
WebSOS: An Overlay-based System For Protecting
Web Servers From Denial of Service Attacks !

Angelos Stavrou Debra L. Cook William G. Morein
Angelos D. Keromytis Vishal Misra Dan Rubenstein

Department of Computer Science
Columbia University in the City of New York

Abstract

We present WebSOS, a novel overlay-based architecture that provides guaranteed access
to a web server that is targeted by a denial of service (DoS) attack. Our approach exploits
two key characteristics of the web environment: its design around a human-centric inter-
face, and the extensibility inherent in many browsers through downloadable “applets.” We
guarantee access to a web server for a large number of previously unknown users, without
requiring pre-existing trust relationships between users and the system, by using Reverse
Graphic Turing Tests. Furthermore, our systemmakes it easy for service providers to charge
users, providing incentives to a commercial offering of the service. Users can dynamically
decide whether to use the WebSOS overlay, based on the prevailing network conditions.
Our prototype requires no modifications to either servers or browsers, and makes use of

graphical Turing tests, web proxies, and client authentication using the SSL/TLS protocol,
all readily supported by modern browsers. We then extend this system with a credential-
based micropayment scheme that combines access control and payment authorization in
one operation. Turing Tests ensure that malicious code, such as a worm, cannot abuse
a user’s micropayment wallet. We use the WebSOS prototype to conduct a performance
evaluation over the Internet using PlanetLab, a testbed for experimentation with network
overlays. We determine the end-to-end latency using both a Chord-based approach and
our shortcut extension. Our evaluation shows the latency increase by a factor of 7 and 2
respectively, confirming our simulation results.

Key words: Security and Protection, Denial of Service, Network Topology,Overlay
Networks, Security, Reliability, Graphic Turing Tests, Web Proxies, Java.

Preprint submitted to Elsevier Science

1 Introduction

The Web is increasingly being used for different kinds of services and interactions
with, and between humans. Beyond displaying static content such as home pages or
academic papers, the web is actively used for such diverse tasks as e-mail, banking,
consumer purchasing, marketing, stock-quote dissemination and trading, and real-
time communication. The wide availability of high-quality browsers and servers,
as well as programmers’ and users’ familiarity with the tools and concepts behind
web browsing ensure that ongoing creation of additional services.

Such an environment provides a rich set of targets for motivated attackers. This
has been demonstrated by the large number of vulnerabilities and exploits against
web servers, browsers, and applications. Traditional security considerations revolve
around protecting the network connection’s confidentiality and integrity, protecting
the server from break-in, and protecting the client’s private information from un-
intended disclosure. To that end, several protocols and mechanisms have been de-
veloped, addressing these issues individually. However, one area that has long been
neglected is that of service availability in the presence of denial of service (DoS)
attacks, and their distributed variants (DDoS).

Previous approaches that address the general network DoS problem [1–3] are re-
active: they monitor traffic at a target location, waiting for an attack to occur. Once
the attack is identified, typically via analysis of traffic patterns and packet head-
ers, filters may be established in an attempt to block the offenders. The two main
problems with this approach are the accuracy with which legitimate traffic can be
distinguished from the DoS traffic, and the robustness of the mechanism for es-
tablishing filters deep enough in the network so that the effects of the attack are
minimized.

Furthermore, Internet Service Providers (ISPs) seem reluctant to deploy such mech-
anisms. Investment in the necessary infrastructure and operational support are dis-
couraged because such mechanisms represent a poor value proposition: fundamen-
tally, ISPs cannot charge users for the use of such mechanisms. One possible so-

! This work is supported in part by DARPA contract No. F30602-02-2-0125 (FTN pro-
gram) and by the National Science Foundation under grant No. ANI-0117738 and CA-
REER Award No. ANI-0133829, with additional support from Cisco and the Intel IT Re-
search Council. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the National
Science Foundation.
Email addresses: angel@cs.columbia.edu (Angelos Stavrou),

dcook@cs.columbia.edu (Debra L. Cook), wgm2001@cs.columbia.edu (
William G. Morein), angelos@cs.columbia.edu (Angelos D. Keromytis),
misra@cs.columbia.edu (Vishal Misra), danr@cs.columbia.edu (Dan
Rubenstein).

2

lution would be a system with the ability to both protect against DoS attacks and
provide a service payment scheme that would allow ISPs to recoup their costs and
support the continued operation and maintenance of this infrastructure. Such in-
centives would motivate router manufacturers to provide appropriate support in
their products. Thus, we wish to explore mechanisms that could support a charging
model.

We introduce WebSOS, an adaptation of the Secure Overlay Services (SOS) archi-
tecture [4]. Our intent is to prevent congestion-based DDoS attacks from denying
any user’s access to web servers targeted by those attacks. The novel aspects of
WebSOS are (a) its use of graphic Turing tests in lieu of (or in addition to) strong
client authentication (as was proposed in SOS) to distinguish between human users
and automated attack zombies, and (b) its transparency to browsers and servers, by
taking advantage of browser extensibility. Although WebSOS itself protects only
web traffic, it can be used to enable routing of other types of traffic by establish-
ing IPsec tunnels through the overlay; the web-based authentication is leveraged
to create a channel for other traffic, as we showed in [5]. We should also add that
we envision WebSOS used when an attack is detected, i.e., when a client cannot
directly reach the destination web server. Thus, when no attacks are underway, the
impact of WebSOS in network performance and other overheads is zero. An ad-
ditional design goal of WebSOS, which was achieved, was avoiding changes to
protocols and network elements (such as routers).

WebSOS protects the portion of the network immediately surrounding attack tar-
gets (i.e., the web servers) by high-performance routers that aggressively filter and
block all incoming connections from hosts that are not approved, as shown in Fig-
ure 1. These routers are “deep” enough in the network that the attack traffic does not
adversely impact innocuous traffic, typically in an ISP’s Point Of Presence (POP),
as we discuss in Sections 2.4 and 3. The identities of the approved nodes is kept
secret so that attackers cannot impersonate them to pass through the filter. These
nodes (which can be as few as 2 or 3) are picked from a set of nodes that are dis-
tributed throughout the wide area network. This superset forms a secure overlay:
any transmissions that wish to traverse the overlay must first be validated at any of
the entry points of the overlay using either a cryptographic authentication mecha-
nism, or a Graphic Turing test to distinguish humans from attack scripts [6]. Once
inside the overlay, the traffic is tunneled securely to one of the approved (and secret
from attackers) nodes, which can then forward the validated traffic through the fil-
tering routers to the target. Thus, there are two main principles behind our design.
The first is the elimination of communication pinch-points, which constitute attrac-
tive DoS targets, via a combination of filtering and overlay routing to obscure the
identities of the sites whose traffic is permitted to pass through the filter. The sec-
ond is the ability to recover from random or induced failures within the forwarding
infrastructure or the secure overlay nodes. In [4], we gave an analytical model for
the resilience of SOS against attackers that concentrate their attacks on the overlay
nodes. We summarize these results in Section 2.4.

3

To demonstrate the potential of WebSOS as a value-added serve, we also extended
the basic WebSOS architecture to use a credential-based micropayment scheme
that combines access control and payment authorization. Our architecture allows
ISPs to accurately charge web clients and servers. Clients can dynamically decide
whether to useWebSOS, based on the prevailing network conditions (e.g., the client
can try to contact the web-server through WebSOS if a direct connection fails,
either through manual user intervention or by detecting the connection failure in
our client-side proxy). Although practically any micropayment system can be used
in our model, we chose a payment system that can inter-operate with WebSOS’
distributed architecture and provide the necessary user credentials. OTPchecks [7]
encompasses all these properties: it is a simple distributed scheme, intended for
general Internet-based micropayments that produces bank-issued users’ credentials
which can in turn used to acquire small-valued payment tokens. It has very low
transaction overhead and can be tuned to use different risk strategies for different
environments making it a suitable payment solution for a wide range of on-line
services. Although the pay-per-use component of the architecture is technically
independent of the DoS protection guarantees, we feel it is necessary to at least
investigate the “market friendliness” 1 of any new proposed anti-DoS system.

WebSOS is the first instantiation of the SOS architecture. We use this instantiation
to evaluate the performance of the underlying overlay routing mechanism both in
a local area scenario and over the Internet using the PlanetLab testbed [8]. The
results show that the average increase in end-to-end latency is a factor of 2 to 3
beyond what is achieved using the standard web infrastructure. We believe this
modest increase is an acceptable alternative to providing no service. Such a service
can be used on an as-needed basis, and hence need not impact performance when
no attack is in progress. These results validate our simulation analyses, where we
used real ISP topologies to determine the added average latency imposed by the
WebSOS mechanism.

1.1 WebSOS Architectural Scope

DoS attacks can take many forms, depending on the resource the attacker is trying
to exhaust. For example, an attacker can try to cause the web server to perform ex-
cessive computation, or exhaust all available bandwidth to and from the server. In
all forms, the attacker’s goal is to deny use of the service to other users. Apart from
the annoyance factor, such an attack can prove particularly damaging for time- or
life-critical services (e.g., tracking the spread of an real-world epidemic), or when
the attack persists over several days 2 . Of particular interest are link congestion at-

1 Of course, market friendliness involves more that the ability to charge a user, which is a
necessary but not sufficient condition for deployment.
2 In one instance of a persistent DoS attack, a British ISP was forced out of business
because it could not provide service to its customers.

4

tacks, whereby attackers identify “pinch” points in the communications substrate
and render them inoperable by flooding them with large volumes of traffic. An ex-
ample of an obvious attack point is the location (IP address) of the destination that
is to be secured, or the routers in its immediate network vicinity; sending enough
attack traffic will cause the links close to the destination to be congested and drop
all other traffic. It is such attacks that WebSOS was designed to address. Solving the
much harder general denial-of-service problem where attackers could potentially
have enough resources to physically partition a network is not addressed in this
paper. Furthermore, we do not consider algorithmic denial of service attacks [9].

We assume that attackers are smart enough to exploit features of the architecture
that are made publicly available, such as the set of nodes that form the overlay.
However, we do not specifically consider how to protect the architecture against
attackers who can infiltrate the security mechanism that distinguishes legitimate
traffic from (illegitimate) attack traffic: we assume that communications between
overlay nodes remain secure so that an attacker cannot send illegitimate communi-
cations, masking them as legitimate. In addition, it is conceivable that more intel-
ligent attackers could monitor communications between nodes in the overlay and,
based on observed traffic statistics, determine additional information about the cur-
rent configuration. We leave it as future work to explore how WebSOS can be used
to protect against attacks by such highly specialized and sophisticated attackers.
Some work in that direction can be found in [10].

1.2 Paper Organization

The remainder of this paper is organized as follows. Section 2 gives an overview of
Secure Overlay Services (SOS) and graphic Turing tests, and discusses the specifics
of the WebSOS architecture, as well as an overview of OTPchecks, our micropay-
ment scheme. In Section 3 we present our simulation results, using real ISP topolo-
gies. Section 4 presents details of our prototype implementation, while Section 5
contains our performance evaluation. Section 6 discusses other work in DoS detec-
tion, prevention, and mitigation. Finally, Section 7 concludes the paper.

