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Abstract

End-to-end available bandwidth estimation between Internet hosts is important to understand network con-
gestion and enhance the performance of Quality-of-Service (QoS) demanding applications. In this paper, we
investigate model-based available bandwidth measurement via the use of an active probing stream. A general
end-to-end measurement framework, which unifies the current research approaches and highlights insights for
measurement practice, is proposed. Within this framework, the end-to-end available bandwidth is inferred based
on the measurement of the performance metrics of an active probing stream. We study two probing streams:
Poisson and periodic probing. Of particular interest to our investigations is the Squared Coefficient of Variation
(SCV) of the inter-probing packet arrival time at the receiver. The performance comparison of the available
bandwidth measurements based on loss models and delay models indicates that the delay-based measurement
exhibits many advantages over the loss-based measurements, such as accuracy, overhead and robustness. We
conducted a comparison study between the proposed SCV-based probing scheme, namely, SCVProbe, and Pathload
using ns-2 simulation in terms of probing accuracy, convergence time and overhead. Our evaluation results indicate
that SCVProbe achieves similar or even better measurement accuracy than Pathload with much less probing time
and smaller overhead.
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Model-based End-to-End Available Bandwidth Inference
using Queueing Analysis

I. INTRODUCTION

Available bandwidth estimation has become an active research topic in the past several years due to

a wide range of applications. End-to-end available bandwidth is related to but different from end-to-end

capacity. The end-to-end capacity is the maximum throughput that a path can provide when there is no

cross traffic, and the end-to-end available bandwidth is the maximum throughput that a path can provide

at a certain time period for a given cross traffic. The available bandwidth is largely influenced by cross

traffic along the path and the congestion control protocols used by cross traffic connections; therefore, it

can be highly dynamic because the cross traffic has widely differing characteristics.

Various end-to-end available bandwidth estimation techniques have been proposed in the past few years.

They are classified into two categories: self-congestion [1]–[4], and model-based [5]–[10]. Despite the

good characteristics, such as accuracy, simplicity, speed, robustness, etc., claimed by proponents of the

self-congestion approach, the congestion introduced by the probing stream inevitably changes the load

along the path in such a way that the TCP flows along the path are sometimes interfered. Therefore, non-

intrusive measurement can hardly be guaranteed. Conversely, in the model-based approach, the bandwidth

measurement tool is operated when the path is not congested. This brings forth the possibility of a truly

non-intrusive available bandwidth estimation technique.

In the end-to-end context, the available bandwidth along a path cannot be measured directly because

the measurement entity is normally not able to access the network internals. One possible measurement

approach is actively sending out packets into the network, and the performance metrics of the probing

stream are measured; thereafter, the available bandwidth is inferred accordingly. The essence of active

measurement is to identify an “effect” in order to establish the relationship between the target measurement

metric, i.e., available bandwidth, and the measurable performance metrics of the active probing stream.

With a well established relationship, available bandwidth is inferred from the performance measurement

of this active probing stream. Both self-congestion and model-based measurement approaches fall into this

big picture. We present an end-to-end measurement framework to unify the current research approaches

and highlight some insights for the measurement practice. This framework helps to design more efficient

probing methodologies and to enhance the understanding of the network performance.
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In the model-based available bandwidth measurement, the performance metrics of the active probing

stream fall into two categories: loss-related metrics [6], [7] and delay-related metrics [8]–[10]. We compare

the measurement performance of the loss-based models and the delay-based models for available band-

width measurement using queueing analysis and extensive simulations. The comparison indicates that the

delay-based measurement exhibits more advantages over the loss-based measurement, such as accuracy,

overhead and robustness. The impact of various parameters in both loss-based and delay-based models

are investigated. The buffer size along the path shows a significant impact on the loss-based measurement.

When the buffer size is small, the loss measurements appear to fluctuate significantly; when the buffer size

is large, the loss is hardly observable and, hence, no valid available bandwidth estimation can be obtained.

In contrast, the delay-based measurement, (in particular, the SCV of the inter-probing packet arrival time

at the receiver), is sensitive to the load of the cross traffic. Therefore, it provides a more advantageous

approach in available bandwidth estimation. We also conducted a comparison study between SCVProbe

and Pathload using ns-2 simulation. Our evaluation results indicate that SCVProbe achieves similar or

even better measurement accuracy than Pathload with much less probing time and smaller overhead.

