribed
(e.g. event handling) and some are loosely defined (e.g.eimarstics of ex-
pressions and variables). Through translation to a forarajliage, EEsscon-
tributes to a more precise understanding of VoiceXML.

1.3 Relationship to Other Work

Graphical notations for services are, of course, fairly swn. Although it has a

graphical form, SDL (Specification and Description Langaift3]) is a general-

purpose language that was not designed particularly tesept communications
services. MSCs (Message Sequence Charts [12]) are higéedraind more straight-
forward in their representation of services. UCMs (Use (daps [2]) have been

used to describe communications services graphically.ddewnone of these ap-
proaches has support for specific domains, and they cannoaihglated into a

range of languages. Perhaps surprisingly, there does petapo have been other
work on graphical or formal specification of IVR services.

As noted earlier, there are a number of commercial tools fmcdXML. These
offer rather more complete support for IVR thar€xss However they are focused
on VoiceXML only, and do not offer any kind of formal analysieir (graphical)
representations of services are very close to VoiceXMLhgsy fire useful only to
specialists. Figure 1 is an example of what VoiceXML look® lin a commercial
tool; this corresponds to tHeonationservice described byRESsin figure 2.

Commercial VoiceXML tools do not support rigorous analysidVR services.
The translation of @essinto LoTosor SDL gives formal meaning to IVR service
descriptions. The translation provides access to any andgchnique based on
these languages. Among these, the author's own approatls[@8e of several
that might be used.

Feature interaction in telephony is a much studied issgg [(&). The basic prob-

:E'C:'lnucume-- 1kt Home'hin'cress-'cress2.6wxmlimainazmi
Design l Source]

|

SREETT
= [E] form farrmi
B [&] block blackl
= 3 audio
#ext"Please make your donation”
5] gato charity
= [E] field charity
El @] prompt
#ext "Which charity?"
=] E option
#ext"unicef
= [E] optian
#ext W'
=] E option

#ewt "red cross”

= & filled

*5 goto amount

= [@ catch help noinput
= 3 audio
#ext"Choose frarm”

= enurmerate

@ reprampt

B [=] field arount, type=currency

= 3 prompt

et "How many dollars?”

=] ﬁ? catch help noinput

Fig. 1. Partial Screenshot of Nuance V-Builder (Version) 1.2

lem is that independently designed features can interfétte @ach other. It has
been shown that feature interactions occur in a variety loémotiomains such as
building control [15], emall [5,9], Internet telephony [25], lift control [17], mo-
bile communication [32], multimedia [4,22], policies [1@nd the web [31]. The
work reported here shows how feature interaction can angelWR.

1.4 Overview of The Paper

The new contributions made by this paper are the applicaifoBRESSto IVR
services and features, the rigorous analysis of IVR apjbics, and the analysis
of feature interactions in IVR. Section 2 introduces IVR aisdrealisation using
VoiceXML. Section 3 gives an overview of theREssnotation as used to describe
IVR services. Section 4 describes how IVR services are ardlyincluding the
use of observer processes and a specialised test notagiciiorg5 discusses the
nature of feature interaction in IVR, and shows horeSscan be used to discover
feature interactions.

2 Interactive Voice Response using VoiceXML

2.1 Interactive Voice Response Systems

As an example of IVR, the following hypothetical dialogueghmi occur with a
telephone banking system:

System: You have called the Automated Phone Bank.
What would you like to do?

User: Silence

System: You can ask for your balance, request a statemetigsa your account

User. My balance please

System: What is your account number?

User: Four eight five six seven one

System: There is no account with this number, please trynagai

User: Four three five six seven one

System: What is the PIN for this account?

User: Five three eight one

System: Your balance is seven hundred and fifty one dollars.
Do you wish another service?

User: No thanks

System: Thank you for calling, goodbye

Commercial packages allow for a variety of natural langsagebe used in both
speech synthesis and speech recognition. The core logic Bffa script can be
the same, independent of the user’s language. Speech sithaot too difficult,
though itis harder to achieve acceptable emphasis andaitidon Text to be spoken
by an IVR system is usually annotated to indicate these #&spEte pronunciation
of unusual words and phrases can be also given using the jmgriamnmar. Al-
though synthesis can produce natural-sounding speeabusapplications usually
make use of pre-recorded human speech.

Speaker-independent speech recognition is very difficidept for limited vocab-
ularies. (An IVR system must be able to deal with any call&tere IVR gains is
that the system does not need to recognise unpredictaldelsp@ answer to the
first banking question above, for example, the system neeadisal with only a lim-
ited variety of replies. The grammar used to define these baw for reasonable
variations such as ‘current balance’ or ‘check my balantké speech recogniser
will choose the best match between the user’s input and dramar. Pre-defined
grammars deal with common input formats such as currencyatapdates, pure
numbers, telephone numbers, times and yes/no answergt-8efined grammars
allow arbitrary inputs using BNF-like definitions.

IVR applications can usually invoke external programshsas scripts in other
languages, calls to web server pages, or code to interragidtabase.

2.2 \oiceXML Scripts

VoiceXML (Moice eXtensible Markup Language [30]) is the mdanguage used to
write IVR applications. VoiceXML has built on earlier langges for IVR. To give

an idea of VoiceXML, the following is a simplified extract ofnat the telephone
banking application might look like.

<?xml versionZ1.0?> <!l—— XML ——>
<!DOCTYPE vxml PUBLIC> <!—— VoiceXML definition ——>
<vxml versionZ1.0 > <!—— VoiceXML ——>
<form> <!—— form ——>
<property name#imeout value=3'/> <!—— input timeout 3 secs-—>
<block> <!—— start-of-form code-—>
<audio> <!—— audio output——>
You have called the Automated Phone Bank.
</audio>
</block>
<catch eventznomatchcountZ3'> <!—— third no match?2—>
<audio> <!—— audio output——>
Sorry — too many attempts, goodbye
</audio>

</catch>

<field name=actiori> <!—— field for action——>
<prompt > <!—— audio prompt-—>
What would you like to do?
</prompt >
<option>balance/option> <!—— balance option-—>
<option>statement/option> <!—— statement optior-—>
<option>close</option> <!—— close option——>
<filled > <!—— field completed——>
<if cond=action =="balancé’/> <!—— balance action? —>
<goto next=#balanc&> <!—— to balance form-—>
<elseifcond=action =="statemerit’/> <!—— statement action? —>
<goto next=#statement> <!—— to statement form-—>
<els¢> <!—— close action——>
<goto next=Z#closé/> <!—— to close form——>
<lif>
</filled>
<catch eventZhelp noinput> <!—— help or no input?—>
<audio> <!—— audio output——>
You can ask for your balance, request a statement, or clageaggount
</audio>
<reprompt/> <!—— repeat form input-—>
</catch>
</[field>
</[form >
<Ivxml>