2 The WebSOS Architecture

Because our approach is based on the Secure Overlay Services (SOS) [4] architec-
ture, we first highlight its important aspects. We also briefly describe Graphic Tur-
ing tests, which implement human-to-overlay authentication, and the microbilling
architecture we integrated in WebSOS. We close this section with a description of
WebSOS itself, and the sequence of operations in using it.

5

2.1 Overview of SOS

Fundamentally, the goal of the SOS infrastructure is to distinguish between au-
thorized and unauthorized traffic. The former is allowed to reach the destination,
while the latter is dropped or is rate-limited. Thus, at a very basic level, SOS re-
quires the functionality of a firewall “deep” enough in the network that the access
link to the target is not congested. This imaginary firewall performs access control
by using protocols such as IPsec [11]. This generally pre-supposes the presence of
authentication credentials (e.g., X.509 [12] certificates) that a user can use to gain
access to the overlay. We consider this one of the the largest drawbacks to SOS, as
it precludes casual access to a web server by anonymous, yet benign users. In Web-
SOS, we extend the authentication model to include Graphic Turing Tests, thereby
allowing previously-unknown humans to access a protected site without allowing
automated attacks to do the same. Both types of authentication (cryptographic and
GTT based) can be used simultaneously in WebSOS, allowing pre-authorized auto-
mated processes to access the overlay in times of attack. Note that when the system
is not under attack, automated processes such as Google indexing (as well as human
users) can access the site directly.

Beacon

Servlet
Secret

overlay
nodes

SOAP

Filtered region

Beacon

Servlet
Secret

Beacon

Servlet
Secret

SOAP

Source
Point

Target

Fig. 1. Basic SOS architecture. SOAP stands for Secure Overlay Access Point, and
represents an entry point to the SOS overlay. SOS nodes can serve any of the roles of
SOAP, Beacon, or Secret Servlet.

Since traditional firewalls themselves are susceptible to DoS attacks, what is really
needed is a distributed firewall [13,14]. To avoid the effects of a DoS attack against
the firewall connectivity, instances of the firewall are distributed across the network.
Expensive processing, such as cryptographic protocol handling, is farmed out to a
large number of nodes. However, firewalls depend on topological restrictions in the
network to enforce access-control policies. In what we have described so far, an at-
tacker can launch a DoS attack with spoofed traffic purporting to originate from one
of these firewalls, whose identity cannot be assumed to remain forever secret. The
insight of SOS is that, given a sufficiently large group of such firewalls, one can se-
lect a very small number of these as the designated authorized forwarding stations:
only traffic forwarded from these will be allowed through the filtering router. In
SOS, these nodes are called secret servlets. All other firewalls must forward traffic
for the protected site to these servlets. Figure 1 gives a high-level overview of a

6

SOS infrastructure that protects a target node or site so that it only receives legit-
imate transmissions. Note that the secret servlets can change over time, and that
multiple sites can use the same SOS infrastructure.

16+1: 17
16+2: 22
16+4: 22
16+8: 25
16+16: 1

1

3

10

12

17

22

30

25

16

7

7+1 : 10
7+2: 10
7+4: 12
7+8: 16
7+16: 25

17+1: 22
:
:

m = 5

Fig. 2. Chord-based overlay routing.

To route traffic inside the overlay, SOS uses Chord [15], which can be viewed as a
routing service that can be implemented atop the existing IP network fabric, i.e., as
a network overlay. Consistent hashing [16] is used to map an arbitrary identifier to
a unique destination node that is an active member of the overlay.

In Chord, each node is assigned a numerical identifier (ID) via a hash function in
the range [0, 2m] for some pre-determined value of m. The nodes in the overlay
are ordered by these identifiers. The ordering is cyclic (i.e., wraps around) and can
be viewed conceptually as a circle, where the next node in the ordering is the next
node along the circle in the clockwise direction.

Each overlay node maintains a table that stores the identities of m other overlay
nodes. The ith entry in the table is the node whose identifier x equals or, in relation
to all other nodes in the overlay, most immediately follows x+2i−1((mod 2m)),
as shown in Figure 2. When overlay node x receives a packet destined for ID y,
it forwards the packet to the overlay node in its table whose ID precedes y by the
smallest amount. In the example, if node 7 receives a packet whose destination is
the identifier 20, the packet will route from 7 to 16 to 17. When the packet reaches
node 17, the next node in the overlay is 22, and hence node 17 knows that 22 is
responsible for identifier 20. The Chord algorithm routes packets around the over-
lay “circle”, progressively getting closer to the desired overlay node. O(m) overlay
nodes are visited. Typically, the hash functions used to map nodes to identifiers do
not attempt to map two geographically close nodes to nearby identifiers. Hence,
it is often the case that two nodes with consecutive identifiers are geographically
distant from one another within the network.

7

The Chord service is robust to changes in overlay membership, and each node’s list
is adjusted to account for nodes leaving and joining the overlay such that the above
properties continue to hold.

SOS uses the IP address of the target (i.e., web server) as the identifier to which
the hash function is applied. Thus, Chord can direct traffic from any node in the
overlay to the node that the identifier is mapped to, by applying the hash function
to the target’s IP address. This node, where Chord delivers the packet, is not the
target, nor is it necessarily the secret servlet. It is simply a unique node that will be
eventually be reached, after up to m = log N overlay hops, regardless of the entry
point. This node is called the beacon, since it is to this node that packets destined
for the target are first guided. Chord therefore provides a robust and reliable, while
relatively unpredictable for an adversary, means of routing packets from an overlay
access point to one of several beacons.

Finally, the secret servlet uses Chord to periodically inform the beacon of the secret
servlet’s identity. Should the servlet for a target change, the beacon will find out
as soon as the new servlet sends an advertisement. If the old beacon for a target
drops out of the overlay, Chord will route the advertisements to a node closest to
the hash of the target’s identifier. Such a node will know that it is the new beacon
because Chord will not be able to further forward the advertisement. By providing
only the beacon with the identity of the secret servlet, traffic can be delivered from
any firewall to the target by traveling across the overlay to the beacon, then from
the beacon to the secret servlet, and finally from the secret servlet, through the
filtering router, to the target. This allows the overlay to scale for arbitrarily large
numbers of overlay nodes and target sites. Unfortunately, this also increases the
communication latency, since traffic to the target must be redirected several times
across the Internet. If the overlay only serves a small number of target sites, regular
routing protocols may be sufficient.

2.2 Graphic Turing Tests (GTT)

In order to prevent automated attacks from breaching the overlay, a CAPTCHA [17]
visual test is implemented at the entry point of the overlay to verify the presence
of a human user. CAPTCHA (Completely Automated Public Turing test to Tell
Computers and Humans Apart) is a program that can generate and grade tests that
most humans can pass, but automated programs cannot.

The particular CAPTCHA realization we use is GIMPY, which concatenates an
arbitrary sequence of letters to form a word and renders a distorted image of the
word as shown in Figure 3. GIMPY relies on the fact that humans can read the
words within the distorted image and current automated tools cannot. The human
authenticates himself/herself by entering as ASCII text the same sequence of letters

8

Fig. 3.WebSOS implementation of user Web Challenge using CAPTCHA. The chal-
lenge in this case is “fwst”.

as what appears in the image. Updating the GIMPY interface to WebSOS can be
performed without modifying the other architectural components.

When a user passes the GTT, the access point issues a short-lived X.509 [12] cer-
tificate. This certificate is signed by the entity operating the overlay, authorizing the
holders to access the web service. The certificate is set to expire after 30 minutes
(configurable), and contains the IP address of the client (to avoid reuse by multiple
zombies). The overlay securely proxies all traffic from the source to the target via
one of the beacons, as before.

Although recent advances in visual pattern recognition [18] can defeat GIMPY,
there is no solution to date that can recognize complicated images or relation be-
tween images like Animal-PIX. Although for demonstration purposes in our pro-
totype, described in Section 4, we use GIMPY, we can easily substitute it with any
other instance of Graphic Turing test. Use of a GTT also minimizes large-scale
“wallet depletion” attacks, whereby an attacker that manages to subvert a user’s
workstation can spend that user’s money to perform the attack.

2.3 OTPchecks Micropayment System

In addition to the Graphic Turing test, we also integrated an (optional) micropay-
ment mechanism to WebSOS. Our goal was to demonstrate that it is possible to
design DoS-protection mechanisms that offer incentives to ISPs (or other entities)
to deploy and manage, as they offer a clear way of recouping the associated costs.
Here, we provide some background on the microbilling system we used; we explain
its use in WebSOS in Section 2.6.

9

PAYER

CLEARING

Merchant’s BankPayer’s Bank

PROVISIONING
(Check Guarantor)

MERCHANT

Fig. 4. Microbilling architecture diagram. We have the generic terms for each com-
ponent. The arrows represent communication between the two parties: Provisioning
issues credentials to Payers and Merchants; these communicate to complete transac-
tions; Merchants send transaction information to Clearing which verifies the transac-
tion and posts the necessary credits/charges or arranges money transfers. Provision-
ing and Clearing exchange information on the status of Payer andMerchant accounts.

The general architecture of our microbilling system [19] is shown in figure 4. The
Check Guarantor plays the role of Provisioning, the Network User plays the role of
Payer, and the Network Storage Provider (or another NU acting as an NSP) plays
the role of the Merchant. Clearing is done either by a financial institution (if real
money is used) or by a selected user of the system (when loyalty points or “play
money” are used).

In this system, the Provisioning agent issues KeyNote [20] credentials to Payers
and Merchants. These credentials describe the conditions under which a Payer is
allowed to perform a transaction, and the fact that a Merchant is authorized to
participate in a particular transaction. When a Payer wants to buy something from
a Merchant, the Merchant first encodes the details of the proposed transaction into
an offer which is transmitted to the Payer.

If the Payer wishes to proceed, she must issue to the Merchant a microcheck for this
offer. The microchecks are also encoded as KeyNote credentials that authorize pay-
ment for a specific transaction. The Payer creates a KeyNote credential signed with
her public key and sends it, along with her Payer credential, to the Merchant. This
credential is effectively a check signed by the Payer (the Authorizer) and payable to
the Merchant (the Licensee). The conditions under which this check is valid match
the offer sent to the Payer by the Merchant. Part of the offer is a nonce, which maps
payments to specific transactions, and prevents double-depositing of microchecks
by the Merchant.

To determine whether he can expect to be paid (and therefore whether to accept
the payment), the Merchant passes the action description (the attributes and values

10

in the offer) and the Payer’s key along with the Merchant’s policy (that identi-
fies the Provisioning key), the Payer credential (signed by Provisioning) and the
microchecks credential (signed by the Payer) to his local KeyNote compliance
checker. If the compliance checker authorizes the transaction, the Merchant is guar-
anteed that Provisioning will allow payment. The correct linkage among the Mer-
chant’s policy, the Provisioning key, the Payer key, and the transaction details fol-
low from KeyNote’s semantics [20].

