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Abstract

For multimedia traffic like VBR video, knowledge of the average loss probability is not suf-
ficient to determine the impact of loss on the perceived visual quality and on the possible
ways of improving it, for example by forward error correction (FEC) and error conceal-
ment. In this paper we investigate how the packet size distribution affects the packet loss
process, i.e. the probability of consecutive losses and the distribution of the number of
packets lost in a block of packets and the related FEC performance. We present an exact
mathematical model for the loss process of an MMPP + MMPP/Er/1/K queue and com-
pare the results of the model to simulations performed with various other packet size distri-
butions (PSDs), among others, the measured PSD from an Internet backbone. The results
show that analytical models of the PSD matching the first three moments (mean,variance
and skewness) of the empirical PSD can be used to evaluate the performance of FEC in real
networks. We conclude that the exponential PSD, though it is not a worst case scenario,
is a good approximation for the PSD of today’s Internet to evaluate FEC performance. We
also conclude that the packet size distribution affects the packet loss process and thus the
efficiency of FEC mainly in access networks where a single multimedia stream might af-
fect the multiplexing behavior. We evaluate how the PSD affects the accuracy of the widely
used Gilbert model to calculate FEC performance and conclude that the Gilbert model can
capture loss correlations better if the CoV of the PSD is high.
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1 Introduction

For flow-type multimedia communications, as opposed to elastic traffic, the average
packet loss is not the only measure of interest. The burstiness of the loss process,
the number of losses in a block of packets, has a great impact both on the user-
perceived visual quality and on the possible ways of improving it, for example by
error concealment and forward error correction.

Forward error correction (FEC) is an attractive means to decrease the loss prob-
ability experienced by delay sensitive traffic, such as real-time multimedia, when
ARQ schemes can not be used to recover losses due to strict delay constraints.
There are two main directions of FEC design to recover from packet losses. One
solution, proposed by the IETF and implemented in Internet audio tools like Rat
[1] and Freephone [2] is to add a redundant copy of the original packet to one of
the subsequent packets [3]. In the case of packet loss the information is regained
from the redundant copy. The other set of solutions use media-independent block
coding schemes based on algebraic coding, e.g. Reed-Solomon coding [4]. The er-
ror correcting capability of RS codes with k data packets and c redundant packets
is c if data is lost. While Reed-Solomon codes are typically used to correct bit er-
rors, they can be used to recover lost packets via block interleaving as described in
[5]. Given a block of k packets, the packets are prefixed by their lengths in bytes,
and packets shorter than the longest one in the block are padded by zeros. Reed-
Solomon coding is applied to the ith symbol (typically byte) of each packet (in total
k symbols) to form the ith symbols of the c redundant packets. Packets are then
transmitted one-by-one, without the padding zeros. The loss of a packet appears as
the loss of a symbol in a block of c+k symbols at the receiver and can be corrected
as long as the number of lost packets is no more than c. The performance of both
FEC schemes depends on the burstiness of the loss process: the performance of
the first, media-dependent FEC scheme depends on the probability of consecutive
packet losses; the capability of the second, media-independent FEC scheme to re-
cover from losses depends on the distribution of the number of packets lost in a
block.

The burstiness of the loss process in the network can be influenced by three factors,
the burstiness of the stream traversing the network, the burstiness of the background
traffic and the packet size distribution. The effects of the burstiness of the stream
traversing the network and the background traffic have been investigated before. In
[6] the authors performed simulations to study the efficiency of FEC for recovery of
lost packets. They concluded that as long as the ratio of streams using FEC is low,
FEC can decrease the uncorrected loss probability significantly. In [4] the authors
used an analytical model to evaluate how the burstiness, the block length and the
number of sources employing FEC influences the efficiency of FEC, concluding
that the burstiness has a significant effect on the efficiency of FEC. The authors in
[7] performed simulations to investigate the trade-off between traffic shaping and
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FEC to decrease the uncorrected loss probability. They concluded that for longer
delays the joint use of shaping and FEC gives the best performance. The authors
studied the effects of the burstiness of the background traffic on the efficiency of
FEC as well, and concluded that its effects are moderate. In [8] the authors used the
Gilbert channel model [9] and evaluated the efficiency of FEC as a function of the
burstiness of the loss process, concluding that a burstier loss process decreases the
efficiency of FEC.

The effects of the packet size distribution (PSD) are not clear however, since pre-
vious research concentrated on the exponential and deterministic packet size distri-
butions only. The deterministic packet size distribution was motivated by the ATM
standard in the last decade, while the exponential packet size distribution was moti-
vated by the analytical tractability of the resulting models. Nevertheless, the PSD in
the network can vary on the short term due to changes in the ongoing traffic and on
the long term as new applications and protocols emerge. As individual applications
cannot control the PSD in the network, it is important to know how the PSD will
affect their performance, for example, how much gain can an application expect
from FEC given a certain measured end-to-end average loss probability.

It is well known that in an M/G/1 queue the average number of customers is di-
rect proportional to the coefficient of variation (CoV) of the service time distri-
bution, as given by the Pollaczek-Khintchine formula [10]. For the finite capacity
M/G/1 queue there is no closed form formula to calculate the packet loss proba-
bility [11,12], though we know from experience that a lower CoV of the service
time distribution yields lower average loss probability. It is however unclear how
the distribution of the service time affects the loss process in a finite queue and thus
how the potential of using FEC changes.