The rest of the paper is organized as follows. First, in Section II some related work is outlined.

Next, in Section III a general end-to-end measurement framework is presented. The available bandwidth

measurement is considered as one application of this framework. In Section IV, we evaluate and compare

the available bandwidth measurement using the analysis of the loss and delay processes of an active

probing stream. In particular, the impact of the buffer size on the loss and delay processes of the probing

stream are investigated using queueing models and extensive simulations. In Section V, the available

bandwidth inference using delay-models are evaluated along multi-hop paths and SCVProbe is evaluated

against Pathload using ns-2. Finally, concluding remarks are made in Section VI.

II. RELATED WORK

Pathload [1] and Initial Increasing Gap (IGI)/Packet Transmission Rate (PTR) [2] are two available

bandwidth measurement methodologies in a self-congestion approach. By trying different probing rates

using a binary search, a reasonable estimate of the available bandwidth can be found in Pathload. In [2] Hu

and Steenkiste reported the construction of a delay-gap model to understand how cross traffic changes the

probing packet gap for a single-hop path. A turning point exists at which the average input gap equals the

average output gap. At this turning point, IGI utilizes a fluid-flow based formula to estimate the available
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bandwidth and PTR estimates the available bandwidth on the bottleneck link as the average rate of the

packet train. Essentially, Hu and Steenkiste studied the first-order statistics of the delay process of the

probing stream, and their methodology works when the path is self-congested by the additional probing

load. In [4], TOPP shared the same self-congestion nature as Pathload and IGI/PTR. The difference is

that TOPP utilized the throughput measurement to identify a throughput transition point when the path

load ρ is 1.

In [11], Strauss et al. improved the probe gap model of [2] by setting the inter-gap time between two

probe pairs to be exponentially distributed. Their measurement tool, Spruce, shows better accuracy than

IGI; however, Spruce essentially retains the self-congestion principle. In [3], Ribeiro et al. proposed to

create a self-induced congestion using an active probing stream with an exponential flight pattern, called

“pathChirp”. The available bandwidth estimation uses the information on whether the delay of pathChirp

packets is increasing or decreasing, and a turning point is also identified when the probe sending rates

and receiving rates start to match.

In [5] Sharma and Mazumdar proposed the estimation of the traffic parameters of the Poisson-type cross

traffic by measuring the delay experienced by an active probing stream. However, their inference schemes

require that the network nodes are cooperative and provide the local queueing information, such as the

mean queue length and the waiting time of a probing stream. In the end-to-end scenario, the network

cooperation cannot be guaranteed.

The model-based measurement method most closely related to our work is that of [6], in which Alouf

et al. proposed that the network characteristics are inferred via moment-based estimators. The inference

(queueing) models were developed for a single node case based on the single bottleneck assumption. Two

models were studied, M1+M2/M/1/K and M1+M2/D/1/K, to simultaneously estimate the cross traffic

intensity and the buffer size of the bottleneck link given the knowledge of the bottleneck capacity. Multiple

inference schemes were proposed based on the moment estimators of various performance metrics of the

probing stream. Following an approach similar to that in [6], cross traffic characteristics were inferred

based on the loss process analysis of an MMPP/M/1/N queueing model in [7].

We believe that the proposed loss-based metrics used in [6] and [7] do not necessarily perform well

in the measurement practice. For example, considering the end-to-end measurement situation, packet loss

might not be easily observable during the measurement period. In addition, packets may be dropped due
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to Active Buffer Management (AQM) instead of buffer overflow. A more observable metric, the inter-

arrival time between consecutive packets at the receiver, has not yet been investigated in the queueing

framework to study the available bandwidth measurement to the best of our knowledge. More importantly

the variation of such inter-arrival time is of particular interest. This fact motivated us to conduct research

on network inference via an analysis of the inter-arrival time of two consecutive probing packets at the

receiver.

III. A GENERAL END-TO-END MEASUREMENT FRAMEWORK

A. Overview

In the end-to-end measurement context, we present a general measurement framework depicted in

Figure 1. This framework consists of two sub-problems, the problem of modelling an end-to-end path

and the problem of inferring the unknown parameters of this path model. In the modelling problem, the

end-to-end path is abstractly modelled as a series of tandem queues with a superposition of two arrival

processes, the probing stream and the cross traffic stream. This network model is determined by a set of

determinable or controllable parameters, Θ, of the probing actions and a set of unknown parameters, X ,

which include the target measurement metrics, i.e., the available bandwidth.