If the transaction is approved, the Merchant should give the item to the Payer and
store a copy of the microcheck along with the payer credential and associated offer
details for later settlement and payment. If the transaction is not approved because
the limits in the payer credentials have been exceeded, then, depending on their
network connectivity, either the Payer or the Merchant can request a transaction-
specific credential that can be used to authorize the transaction. Observe that this
approach, if implemented transparently and automatically, provides a continuum
between online and offline transactions tuned to the risk and operational conditions.

Periodically, the Merchant will ‘deposit’ the microchecks (and associated transac-
tion details) it has collected to the Clearing and Settlement Center (CSC). The CSC
may or may not be run by the same company as the Provisioning, but it must have
the proper authorization to transmit billing and payment records to the Provisioning
for the customers. The CSC receives payment records from the various Merchants;
these records consist of the Offer, and the KeyNote microcheck and credential from
the payer sent in response to the offer. In order to verify that a microcheck is good,
the CSC goes through the same procedure as the Merchant did when accepting the
microcheck. If the KeyNote compliance checker approves, the check is accepted.
Using her public key as an index, the payer’s account is debited for the amount of
the transaction. Similarly, the Merchant’s account is credited for the same amount.

The central advantage of this architecture is the ability to encode risk management
rules for micropayments in user credentials. Other electronic systems have focused
on preventing fraud and failure, rather than on managing it. In many cases with
such systems, the prevention mechanisms can be too expensive for micropayments,
making the risk management approach particularly attractive.

2.4 Sequence of Operations in WebSOS

To illustrate the use of the WebSOS architecture by servers and clients, we describe
the steps both sides must undertake to protect their communication channel. For
simplicity, we omit the micropayment component in this description; we describe
the steps involved in a client using the micropayment scheme following this dis-
cussion.

• A site (target) installs a filter on a router in its immediate vicinity and then se-

11

Fig. 5.WebSOS client session initiation diagram.

lects a number of WebSOS nodes to act as “secret servlets” that are allowed to
forward traffic through the filter to the target site. Routers at the perimeter of the
site are instructed to only allow traffic from these servlets to reach the internal
of the site’s network. These routers are powerful enough to do filtering using
only a small number of rules on incoming traffic without adversely impacting
their performance. In order to make guessing the identity of a secret servlet for
a particular target harder for the attacker, the filtering mechanism uses packet
fields with potentially high entropy. For example, only GRE [21] packets from
a particular source (the secret servlet) containing a specific 32-bit value in the
GRE Key field [22]. An attacker trying to slip attack traffic through the filter
must guess not only the current servlet’s IP address, but the correct 32-bit key
as well. Although we expect 32 bits to be sufficient for this application, we can
easily use larger keys to avoid brute-force attacks.

• When a WebSOS node is informed that it will act as a secret servlet for a site
(and after verifying the authenticity of the request, by verifying the certificate
received during the SSL exchange), it computes the key k for a number of well-
known consistent hash functions, based on the target site’s network address. Each
of these keys will identify a number of overlay nodes that will act as beacons for
that web server, for redundancy purposes.

• Having identified the beacons, the servlets or the target will contact all of them,
notifying them of the servlets’ association with a particular target. Beacons will
store this information and use it for traffic-forwarding purposes.

• A source that wants to communicate with the target contacts a random overlay
node, the Secure Overlay Access Point (SOAP). After authenticating and autho-
rizing the request via the CAPTCHA test, the overlay node securely proxies all
traffic from the source to the target via one of the beacons. The SOAP (and all
subsequent hops on the overlay) can proxy the HTTP request to an appropriate
beacon in a distributed fashion using Chord, by applying the appropriate hash

12

function(s) to the target’s IP address to identify the next hop on the overlay 3 .
To minimize delays in future requests, the client is issued a short-lived X.509
certificate, bound to the SOAP and the client’s IP address, that can be used to
directly contact the proxy-server component of the SOAP without requiring an-
other CAPTCHA test. The overall interaction of clients with the overlay is shown
graphically in Figure 5. We shall explain the role of the signed proxylet in Sec-
tion 4.

This scheme is robust against DoS attacks because if an access point is attacked,
the confirmed source point can simply choose an alternate access point to enter the
overlay. Any overlay node can provide all different required functionalities (SOAP,
Chord routing, beacon, secret servlet). If a node within the overlay is attacked,
the node simply exits the overlay and the Chord service self-heals, providing new
paths over the re-formed overlay to (potentially new sets of) beacons. Furthermore,
no node is more important or sensitive than others — even beacons can be attacked
and are allowed to fail. Finally, if a secret servlet’s identity is discovered and the
servlet is targeted as an attack point, or attacks arrive at the target with the source
IP address of some secret servlet, the target can choose an alternate set of secret
servlets.

Use of GRE for encapsulating the traffic between the secret servlet and the filter-
ing router can offer an additional benefit, if we also use transparent proxies and
IPsec for packet encapsulation between the proxies (replacing SSL). In that imple-
mentation scenario, as far as the target web server is concerned the HTTP/HTTPS
connection from the browser was received directly. Thus, any return TCP traffic
will be sent directly to the browser’s IP address. Following our discussion in Sec-
tion 2.5, this asymmetric connection routing will considerably improve the end-
to-end latency and reduce the load on the overlay network (less traffic to proxy).
While asymmetric routing was once considered potentially harmful, empirical stud-
ies show that most of the long-haul traffic (e.g., non-local traffic) over the Internet
exhibits high asymmetry [23]. Most of the arguments against this asymmetry arise
from the difficulty of configuring packet classification mechanisms, which preclude
stateful filtering and required synchronized configuration of multiple nodes (those
the traffic may traverse). This would not be a problem in our case, as the asym-
metry is exhibited far enough in the network (beyond the filtering router) that the
local administrative tasks, such as configuring a firewall, remain unaffected. IPsec
and transparent proxying techniques are well-known and (in the case of transpar-
ent proxies) widely used, thus we believe such an implementation is feasible. For
the purposes of this paper, we decided to implement the straight-forward version
of WebSOS; development of the optimized version remains in our plans for future

3 As we shall see in Section 5, the SOAP actually uses the Chord ring to determine the
identity of the secret servlet, and then proxies the traffic directly to that node. The SOAP
queries in parallel all beacons for a particular destination for the identity of the secret
servlet.

13

work.

In [4], we performed a preliminary analysis using simple networking models to
evaluate the likelihood that an attacker is able to prevent communications to a par-
ticular target by launching denial of service attacks against overlay nodes, causing
them to become unreachable. This likelihood was determined as a function of the
aggregate bandwidth obtained by an attacker through the exploitation of compro-
mised systems. The analysis included an examination of the capabilities of static
attackers who focus all their attack resources on a fixed set of nodes, as well as
attackers who adjust their attacks to “chase after” the repairs that the SOS system
implements when it detects an attack. We demonstrated that even attackers that are
able to launch massive attacks are very unlikely to prevent successful communica-
tion. For instance, attackers capable of launching debilitating attacks against 50%
of the nodes in the overlay have roughly one chance in one thousand of stopping
a given communication from a client who can access the overlay through a small
subset of overlay nodes. For more details on the analysis, see [4].

Finally, it is worth estimating the volume of attacks that a WebSOS-protected sys-
tem can withstand. Since the Internet (and ISPs’) backbones are well provisioned,
the limiting factors are going to be the links close to the target of the attack. Con-
sider the common POP structure used by ISPs shown in Figure 8. The aggregate
bandwidth for the POP is on the order of 10 to 20 Gbps. If the aggregate bandwidth
of the attack plus the legitimate traffic is less than or equal to the POP capacity,
then legitimate traffic will not be affected, and the POP routers can drop the at-
tack traffic (by virtue of dropping any traffic that did not arrive from a SOS secret
servlet). Unfortunately, there do not exist good data on DDoS attack volumes; net-
work telescopes [24] tend to underestimate their volume, since they only detect
response packets to spoofed attack packets. However, we can attempt a simple cal-
culation of the effective attack bandwidth available to an attacker that controls X
hosts that are (on average) connected to an aDSL network, each with 256Kbps up-
link capacity. Assuming an effective yield (after packet drops, self-interference, and
lower capacity than the nominal link speed) of 50%, the attacker controls 128×X
Kbps of attack traffic. If the POP has an OC-192 (10 Gbps) connection to the rest
of the ISP, then an attacker needs 78,125 hosts to saturate the POP’s links. If the
POP has a capacity of 20 Gbps, then the attacker needs 156,256 hosts. Although
we have seen attack clouds of that magnitude, they are not very common. Thus, a
SOS-protected system should be able to withstand the majority of DDoS attacks
even when deployed within a single ISP. If attacks of that magnitude are a concern,
we can expand the scope of the filtering region to neighboring POPs of the same
ISP (and their routers); this would increase the link capacity of the filtered region
significantly, since each of the neighboring POPs see only a fraction of the attack
traffic. Our discussion is not meant as a proof of security against DDoS attacks,
but as an exploration of the limits of our mechanism. Additional work is needed
to determine the practical limits of the system, although we are encouraged by our
findings to date.

14

2.5 Forwarding Specifics

WebSOS uses SSL to provide two layers of security. First, messages are encrypted
end-to-end, so that only the end-points of the exchange (user and web-server) can
view the data actually being transmitted. Additionally, WebSOS uses SSL over each
hop of the overlay as a means of verifying the authenticity of the previous hop, both
when a forwarding session is established and for the forwarded traffic, to avoid
attacks from adversaries impersonating as legitimate WebSOS nodes. Note that
we do not actually need message confidentiality for the internal communications
of WebSOS; however, the additional cost of encryption with the RC4 algorithm
is small, since we need to provide peer and data authentication (we shall see the
total overhead of WebSOS in Section 5). No special functionality is required by the
overlay nodes to perform these tasks; the user browser simply has to be supplied
with the appropriate certificate(s) from the WebSOS administrator.

In the original SOS architecture, the path established from the user to the target
through the overlay was unidirectional. Traffic in the reverse direction could also
traverse the overlay, by reversing the roles of user and target. In that case, the path
taken by requests and responses would be different. Alternatively, traffic from the
target to the user could be sent directly (without using the overlay); this is usu-
ally not a problem, since most communication channels are full-duplex and, in the
event of a DDoS attack, only the downstream portion (to the target) is congested.
An additional benefit of this asymmetric approach is reduced latency, since most
client/server traffic (especially in web environments) is highly asymmetric (i.e.,
clients receive a lot more information than they transmit). This was possible be-
cause routing decisions in SOS are made on a per-packet basis.

In WebSOS, routing decisions are made on a per-connection basis. Any subsequent
requests over the same connection (when using HTTP 1.1) and any responses from
the web server can take the reverse path through the overlay. While this makes
the implementation simpler, it also introduces increased latency, as the bulk of the
traffic will also traverse the overlay. We give some thoughts on how to address this
issue in Section 5.