In this paper we present a queuing model to analyze the packet loss process of
a bursty source, for example VBR video, multiplexed with background traffic in a
single multiplexer. The multiplexer is modeled as a single server with a finite queue.
We model the bursty source and the background traffic by Markov-modulated Pois-
son processes (MMPP) and consider Erlang-r distributed packet sizes. We investi-
gate the effects of the network PSD on the packet loss process and the efficiency of
FEC based on the queuing model presented here, a similar model with determin-
istic packet sizes and simulations. In particular, we compare the analytical results
with Erlang-r (exponential, as a special case) and deterministic PSDs to those of
simulations performed with general PSDs, among them the measured PSD of an
Internet backbone [13].

The paper is organized as follows. Section 2 gives an overview of the previous
work on the modeling of the loss process of a single server queue. In Section 3 we
describe our model used for calculating the loss probabilities in a block of packets
and the consecutive loss probability. In Section 4 we evaluate the effects of the
PSD on the packet loss process in various scenarios. We consider constant average
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load in Subsection 4.1, constant average loss probability in Subsection 4.2, and we
isolate the effect of the PSD from other factors in Subsection 4.3. In Section 5 we
evaluate how the packet size distribution affects the accuracy of the Gilbert model
to capture the correlation between losses. We conclude our work in Section 6.

2 Related work

In [14], Cidon et al. presented an exact analysis of the packet loss process in an
M/M/1/K queue, that is the probability of losing j packets in a block of n pack-
ets, and showed that the distribution of losses may be bursty compared to the as-
sumption of independence. They also considered a discrete time system fed with
a Bernoulli arrival process describing the behavior of an ATM multiplexer. Gure-
witz et al. presented explicit expressions for the above quantities of interest for the
M/M/1/K queue in [15]. In [16], Altman et al. obtained the multidimensional gen-
erating function of the probability of j losses in a block of n packets and gave an
easy-to-calculate asymptotic result under the condition that n≤ K + j +1.

Schulzrinne et al. [17] derived the conditional loss probability (CLP) for the N ∗
IPP/D/1/K queue and showed that the CLP can be orders of magnitude higher
than the loss probability. In [4] Kawahara et al. used an interrupted Bernoulli pro-
cess to analyze the performance of FEC in a cell switched environment. The loss
process of the MMPP/D/1/K queue was analyzed in [18] and the results compared
to a queue with exponential packet size distribution.

Models with general service time distribution have been proposed for calculating
various measures of queuing performance [19,20], but not to analyze the loss pro-
cess. Though models with exponential and deterministic PSDs are available, a thor-
ough analysis of the effects of the PSD on the packet loss process has not yet been
done.

3 Model description

In this section we first present the model used to calculate the probability of losses
in a block, then we show how it can be used to calculate the consecutive loss prob-
ability.

Flows traversing large networks like the Internet cross several routers before reach-
ing their destination. However, most of the losses in a flow occur in the router
having the smallest available bandwidth along the transmission path, so that one
may model the series of routers with a single router, the bottleneck [21,22].
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We consequently model the network with a single queue with Erlang-r distributed
packet sizes having average transmission time 1/µ. The Erlang-r distribution is the
distribution of the sum of r independent identically distributed random variables
each having an exponential distribution. By increasing r to infinity the variance of
the Erlang-r distribution goes to zero, and thus the distribution becomes determin-
istic.

Packets arrive to the system from two sources, two Markov-modulated Poisson
processes (MMPP), representing the tagged source (MMPPa) and the background
traffic (MMPPs) respectively. The packets are stored in a buffer that can host up to
K packets, and are served according to a FIFO policy.

It is well known that compressed multimedia, like VBR video, exhibits a self-
similar nature [23]. In [24] Robert and Le Boudec used a discrete time MMPP to fit
the mean and the Hurst parameter of pseudo self-similar traffic. In [25] Andersen
and Nielsen used the superposition of two-state MMPP’s to model second-order
self-similar behavior over several timescales. Yoshihara et al. used the superposi-
tion of 2-state interrupted Poisson processes (IPPs) and a Poisson process to model
self-similar traffic in [26] and compared the behavior of the resulting MMPP/D/1
queue with simulations. They found that the approximation works well under heavy
load conditions and gives a tight upper bound on the queue length. Klemm et al.
[27] used the batch Markovian arrival process for aggregated traffic modeling in IP
networks, and showed the effectiveness of the model in terms of queueing behavior
and statistical properties of the traffic. Ryu and Elwalid [28] showed that short term
correlations have dominant influence on the network performance under realistic
scenarios of buffer sizes for real-time traffic. Based on these previous works we
argue that the MMPP may be a practical model to derive approximate results for
the queuing behavior of long range dependent traffic such as real-time VBR video,
especially in the case of small buffer sizes [29].

Our assumption on the background traffic is justified by recent results indicating
that Internet traffic can be approximated by a non-stationary Poisson process [30].
According to the results the change free intervals are well above 150 ms, the ITU’s
G.114 recommendation for end-to-end delay for real-time applications. The au-
thors in [31] used the superposition of MMPPs to model self-similar traffic over
several timescales, and achieved good results in terms of queueing behavior. These
empirical results are consistent with recent theoretical results [32].