A VoiceXML document can contain one or more forms (or menég)various
points, including the start of farm, ablock can be used for executable code such
asaudio output and assignments.poperty is a platform-defined variable such as
thetimeoutfor user input. A VoiceXML script carcatch events such asomatch
(unrecognised user input) subject to an optional condibioretry count A field
with simple alternatives can list itgption values. Aprompt requests user input.
Once a field has bediiled (the user has provided matching input), the value as-
signed toits field variable can be used for further procgs$mthe above, the value
of actionis used to determine the URL gmoto; the ‘# notation is borrowed from
HTML to reference a label. If the field is not filled in as expttahelp event (the
user asked for assistance) an@nput event (the user did not speak) is caught and
used to trigger aeprompt. This has the effect of scanning the form from the top,
usually causing the most recent field to be prompted for again

VoiceXML supports a hierarchical event model. Event hargdieay be defined at
four levels: platform, application, form, field. Platfornaindlers provide fall-back
support, though they are usually too general to be usefudliégtion handlers gov-

ern all forms in an application. Form handlers allow theildiseto share common
event handling. Finally, fields usually define handlers fegrgs of specific inter-
est. A script maythrow an event, transferring control to a matching handler. As
well as those mentioned above, standard events indadeel(the user cancelled
processing)error (a run-time error occurred), arekit (the user asked to exit).
Although VoiceXML does not considdilled to be an event, it behaves like one.
Besides standard events, programmer-defined events manbeucted from sev-
eral parts (e.gbalance.failure.PIN Normally this would be caught by a handler
for this exact event. But if there is nothing to match, a hantihr balance.failure
(or failing thatbalancg may deal with the event. If no handler matches, the appli-
cation terminates.

Events are also implicitly associated with a prompt couat ik incremented each
time a field is entered. This may be used to vary the responae &vent. In fact
this is more complex than it seems. Suppose event handedeéined for counts
1 (the default), 2 and 4. The first is activated on count 1, #eosd on counts
2 or 3, and the last on count 4 or higher. A condition may alsoniosed on an
event handler being activated, e.g. because several macdidd apply. Voice XML
does not define what happens if conditions overlap — in facbghaviour is non-
deterministic.

In order to interwork with a web server, a VoiceXML script cambmit values
to a URL. This may return dynamically-created VoiceXML (etg announce the
result) that allows execution to continue. VoiceXML canoaéter an embedded
script that uses EMASCRIPT (JAVA SCRIPT) to perform arbitrary computations.
In fact, VoiceXML shares variables and expressions wittmM& SCRIPT. A Voice-
XML document cargoto another one, or can call it assabdialog (like a subrou-
tine).

3 Formalising Interactive Voice Response Services

3.1 The RESSNotation

CRESSis a graphical notation for describing the possible behavad a service.
State is intentionally implicit in @ ssbecause this allows more abstract descrip-
tions to be given. Arcs between states may be guarded by ewveditions or by
value conditions. €esshas explicit support for defining and composing features.
CREssalso has plug-in vocabularies that adapt it for differemti@ation domains.
These allow @Essdiagrams to be thoroughly checked for syntactic and static s
mantic correctness.

Ultimately, CREss deals with a single diagram. However it is convenient to con-

struct diagrams from smaller pieces. A multi-page diagf@mexample, is linked
through connectors. More usefully, features are define@pasate diagrams that
are automatically included by either cut-and-paste or iggéring. A (RESsdia-
gram is a directed, possibly cyclic graph. If the graph idicy@ may not be pos-
sible to determine the initial node uniquely. In such a casegxplicitStart node
is given. Comments may take several forms: text betweerlgldiaes, hyperlinks
to files, and audio commentary.

Nodes in a diagram (shown as ovals) contain events and theimeters (e.gub-
mit donate.jsp’amount charity). A node is identified by a number followed op-
tionally by a symbol to indicate its kind. For example, thetfinode of a template
feature is marked ‘+’ if it is appended to the triggering npde‘—’ if it is pre-
fixed. A node number is followed by ‘I’ to prevent feature tdatps from match-
ing the node. Events may be signals (input or output mesysagexctions (like
programming language statements)NAEvent (or empty) node can be used to
connect other nodes. An event may be followed by assignnsepiasrated by /’
(e.g./ timeout<— 3).

The arcs between nodes may be labelled by guards. These nmeithbe value
conditions (imposing a restriction on the behaviour) ormgenditions (that are
activated by dynamic occurrence of an event). Event cantitare distinguished
by their names (e.dNolnput, triggered when the user does not respond to a \Voice-
XML prompt).

A CREssdiagram may contain a rule box (a rounded rectangle) thateefien-
eral rules and configuration information. A rule box typlgaleclares the types of
diagram variables (e.d@Jses Valuecharity, amount A rule box may define con-
figuration information like parent diagrams, chosen fesgand translator options.
Definitions can be given of macros with optional parametRtge boxes have yet
other uses [24,25,27] that are not so applicable to IVR.

The main REssdiagram defines the root behaviour. Although this may be the
only diagram, @esssupports feature diagrams that modify the root diagram (or
other features). A spliced (plug-in) feature is inserteid ia root diagram by cut-
and-paste. The feature indicates how it is linked into thgioal diagram by giving

the insertion point and how it flows back into the root diagraims style of feature

is appropriate for a one-off change to the original diagram.

It is usually preferable to use a template (macro) featuaeithtriggered by some
event in the root diagram. The triggering event is given afilst node of the fea-
ture. Feature execution stops on reachirigrash (or empty) node. At this point,
behaviour resumes from the triggering node in the originafjchm. A template
feature is statically instantiated using the parametetiseofriggering event. The in-
stantiated feature may be appended, prefixed or substitutélake triggering node.

10

3.2 Sample Interactive Voice Services RESS

As an example of essfor IVR, suppose the imaginary Charities Bank requires a
service for telephone donations to charity. Figure 2 shtvesIRESSroot diagram

for this sample application. This defines the applicatiamadescharity (UNICEF,
WWF, Red Cross) andmount(the donation in US dollars). AVelcomanessage

is defined as a macro for general use.

The root application asks the caller to state the charitythe@mount, for submis-
sion to thedonate.jspiveb page. If the user asks for help or says nothing following
a prompt, an explanation is given and the user is repromptedrrency amount is
read as a string whose first three characters give the cyroee (e.g”’USD"). If

the user says another currency (€lgKL” means pounds sterling), the user is re-
prompted for the amounRetry in node 7 first clears the value enteredéomnount
otherwise the field would be ignored on the reprompt becausasi already been
filled.

Speech output may contain markup. Variable values arepiolsted as, for ex-
ample,$charity. The current options list is interpolated wiflienumerateSpeech

is emphasised witlfemph(text) The pronunciation of a word may be given with
$sub(loch,lough}hat substitutes the first word for the second. Text may be spo
ken according to a particular class of expression, &tass(phone,467423)r
$class(number,467423)

Suppose that Charities Bank has a range of applicationddsetiie donation ap-
plication in figure 2. There might, for example, be separafdieations to enquire
what charities are supported, to ask for a statement of thatams made to date,
or to request a tax relief statement. It would be desirablensure a consistent
treatment of all these applications. For example, theralshoe the same default
handling of events and a common introduction. It would alsavorthwhile to re-
guest confirmation before anything is submitted to a webeselmhere is therefore
a case for common features.