2.6 Pay-Per-Use Mechanism

We now examine the use of a payment mechanism in our architecture. We begin by
describing the necessary hardware and software a service provider needs in order
to deploy our mechanism, and then examine its implications for clients.

15

Fig. 6. Pay-per-use DoS protection system operation overview. The user is connected
to an access point which in turn authenticates the user credentials and issues an X.509
certificate and a signed proxylet that allows the user to connect securely to the web
service for a limited amount time. The Access Point can act as a proxy for the EAP
authentication between the authentication database and the user.

2.6.1 ISP Provisioning

The ISP first creates an overlay network of WebSOS access points (‘servlets’). Per
our previous discussion, the routers at the perimeter of the site are instructed to
allow traffic only from these servlets to reach the interior of the site’s network.
These routers are powerful enough to do filtering using only a small number of
rules on incoming traffic without adversely impacting their performance.

For a payment scheme, we chose the OTPchecks system because of its inherent
flexibility to accommodate different services and its ability to interoperate with a
distributed system like WebSOS. Refer to the roles presented in the OTPchecks
functional description, in Figure 4; the Payer is the client connecting to the access
points, the Merchant is the ISP providing the DoS protection service, and the web
service provider (Target) is the clearing entity. The web service provider controls
the usage of the service provided via the ISP’s network by having the access points
delegate payment credentials to each of the clients. In this manner, the service pay-
ment can be charged either to the client or to the web service provider. The ISP,
using the same transaction information, charges the site providing the web service.
The web service itself may charge the user at the same or even a higher rate for the
DoS protection and possibly for other Internet commodities (bandwidth, time etc.)
using the data presented by the access points. The overall system is presented in
Figure 6.

16

2.6.2 Buying One-Time Coins

Whenever a new client host wants to access a service that the ISP protects fromDoS
attacks, the access point attempts to run the Extensible Authentication Protocol
(EAP) [25] Over LAN (EAPoL) protocol [26,27] with the client. The status of
the client is kept unauthenticated as long as the client fails to authenticate through
EAPoL. In our case, we provide unauthenticated clients limited access so that they
can buy one-time “coins” (OTC), modeled after One-Time Passwords (OTP) [28],
used for the actual EAPoL level authentication (see below).

2.6.3 Using One-Time Coins

Once the Client has acquired a set of one-time coins, it runs the standard EAPoL
protocol towards the local access point. The protocol run is illustrated in Figure 6.

Upon connection, the access point requests a user identifier from the client. The
client answers with a string that identifies the microcheck used for buying the one-
time coins, and the web service the coins were bought for. This allows the access
point to contact the correct back-end authenticator, the web service provider (Tar-
get). The microcheck fingerprint identifies the relevant unused OTC pile.

Once the back-end authenticator receives the identity response, it checks the OTC
pile and sends a request for the next unused one-time password, i.e., an one-time
coin. The Client responds with the next unused coin, Hi+1. The back-end authenti-
cator checks the coin, records it as used, and replies with an EAP SUCCESS mes-
sage. As the access point receives the EAP SUCCESS message from the back-end
authenticator, it changes the status of the client into authenticated, and passes the
message to the client. Shortly before the OTC is used up, the back-end authenticator
sends a new request and a GTT to the client.

For the client to continue, it has to reply with the next OTC, and the user must
answer correctly the CAPTCHA challenge. This gives us the ability to have a strong
protection against malicious code, such as a worm or a zombie process, using a
user’s micropayment wallet. The lifetime of a coin can be easily configured by
the service provider. We expect to prompt the user with a CAPTCHA challenge
every 30 to 45 minutes, depending on the service. The client needs to both pay and
pass the CAPTCHA challenge before being issued an X.509 certificate (per our
discussion in Section 2.2), which authorizes it to access the WebSOS overlay.

On the other hand, if the client does not want to continue access for any reason, it
simply does not respond to the request. Thus, if the client goes off-line, the access
point automatically changes the status of the client’s address into unauthenticated
once the coin has been used up.

17

16151413

1211109

8765

4321

Fig. 7. Overlay nodes serving regions of a coordinate-space.

3 Simulation

To understand the impact of the overlay network on the routing of packets between
the source and target nodes, we have applied the WebSOS algorithm to two models
of ISP networks [29]. One model, indicative of a U.S. topology, is derived from
AT&T’s U.S. backbone network. The other, indicative of a European topology, is
derived from Worldcom’s (now MCI’s) European backbone network. Remote ac-
cess points were excluded from the AT&Tmodel, as were connections fromWorld-
com’s European POPs to points outside the geographical area. For each model, two
algorithms for routing traffic through the overlay were tested, one based on Chord,
which uses a random ordering of the overlay nodes, and a heuristic variation of
CAN that uses geographical ordering of the overlay nodes. In both cases, we tested
variations on how the beacons and servlets were chosen in relation to each other, the
target, and the source, e.g., requiring some minimum distance between the servlet
and target.

We first give a brief description of CAN [30], and then discuss the specifics of the
simulation environment, such as ISP structure, the distribution of overlay nodes
across ISP Points of Presence (POPs), and the selection strategies for beacons and
secret servlets.

3.1 CAN

Like Chord, CAN uses a hash function to map overlay nodes to identifiers. How-
ever, a CAN identifier maps a node to a region within a d-dimensional space. Each
overlay node contains a table of overlay nodes responsible for neighboring areas in
the coordinate space. As shown in Figure 7, overlay node 7 would contain pointers
to nodes 3, 6, 8, and 11. In its basic form, CAN does not assume any relationship
between node positions of the coordinate space and their geographical positions

18

in the real world. A variation suggested in [30] that assigns positions within the
coordinate space being representative of the geography provided the basis for the
heuristic used in the model.

3.2 Network Layout

A POP-level representation of the ISP was used, where each POP is assumed to
consist of a hierarchy of routers as shown in Figure 8. At the top level are routers
with links to other POPs. At the lowest level are links to client networks.

….

………

to clients
typically ≤ T3

to other pops
OC192

to other ISPs
bandwidth varies

OC48

OC3

Fig. 8. ISP POP structure used in the simulation.

Latencies between POPs were estimated from a subset of known latencies. Dis-
tances between POPs were estimated using airline miles. Three routers were in-
cluded at the second level and twelve at the lowest level of each POP; however, for
the statistics computed, the exact number of routers within a POP was not relevant,
only the latency from the time a packet entered a router within a POP to the time it
left the POP was needed.

The model assumes that there is ample bandwidth between POPs and that the choke
points are the links to clients. All latencies and distances to clients to their local

19

POP are assigned the same value.

There were 19 POPs in the US model and 18 in the Europe model. Overlay nodes
participating in the overlay were evenly distributed across POPs, meaning each
POP served the same number of client nodes eligible to be overlay nodes. In the
cases where servlets and beacons were randomly chosen, this allowed each POP to
be equally likely to have a client site that was a servlet or beacon. In the cases where
the servlet and beacon nodes were not randomly chosen, there were more eligible
nodes per POP than utilized and the even distribution did not impact selection. A
node was not allowed to serve more than one purpose for a specific source-target
pair, for example, a node could not be both a beacon and a servlet for the same
target. Removing the restriction would result in shorter routes on average because
some scenarios tested would pick the same node for both the servlet and beacon.

In each case, two client nodes served by each POP were included in the overlay.
Since each source / target pair was tested individually, at most two nodes per POP
would be selected to serve the functions of beacon and servlet. When ordering the
overlay nodes according to the geographic heuristic described below, designating
more than two nodes per POP could only change a route between a source and target
by possibly passing through a different client on a given POP. When ordering the
overlay nodes randomly and using Chord as the routing algorithm for the overlay,
the probability that a client on a specific POP was picked as a beacon or servlet, or
was at a certain position in the overlay impacted the route. Since it was assumed
overlay eligible nodes were evenly distributed across all POPs, having 2 versus 100
overlay nodes per POP would not impact the probabilities and thus would not affect
the results. The node for the source was chosen to be a client on the same POP as
the source. The impact due to it being served by a different POP than the source
would be to add the cost of the normal route between the source and SOAP to the
cost of the route between the SOAP and target.

3.3 Routing Algorithms

In WebSOS, traffic from a source to a target utilizes a route which contains the
following sequence of nodes in order: source, access point, beacon, servlet and
target. Normal routing is used to reach the SOAP. Also, since the beacon knows
the specific servlet for the target, and the servlet knows the location of the target,
normal routing is used between the beacon and servlet, and between the servlet
and target. An overlay route is used between the SOAP and beacon. The increase
in the route length over that of the normal route between the source and target
is due not only to the requirement that the route pass through specific nodes, but
also due to the need to route through an overlay network between the SOAP and
beacon as opposed to using the normal route between the two nodes. For normal
routing, each node in the model contained a routing table populated via Dijkstra’s

20

algorithm, using minimum hops as the criteria for shortest path. Each node in the
overlay network also contained a table with the destination address and overlay
node id of a subset of overlay nodes. The table was populated based on the routing
algorithms described below.

A routing algorithm for use in overlays is required to send traffic between the SOAP
and beacon. The Chord algorithm was utilized in the first set of experiments. The
overlay nodes were randomly ordered. The tables within each overlay node were
populated using the method described previously involving powers of 2. The size
of a node’s table is O(log n), where n is the size of the overlay.

The second set of experiments used a heuristic which divided the POPs into ge-
ographical areas. This method is based on modifications suggested to the basic
algorithm for CAN. For a specific area, A, a node nA was chosen as the area’s rep-
resentative. Each nA was an entry in each overlay node’s table. In addition, if ni is
an overlay node in area A, ni’s table would include entries for each nj in A, i "= j.
Thus an overlay node maintained pointers to every other overlay node in the same
geographical area and to one overlay node in each other geographical area. For an
overlay of size n, the size of a node’s table is O(n/#areas) + #(areas), which is
O(n/#areas) when n is large compared to the number of areas, assuming each
area contains roughly the same portion of overlay nodes. The US model involved 6
areas, one contained 2 POPs and the other contained 3 or 4 POPs each. The Europe
model contained 4 areas with 4 to 5 POPs each.

3.4 Beacon/Servlet Selection Scenarios

Seven source-target pairs were chosen in each of the two models. They were se-
lected to represent a variation in source-target relations. Factors considered when
selecting the pairs included the distance between cities, whether they were served
by neighboring POPs and the level of connectivity for the POP. In all cases a servlet
and beacon for a specific target were not permitted to be the same node and neither
could serve as a SOAP .

For each model and each routing algorithm, the normal route between each source-
target pair was computed then the following four scenarios were tested on each
pair. In the scenarios, minimizing the number of hops refers to the number of hops
as calculated by normal routing.

(1) Randomly select the servlet and beacon (100 trials per source-target pair were
run).

(2) Select the servlet to minimize the number of hops between the servlet and
target, then select the beacon to minimize the number of hops between the
beacon and servlet, with the restriction that the servlet and beacon not be
served by the same POP.