3.1 Probability of losses in a block

In the following we describe the calculation of the probability of losses in a block.
Every n consecutive packets from the tagged source form a block, and we are in-
terested in the probability distribution of the number of lost packets in a block in
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the steady state of the system. Throughout this section we use notations similar to
those in [14].

We assume that the sources feeding the system are independent. MMPPa is de-
scribed by the infinitesimal generator matrix Qa with elements ra

bc, (b,c ∈ B =
(1 . . .B)) and the arrival rate matrix Λa = diag{λa

1, . . . ,λ
a
B}, where λa

b is the aver-
age arrival rate while the underlying Markov chain is in state b [33]. MMPPs is
described by the infinitesimal generator matrix Qs with elements rs

uv, (u,v ∈U =
(1 . . .U)) and the arrival rate matrix Λs = diag{λs

1, . . . ,λ
s
U}, where λs

u is the aver-
age arrival rate while the underlying Markov chain is in state u. Let us denote the
joint state space of the two MMPP’s with the set of ordered pairs BU = (b,u) of
cardinality B×U .

The superposition of the two sources can be described by a single MMPP with
arrival rate matrix Λ̂ = Λa⊕Λs, and infinitesimal generator Q̂ = Qa⊕Qs, where ⊕
is the Kronecker sum [33,34]. Both Λ̂ and Q̂ are square matrices of size L = B×U
and we denote the state of the superposed MMPP with l ∈ L = (1 . . .L). Due to the
special structure of Λ̂, l = (b−1)×U + u is a one-to-one and onto mapping from
BU to L , with the property that the arrival intensity in state l ∈L of the superposed
MMPP is λ̂l = λa

b + λs
u for l = (b− 1)×U + u, b ∈ B,u ∈U. Since the mapping

is invertible, we can calculate λ̂a
l , the arrival intensity of MMPPa in state l of the

superposed MMPP, as λ̂a
l = λa

bl/Uc+1.

Each packet in the queue corresponds to r exponential stages, and thus the state
space of the queue is {0, . . . ,rK}×{1, . . . ,L}. Our purpose is to calculate the prob-
ability of j losses in a block of n packets P( j,n), n ≥ 1, 0 ≤ j ≤ n. We define
the probability Pa

i,l( j,n), 0 ≤ i ≤ rK, l ∈ L , n ≥ 1, 0 ≤ j ≤ n as the probability of
j losses in a block of n packets, given that the remaining number of exponential
stages in the system is i just before the arrival of the first packet in the block from
the tagged source and the first packet of the block is generated while the superposed
MMPP is in state l. As the first packet in the block is arbitrary,

P( j,n) =
L

∑
l=1

rK

∑
i=0

Π(i, l)Pa
i,l( j,n). (1)

Π(i, l), the steady state distribution of the exponential stages in the queue as seen
by an arriving packet from the tagged source can be derived from the steady state
distribution of the MMPP/Er/1/K queue as

Π(i, l) =
π(i, l)λ̂a

l

∑L
l=1 λ̂l ∑rK

i=0 π(i, l)
, (2)

where π(i, l) is the steady state distribution of the MMPP/Er/1/K queue and λ̂a
l is
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the arrival intensity of MMPPa in state l of the superposed MMPP.

The probabilities Pa
i,l( j,n) can be derived according to the following recursion. The

recursion is initiated for n = 1 with the following relations

Pa
i,l( j,1)=







1 j = 0

0 j ≥ 1
i≤ r(K−1),

Pa
i,l( j,1)=







0 j = 0, j ≥ 2

1 j = 1
r(K−1) < i. (3)

We denote the probability that a packet arriving in state m of the superposed MMPP
comes from the tagged source with pm = λb

λb+λu
and the probability of the com-

plement event with pm = λu
λb+λu

, where m = (b− 1)×U + u. Thus for n ≥ 2 the
following equations hold.

Pa
i,l( j,n)=

L

∑
m=1

i+r

∑
k=0

Ql,m
i+r(k){pmPa

i+r−k,m( j,n−1)+ pmPs
i+r−k,m( j,n−1)} (4)

for 0≤ i≤ r(K−1), and for r(K−1) < i

Pa
i,l( j,n)=

L

∑
m=1

i

∑
k=0

Ql,m
i (k){pmPa

i−k,m( j−1,n−1)+ pmPs
i−k,m( j−1,n−1)}.(5)

Ps
i,l( j,n) is given by

Ps
i,l( j,n)=

L

∑
m=1

i+r

∑
k=0

Ql,m
i+r(k){pmPa

i+r−k,m( j,n)+ pmPs
i+r−k,m( j,n)}, (6)

for 0≤ i≤ r(K−1), and for for r(K−1) < i

Ps
i,l( j,n)=

L

∑
m=1

i

∑
k=0

Ql,m
i (k){pmPa

i−k,m( j,n)+ pmPs
i−k,m( j,n)}. (7)

The probability Ps
i,l( j,n), 0 ≤ i ≤ rK, l ∈ L , n ≥ 1, 0 ≤ j ≤ n is the probability of

j losses in a block of n packets, given that the remaining number of exponential
stages in the system is i just before the arrival of a packet from the background
traffic and the superposed MMPP is in state l. Ql,m

i (k) denotes the joint probability
of that the next arrival will be while the superposed MMPP is in state m and that k
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exponential stages out of i will be completed before the next arrival from the joint
arrival process given that the last arrival was in state l of the superposed MMPP. A
way to calculate Ql,m

i (k) is shown in the Appendix.