Figure 3 is thantroductionfeature that defines an introductory environment for all
Charities Bank applications. The feature is placed jugrdfieStart node in the
root diagram (as indicated by the ‘+’ after the triggeringlamumber); &tart node

is implicit prior to figure 2 node 1. Introductory messagexiiding that of the
Welcomamacro) are spoken before executing application-specifie cGommon
handlers are defined for various events. Although an agjgitas likely to deal
with Nolnput andNoMatch on a per-field basis, figure 3 ensures that after three
such failures the user is disconnected. Figure 3 also dedir@atform property:
here the timeout for no input is set to three secotidseout<— 3).

Although thelntroductionfeature defines a specific input timeout, it could be useful
to have a feature that disables timeouts for any applicafigure 4 defines thé/ait

11

Uses Value charity, amount

1 Audio "Please
make your donation"

2 Option charity
"Which charity?"
"UNICEF WWF 'Red Cross™

Welcome <- "Welcome to Charities Bank"

Filled Catch "Help Nolnput"

3 Request amount
"How many dollars?"
Currency

8 Audio "Choose
from $enumerate"

Filled Catch "Help Nolnput"

Y

SubString(amount,0,3) = Else
Wsp"

| 2
$amount to $charity"
]) Y
'amount charity

Fig. 2. ORessRoot Diagram for Charity Donation Application

6 Audio "Choose an
amount in US dollars”

Catch "Nolnput
NoMatch" 3
Py

/timeout <- 3

4 Audio "Sorry - an

internal error occurred”

5 Audio "Thank you
for calling - goodbye"

NoMatch

Exit

7 Audio "Not
recognised - try again"

6 Audio "Sorry - too
many attempts”

2 Audio Welcome

Y

8 Reprompt

3 Audio "Say Help
or Exit at any time"

Fig. 3. CREssFeature Diagram to introduce Charities Bank Applications

12

Cser

/ timeout <- 0

G

Fig. 4. GREssFeature Diagram to disable Input Timeout

Coow D

/ bargein <- false

G

Fig. 5. OREssFeature Diagram to disable Prompt Barge-In

'
\Y Variables

2 Request account
"Say your account number"
Digits?length=6

Filled Catch "Help Nolnput NoMatch"

¥
3 Audio "Charged to
account $account"

4! Submit
"account.jsp" account

5 Audio "Please
say your six-digit
account number"

6 Reprompt

Fig. 6. ORESSFeature Diagram for Account

feature that setSmeoutto zero. Figure 5 is also a generic feature that disables user
barge-in, i.e. interruption of a prompt.

Figure 6 defines thAccountieature that asks the user to supply an account number.
This feature could be generic, and not just for the CharlBiask. The feature is
triggered before other information is submitted to a webeei.e. the charity and
amount in the case of a donation. The trigger Submit action (node 1), being
executed just before it (as indicated by the ‘— after thggering node number).
The account number is submitted to @eount.jspwveb page. Help is provided as
required for theaccounffield. The digit string grammar may define a specific length
(6 for accoun}, or may define a minimum and maximum number of digits.

Figure 7 is a similar featurBIN that asks the user for the Personal Identification

Number to access an account. As an example of speech m&dulps used to say
PIN as a word rather than as P-I-N.

13

V] URL
v Variables

Uses Value pin

2 Request pin
"Say your $sub(pin,PIN)"
Digits?length=4

Filled Catch "Help Nolnput NoMatch"

5 Audio "Please say
your four-digit Personal
Identification Number"

3 Audio "Your
$sub(pin,PIN) is $pin"

Y
@pin.jsp" pin 6 Reprompt
Y

Fig. 7. QREsSFeature Diagram for PIN

. U URL
Uses Value confirm V. Variables

2 Request confirm
"Do you wish to proceed?"
Boolean

Filled Catch "Help Nolnput NoMatch"
A

5 Audio "Please
say Yes or No"

6 Reprompt

confirm Else
4 Reprompt

Fig. 8. CREssFeature Diagram for Confirmation

Figure 8 is another generic featut@nfirmasks for confirmation before final sub-
mission of information. Since th&ccount PIN andConfirmfeatures are triggered
by the sameSubmit action, feature priorities ensure that they are appliedis t

3.3 Translating RESS

The QRESstoolset is written largely in Perl for portability, comping about 14,000
lines of code and six main tools. Including test scenarios,e are about 600 sup-
porting files for all domains and target languages.

For IVR, CREss diagrams are automatically translated into VoiceXML. Oa th

14

CRESS VoiceXML

Audio message audio message

Clear variables clear with namelistvariables

Menu variable prompt choices menu name variable prompt, choice
values

Option variable prompt options | field namevariable prompt, option val-

ues

Prompt message prompt message

Reprompt reprompt

Requestvariable prompt grammar field name variable type grammag
prompt

Retry Undefine current field variable, re-
prompt

Submit URL variables submit to URL the namelistariables

Fig. 9. OREssVWoiceXML Correspondence

whole, the translation is straightforward. Figure 9 shdwesrhain correspondence
between @Essand VoiceXML. Forms (and menus) are prominent in Voice XML
since this focuses on structural issues. HowevrRESS emphasises the flow of
control, and so does not give the same prominence to thertreabhsfields are
introduced implicitly (withMenu, Option and Requesj. The flow of control in
VoiceXML can be complex and implicit, e.g. a reprompt goeskida the start of a
form and then selects the first available unfilled field. RESsdiagram can reflect
the same implicit flow, or can indicate this explicitlyREssincludes theRetry ac-
tion for re-inputting the current field — something that \@xdVIL does not directly
support.

The general principles for formalisingRESS appear in [24]. Broadly speaking,
inputs and outputs are treated the same @Tds they are translated as events
(usually) or as process calls (where paths converge on g.nogets require spe-
cial treatment in SDL as they are permitted only at the bagmof a state transi-
tion. Alternative inputs of the same signal or variable naemmplex translation.
Outputs are converted straightforwardly into SDL.

For IVR services specifically, translation int@Losand SDL is described in [28]
and [26] respectively. The major aspect of IVR that needseaigpised translation
is event handling. Although this occurs dynamically in IVIRcg event names can
be constructed during execution, event dispatching neetie tefined statically
in LoTos or SDL. Fortunately, it is possible to determine the hidngrof event

handlers at translation time. The event dispatcher reftbesshierarchy, passing

15

an event to the relevant proceso(tos) or label (SDL). Actions such as those in
figure 9 are domain-dependent, so their translation irdods or SDL is specific
to IVR. Speech is not, of course, rendered directly @rbsor SDL but as strings
carried in event parameters.