21

(3) Select the servlet to minimize the number of hops between the servlet and
target, then select the beacon to minimize the number of hops between the
beacon and source.

(4) Select a servlet randomly from those approximately X miles from the target
then select a beacon randomly from those approximately X miles from the
servlet, where X was 1000 in the US model and 500 in the Europe model. In
the case of the Europe model, a few POPs did not have neighbors within this
distance, in which case the next closest available overlay node was used.

The first scenario was used to obtain an understanding of the impact when no se-
lection criteria was utilized for the servlet and beacon. This would be the simplest
version to implement. The second and third scenarios were aimed at keeping the in-
termediate nodes in the route near the end points to determine if the route between
the source and target would then be similar to the normal route. These two sce-
narios using minimum distance instead of hops were tested on the US version, but
the results were not noticeably different from the scenarios using hops. The fourth
scenario was used to understand the impact of selecting the servlet and beacon so
they would be served by different POPs than the target, which may be desired for
diversity, but at the same time guaranteeing they would be relatively close in an
attempt to avoid an unnecessarily long route.

Table 1
Average ratio: latency with WebSOS vs. normal routing.

US US Europe Europe

Chord CAN Chord CAN

scenario

1 random selection 4.51 4.16 5.69 4.11

2 min hops 3.45 2.4 3.25 2.54

3 min hops 7.19 1.75 6.77 1.74

4 diversity 5.18 4.08 5.6 2.88

3.5 Results

Results are presented in terms of the ratio of the measurement for the WebSOS
route to that of the normal route between the source and target. The measurements
are for one direction only, source to target, and are averaged over 100 simulation
runs. Table 1 shows the ratio of the latency using WebSOS to the latency expected
when using normal routing. The scenario number corresponds to the previous list.
These were averaged over all source-target pairs. The worst case from all source-
target pairs is shown in Table 2. Table 3 indicates the increase in the number of ISP
POPs involved in a route compared to that of the normal route.

22

Table 2
Worst-case ratio: latency with WebSOS vs. normal routing.

US/Chord US/CAN Europe/Chord Europe/CAN

scenario

1 random selection — worst
individual source-target av-
erage over 100 trials

8.76 6.05 8.05 5.81

2 min hops 7.57 3.76 4.74 3.26

3 min hops 10.9 2.14 11.29 2.14

4 diversity 10.57 6.24 8.1 3.57

Table 3
Numbers of POPs in WebSOS routing vs. normal routing.

US/Chord US/CAN Europe/Chord Europe/CAN

scenario

1 random selection — worst
individual source-target av-
erage over 100 trials

4 3 4 2.5

2 min hops 2 1.5 2 1.5

3 min hops 5 1 4.2 1

4 diversity 3.5 2.5 4.2 2

When using scenario 3 with the geographic heuristic, the servlet was always se-
lected from a node on the same POP as the target and the beacon was selected from
a node on the same POP as the source and SOAP because there were eligible nodes
at every POP. This resulted in the WebSOS route being identical to the normal
route with the addition of a few detours to clients within the first and last POPs in
the route, thus it was expected to produce the best results in terms of latency.

The results reported for random selection are averaged over 100 trials run per
source-target pair. The actual increase in latency may be much higher depending
on the specific servlet and beacon chosen. The greatest increase occurs when the
source and target are close together. The overlay route may involve points geo-
graphically far from the source and target, turning a normally short route into one
that may traverse every POP in the ISP at least once. Among all trials involving
random selection, the worst case in the Europe model was an increase in latency
15 times that of the normal route between London and Paris when using Chord and
9.5 times when using the geographical heuristic. In the US model, the worst case
also involved a latency 15 times normal between NY and Philadelphia when using
Chord and 8.86 times when using the geographical heuristic. For NY to Philadel-
phia, the worst case increase using the geographical heuristic is approximately the

23

same as the average (8.76) when using Chord. The worst cases from all trials in-
volved latencies of 378ms using Chord and 230ms using the geographical heuristic.

The number of POPs serves as a measure of the complexity of the route but does
not necessarily imply a physically long route because several POPs may be geo-
graphically close. In scenario 3, the beacon would be selected on the same POP as
the SOAP. The ratio for scenario 3 using Chord is high due to a couple of source-
target pairs in which the beacon’s overlay id was just prior to that of the SOAP’s id,
resulting in routing through several overlay nodes in the path between the SOAP
and beacon.

When using Chord, other variations for populating the overlay node’s tables using
powers of 3 and i + xj , where xj is the jth number in the Fibonacci series, for j =
3,4,5.., were tested on a subset of source-target pairs but had no noticeable impact
on the length of the route between the SOAP and beacon. A geographic ordering
of the overlay nodes was also tested while maintaining the Chord routing. Nodes
that were geographically close were assigned IDs placing them close together on
the overlay network. While this shortened the route in cases where nodes X and Y
were physically close, a packet was being routed from X to Y using the overlay and
X was assigned a lower overlay id than Y; it resulted in a worst case scenario when
Y was assigned the overlay id just prior to X’s because the packet would route to
O(log n) overlay nodes before reaching the one that knew about X.

4 Implementation

While the simulation results are encouraging, we felt that experimentation in real
networks was necessary to validate our approach. To that end, we developed a pro-
totype of WebSOS, consisting of three main modules. The components are a com-
munications module, a WebSOS routing module, and an overlay routing module
running on each node in the WebSOS overlay. The interactions of these are shown
in Figure 9.

The communications module is responsible for forwarding HTTP requests and re-
sponses among the nodes in the WebSOS overlay. When a new proxy request (in
the form of a new TCP connection) is received, the communications module calls
the WebSOS routing module with the target’s destination address to obtain the ad-
dress of the next hop in the overlay. It then opens a new TCP connection to that
node and relays the received HTTP request. Any traffic received in the opposite di-
rection (i.e., the HTTP responses and web content) are relayed back to the source.
Authentication of the requesting node by the access point (SOAP) and by internal
nodes is accomplished through SSL. Authorized users and WebSOS overlay nodes
are issued X.509 [12] certificates signed by the SOAP, once the user has succeeded
in the CAPTCHA authentication.

24

Overlay
Routing
Module

SOS
Routing
Module

Communication
Module
(for packet
forwarding/
reception)

other nodes

Query/response
for next hop address

Query/response
for next hop address
in overlay

status
messages

Request from
user to target.

Fig. 9. Software modules for the WebSOS implementation.

The main WebSOS routing module receives requests from the communications
module and responds with the IP address of the next node in the WebSOS over-
lay to which the request should be forwarded. The module first checks whether the
current node serves a specific purpose (i.e., whether is it a beacon or secret servlet
for that target). If the node serves no such purpose, the module calls the overlay
routing module to determine the next hop in the WebSOS overlay and passes the
reply onto the communications module. Presently, the WebSOS routing module is
initialized with configuration data at startup indicating which nodes serve specific
purposes. We are working on an administrative module with increased flexibility to
avoid this static provisioning.

The overlay routing module is a general routing algorithm for overlay networks.
An implementation of Chord was written for the initial tests. However, this mod-
ule can be replaced with any other routing algorithm, e.g., CAN [30]. It receives
queries containing a destination IP address (the web server’s) and responds with
the IP address of the next node in the overlay to which the request should be for-
warded. For maintenance of its own routing algorithm, the Chord implementation
also communicates with other overlay nodes to determine their status, as described
in [15].

When a request is issued by the browser, it is tunneled through a series of SSL-

25

encrypted links to the target, allowing the entire transmission between the requester
and target to be encrypted. The SSL connections between WebSOS nodes are dy-
namically established, as new requests are routed. One problem we ran into while
developing the WebSOS prototype is that web browsers do not provide support for
the actual proxy request to be encrypted. To solve this problem, we wrote a port
forwarder that runs on the user’s system, accepts plaintext proxy requests locally,
and forwards them using SSL to the access point node. This is implemented as a
Java applet that runs inside the browser itself. The Java applet is not considered part
of the WebSOS overlay and is not trusted to perform any access control decisions;
it is simply a “helper” application.

Thus, to use WebSOS, an authorized user simply has to access any SOAP, suc-
cessfully respond to the CAPTCHA challenge, download the applet, and set the
browser’s proxy settings to the localhost, as shown in Figure 5. Java applets typi-
cally cannot communicate with any host other than the one they were downloaded
from, but this is not a problem in our case. If the user is successful in his/her reply,
then the web server connects to a DBMS system (local or remote) and associates
a pair of RSA keys (a private key and a certificate) with the host. This set of keys
are unique per IP and have an expiration time that can be configured by the system
administrator. The user is prompted to download a signed applet that runs locally
using one browser window and contacts the Web Server via a temporary HTTPS
connection to fetch the X.509 certificate. Since we expect overlay membership (in-
cluding SOAPs) to change infrequently, we can publish the list of available nodes
in several different venues (e.g., DNS, “flat” text file available from several loca-
tions, etc.), exploiting the ease of replicating static content to prevent DoS attacks
on that part of the system. Using an outdated list of SOAPs only increases the ini-
tial latency for contacting WebSOS; once a functioning SOAP is located, the applet
can download the most recent membership list.

The applet then starts listening for HTTP/HTTPS connections on a local port (e.g.,
8080) and establishes an SSL-tunnel connection with the proxy server running on
the SOAP (or elsewhere, since the signed applet has the ability to connect to any
server by changing the Java Policy files on the users’ machine). The proxy server
matches the X.509 certificate and the IP from client to the private key obtained from
the DBMS system and allows the connection to be proxied. The only imposition
on the user is that he/she must change the Proxy settings of the local browser to
point to the socket that listens for the applets. The applet may also directly proxy a
connection to the webserver and, if that fails, switch to using WebSOS. The applet
is also responsible for determining which SOAP to use, and switching to a different
SOAP if the one in use becomes unresponsible (e.g., due to an attack).

Initial prototyping of the communications module used Apache, whose proxy mod-
ule was modified to query the routing module for the next hop. This worked well
when unencrypted HTTP requests were issued by the browser. However, when
we encountered the requirement for end-to-end authentication and encryption, we

26

changed the implementation to use a stand-alone proxy server instead of Apache.

comment We intend to expand the implementation to include additional modules
addressing the administration and maintenance of the overlay. A centralized ad-
ministration module will be used to set node characteristics in real time, includ-
ing assigning specific roles (beacon, SOAP, secret servlet) to nodes, and changing
the operational status of nodes. A maintenance module running on each node will
check the status of all nodes in theWebSOS overlay and provide updates to both the
main and overlay routing modules in order for routing to be adjusted. This module
will also serve as the interface to centralized administration by receiving updates
regarding a node’s function and status, and passing the updates to the appropriate
routing module.

To improve performance, we also explored an adaptation of the initial approach:
rather than transporting the request and response through the full overlay network,
only routing information travels through the overlay. As before, the requester makes
a proxy request to the SOAP. At that point, the SOAP sends a UDPmessage into the
overlay, specifying the target. The message is routed to the beacon, which responds
directly to the SOAP with information on the secret servlet for that target. The
SOAP then connects to the servlet, which proxies the request as before, in effect
creating a shortcut through the overlay.