The procedure of computing Pa
i,l( j,n) is as follows. First we calculate Pa

i,l( j,1), i =

0 . . .rK from the initial conditions (3). Then in iteration k we first calculate Ps
i,l( j,k),

k = 1 . . .n− 1 using equations (6) and (7) and the probabilities Pa
i,l( j,k), which

have been calculated during iteration k− 1. Then we calculate Pa
i,l( j,k + 1) using

equations (4) and (5).

In the special case when the background traffic is a Poisson process with arrival
intensity λ, we have that U = 1, L = B, Λ̂ = Λa + λI and Q̂ = Qa, where I is an
identity matrix of size B. The mapping from BU to L becomes l = b, and thus
pm = λm

λm+λ as presented in [35]. We will use the resulting MMPP + M/Er/1/K
model in Section 4.

3.2 Consecutive loss probability

Now we turn to calculate the probability of consecutive losses. We define two
sets of states, α and ω as the set of states of the queue where arriving packets
can enter the system and where arriving packets are discarded respectively. Then
α = {0 . . .r(K− 1)} and ω = {r(K− 1)+ 1 . . .rK}. Let us denote by Ai the event
that the first packet in a block arrives to the system when the remaining number of
exponential stages in the system is i, and we define the event Aω = ∪i∈ωAi. Simi-
larly, we denote with Al the event that the first packet in the block was generated in
state l of the superposed MMPP. Using these notations the consecutive loss proba-
bility, i.e. the conditional probability that a packet arriving to the system from the
tagged source is lost, given that the previous packet from the tagged source was lost
is given as

pω|ω = P(2,2|Aω) =
P(2,2∩Aω)

P(Aω)
=

∑i∈ω P(2,2∩Ai)

P(Aω)
=

=
∑l∈L ∑i∈ω P(2,2∩Ai∩Al)

P(Aω)
=

∑l∈L ∑i∈ω Pa
i,l(2,2)Π(i, l)

P(Aω)

=
∑l∈L ∑i∈α∪ω Pa

i,l(2,2)Π(i, l)

P(Aω)
=

P(2,2)

P(1,1)
, (8)

since the first packet is arbitrary and Pa
i,l(2,2) = 0 for i ∈ α. The probabilities pα|α,

pω|α and pα|ω can be defined similarly and calculated as pα|ω = 1− pω|ω, pω|α =
pα|ω pω/(1− pω) and pα|α = 1− pω|α, where pω is the average loss probability.
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4 Performance analysis

In this section we show results obtained with the MMPP + M/Er/1/K model de-
scribed in Section 3, the MMPP + M/D/1/K model described in [18] and simu-
lations. The average packet length of both the tagged and the background traffic is
set to 454 bytes, which is the mean packet size measured on an Internet backbone
[13]. Note that increasing the average packet length is equivalent to decreasing the
link speed, and thus the particular fixed value of the average packet length does
not limit the generality of the results presented here. The PDF, CoV (σ/m) and
skewness (∑(X−m)3/σ3) parameters of the twelve considered PSDs are shown
in Table 1. The G1 distribution is the measured PSD on a 2.5 Gbps Internet back-
bone link as given by the Sprint IP Monitoring project [13]. The considered link
speeds are 10 Mbps, 22.5 Mbps and 45 Mbps. The maximum queuing delay is
set to around 1.5 ms in all cases, resulting in buffer sizes from 5 to 20 packets
depending on the link speed. Both in the analytical models and in the simula-
tions we consider a 3 state MMPP as the tagged source, with an average bitrate
of 540 kbps, arrival intensities λa

1 = 116/s,λa
2 = 274/s,λa

3 = 931/s and transition
rates ra

12 = 0.12594,ra
21 = 0.25,ra

23 = 1.97,ra
32 = 2. These values were derived from

an MPEG-4 encoded video trace by matching the average arrival intensities in the
three states of the MMPP with the average frame size of the I,P and B frames.

For the background traffic we use a Poisson process. This assumption is valid if
there are many sources sharing the same link, as the traffic generated by a large
number of sources tends to Poisson as the load increases due to statistical multi-
plexing [36]. We believe that this assumption will not influence our results with
respect to the effects of the PSD, on the other hand it keeps the number of param-
eters of the model low, and thus eases readability. The simulations were performed
in ns-2, the simulation time was between 40 thousand and 400 thousand seconds (5-
50 million packets from the tagged source), the margin of error of the simulations
was below 5 percent at a 95 percent confidence level.

We use three measures to compare the packet loss process. The first measure is the
consecutive packet loss probability, denoted by pω|ω and calculated according to
(8). The consecutive packet loss probability has an influence on the efficiency of
media-dependent FEC schemes proposed for real-time audio [3,37]. The lower the
value of the consecutive packet loss probability, the more effective are the media-
dependent FEC schemes, as shown in [38].