4 Analysing Interactive Voice Response Services

4.1 Analysis in General

An IVR application can be executed like any script. Some cenumal packages
allow VoiceXML to be run in an offline IDE, while others reqeithe script to be
run by an online environment. In either case, debuggin@elitypical program-
ming practice. This is, of course, time-consuming and risidetected errors. Since
CREssdiagrams can be translated intotosand SDL, this offers new possibili-
ties for automated analysis. For illustration, this paperoentrates on what can be
done with LOTOS

There is, of course, nothing special about therbs generated by €eEss Any
standard loTostechnique can be used for validation such as step-by-steyasi
tion, symbolic execution, rapid prototyping and testingyAtandard bTostech-
nique can be used for verification such as equivalence ahgckiodel checking
and theorem proving.

The main problem in formal analysis of the generated @ sis that the state space
is usually infinite in two ways: events carry infinite sortads as speech strings),
and behaviour may recurse indefinitely. As a result, vetibcais impracticable
using standard temporal logics like CTL (Computation Tremgic [3]) or LTL
(Linear Temporal Logic [18]), and standard model-check&esSPIN [10].

A number of solutions might be adopted:

e A symbolic transition system could be generated, allowinglgsis of a finite
transition system using symbolic model-checking. Altho{g] is a promising
basis for this, the work has not yet progressed to the poirgrgvlautomated
analysis is feasible.

e Symbolic on-the-fly test generation could be used [20], ¢ioagain this tech-
nigue is not yet usable for IVR services.

e Eventvalues could be restricted when the state space isajedeThe Parameter
Constraint Language of [29] allows the specifier to defineredting parameter
values as annotations on events. These are translatedaatibebconstraint pro-
cesses that limit the state space. The programming ineefG@cCADP (Caesar
Aldébaran Development Package [8]) also allows the spetdfiselectively enu-

16

merate sorts during state space generation. Unfortunatatiier approach is
particularly suitable for IVR services since the restanton values is context-
dependent.

e Observer processes can be placed in parallel with the maiavimur to check
for undesirable conditions. The state space can then beajedestopping if an
observer process forces deadlock due to violation of a requroperty. This is
a practical solution that is explored in section 4.2.

¢ Validation (i.e. testing) can be used to check correct biel@avSince the tests
are concrete and finite, validation is a practical soluttwat is explored in sec-
tions 4.3 and 4.4.

4.2 \ferification using Observer Processes

The idea of observer processes is well established. Intfeegpproach resembles
that of model-checking except that properties are fornedlats observer processes.

The LoTOS specification generated byrREssfor VoiceXML has the user and a
web server as its environment. The top-level structuresmbthaviour is as follows:

Hide Recoln (* hide recogniser signals *)
(
Application [Reco,Serv,User] (* VoiceXML application *)
|[Recd| (* synchronised on recogniser messages *)
Recogniser [Reco,User] (* VoiceXML recogniser *)
)

I (* synchronised on all messages *)
Observer [Reco,Serv,User] (* VoiceXML observer *)

The Observerprocess synchronises on all events at gReso(messages to/from
the speech recognisei$erv(messages to the web server) ddder (messages
to/from the user). By default, th®bserverprocess permits any events at these
gates. This requires care to make sure that accidentalatadhre avoided. Fortu-
nately the variety of event structures is small, so it is pecable to ensure that all
possible events are handled.

Specific conditions can be checked with observer proceBsegxample, an easy
mistake with an IVR application is to loop indefinitely inatkof giving up after a
certain number of user attempts. The following observecgss counts how many
times the sam&equestfor input is repeated. If it reaches a certain limit, the be-
haviour deadlocks. Since all observer processes are symshd with the main
behaviour, the whole specification deadlocks at this point.

ProcessRecogniserPrompt [Reco] (* repeated prompt up to limit *)
(prompt:Text, count,limit:Nat) Exit :=
Reco 'Request ?promptNew:Text 2grammar:Grammar (* alkguest ... *)

17

[(promptNew Eq prompt) Implies (count Lt limit)]; (* to limiif same *)
(

[promptNew Eq prompt}> (* same prompt? *)
RecogniserPrompt [Reco] (prompt, count + 1, limit) (* incount *)
[
[promptNew Ne prompt}> (* different prompt? *)
RecogniserPrompt [Reco] (promptNew, 1, limit) (* set cotonl *)
)
EndProc

Many variations on this are usddenu andOption inputs are checked in the same
way. A limit can be placed on the total number of prompts in ang session, and
not just on repetitions of the same prompt. Relationshipadéen events can also
be checked, for example to ensure that there iSumomit to the web server if the
user invokeCancelor Exit.

The state space is generated up to a certain depth for thédicgeen including
observer processes. If any deadlocks are found, the trateetbpt point is used to
identify the cause of the problem. For example, if a prompintdimit is met it can
be seen which field is being repeatedly requested.

Consider thddonationapplication in figure 2. Does it contain an infinite loop? An
observer process likRecogniserPrompabove was defined to check for repeated
Option inputs beyond a limit of 3. The specification was then exmldoea depth

of 15 using arExpandfunction of LOLA (LoTos Laboratory [16]). This discovers
several deadlocking traces such as the one below. (Forb#iagdext strings are
given rather than their actual, rather ugly representatidioTOS)

User !Audio "Please make your donatign (* get introductory message *)

User !Audio "Which charity?; (* get charity prompt *)
User !Tone ?input:Text; (* provide invalid touch tone *)
User !Audio "Input was not recognisép (* get error message *)
User !Audio "Which charity?; (* get charity prompt *)
User |Event ?eventEvent; (* cause invalid user event *)
User !Audio "Input was not recogniség (* get error message *)
User !Audio "Which charity?; (* get charity prompt *)
User Voice ?input:Text; (* select invalid charity *)
User !Audio "Input was not recognisép (* get error message *)

This sequence arises because the user gives three inaopatstin a row. Now that
the prompt has been repeated up to the limit, it is no longenpieed and the spec-
ification deadlocks. In fact, figure 2 allows this prompt torbassued indefinitely.
The application needs to be modified to prevent this.

18

4.3 \Validation using Scenario-Based Tests

Use of observer processes requirestTbs to be written. However the goal of
CRESsis to allow non-specialists to define and investigate sesvitt is thus nec-

essary to hide the underlying formalism. Desirable propemf a service should
be expressed using a neutral language. The idea is to chasacthe expected
behaviour of a service using scenarios, much as use-casa&gzeare used in soft-
ware engineering. Of course, a scenario-based approacacbave only limited

validation of a service. However it is practical (even foriafnite state space) and
conforms to software engineering practice.

CRESssis therefore complemented by its culinary counterpaotsvarD (Multiple-
Use Scenario Test And Refusal Description). As the nameesiggMJSTARD
is used to define scenario-based tests of what a service rmustaidvever, as is
common in testing it is also important to check what a sermmest not do: its
refusals. Refusal-based testing is more stringent in éghgdkat a specification is
not too loose in its behaviour. ¥BTARD is an elaboration of the RTEST language
developed for AliSe (Architectural Notions In Service Engineering [23]).