The SOAP caches the servlet information for use in future requests. That informa-
tion is timed out after a period of time to allow for changes to propagate correctly.
The same basic UDP protocol is used by servlets to announce their presence to (and
periodically update) the beacons for the various targets.

5 Experimental Evaluation

In order to quantify the overhead associated with use of WebSOS, we created a
simple topology running on the local network (100 Mbit fully-switched Ethernet).
For our local-area network overlay, we used 10 commodity PCs running Linux
Redhat 7.3. We measured the time-to-completion of https requests. That is, we
measured the elapsed time starting when the browser initiates the TCP connec-
tion to the destination or the first proxy, to the time all data from the remote web
server have been received. We ran this test by contacting 3 different SSL-enabled
sites: login.yahoo.com, www.verisign.com, and the Columbia course bulletin board
web service (at https://www1.columbia.edu/sec/bboard). For each of
these sites, we measured the time-to-completion for a different number of overlay
nodes between the browser and the target (remote web server). Our measurements
sum up all WebSOS overheads, including network latency, software processing at
each overlay node, and encryption (specifically, double SSL encryption, as dis-
cussed in Section 2.5). Note that a measurement involving n nodes implies a Chord

27

overlay of 2n nodes, since for an overlay of size x, it takes approximately log(x)
hops to reach a destination. Thus, our experiments with 10 nodes represent an over-
lay with 1024 nodes.

The browser was located on a separate ISP. The reason for this configuration was to
introduce some latency in the first-hop connection (from the browser to the SOAP),
thus simulating (albeit using a real network) an environment where the browsers
have slower access links to the SOAPs, relative to the links connecting the overlay
nodes themselves (which may be co-located with core routers). By locating all the
overlay nodes in the same location, we effectively measure the aggregate overhead
of the WebSOS nodes in the optimal (from a performance point of view) case.

Table 4 shows the results for the case of 0 (browser contacts remote server directly),
1, 4, 7, and 10 overlay nodes. The times reported are in seconds, and are averaged
over several HTTPS GET requests of the same page, which was not locally cached.
For each GET request, a new TCP connection was initiated by the browser. The
row labeled “Columbia BB (2nd)” shows the time-to-completion of an HTTPS
GET request that uses an already-established connection through the overlay to the
web server, using the HTTP 1.1 protocol.

As the figure shows,WebSOS increases the end-to-end latency between the browser
and the server by a factor of 2 to 3. These results are consistent with our simula-
tions of using SOS in an ISP topology, where the latency between the different
overlay nodes would be small, as discussed in Section 3. The increase in latency
can be primarily attributed to the network-stack processing overhead and proxy
processing at each hop. It may be possible to use TCP splicing [31] or similar tech-
niques to reduce connection handling overhead, since WebSOS performs routing
on a per-request basis. Also, in the experiments we ran, we did not make use of the
asymmetric routing option possible with the use of GRE as both a filtering and an
encapsulation mechanism, as discussed in Section 2.4.
Table 4
Latency (in seconds) when contacting various SSL-enabled web servers directly and
with different numbers of (intermediate) overlay nodes over the local-Ethernet net-
work.

Server Direct 1 node 4 nodes 7 nodes 10 nodes

Yahoo! 1.39 2.06 2.37 2.79 3.33

Verisign 3.43 4.22 5.95 6.41 9.01

Columbia BB 0.64 0.86 1.06 1.16 1.21

Columbia BB (2nd) 0.14 0.17 0.19 0.20 0.25

Furthermore, there is an SSL-processing overhead for the inter-overlay communi-
cations. A minor additional cryptographic overhead, relative to the direct access
case, is the certificate validation that the SOAPs have to perform, to determine the
client’s authority to use the overlay, and the SSL connection between the proxy

28

Table 5
Latency (in seconds) when contacting various SSL-enabled web servers directly and
with different numbers of (intermediate) overlay nodes using the PlanetLab network.

Server Direct 1 node 4 nodes 7 nodes 10 nodes

Yahoo! 1.39 3.15 5.53 10.65 14.36

Verisign 3.43 5.12 7.95 14.95 22.82

Columbia BB 0.64 1.01 1.45 3.14 5.07

Columbia BB (2nd) 0.14 0.23 0.28 0.57 0.72

running on the user’s machine and the SOAP. As shown in [32], such overheads
are typically dominated by the end-to-end communication overheads. Use of cryp-
tographic accelerators can further improve performance in that area. One further
optimization is to maintain persistent SSL connections between the overlay nodes.
However, this will make the task of the communication module harder, as it will
have to parse HTTP requests and responses arriving over the same connection in
order to make routing decisions.

Table 5 shows the same experiment using PlanetLab [8], a wide-area overlay net-
work testbed. The PlanetLab nodes are distributed in academic institutions across
the country, and are connected over the Internet 4 . We deployed our WebSOS prox-
ies PlanetLab and ran the exact same tests. Naturally, the direct-contact case re-
mains the same. We see that the time-to-completion in this scenario increases by a
factor of 2 to 10, depending on the number of nodes in the overlay. In each case, the
increase in latency over the local-Ethernet configuration can be directly attributed
to the delay in the links between the WebSOS nodes. While the PlanetLab con-
figuration allowed us to conduct a much more realistic performance evaluation, it
also represents a worst-case deployment scenario for WebSOS: typically, we would
expect WebSOS to be offered as a service by an ISP, with the (majority of) Web-
SOS nodes located near the core of the network. Using PlanetLab, the nodes are
distributed in (admittedly well-connected) end-sites. We would expect that a more
commercial-oriented deployment of WebSOS would result in a corresponding de-
crease in the inter-overlay delay. On the other hand, it is easier to envision end-site
deployment of WebSOS, since it does not require any participation from the ISPs.

Finally, while the additional overhead imposed by WebSOS can be significant, we
have to consider the alternative: no web service while a DoS attack against the
server is occurring. While an increase in end-to-end latency by a factor of 5 (or
even 10, in the worst case) is considerable, we believe it is more than acceptable in
certain environments and in the presence of a determined attack.

Table 6 shows the results when the shortcut implementation was tested on the Plan-

4 In fact, the majority of PlanetLab nodes are inside Internet2. This can give somewhat
better results than the current Internet, since connectivity is better over Internet2.

29

etLab testbed, with a graphical depiction in Figure 10. This variant provides signif-
icant performance improvements, particularly on subsequent requests for the same
site, because of the caching. To simulate the effects of an attack on individual nodes
in the overlay, we simply brought down specific nodes. The system healed itself
within 10 seconds.
Table 6
Latency (in seconds) when contacting various SSL-enabled web servers directly and
while using the shortcut implementation of the WebSOS system. The testing was per-
formed on a 76 node subset of the PlanetLab testbed using the Chord overlay. The
hops to the beacon ranged from 4 to 8 and did not have a significant effect on latency.
The cached column refers to subsequent requests using the same SOAP, whereupon
the Secret Servlet information has been cached.

Server Direct Original
Request

Cached
Re-
quests

Yahoo! 1.39 4.15 3.67

Verisign 3.43 7.33 6.77

Columbia BB 0.64 3.97 3.43

Columbia BB (2nd) 0.14 0.55 0.56

Fig. 10.WebSOS Latency overhead for different SSL-enabled services when using the
shortcut routing mechanism.

To complete the overhead analysis, we measured the number of public key verifi-
cations an access point can perform, which indicates how many microchecks it can
validate in unit time. We used a 3GHz Pentium4 processor machine running Linux
with the OpenSSL V 0.9.7c library for the measurements. The contribution of the
micropayment system to the overall system latency overhead is minimal even, when
we issue 1024-bit RSA certificates for the client credentials, as shown in Table 7.

30

These measurements show that the impact of the user verification process on the
access points is minimal: since users only need to use a microcheck every half hour
or so, a single node can handle 18 million users per hour, even without hardware
accelerators [33].
Table 7
Signing and verification times for 1024-bit RSA keys.

Sign Verify Signatures/sec Verifications/sec

0.0037 secs 0.0002 secs 270.0 5055.9

6 Related Work

As a result of its increased popularity and usefulness, the Internet contains both
interesting targets and enough malicious and ignorant users that DoS attacks are
simply not going to disappear on their own; indeed, although the press has stopped
reporting such incidents, recent studies have shown a surprisingly high number of
DoS attacks occurring around the clock throughout the Internet [24]. Worse, the
Internet is increasingly being used for time-critical applications. A further com-
pounding factor is the susceptibility of the basic protocols (i.e., IP and TCP) to
denial of service attacks [34–36].

The need to protect against or mitigate the effects of DoS attacks has been rec-
ognized by both the commercial and research world. Some work has been done
toward achieving these goals, e.g., [1–3,37–41]. These mechanisms focus on de-
tecting the source of DoS attacks in progress and then countering them, typically
by “pushing” some filtering rules on routers as far away from the target of the at-
tack (and close to the sources) as possible. The motivation behind such approaches
has been twofold: first, it is conceptually simple to introduce a protocol that will
be used by a relatively small subset of the nodes on the Internet (i.e., ISP routers),
as opposed to requiring the introduction of new protocols that must be deployed
and used by end-systems. Second, these mechanisms are fairly transparent to pro-
tocols, applications, and legitimate users. Unfortunately, these reactive approaches
by themselves are not adequate, since large-scale coordination across multiple ad-
ministrative domains is not always practical.

The D-WARD system [42] monitors outgoing traffic from a given source network
and attempts to identify attack traffic by comparing against models of reasonable
congestion control behavior. The amount of throttling on suspicious traffic is pro-
portional to its deviation from the expected behavior, as specified by the model. In
COSSACK [43], participating agents at edge networks exchange information about
observed traffic and form multicast cliques to coordinate attack suppression. An in-
teresting approach is that of [44], which proposes an IP hop-count-based filter to
weed out spoofed packets. The rationale is that most such packets will not have

31

a hop-count (TTL) field consistent with the IP addresses being spoofed. In [45],
the authors use a combination of techniques that examine packet contents, transient
ramp-up behavior and spectral analysis to determine whether an attack is single-
or multi-sourced, which would help focus the efforts of a hypothetical anti-DoS
mechanism.

A variant of the packet marking approaches creates probabilistically unique path-
marks on packets without requiring router coordination; end-hosts or firewalls can
then easily filter out packets belonging to a path that exhibits anomalous behavior
[46]. Although this approach avoids many of the limitations of the pure marking
schemes, it requires that core routers “touch” packets (rather than simply switch
them), and assumes that the limited resource is the target’s CPU cycles, rather
than the available bandwidth (i.e., preventing the DoS attack is “simply” a mat-
ter of quickly determining which packets the server should ignore). In our work,
we assume that the scarce resource is bandwidth. Collins and Reiter [47] present an
empirical analysis of several different anti-DoS techniques (including Pi [46] and
Hop-Count Filtering [44]) that use filters near the target of an attack, using traces
of real DDoS attacks to simulate the impact of the filters on the attack traffic.