The second measure is the Kullback-Leibler distance [39] of the distributions of the
number of packets lost in a block. The Kullback-Leibler distance is a commonly
used measure of closeness, defined for two distributions as

d(p1, p2) =
n

∑
j=0

P1( j,n)log2
P1( j,n)

P2( j,n)
, (9)
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Distribution CoV Skewness PDF Notation

General 1 1.2 1.07 b(x) taken from [13], see Figure 1 G1

General 2 1.2 1.07 b(x) = 0.74N(127,20)+0.26N(1366,20) G2

Phase type 1.2 1.07 b(x) = 0.54E(5,26)+0.46E(5,956) G3

Exponential 1 2 E(1,454) M∗

General 4 1
√

2 b(x) = 0.79N(219,1)+0.21N(1331,1) G4

General 5 1/
√

2 2 b(x) = 0.85N(321,1)+0.15N(1229,1) G5

Erlang-2 1/
√

2
√

2 E(2,454) E2∗

General 6 1/
√

2
√

0.4 b(x) = 0.65N(219,1)+0.35N(892,1) G6

General 7
√

0.1
√

2 b(x) = 0.79N(379,1)+0.21N(731,1) G7

Erlang-10
√

0.1
√

0.4 E(10,454) E10∗

General 8
√

0.1 0 b(x) = 0.5N(310,1)+0.5N(598,1) G8

Deterministic 0 0 b(x) = δ454(x) D∗

Table 1
Considered packet size distributions: coefficient of variation, skewness, PDF and notation
in the figures. N(m,σ) denotes a normal distribution with mean m and variance σ2. E(r,1/µ)
denotes an r-stage Erlang distribution with mean 1/µ. Results for PSDs marked with a ∗

are obtained with the models, the rest with simulations.

The Kullback-Leibler distance is the same as the relative entropy of p1 with respect
to p2. It is not a true metric, as it is not symmetric and does not satisfy the triangle
inequality, but it is always non-negative and equals zero only if p1 = p2.

The third measure is based on the gain that can be achieved by using FEC. We
denote an FEC scheme using Reed-Solomon coding with k data packets and c re-
dundant packets by FEC(k, c + k). Given the probabilities P( j,n) the uncorrected
loss probability for an FEC(k,c+ k) scheme can be calculated as

pk,c+k
ω =

1
c+ k

c+k

∑
j=c+1

jP( j,c+ k). (10)

Based on the uncorrected packet loss probability we define the FEC gain as the
ratio of the average loss probability without the use of FEC and the uncorrected
loss probability when using FEC

f (k,c+ k) = pω/pk,c+k
ω . (11)
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4.1 Constant average load case

In this subsection we investigate the effects of the PSD on the packet loss process
and the efficiency of FEC as a function of the average load in the network. Figure 2
shows the uncorrected packet loss probability without error correction (denoted by
FEC(1,1)), for FEC(10,11) and for FEC(20,22) on a 10 Mbps link for the G1,G2,
G3 (which have the same first three moments), M and D distributions. Figures 3 and
4 show the same results on a 22.5 Mbps and a 45 Mbps link. The figures show that
results obtained with the G1, G2 and G3 distributions are practically the same (the
difference is less than 5%). This indicates that by matching the first three moments
of a distribution one can derive accurate results in terms of average loss probability
and FEC gain even for very low loss probabilities. In the following we will only
use the G1 distribution out of these three distributions.
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Fig. 1. Cumulative density functions of the
considered packet size distributions.
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Fig. 3. Average loss probability with
and without FEC vs average load on a
22.5 Mbps link.
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Fig. 4. Average loss probability with and
without FEC vs average load on a 45 Mbps
link.

Figures 5 and 6 show the Kullback-Leibler distance obtained with different PSDs
on a 10 Mbps link for P( j,11) and P( j,22) respectively. Figures 7 and 8 show
the FEC gain for the same scenarios. Comparing the figures we conclude that
FEC(10,11) and FEC(20,22) are qualitatively similar, and thus in the following we
will only show figures for FEC(20,22) for brevity. Figure 9 shows the conditional
packet loss probability obtained with different PSDs on a 10 Mbps link. Comparing
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results obtained with PSDs having the same CoV but different skewness we can see
that even though the skewness has an effect on the packet loss process (especially
at low loss probabilities), the CoV of the PSD has the biggest impact on both the
conditional loss probability and the efficiency of FEC. As shown in the figures, a
lower CoV value yields a less correlated loss process.
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Fig. 5. Kullback-Leibler distance vs aver-
age load for P(j,11) on a 10 Mbps link
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Fig. 6. Kullback-Leibler distance vs aver-
age load for P(j,22) on a 10 Mbps link
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Fig. 7. FEC gain vs average load for
FEC(10,11) on a 10 Mbps link
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Fig. 8. FEC gain vs average load for
FEC(20,22) on a 10 Mbps link
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Fig. 9. Conditional loss probability vs av-
erage load on a 10 Mbps link
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Fig. 10. Kullback-Leibler distance vs aver-
age load for P(j,22) on a 22.5 Mbps link

We draw the same conclusion by examining Figures 10, 11, 13 and 14 which show
the Kullback-Leibler distance and the FEC gain on a 22 Mbps and a 45 Mbps
link as a function of the average load for P( j,22) and FEC(20,22) respectively.
The same conclusion can be drawn from Figure 12, which shows the consecutive
packet loss probability on a 22 Mbps link. Thus, analytically tractable PSD models
(for example phase-type, which includes both the Erlang and the hyper-exponential
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distributions as special cases, and has an extensive literature [40–43]) can be used
to derive approximate results for FEC performance by matching the first two, and
accurate results by matching the first three moments of the empirical PSD. Further-
more as the packet size and the CoV of the PSD in the network is bounded from
above, one can estimate a lower bound on the achievable gain of using FEC inde-
pendent of the packet size distribution in the network. Comparing Figures 8, 11 and
14 shows that the ratio of the FEC gains with different PSDs decreases slightly as
the link speed increases. We draw the same conclusion regarding the conditional
loss probabilities comparing Figures 9 and 12.
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Fig. 11. FEC gain vs average load for
FEC(20,22) on a 22.5 Mbps link
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Fig. 12. Conditional loss probability vs av-
erage load on a 22.5 Mbps link
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Fig. 13. Kullback-Leibler distance vs aver-
age load for P(j,22) on a 45 Mbps link
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Fig. 14. FEC gain vs average load for
FEC(20,22) on a 45 Mbps link