Similar to CRESS MUSTARD is used to formulate tests independently of the actual
language used for testing. W TARD must therefore be translated into a partic-
ular test realisation. In the work reported here this grbs though MUSTARD
should be capable of translation into MSCs (for use with SOCN (Tree and
Tabular Combined Notation), etc. AlthoughUudTARD could have been a graph-
ical notation like GRESS the requirements for expressing tests are quite different
from those for expressing servicesUBITARD was therefore designed as a textual
language that emphasises combinations of simpler sub-test

The MUSTARD translator is mainly written in th&4 macro language [21], with

a Perl wrapper that automates the validation proceduréh Eawice or feature is
associated with a MSTARD file that defines the tests to be performed on it. This
allows all services and features to be validated with a sicgihnmand. For exam-
ple, theConfirmfeature in figure 8 is validated as follows using tfestExpand
function of LOLA:

Testing Confirm Accept ... Pass 1succ Ofall 0.9 secs
Testing Confirm Incorrect ... Pass 1succ Ofail 0.4 secs
Testing Confirm Retry ... Pass 1succ Ofail 0.4 secs

A test ought to Pass. A scenario might legitimately be pagsedultiple ways,
in which case the number of succ(essful) paths is reporfeall possible paths
lead to failure, this is reported as Fail. If some paths aceesssful and some are
not (usually due to non-determinism), the test is reportethaonclusive. In the
case of a refusal test, success means that the test doesfootpthe undesirable
behaviour.

19

If a test has one or more failure paths, these are reportedevty, failure is dis-
covered in loTos terms. The loTos traces are therefore be translated back into
the MUSTARD notation before being reported. This preserves the lareyusaig-
pendence of the approach.

The tests formulated using B4TARD are used to check the specification of an
IVR application, determining if it has unexpected or undsgsie behaviour. The
same tests can also be used as scripts to evaluate the livedpRation, e.g. after
compilation of the @Essdescription into VoiceXML. This is potentially more sys-
tematic than the ‘Wizard of Oz’ procedures that are ofterdusdnerein an expert
tester exercises the behaviour of the live application.

4.4 The MUSTARDTest Notation

Figure 10 summarises the W8TARD test notation. The simplest behaviour in-
volves the environment (user or web server) receiving aasigacv) or sending
one &end. More complex tests combine these. At the topmost levalicaessful
test leads to the internal success evé€K). For example, a test of thHeonation
behaviour in figure 2 might be:

test(Donationl, % donation test
succeedé % successful sequence

recv(Audio,Please make your donation), % get introductory iagss
recv(Audio,Which charity?), % get charity prompt
send\oice,WWF), % select WWF
recv(Audio,How many dollars?), % get amount prompt
send\Voice,$50), % select $50
recv(Audio,You donated $50 to WWF), % get confirmatory message
recv(Server,donate.jsp,$50, WWF))) % get server request

A complete test like this could be overly prescriptive besgaiiinsists on behaviour
that is not crucial to the test. This is particularly impaoitéor a feature, where the
focus should be on testing the feature and not its surrognioiaviour. For this
reasonywait is provided as an alternative tecv so that other behaviour is ignored
until the required one. The above test, for example, coulsiioglified to its basic
elements:

test(Donation2, % donation test
succeedé % successful sequence
wait(Audio,Which charity?), % get charity prompt
sendVoice, WWF), % select WWF
wait(Audio,How many dollars?), % get amount prompt
send\oice,$50), % select $50
wait(Server,donate.jsp,$50, WWF))) % get server request

20

M USTARD Meaning

% text comment

decidegbehaviour...) provides behaviours as non-deterministic
(system-decided) alternatives

dependgconditiontest...) | if first condition holds then do first test, else
check later condition/test pairs

exits(behaviour...) executes behaviours in sequence and then exits

fails(behaviour...) executes behaviours in sequence and then stops

interleavegbehaviour...) | interleaves behaviours in parallel

offers(behaviour...) provides behaviours as deterministic (user-
decided) alternatives

presenifeature checks if feature is present

recv(signalparametery | environment receives signal with given param-
eters

refusegbehaviour...) executes behaviours in sequence, but the last be-

haviour must not happen

sendsignalparametery | environment sends signal with given parameters

sequencebehaviour...) | executes behaviours in sequence

succeedéehaviour...) executes behaviours in sequence, then causes
the internal success event and stops

test(namebehaviou) define test with given name and behaviour

wait(signalparametery | absorbs events, continuing on occurrence of
given signal with given parameters

Fig. 10. Summary of MSTARD Notation

In order to ground a partial test like this, it is still necagsto provide some key
inputs such as the choice of charity and amount.

Suppose the&onfirmfeature in figure 8 is to be tested for the user agreeing to
proceed. The following waits for the confirmation promptddhen issues a user
agreement.

test{Confirm1, % confirmation test
succeedé % successful sequence
wait(Audio,Do you wish to proceed?), % get confirm prompt
send\oice,Yes))) % agree

21

Rather than ussucceedsit is possible to construct a successful test from more
basic behaviours. Theequence®perator yields a sequence of steps that can then
lead to success. The elements of a sequence can be compdanebloes built with
other operators. A choice can be provided to the environméhtoffers. In such

a caseexits may be used to allow a sequence to continue.

The following test ofConfirmchecks what happens if the user does not answer Yes
or No. As an (artificial) example of constructing a succdsséguence, an inner
sequencess used with an outesucceedsAfter the confirmation prompt the user
may ask for help, say nothing, or say the wrong thing. The sbeuld then be
reprompted. Agreeing terminates the test successfully.

test(Confirm2, % confirmation test
succeedé % successful sequence
sequenceg % follow sequence
wait(Audio,Do you wish to proceed?), % get confirm prompt
offers(% offer alternatives
exits(sendEvent,Help)), % ask for help
exits(send Event,Nolnput)), % say nothing
exits(sendVoice,Eh?))), % say wrong thing
recv(Audio,Please say Yes or No), % advise user
recv(Audio,Do you wish to proceed?), % get confirm prompt
send\Voice,Yes)))) % agree

Other operators can be used for more complex tests. Foragpeoncurrent tests
may be formulated usingterleaves though this finds little use in IVR testing. A
system choice can be made usdegides unlike offers which leaves the choice up
to the user. Conditional tests make uselepends with conditions being arbitrary
boolean expressions. A common form of conditional test psesentto check if
a given feature has been deployed. The following offersradtieve tests depending
on whether théonationor Order root diagram is present.

test(Multiple, % multiple tests
dependg % conditional dependency
preseniDonation), % donation root diagram?

% donation test
preseniOrder), % order root diagram?