[48] describes filtering out source-spoofed packets inside the Internet core, and
discusses the effectiveness of this approach. The authors suggest piggybacking on
BGP to propagate the necessary information. DDoS attakcs using real IP addresses
are not affected by this scheme.

[49] proposes using Class-Based Queuing on a web load-balancer to identify mis-
behaving IP addresses and place them in lower priority queues. However, many of
the DDoS attacks simply cause congestion to the web server’s access link.

Another approach to mitigating DoS attacks against information carriers is to mas-
sively replicate the content being secured around the entire network, e.g., [50].
To prevent access to the replicated information, an attacker must attack all repli-
cation points throughout the entire network — a task that is considerably more
difficult than attacking a small number of, often co-located, servers. Replication is
a promising means to preserve information that is relatively static, such as news
articles. However, there are several reasons why replication is not always an ideal
solution. For instance, the information may require frequent updates complicating
large-scale coherency (especially during DoS attacks), or may be dynamic by its
very nature (e.g., a live web-cast). Another concern is the security of the stored in-
formation: engineering a highly-replicated solution without leaks of information is
a challenging endeavor. Finally, much of the web-served content is semi-dynamic
in nature, i.e., it is created on the fly using a database back-end and business-logic
middleware such as PHP. This trend decreases the scope for static content replica-
tion as a comprehensive solution to DDoS.

An extension of the ideas of SOS [4,51,52] appears in [53]. There, the two main

32

facets of the SOS architecture: filtering and overlay routing, are explored sepa-
rately, and several alternative mechanisms are considered. It is observed that in
some cases, the various security properties offered by SOS can still be maintained
using mechanisms that are simpler and more predictable. However, some second-
order properties, such as the ability to rapidly reconfigure the architecture in an-
ticipation of or in reaction to a breach of the filtering identity (e.g., identifying the
secret servlet) are compromised. In most other respects, the two approaches are
very similar.

Gligor [54] proposes the use of a server that can produce tickets at line speeds.
Clients must obtain a ticket from this server before they are allowed to access a
protected service. The approach is geared towards application-level DoS protection,
with some other mechanism, such as SOS or Pushback, used to address network-
level DoS attacks. Anderson et. al [55] subsequently proposed a similar system for
use at the network layer of an Internet-like architecture designed with a clean slate,
assuming a distributed token server architecture and rate-limiting/filtering traffic on
routers based on these tokens. Another similar idea appears in [56].

The NetBouncer project [57] considers the use of client-legitimacy tests for filter-
ing attack traffic. Such tests include packet-validity tests (e.g., source address val-
idation), flow-behavior analysis, and application-specific tests, including Graphic
Turing Tests. However, since their solution is end-point based, it is susceptible to
large link-congestion attacks. [58] is the first system to create stateless flow fil-
tering by having each router add “capabilities” to packets that traverse them; the
receiver of these packets is then responsible for sending these capabilities to its
peers, which will allow them to send traffic at higher rates (privileged traffic). Un-
privileged traffic is limited to a fraction of the available bandwidth; thus, although
a DoS attack can prevent new connections from being established (by overloading
the control channel used to communicate these capabilities), existing connections
will be unharmed.

[59] examines several different DDoS mitigation technologies and their interac-
tions. Among their conclusions, they mention that requiring the clients to do some
work, e.g., [60], can be an effective countermeasure, provided the attacker does
not have too many resources compared to the defender. Wang and Reiter [61] intro-
duced the idea of a puzzle auction as a way to ease some of the practical deployment
difficulties, e.g., selecting the appropriate hardness for the puzzles. Their intuition
is to let clients bid for the resources by tuning the difficulty of the puzzles they
solve. When the server is attacked, legitimate clients gradually increase their bids
(puzzle difficulty), eventually bringing the cost outside the adversary’s capabilities.
The authors envision combining their scheme with some anti-DoS mechanism that
counteracts volume-based attacks [1,46,4].

33

6.1 Micropayment Systems

Although we use a particular micropayment system [62,19], other schemes can
also be used, including digital cash systems [63–66], scrip-based micropayments
[67,68], and offline micropayment protocols [69–72]. MiniPay [73] is particularly
attractive, since it was developed primarily for use with a web browser, with consid-
erable effort gone into the user interface aspect. Risk management is implemented
as a decision to perform an online check with the billing server based on the total
spending by the customer that day, and some parameter set by the merchant. We
believe that general transactional payment schemes [74–77] may prove too heavy-
weight for our purposes.

7 Conclusions

We presented WebSOS, an architecture that allows legitimate users to access a web
server in the presence of a denial of service attack. The architecture uses a combi-
nation of Graphic Turing tests, cryptographic protocols for data origin authentica-
tion, packet filtering, overlay networks, and consistent hashing to provide service to
casual web-browsing users. Furthermore, our architecture is the first pay-friendly
DoS protection mechanisms, furnishing ISPs with a better value proposition for
deploying anti-DoS systems: a way to turn DoS protection into a commodity. We
discussed our prototype implementation, which uses standard web proxying and au-
thentication mechanisms built in all browsers. Our architecture requires no changes
to web servers, browsers, or existing protocols.

We conducted a performance evaluation of WebSOS over both a local area network
and over the Internet using PlanetLab, a testbed for experimentation with network
overlays and similar technologies. Our experiments show that, in a realistic but
worst-case deployment scenario, the end-to-end communication latency between
browser and server increases on the average by a factor of 7, with a worst case of
10. We also implemented and evaluated a shortcut optimization, which reduced the
latency to a factor of 2. These results are consistent with our simulations. We also
discussed other optimizations. However, we believe that even at its current level, the
overhead imposed is acceptable for many critical environments and applications.

Future work plans include completion and long-term deployment of the WebSOS
prototype on PlanetLab, development of the IPsec-enabled prototype that allows
for transparent proxying and asymmetric traffic routing for improved performance,
and more comprehensive performance measurements, over a longer period of time
and for a wider set of users and web sites.

34

8 Acknowledgements

Alexander Konstantinou’s NetCallback was used as a basis for the forwarding code
in the communications module. Abhinav Kamra wrote the Chord implementation
used for overlay routing.

References

[1] J. Ioannidis, S. M. Bellovin, Implementing Pushback: Router-Based Defense Against
DDoS Attacks, in: Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2002.

[2] D. Dean, M. Franklin, A. Stubblefield, An Algebraic Approach to IP Traceback, in:
Proceedings of the Network and Dsitributed System Security Symposium (NDSS),
2001, pp. 3–12.

[3] S. Savage, D. Wetherall, A. Karlin, T. Anderson, Network Support for IP Traceback,
ACM/IEEE Transactions on Networking 9 (3) (2001) 226–237.

[4] A. D. Keromytis, V. Misra, D. Rubenstein, SOS: Secure Overlay Services, in:
Proceedings of ACM SIGCOMM, 2002, pp. 61–72.

[5] M. C. Benvenuto, A. D. Keromytis, EasyVPN: IPsec Remote Access Made Easy, in:
Proceedings of the 17th USENIX Systems Administration Conference (LISA), 2003,
pp. 87–93.

[6] S. Dietrich, N. Long, D. Dittrich, Analyzing Distributed Denial of Service Tools: The
Shaft Case, in: Proceedings of USENIX LISA XIV, 2000.

[7] J. Ioannidis, S. Ioannidis, A. D. Keromytis, V. Prevelakis, Fileteller: Paying and
Getting Paid for File Storage, in: Proceeding of Financial Cryptography (FC)
Conference, 2002, pp. 282–299.

[8] L. Peterson, D. Culler, T. Anderson, T. Roscoe, A Blueprint for Introducing Disruptive
Technology into the Internet, in: Proceedings of the 1st Workshop on Hot Topics in
Networks (HotNets-I), 2002.
URL citeseer.nj.nec.com/peterson02blueprint.html

[9] S. A. Crosby, D. S. Wallach, Denial of Service via Algorithmic Complexity Attacks,
in: Proceedings of the 12th USENIX Security Symposium, 2003, pp. 29–44.

[10] A. D. Keromytis, J. Parekh, P. N. Gross, G. Kaiser, V. Misra, J. Nieh, D. Rubenstein,
S. Stolfo, A Holistic Approach to Service Survivability, in: Proceedings of the ACM
Survivable and Self-Regenerative Systems Workshop, 2003, pp. 11–22.

[11] S. Kent, R. Atkinson, Security Architecture for the Internet Protocol, RFC 2401, IETF
(November 1998).
URL ftp://ftp.isi.edu/in-notes/rfc2401.txt

35

[12] CCITT, X.509: The Directory Authentication Framework, International
Telecommunications Union, Geneva (1989).

[13] S. M. Bellovin, Distributed Firewalls, ;login: magazine, special issue on security
(1999) 37–39.

[14] S. Ioannidis, A. Keromytis, S. Bellovin, J. Smith, Implementing a Distributed Firewall,
in: Proceedings of Computer and Communications Security (CCS), 2000, pp. 190–
199.

[15] I. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrishnan, Chord: A Scalable
Peer-To-Peer Lookup Service for Internet Application, in: Proceedings of ACM
SIGCOMM, 2001.

[16] D. Karger, E. Lehman, F. Leighton, R. Panigrahy, M. Levine, D. Lewin, Consistent
Hashing and Random Trees: Distributed Caching Protocols for Relievig Hot Spots on
the World Wide Web, in: Proceedings of ACM Symposium on Theory of Computing
(STOC), 1997, pp. 654–663.
URL citeseer.nj.nec.com/karger97consistent.html

[17] L. von Ahn, M. Blum, N. J. Hopper, J. Langford, CAPTCHA: Using Hard AI Problems
For Security, in: Proceedings of EUROCRYPT, 2003.

[18] G. Mori, J. Malik, Recognizing Objects in Adversarial Clutter: Breaking a Visual
CAPTCHA, in: Computer Vision and Pattern Recognition CVPR’03, 2003.

[19] M. Blaze, J. Ioannidis, S. Ioannidis, A. D. Keromytis, P. Nikander, V. Prevelakis,
TAPI: Transactions for Accessing Public Infrastructure, in: Proceedings of the 8th
IFIP Personal Wireless Communications (PWC) Conference, 2003, pp. 90–10.

[20] M. Blaze, J. Feigenbaum, J. Ioannidis, A. D. Keromytis, The KeyNote Trust
Management System Version 2, RFC 2704 (September 1999).

[21] D. Farinacci, T. Li, S. Hanks, D. Meyer, P. Traina, Generic Routing Encapsulation
(GRE), RFC 2784, IETF (March 2000).
URL http://www.rfc-editor.org/rfc/rfc2784.txt

[22] G. Dommety, Key and Sequence Number Extensions to GRE, RFC 2890, IETF
(September 2000).
URL http://www.rfc-editor.org/rfc/rfc2890.txt

[23] L. Amini, H. Schulzrinne, A. Lazar, Observations from Router-level Internet Traces,
in: DIMACSWorkshop on Internet andWWWMeasurement, Mapping andModeling,
2002.