Though for some networks the exponential PSD might fit, it is clear from the results
that it does not represent a worst case scenario if the average packet size is not equal
to the center of the domain of the PSD and thus the CoV of the PSD can exceed
one. Nevertheless, the exponential PSD is a good approximation for the considered
empirical PSD G1, and for other empirical PSDs to be found at [13]. This finding
justifies the assumption of exponential service time distribution in earlier works on
the efficiency of FEC [3,14–16,44].

The difference between the results obtained at a particular average load with dis-
tributions having different CoV values is significant, up to one order of magnitude
in terms of FEC gain in the considered scenarios and a factor of three in terms of
conditional packet loss probability, a lower CoV value yielding a less bursty loss
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process. The difference however is partly due to the different average loss prob-
abilities. We eliminate the effects of the average loss probability in the following
subsection.

4.2 Constant average packet loss case

In this subsection we consider results with different PSDs as a function of the av-
erage loss probability. This enables us to investigate what an application (unaware
of the network PSD) can expect from the different FEC solutions given that it ex-
periences a certain end-to-end average packet loss probability. In order to be able
to compare the packet loss process at a certain average loss probability we take the
results from simulations with the G1 PSD and increase the background traffic of
the mathematical models to match the average packet loss probability given by the
simulations.

Figure 15 shows the Kullback-Leibler distance between the results obtained with
the different distributions as a function of the average loss probability on a 10 Mbps
link for P( j,22). The figure shows that the distance between the results obtained
with different distributions decreased significantly (three orders of magnitude). Fig-
ure 16 shows the FEC gain for the same scenario. The effects of the PSD are sig-
nificantly smaller compared to Figure 8.
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Fig. 15. Kullback-Leibler distance vs av-
erage loss probability for P(j,22) on a
10 Mbps link
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Fig. 16. FEC gain vs average loss proba-
bility for FEC(20,22) on a 10 Mbps link

Figures 17 and 18 show the FEC gain on a 22.5 Mbps and a 45 Mbps link re-
spectively. Comparing the figures we can see that the difference between results
with different PSDs in terms of FEC gain decreases as the link speed increases
(from 10 Mbps to 45 Mbps). More specifically, the efficiency of FEC in the case
of exponential PSD increases, while in the case of deterministic PSD remains ap-
proximately unchanged at a given loss probability as the link speed increases. The
reason for this is that the higher the link speed the less the background traffic has to
be changed to keep the average loss probability constant, and thus the change in the
level of statistical multiplexing decreases. Figures 19, 20 and 21 show the condi-
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tional loss probability on a 10 Mbps, 22.5 Mbps and 45 Mbps link respectively, and
lead to the same conclusions, i.e. the distance between the results obtained with dif-
ferent distributions is lower compared to Figs. 9 and 12, and the difference between
results obtained with the different PSDs decreases as the link speed increases. The
results for the conditional loss probability support those for the efficiency of FEC,
a lower CoV results in lower conditional loss probability at a given average loss
probability, which in turn makes FEC more efficient, since losses are spread out
more evenly.
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Fig. 17. FEC gain vs average loss proba-
bility for FEC(20,22) on a 22.5 Mbps link
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Fig. 18. FEC gain vs average loss proba-
bility for FEC(20,22) on a 45 Mbps link
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Fig. 19. Conditional loss probability vs av-
erage loss probability on a 10 Mbps link
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Fig. 20. Conditional loss probability vs av-
erage loss probability on a 22.5 Mbps link

The observed difference in FEC gain and conditional loss probability can be due to
the difference in the level of statistical multiplexing (the background traffic inten-
sity was increased to maintain the average loss probability constant and as a result
the packet loss process became more independent) and to the difference between
the packet size distributions.

4.3 Isolating the effects of the packet size distribution

In this subsection we separate the effects of the level of statistical multiplexing and
the PSD. We do it by changing the arrival intensity of both the background traffic
and the tagged stream in the mathematical models in order to match the average
loss probability given by the simulations with the G1 PSD, thus we keep the level
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of statistical multiplexing constant (doing so is equivalent to matching the average
loss probability through decreasing the link speed). Figure 22 shows the Kullback-
Leibler distance as a function of the average loss probability on a 10 Mbps link for
P( j,22). Comparing this to Figure 15 we can see a further significant decrease in
the distance of the distributions. The same effect can be seen in Figure 23, which
shows the FEC gain on a 10 Mbps link as a function of the average loss probability
for FEC(20,22). Figure 24 shows the conditional loss probability on a 10 Mbps
link. Comparing it to Figure 19 shows a further decrease in the difference of the
results with different PSDs.