.r) % order test

Refusal tests are the most stringent, as they say what mukappen. The overall
behaviour is defined brefuses This contains initial steps that must happen. The
final (possibly composite) behaviour that must not happentisduced byfails.
The following allows a donation up to the point at which therugoes not agree to
proceed. Following this, the donation request must not betsethe server. That
is, the complete test must not allow a sequence leadingssé#nver request.

test{Confirm3, % confirmation test
refuseg % refusal sequence

22

wait(Audio,Which charity?), % get charity prompt

sendVoice,Red Cross), % select Red Cross
wait(Audio,How many dollars?), % get amount prompt
send\Voice,$30), % select $30
wait(Audio,Do you wish to proceed?), % get confirm prompt
send\oice,No), % disagree
fails(% failure sequence
wait(Server,donate.jsp,$30,Red Cross))) % get server request

With these building blocks, complex tests can be formulatedl USTARD. Each
root diagram or feature diagram is associated with a setesfastos and refusals
that characterise its behaviour. The tests are automigteaplied when a feature
is deployed, whether in isolation or in combination withatfeatures.

As an indication of how MISTARD is translated into bTos the following is the
automatic translation of te§tonfirm2above:

ProcessConfirm2 [Serv,User,OK] NoEXxit := (* confirm test *)
Waitl [Serv,User] (* wait for confirm prompt *)
>> (* followed by *)
(
User !Event IHelp; (* user asks for help *)
Exit (* continue *)
I (*or?)
User !Event INolnput; (* user says nothing *)
Exit (* continue *)
[(*or¥
User Voice 'Eh?'; (* user says wrong thing *)
Exit (* continue *)
)
>> (* followed by *)
User !Audio "Please say Yes or Np (* advise user *)
User 'Audio Do you wish to proceed? (* get confirm prompt *)
User Voice "Yes'; (* agree *)
OK; (* success event *)
Stop (* stop behaviour *)
Where (* local definition *)
ProcessWaitl [Serv,User] Exit := (* wait for confirm prompt *)
Serv ?parl:Text ?par2:Values; (* ignore server message *)
Waitl [Serv,User] (* continue waiting *)
[(* or)
User !'Audio ?parl:Text; (* get audio output *)
(
[parl Eq’Do you wish to proceedP> (* confirm prompt? *)
Exit (* exit local process *)
[(*or?)

23

[parl Ne”Do you wish to proceedP>
Waitl [Serv,User]

)
[

User |Event ?parl:Event;
Waitl [Serv,User]
[
User ITone ?parl:Text,
Waitl [Serv,User]
[
User Voice ?parl:Text;
Waitl [Serv,User]
EndProc (* Waitl *)
EndProc (* Confirm2 *)

(* not confirm prompt? *)
(* continue waiting *)

(*or®)
(* ignore user event *)
(* continue waiting *)
(*or®)
(* ignore user tone *)
(* continue waiting *)
(*or*)
(* ignore user voice *)
(* continue waiting *)

5 Feature Interaction in Interactive Voice Response Servies

5.1 Categories of IVR Feature Interaction

It has been seen how the integrity of an IVR application cawchecked through
the use of observer processes and tests. The term ‘feasunsed loosely in the
following to mean any addition to the base application, alt agto mean a €ESsS
feature diagram. The addition of further features to an I'\¥Rli@ation can lead to
interactions in much the same way as for telephony. Howdwenature of inter-
actions is rather different for IVR. The following categesiof feature interactions

can be identified:

(1) IVR applications can initiate phone calls, e.g. an ardgapplication might
set up a call to a sales assistant. Such calls may suffer fnerkihds of in-
teractions known from telephony; for example call scregmmght interfere
with call forwarding. It is also possible for the use of a dtse or web server
to cause interactions through conflicting demands on thenlyidg resources.
All these interactions are strictly external to IVR and ao¢ considered fur-

ther here.

(2) Platform properties may be defined hierarchically. Faaneple, the input
timeoutdefined in figure 3 may be overridden within a field by a local fea
ture. From the user’s point of view this would be an obsemaltiange in
behaviour, e.g. the input timeout might be shortened or eisabled. Other
platform properties such dmrgein fetchtimeouandnospeechtimeowould

similarly lead to conflicts.

(3) Two features may also change an application variablensistently, leading
to differing behaviour. The goal of th&ccountfeature in figure 6 is to obtain

24

a literal account number. A separate feature might normalmsaccount num-
ber, e.g. validating a check digit or setting an account remiito a standard
format. The resulting account number would then depend anhwiieatures
were triggered and in which order.

(4) In general the outcome of feature application could ddpen the order in
which features are invoked. Without a defined ordering aorgirsation, fea-
tures could interfere with each other.

(5) Eventhandlers are defined in a hierarchy. When an eventsdhe IVR inter-
preter looks upwards in the hierarchy for the appropriatellea. For example,
consider figures 2 and 3. If there is no input in response tahaety prompt
(figure 2 node 2), execution follows the field handler (figumeo2le 8). How-
ever after three failures to input, the generic handler belinvoked (figure 3
node 6). A consequence of this is that a feature may unexgigateerride
the usual handling of an event. It may do so at either a moi lmrca more
global level. Non-determinism could arise if a feature abtlde event handler
whose condition overlapped with an existing event handler.

(6) Several input grammars may be active at the same tims.i$tparticularly
true for what are called mixed-mode initiative forms thatrau require the
user to input in a fixed order. For example, at some point tee msght be al-
lowed to give a name or a date of birth. Provided the grammaretoverlap,
this is not problematic. However grammars may overlap, 250 might be
interpreted as an amount (currency grammar) or as a PINt @rgag gram-
mar). Such a situation could arise through design of the pphcation, but
is unlikely as the consequences would be obvious to the desilylore real-
istically, overlapping grammars could arise because afeadds a new field
to an existing mixed-mode form. The effect is that featuteriaction would
cause non-deterministic behaviour.

(7) Anindirect interaction arises with responses using F{idual-Tone Multi-
Frequency, i.e. touch-tone). VoiceXML allows these in pla¢ voice input,
e.g. 1 might select the first choice from a menu. By defauliMPTdigits are
allocated in sequence to choices. If a feature introducethanchoice earlier
in the menu, the numbering of later choices will be altered.

5.2 Feature Interaction Detection BRESS

CREsstakes a conventional view of feature interaction. If a featbehaves dif-

ferently in the presence of another feature, then the twea@msidered to interact.
From a theoretical point of view, it should be checked whethe specification of

RootpFeaturelagrees (in the sense of some formal equivalence) with thafspe
cation ofRootbFeatureXpFeature2with respect to the behaviour Beaturel

As discussed in section 4.1, complete verification of IVRcdpmtions is imprac-
ticable. RESS must therefore rely on more pragmatic means. The relatipnsh

25

Uses Value restart

2 Request restart
"Start over again?"
Boolean

Filled Catch "Nolnput NoMatch"

Else
3! Submit donate.jsp
"amount charity"

Fig. 11. QRessFeature Diagram for Restart

checked by @Essis that tests oFeaturelstill pass in the presence Béature2 Of
course this is a weak form of consistency checking, but ifsitenarios reflect the
key behaviour of a feature then it is reasonably thorougtihigh it is common in
feature interaction work to consider only pairs of featu@sessis normally used
to check for consistency in the presencealbfother features.