[24] D. Moore, G. Voelker, S. Savage, Inferring Internet Denial-of-Service Activity, in:
Proceedings of the 10th USENIX Security Symposium, 2001, pp. 9–22.

[25] J. V. L. Blunk, PPP Extensible Authentication Protocol (EAP), RFC 2284, IETF
(March 1998).
URL http://www.ietf.org/rfc/rfc2284.txt

36

[26] IEEE Draft P802.1X/D11: Standard for Port based Network Access Control (March
2001).

[27] P. Nikander, Authorization and charging in public wlans using freebsd and 802.1x, in:
Proceedings of the Annual USENIX Technical Conference, Freenix Track, 2002.

[28] N. Haller, C. Metz, P. Nesser, M. Straw, A One-Time Password System, RFC 2289,
IETF (February 1998).
URL http://www.ietf.org/rfc/rfc2289.txt

[29] D. Cook, Analysis of Routing Algorithms for Secure Overlay Service, Computer
Science Department Technical Report CUCS-010-02, Columbia University (April
2002).
URL http://www.cs.columbia.edu/˜library/TR-repository/
repor%ts/reports-2002/cucs-010-02.pdf

[30] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A Scalable Content-
Addressable Network, in: Proceedings of ACM SIGCOMM, 2001.

[31] A. Cohen, S. Rangarajan, J. H. Slye, On the Performance of TCP Splicing for URL-
Aware Redirection, in: USENIX Symposium on Internet Technologies and Systems,
1999.
URL citeseer.nj.nec.com/cohen99performance.html

[32] S. Miltchev, S. Ioannidis, A. D. Keromytis, A Study of the Relative Costs of Network
Security Protocols, in: Proceedings of USENIX Annual Technical Conference,
Freenix Track), 2002, pp. 41–48.

[33] A. D. Keromytis, J. L. Wright, T. de Raadt, The Design of the OpenBSD
Cryptographic Framework, in: Proceedings of the USENIX Annual Technical
Conference, 2003, pp. 181–196.

[34] C. Schuba, I. Krsul, M. Kuhn, E. Spafford, A. Sundaram, D. Zamboni, Analysis of a
Denial of Service Attack on TCP, in: IEEE Security and Privacy Conference, 1997,
pp. 208–223.

[35] L. Heberlein, M. Bishop, Attack Class: Address Spoofing, in: Proceedings of the 19th
National Information Systems Security Conference, 1996, pp. 371–377.

[36] S. Savage, N. Cardwell, D. Wetherall, T. Anderson, TCP Congestion Control with a
Misbehaving Receiver, ACM Computer Communications Review 29 (5) (1999) 71–
78.

[37] S. Savage, D. Wetherall, A. Karlin, T. Anderson, Practical Network Support for IP
Traceback, in: Proceedings of the 2000 ACM SIGCOMMConference, 2000, pp. 295–
306.

[38] M. T. Goodrich, Efficient Packet Marking for Large-Scale IP Traceback, in:
Proceedings of the 9th ACM Conference on Computer and Communications Security
(CCS), 2002, pp. 117–126.

[39] A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F. Tchakountio, S. Kent, W. Strayer,
Hash-Based IP Traceback, in: Proceedings of ACM SIGCOMM, 2001.

37

[40] R. Stone, CenterTrack: An IP Overlay Network for Tracking DoS Floods, in:
Proceedings of the USENIX Security Symposium, 2000.

[41] J. Li, M. Sung, J. Xu, L. Li, Large-Scale IP Traceback in High-Speed Internet:
Practical Techniques and Theoretical Foundation, in: Proceedings of the IEEE
Symposium on Security and Privacy, 2004.

[42] P. Reiher, J. Mirkovic, G. Prier, Attacking DDoS at the source, in: Proceedings of the
10th IEEE International Conference on Network Protocols, 2002.

[43] C. Papadopoulos, R. Lindell, J. Mehringer, A. Hussain, R. Govindan, COSSACK:
Coordinated Suppression of Simultaneous Attacks, in: Proceedings of DISCEX III,
2003, pp. 2–13.

[44] C. Jin, H. Wang, K. G. Shin, Hop-Count Filtering: An Effective Defense Against
Spoofed DoS Traffic, in: Proceedings of the 10th ACM International Conference on
Computer and Communications Security (CCS), 2003, pp. 30–41.

[45] A. Hussain, J. Heidemann, C. Papadopoulos, A Framework for Classifying Denial of
Service Attacks, in: Proceedings of ACM SIGCOMM, 2003, pp. 99–110.

[46] A. Yaar, A. Perrig, D. Song, Pi: A Path Identification Mechanism to Defend against
DDoS Attacks, in: Proceedings of the IEEE Symposium on Security and Privacy,
2003.

[47] M. Collins, M. Reiter, An empirical analysis of target-resident DoS filters, in:
Proceedings of the IEEE Symposium on Security and Privacy, 2004.

[48] K. Park, H. Lee, On the Effectiveness of Route-based PAcket Filtering for Distributed
DoS Attack Prevention in Power-law Internets, in: Proceedings of ACM SIGCOMM,
2001, pp. 15–26.

[49] F. Kargl, J. Maier, M. Weber, Protecting web servers from distributed denial of service
attacks, in: World Wide Web, 2001, pp. 514–524.
URL citeseer.nj.nec.com/444367.html

[50] A. Stavrou, D. Rubenstein, S. Sahu, A Lightweight, Robust P2P System to Handle
Flash Crowds, IEEE Journal on Selected Areas in Communications (JSAC) 22 (1)
(2004) 6–17.

[51] D. L. Cook, W. G. Morein, A. D. Keromytis, V. Misra, D. Rubenstein, WebSOS:
Protecting Web Servers From DDoS Attacks, in: Proceedings of the 11th IEEE
International Conference on Networks (ICON), 2003, pp. 455–460.

[52] W. G. Morein, A. Stavrou, D. L. Cook, A. D. Keromytis, V. Misra, D. Rubenstein,
Using Graphic Turing Tests to Counter Automated DDoS Attacks Against Web
Servers, in: Proceedings of the 10th ACM International Conference on Computer and
Communications Security (CCS), 2003, pp. 8–19.

[53] D. G. Andersen, Mayday: Distributed Filtering for Internet Services, in: 4th USENIX
Symposium on Internet Technologies and Systems USITS, 2003.

38

[54] V. D. Gligor, Guaranteeing Access in Spite of Distributed Service-Flooding Attacks,
in: Proceedings of the Security Protocols Workshop, 2003.

[55] T. Anderson, T. Roscoe, D. Wetherall, Preventing Internet Denial-of-Service with
Capabilities, in: Proceedings of the 2nd Workshop on Hot Topics in Networks
(HotNets-II), 2003.

[56] K. Lakshminarayanan, D. Adkins, A. Perrig, I. Stoica, Taming IP Packet Flooding
Attacks, in: Proceedings of the Second Workshop on Hot Topics in Networks
(HotNets-II), 2003.

[57] R. Thomas, B. Mark, T. Johnson, J. Croall, NetBouncer: Client-legitimacy-based
High-performance DDoS Filtering, in: Proceedings of DISCEX III, 2003, pp. 14–25.

[58] A. Yaar, A. Perrig, D. Song, An Endhost Capability Mechanism to Mitigate DDoS
Flooding Attacks, in: Proceedings of the IEEE Security and Privacy Symposium, 2004.

[59] W. J. Blackert, D. M. Gregg, A. K. Castner, E. M. Kyle, R. L. Hom, R. M. Jokerst,
Analyzing Interaction Between Distributed Denial of Service Attacks and Mitigation
Technologies, in: Proceedings of DISCEX III, 2003, pp. 26–36.

[60] D. Dean, A. Stubblefield, Using client puzzles to protect TLS, in: Proceedings of the
10th USENIX Security Symposium, 2001.

[61] X. Wang, M. K. Reiter, Defending Against Denial-of-Service Attacks with Puzzle
Auctions (Extended Abstract), in: Proceedings of the IEEE Symposium on Security
and Privacy, 2003.

[62] M. Blaze, J. Ioannidis, A. D. Keromytis, Offline Micropayments without Trusted
Hardware, in: Proceedings of the Fifth International Conference on Financial
Cryptography, 2001, pp. 21–40.

[63] D. Chaum, Achieving Electronic Privacy, Scientific American (1992) 96–101.

[64] D. Chaum, Blind signatures for untraceable payments, in: Advances in Cryptology:
Crypto ’82 Proceedings, Plenum Press, 1982.

[65] G. Medvinsky, C. Neuman, NetCash: A design for practical electronic currency
on the internet, in: Proceedings of the Second ACM Conference on Computer and
Communication Security, 1994.

[66] M. Bellare, J. Garay, C. Jutla, M. Yung, VarietyCash: a Multi-Purpose Electronic
Payment System, in: Proceedings of the Third USENIX Workshop on Electronic
Commerce, USENIX, 1998.

[67] T. Poutanen, H. Hinton, M. Stumm, NetCents: A Lightweight Protocol for Secure
Micropayments, in: Proceedings of the Third USENIX Workshop on Electronic
Commerce, USENIX, 1998.

[68] M. S. Manasse, The Millicent protocols for electronic commerce, in: Proceedings of
the First USENIX Workshop on Electronic Commerce, USENIX, 1995.

39

[69] L. Tang, A Set of Protocols for MicroPayments in Distributed Systems, in:
Proceedings of the First USENIX Workshop on Electronic Commerce, USENIX,
1995.

[70] C. Jutla, M. Yung, Paytree: amortized signature for flexible micropayments, in:
Proceedings of the Second USENIX Workshop on Electronic Commerce, USENIX,
1996.

[71] R. Rivest, A. Shamir, PayWord and MicroMint, CryptoBytes 2 (1) (1996) 7–11.

[72] R. Hauser, M. Steiner, M. Waidner, Micro-payments based on ikp, in: Proceedings of
the 14th Worldwide Congress on Computer and Communication Security Protection,
1996.

[73] A. Herzberg, Safeguarding Digital Library Contents, D-Lib Magazine.

[74] C. Neuman, G. Medvinsky, Requirements for network payment: The Netcheque
prospective, in: Proceedings of IEEE COMCON, 1995.

[75] M. Bellare, J. Garay, A. Herzberg, H. Krawczyk, M. Steiner, G. Tsudik, M. Waidner,
iKP – A Family of Secure Electronic Payment Protocols, in: Proceedings of the First
USENIX Workshop on Electronic Commerce, USENIX, 1995.

[76] E. Foo, C. Boyd, A Payment Scheme Using Vouchers, in: Proceedings of the Second
International Conference on Financial Cryptography, no. 1465 in Lecture Notes in
Computer Science, Springer-Verlag, 1998, pp. 103–121.

[77] B. Cox, D. Tygar, M. Sirbu, NetBill security and transaction protocol, in: Proceedings
of the First USENIX Workshop on Electronic commerce, USENIX, 1995.

40