10
−4

10
−3

10
−2

10
−1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Average loss probability

Co
ns

ec
ut

iv
e 

lo
ss

 p
ro

ba
bi

lit
y

M
G1
G4
G5
E2
G6
G7
E10
G8
D

Fig. 21. Conditional loss probability vs av-
erage loss probability on a 45 Mbps link
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Fig. 22. Kullback-Leibler distance vs av-
erage loss probability for P(j,22) on a
10 Mbps link (same level of statistical mul-
tiplexing)
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Fig. 23. FEC gain vs average loss proba-
bility for FEC(20,22) on a 10 Mbps link
(same level of statistical multiplexing)
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Fig. 24. Conditional loss probability vs av-
erage loss probability on a 10 Mbps link
(same level of statistical multiplexing)

Thus the difference in the FEC gain and the conditional loss probability considering
a fixed average load (Subsection 4.1) is mainly due to the different average loss
probabilities and in a lower extent to the different PSD. Similarly, the difference in
the FEC gain and the conditional loss probability considering a fixed average loss
(Subsection 4.2) is mainly due to the different levels of statistical multiplexing and
in a lower extent to the different PSD. This is in accordance with the observation
in Section 4.2 that the difference between the results with different PSDs decreases
as the link speed increases.
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5 On the accuracy of the Gilbert model

The Gilbert model [9] is a widely used model for the design and evaluation of error
control solutions for channels with correlated losses. As proposed in [9], it is a two
state time-discrete Hidden Markov Model (HMM), where state 0 corresponds to
the good state of the channel, state 1 to the bad state of the channel, and packets
are lost with probability h when the channel is in the bad state. Let us denote the
transition probability from state 0 to state 1 by p and from state 1 to state 0 by q. A
special case of this model, where the value of the parameter h is taken to be one, is
commonly used in the literature to describe packet loss correlations [45–47]. With
this restriction, the Gilbert model becomes a two state time-discrete Markov model.
Estimating the parameters of the two state Markov model is much easier than those
of the HMM, which is the reason for this common simplification of the original
model.

In the following we briefly evaluate how the packet size distribution influences the
accuracy of the Gilbert model to predict FEC performance. For this end we first
calculate the probability pω|ω from the simulations or using the model presented in
Section 3 respectively for given network conditions, i.e. average load and packet
size distribution. The parameters of the Gilbert model are then set to match pω,
pα|ω and pω|α as

p =
pω|α(pω− pω|α)

pω(1− pω|α− pα|ω)
,

q =
pω|α− pω p

pω
, h =

pω|α
p

.

The above parametrization ensures h = 1, and is the maximum likelihood estimator
for the commonly used two state Markov model as shown in [48]. Using the Gilbert
model the probability of j losses in a block of n packets, PG( j,n) can be calculated
[49], and can be used to calculate the uncorrected loss probability for an RS(k,c+k)
scheme

pk,c+k
G,ω =

1
c+ k

c+k

∑
j=c+1

jPG( j,c+ k), (12)

and the corresponding FEC gain

fG(k,c+ k) = pω/pk,c+k
G,ω . (13)

To evaluate the effects of the PSD on the accuracy of the Gilbert model we define
the ratio φG = f (k,c+k)/ fG(k,c+k), the ratio of the FEC gain as calculated from

17



simulations or using the model presented in Section 3 and as calculated with the
Gilbert model. The further the value of φG(k,c + k) from 1 the higher the error
induced by the Gilbert model, e.g. a value lower than one indicates that using the
Gilbert model one overestimates the efficiency of FEC.

Figs. 25 and 26 show φG(10,11) and φG(20,22) respectively as a function of the
average load on a 10 Mbps link for five packet size distributions corresponding to
Subsection 4.1. The figures show that the Gilbert model is more accurate for packet
size distributions with a high CoV. Similar conclusions can be drawn from Figs. 27
and 28, which show the same scenario for a link of 22.5 Mbps and 45 Mbps respec-
tively. As it can be seen in the figures, below a certain average load the accuracy of
the Gilbert model starts increasing, as losses become more and more independent.
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Fig. 25. φG(10,11) vs average load on a
10 Mbps link
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Fig. 26. φG(20,22) vs average load on a
10 Mbps link
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Fig. 27. φG(20,22) vs average load on a
22.5 Mbps link
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Fig. 28. φG(20,22) vs average load on a
45 Mbps link

Figure 29 shows φG(20,22) as a function of the average loss probability on a
10 Mbps link corresponding to Subsection 4.2. We observe that the difference be-
tween results with the different PSDs does not decrease significantly compared to
Figure 26. Figs. 30 and 31 show the same scenario for links of 22.5 Mbps and
45 Mbps. As it can be seen in both figures, the Gilbert model performs worst when
the average loss probability is around 10−3. This explains the shape of the curves
in Figs. 27 and 28. Comparing Figs. 29, 30 and 31 we also see that the accuracy
of the Gilbert model decreases at a particular loss probability as the link speed in-
creases. Figure 32 shows φG(20,22) as a function of the average loss probability
on a 10 Mbps link corresponding to Subsection 4.3. Comparing this to Figure 29
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we see that the difference between the results obtained with different distributions
increases. This phenomenon is due to that, in order to match the average loss prob-
ability, the load of the scenarios with a PSD with low CoV has to be increased
as explained in Subsection 4.3. Increasing the load results in the increasing im-
portance of long term correlations between losses and the Gilbert model fails to
capture those correlations. Thus we conclude that the Gilbert model can be used
best to model the loss process of a queue with a PSD with a high CoV, for example
exponential distribution.