The tests formulated using B4 TARD therefore play a double role: to build confi-
dence in the correctness of an IVR service or feature, anddokcfor interactions
among IVR features. All features are deployed with a basdicgtpn, then the
tests of each feature are automatically run. This is ablentbgroblems in a rea-
sonable timescale (minutes).

Of the categories of IVR interaction identified in sectioth,51) has already been
ruled out of scope. Category (2) is problematic (witb7los and SDL at least).

Timing-related properties cannot be checked without cimgoa target language
that supports a notion of real time. Dialogue-related platf properties can also
be impossible to check, e.g. determining whether bargesinoccur requires non-
atomic events. However, categories (3) to (7) all causegdmmim application func-

tionality and can be detected byrESS

Reconsider the Charities Bank application in section 3.2 féature such aSon-

firm (figure 8) clears the form, the user must re-input all infaioraagain. It may

be decided that this is a drastic action that should not bentakthout user con-
firmation. A newRestartfeature is therefore added to prompt the user before any
Clear action is taken. Figure 11 prompts the user for confirmatiarestart. Only

if the user positively agrees does clearing take placeywike the donation details
are submitted and the whole application exits.

This seems like a useful addition. However testing of @enfirm feature then
reports the following:

Testing Confirm Accept ... Pass 1succ Ofail 1.3 secs

26

Testing Confirm Incorrect ... Pass 1succ Ofall 0.4 secs
Testing Confirm Retry ... Fall Osucc 1fall 0.5 secs

followed by a diagnosis of the failing behaviour:

recv(Audio,Please make your donation)
recv(Audio,Which charity?)
send\oice,Red Cross)

recv(Audio,How many dollars?)
send\oice,$15)

recv(Audio,You donated $15 to Red Cross)
recv(Audio,Do you wish to proceed?)
send\oice,No)
recv(Server,donate.jsp,$15,Red Cross)
<failure point-

The failing test is the following one fdConfirm

test(Retry, % retry confirmation
succeedé % successful sequence

wait(Audio,Which charity?), % get charity prompt
sendVoice,Red Cross), % select Red Cross
wait(Audio,How many dollars?), % get dollars prompt
send\oice,$15), % select $15
wait(Audio,Do you wish to proceed?), % get confirm prompt
send\oice,No), % disagreq
wait(Audio,Which charity?), % get charity prompt
sendVoice,UNICEF), % select UNICEF
wait(Audio,How many dollars?), % get dollars prompt
send\oice,$70), % select $70
wait(Audio,Do you wish to proceed?), % get confirm prompt
send\oice, Yes), % agree
wait(Server,donate.jsp,$70,UNICEF))) % get server request

The problem is thaConfirmexpects all form fields to be input again if the user de-
cides not to proceed. However tRestartfeature allows the user to cancel such an
action (following the point markegtlabove); submission to the web server can pro-
ceed after all. As a result, the original donation data maguienitted byRestart

in contradiction toConfirm Clearly these two features interact and must be re-
designed.

6 Conclusion

The nature of IVR services and their representation in \¥ME have been ex-
plained. REsshas been introduced as a general graphical notation foicesyv
with particular emphasis on IVR.KEssis formalised through translation to lan-

27

guages like IoTos (the focus of this paper) and SDL. HoweveRESs can also
be translated for implementation into languages like \idM& (the focus of this
paper) and Perl.

CRrEssoffers the following benefits for IVR development:

platform and language independence
support of features and services
formal definition of services

rigorous analysis of applications.

The use of observer processes has been illustrated as a ofenositoring unde-
sirable situations in an IVR service. TheUdTARD scenario-based test language
has also been introduced with reference to IVR.

CRESssadds the concepts of service and feature to IVR. The natdeatfre inter-

action for IVR has been discussed, including a general oatagion of the kinds
of feature interaction that may arise. The use ai$ARD to detect interactions
has been explained, with an example to make the ideas moceaten

CRESssscales satisfactorily in the following senses:

¢ Although a single large diagram could be drawn of an entipiegation, features
are normally defined in their own diagrams. It is thereforacticable to handle
many features.

¢ Validation using observer processes is modular when theegses monitor in-
dependent conditions. However a composite observer pasaseeded when
conditions depend on shared events.

¢ Validation using scenario-based tests is modulariseditiiracenarios for each
individual feature. Scenarios have to be linked only whesyttdepend on the
presence of other features. Validating scenarios for oatufe does not incur
much of a performance penalty in the presence of multiplerdématures.

¢ Validating an IVR application normally requires only oneeugdowever, check-
ing for telephony interactions (e.g. among IN featuresunexs multiple users.
Validation time then depends on the square of the numberassygvhich is an
acceptable degree of variation).

CRrREsshas now proven itself in three domains: Intelligent Netvgpikiternet tele-
phony, and now IVR. It has shown itself to be flexible, expressand able to
support feature description and interaction detection.

28

Acknowledgements

Nuance Corporation kindly provided an academic licenceu® of Nuance V-
Builder 7™ in this work.

References

[1] A.V.Aho, S. Gallagher, N. D. Griffeth, C. R. Schell, and B Swayne. SCF3/Sculptor
with Chisel: Requirements engineering for communicatisexvices. In K. Kimbler
and W. Bouma, editorsRroc. 5th. Feature Interactions in Telecommunications and
Software Systempages 45—-63. 10S Press, Amsterdam, Netherlands, Seggt. 199

[2] D. Amyot, L. Charfi, N. Gorse, T. Gray, L. M. S. Logrippo, Sincennes, B. Stepien,
and T. Ware. Feature description and feature interactiatysis with use case maps
and Lotos In M. H. Calder and E. H. Magill, editor®roc. 6th. Feature Interactions
in Telecommunications and Software Systerages 274-289. 10S Press, Amsterdam,
Netherlands, May 2000.

[3] M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic lmfanching time.Acta
Informaticg 20:207—-226, 1983.

[4] L. Blair and J. Pang. Feature interactions — Life beyorafitional telephony.
In M. H. Calder and E. H. Magill, editorsProc. 6th. Feature Interactions in
Telecommunications and Software Systepmges 83-93. I0S Press, Amsterdam,
Netherlands, May 2000.

[5] M. Calder and A. Miller. Generalising feature interacts in email. In D. Amyot
and L. Logrippo, editorsProc. 7th. Feature Interactions in Telecommunications and
Software Systempages 187-204. |10S Press, Amsterdam, Netherlands, J08e 20

[6] M. Calder and C. E. Shankland. A symbolic semantics arsirhilation for full
LoTos In M. Kim, B. Chin, S. Kang, and D. Lee, editoRtoc. Formal Techniques for
Networked and Distributed Systems (FORTE Xpéges 184—-200. Kluwer Academic
Publishers, London, UK, Sept. 2001.

[7] E. J. Cameron, N. D. Griffeth, Y.-J. Lin, M. E. Nilson, W..KSchnure, and
H. Velthuijsen. A feature-interaction benchmark for IN abdyond. IEEE
Communications Magazinpages 64—69, Mar. 1993.

[8] J.-C.Fernandez, H. Garavel, A. Kerbrat, R. Mateesch/aunier, and M. Sighireanu.
CADP (C£sAR ALDEBARAN Development Package): A protocol validation and
verification toolbox. In R. Alur and T. A. Henzinger, editpRroc. 8th. Conference
on Computer-Aided Verificatipmumber 1102 in Lecture Notes in Computer Science,
pages 437-440. Springer-Verlag, Berlin, Germany, Aug6199

[9] R. J. Hall. Feature interactions in electronic mail. In Nl Calder and E. H. Magill,
editors,Proc. 6th. Feature Interactions in Telecommunications Software Systems
pages 67-82. 10S Press, Amsterdam, Netherlands, May 2000.

29

[10] G. Holzmann and D. Peled. The state @&fis In Proc. 8th International Conference
on Computer Aided Verificatiowolume 1102 ot ecture Notes in Computer Science
pages 385-389, Berlin, Germany, 1996. Springer-Verlag.

[11] ISO/IEC. Information Processing Systems — Open Systems InterciomecLOTOS
— A Formal Description Technique based on the Temporal Omdesf Observational
Behaviour ISO/IEC 8807. International Organization for Standaatlion, Geneva,
Switzerland, 1989.

[12] ITU. Message Sequence Chart (MSC)ITU-T Z.120. International
Telecommunications Union, Geneva, Switzerland, 2000.

[13] ITU. Specification and Description Language ITU-T Z.100. International
Telecommunications Union, Geneva, Switzerland, 2000.

[14] J. Lennox and H. Schulzrinne. Feature interaction iterimet telephony. In
M. H. Calder and E. H. Magill, editorsProc. 6th. Feature Interactions in
Telecommunications and Software Systepsyes 38-50. 10S Press, Amsterdam,
Netherlands, May 2000.

[15] A. Metzger and C. Webel. Feature interaction detedtidsuilding control systems by
means of A formal product model. In D. Amyot and L. Logrippditers, Proc. 7th.
Feature Interactions in Telecommunications and Softwystedns pages 105-121.
IOS Press, Amsterdam, Netherlands, June 2003.

[16] S. Pavdon Gomez, D. Larrabeiti, and G. Rabay FilhooLh user manual (version
3R6). Technical report, Department of Telematic Systengirieering, Polytechnic
University of Madrid, Spain, Feb. 1995.

[17] M. C. Plath and M. D. Ryan. Plug-and-play features. Irkkmbler and W. Bouma,
editors,Proc. 5th. Feature Interactions in Telecommunications Software Systems
pages 150-164. 10S Press, Amsterdam, Netherlands, S6gt. 19

[18] A. Pnueli. A temporal logic of concurrent programbheoretical Computer Science
13:45-60, 1981.

[19] S. Reiff-Marganiec and K. J. Turner. A policy architeet for enhancing and
controlling features. In D. Amyot and L. Logrippo, editoBroc. 7th. Feature
Interactions in Telecommunications and Software Systpatges 239-246. |OS Press,
Amsterdam, Netherlands, June 2003.

[20] V. Rusu, L. du Bousquet, and T. Jéron. An approach tokmlim test generation.
In Proc. Integrated Formal Methods Q@Gumber 1945 in Lecture Notes in Computer
Science, pages 338-357. Springer-Verlag, Berlin, Gerpidoy. 2000.

[21] R. Seindal. GNUn4(version 1.4). Technical report, Free Software Foundatid87.

[22] S. Tsang, E. H. Magill, and B. Kelly. An investigation tfe feature interaction
problem in networked multimedia services. Rroc. 3rd. IEEE Communication
Networks Symposiumages 58—61. Institution of Electrical and Electronic iBrgrs
Press, New York, USA, July 1996.

30

[23] K. J. Turner. Validating architectural feature deptidns using loTos In K. Kimbler
and W. Bouma, editorroc. 5th. Feature Interactions in Telecommunications and
Software Systempages 247-261. I0S Press, Amsterdam, Netherlands, S6gt. 1

[24] K. J. Turner. Formalising the KBSEL feature notation. In M. H. Calder and E. H.
Magill, editors,Proc. 6th. Feature Interactions in Telecommunications &odkware
Systemspages 241-256. 10S Press, Amsterdam, Netherlands, M&y 200

[25] K. J. Turner. Modelling SIP services usinR€ss In D. A. Peled and M. Y. Vardi,
editors, Proc. Formal Techniques for Networked and Distributed &yst (FORTE
XV), number 2529 in Lecture Notes in Computer Science, pagesl¥@2 Springer-
Verlag, Berlin, Germany, Nov. 2002.

[26] K. J. Turner. Formalising graphical service descadp$ using SDL. In R. Reed and
J. Reed, editors§§DL 2003 number 2708 in Lecture Notes in Computer Science, pages
183-202. Springer-Verlag, Berlin, Germany, July 2003.

[27] K. J. Turner. Representing new voice services and tfegitures. In D. Amyot
and L. Logrippo, editorsProc. 7th. Feature Interactions in Telecommunications and
Software Systempages 123-140. I0S Press, Amsterdam, Netherlands, J08e 20

[28] K. J. Turner. Specifying and realising interactive amiservices. In H. Konig,
M. Heiner, and A. Wolisz, editorsProc. Formal Techniques for Networked and
Distributed Systems (FORTE XYIumber 2767 in Lecture Notes in Computer
Science, pages 15-30. Springer-Verlag, Berlin, Germaapt. 2003.

[29] K. J. Turner and Qian Bing. Protocol techniques foritgstadiotherapy accelerators.
In D. A. Peled and M. Y. Vardi, editorsRroc. Formal Techniques for Networked
and Distributed Systems (FORTE XWiumber 2529 in Lecture Notes in Computer
Science, pages 81-96. Springer-Verlag, Berlin, Germaay, RD02.

[30] VoiceXML Forum. Voice eXtensible Markup LanguagevoiceXML Version 2.0.
VoiceXML Forum, Jan. 2003.

[31] M. Weiss. Feature interactions in web services. In Dyatrand L. Logrippo, editors,
Proc. 7th. Feature Interactions in Telecommunications &uodtware Systemgages
149-156. 10S Press, Amsterdam, Netherlands, June 2003.

[32] P. Zave and M. Jackson. New feature interactions in fmobhd multimedia
telecommunications services. In M. H. Calder and E. H. Magditors, Proc. 6th.
Feature Interactions in Telecommunications and SoftwgsteBnspages 51-66. I0S
Press, Amsterdam, Netherlands, May 2000.

31