10
−4

10
−3

10
−2

10
−1

0.4

0.5

0.6

0.7

0.8

0.9

1

Average loss probability

φ G
(2

0,
22

)

M
G1
E2
E10
D

Fig. 29. φG(20,22) vs average loss proba-
bility on a 10 Mbps link
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Fig. 30. φG(20,22) vs average loss proba-
bility on a 22.5 Mbps link
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Fig. 31. φG(20,22) vs average loss proba-
bility on a 45 Mbps link
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Fig. 32. φG(20,22) vs average loss prob-
ability on a 10 Mbps link (same level of
statistical multiplexing)

6 Conclusion

In this paper we investigated the effects of the packet size distribution on the packet
loss process and the related FEC performance in a single server queue with a fi-
nite buffer. We presented a mathematical model for the analysis of the packet loss
process of the MMPP+MMPP/Er/1/K queue and compared the results of simu-
lations and mathematical models in different scenarios. Our results show that ana-
lytical models of the PSD matching the first three moments of the empirical PSD
can be used to evaluate the performance of the different FEC solutions in real net-
works, while the exponential PSD is a reasonable approximation for the PSD of
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today’s Internet to evaluate FEC performance. Nevertheless the exponential PSD is
not a worst case scenario, the PSD in today’s networks has a higher CoV and thus
shows slightly worse queuing performance. However, as the CoV of the packet size
distribution in a real network is bounded from above, one can give a lower bound
on the efficiency of FEC and thus predict its performance. The results show that
the effects of the packet size distribution decrease as the link speed increases if one
considers a particular average packet loss probability. Thus at a given average loss
probability the actual network PSD does not influence the efficiency of FEC on a
backbone link, however it has a big influence on it in access networks. At the same
time applications can have a bigger influence on the packet size distribution in ac-
cess networks and thus have an impact on the packet loss process of their traffic.
Comparing results obtained with the Gilbert model to the analytical results shows
that the Gilbert model can best capture the correlations in a queue with a packet size
distribution with high CoV, e.g. the exponential distribution. The results presented
here can serve as a basis for future research on the performance of end-to-end error
control and facilitate the use of FEC in tomorrow’s applications.

7 Appendix

The probability Ql,m
i (k) denotes the joint conditional probability that between two

arrivals from the joint arrival stream there are k exponential service stage comple-
tions out of i and the state of the MMPP at the moment of the next arrival is m given
that at the time of the last arrival the MMPP was in state l as defined in Section 3.
To calculate Ql,m

i (k) we will first calculate fl,m(t) the joint probability density func-
tion of the interarrival-time distribution of the joint arrival process and that the next
arrival will occur in state m of the MMPP given that the last arrival was in state l of
the MMPP.

Using the notations introduced in Section 3 the Laplace transform f ∗l,m(s) of fl,m(t)
is given by [33]

f ∗l,m(s) = L
{

e(Q̂−Λ̂)xΛ̂
}

= (sI− Q̂+ Λ̂)−1Λ̂ =
Ad j(sI− Q̂+ Λ̂)Λ̂
det(sI− Q̂+ Λ̂)

, (.1)

where Ad j(.) is the adjoint of (.). The inverse Laplace transform of (.1) can be
calculated by finding the roots of det(sI− Q̂ + Λ̂) and performing partial fraction
decomposition. If det(sI− Q̂ + Λ̂) has no repeated roots (i.e. λ̂l 6= λ̂m if l 6= m),
then f ∗l,m(s) can be written as

f ∗l,m(s) =
L

∑
j=1

Bl,m
j

s+β j
, (.2)
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where β j are the roots of t(s) = det[sI− Q̂+ Λ̂], i.e. t(s) = ∏L
j=1 (s+β j), and Bl,m

j
are the coefficients resulting from the partial fraction decomposition. The roots of
t(s) can be found analytically as long as L≤ 4 and numerically for L > 4. Perform-
ing the inverse Laplace transform we get

fl,m(t) =
L

∑
j=1

Bl,m
j e−β jt . (.3)

Now we turn to the calculation of Ql,m
i (k). We denote with Pl,m(k) the joint prob-

ability of having k Poisson arrivals with intensity rµ between two arrivals from the
MMPP and the next arrival from the MMPP coming in state c of the MMPP given
that the last arrival came in state b. The z-transform Pl,m(z) of Pl,m(k) is given by
[10]

Pl,m(z) =
∞

∑
k=0





∞
Z

0

(rµt)k

k! e−rµt fl,m(t)dt



zk = f ∗l,m(rµ− rµz). (.4)

Thus we can express Pl,m(k) from (.4) by performing the inverse z-transform after
the substitution. Using the notation α j = 1 + β j/(rµ) and Al,m

j = Bl,m
j /(rµα j) we

get

Pl,m(k) =
L

∑
j=1

Al,m
j

1
αk

j

. (.5)

Given the probability Pl,m(k) one can express Ql,m
i (k) as

Ql,m
i (k) = Pl,m(k) i f k < i

Ql,m
i (k) = ∑∞

j=i Pl,m( j) i f k = i,
(.6)

so that we have

Ql,m
i (k) =











∑L
j=1 Al,m

j

(

1
α j

)k
0≤ k < i

∑L
j=1

Al,m
j

1−1/α j

(

1
α j

)i
k = i.

(.7)
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