Network Model 
Y=F(X, Θ)

Probing Actions 
Θ

Observed Metrics 
Y

input output

Fig. 1. A general end-to-end model-based measurement framework.

The output of the measurement process is the observed metrics Y . With an appropriate hypothetical

model, the relationship between Y and (X, Θ) can be established, namely, Y = F (X, Θ). Therefore, the

performance of an active probing stream from the sender to the receiver can be predicted given all the

parameters of this hypothetical model. As an inverse process, in the inference problem, the parameters of

this hypothetical model, that are of particular interests, including path capacity and available bandwidth,

can be estimated by measuring the performance of this probing stream. In a mathematical form, X =

F−1(Y, Θ). With a different probing strategy, controlling the parameter set Θ of the input probing process,

a different F can be identified. Relatively accurate tools for capacity measurement have been proposed in

[12], [13]. Our focus in this paper is on the estimation of the cross traffic intensity under the assumption

that the path capacity is known, which is provided for instance by the packet-pair technique. Given
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knowledge of the capacity information, the available bandwidth is determined by the difference between

the capacity and the cross traffic intensity.

B. The Modelling Problem

The accuracy of the model-based measurement largely depends on whether the hypothetical model

is able to capture the relationship F correctly. The construction of the measurement model involves

three components: the design of the probing sequence (determining an appropriate parameter set Θ), the

characteristics of the cross traffic stream, and how packets are transmitted in the network.

A commonly used assumption in the active measurement literature is the existence of a single bottleneck

along an end-to-end path, in that, the performance of the probing stream is dominated by the most

congested link along the path [2], [6]–[8]. Despite the simplicity, the analysis of this single bottleneck

leads to valuable insights into understanding the behavior of the complex network. As a simple starting

point, an end-to-end Internet path is modelled as a single server queue with two concurrent streams, the

probing stream and the cross traffic, as shown in Figure 2.

probing stream delay process

loss process

... ... ......

sender receiver

λ1

λ2

µ

Internet

cross traffic

bottleneck link

Fig. 2. The available bandwidth inference model.

1) Probe Sequence Design: A common measurement consists of multiple probe sequences. Probe

sequence design sets the characteristics of both the distribution of packets sequences and the distribution

of packets within a sequence [14]. A probe sequence consists of a number of sequential probing packets.

The goal of this probe sequence design is to control the parameter set Θ for establishing a most inferrable

X = F−1(Y, Θ). Depicted in Figure 3, these parameters include the number of sequences (N ), the number

of probing packets within a sequence (M ), the probing packet size (L), the inter-arrival time between

probing packets (1/λ1, λ1 is the packet arrival rate), the inter-arrival time between probing sequences

(1/γ, γ is the sequence arrival rate).

Probing sequences with three types of inter-arrival time distributions are commonly used: a Poisson

probe sequence [15], a periodic probe sequence [16], and an exponential probe sequence [3]. Each probe
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has applications in the measurement practice. A Poisson probe sequence can provide unbiased near-

continuous detection while a periodic probe sequence is easier to implement without having to concern

about the stochastic robustness of a Poisson sequence. Nevertheless, mathematically it is more difficult

to analyze the departure process of a periodic stream in a series of tandem queues. An exponential probe

sequence was recently proposed to capture the long-term dependence of the Internet traffic; yet, it lacks

an accurate analysis for understanding its stochastic behaviors [17]. In our work, we focus on the Poisson

and periodic probing sequences.

1212

1/γ

...
M

...
M

...

Sequence 1

12
...

M

1/λ1L

...

Sequence 2Sequence N

Fig. 3. Probe sequences in one measurement session.

2) Characteristics of the Cross Traffic: The Internet traffic is a superposition of many flows, based on

many protocols. Tremendous research effort has been made both in regard to theory and measurement so

as to present an understanding of Internet traffic. Traffic on the Internet has been reported, in numerous

studies, to be self-similar, [18], [19]; in large networks, however, it has been found [20] that the overall

arrival rate at nodes within the core of the network is Poisson.

Knowledge of the packet distributions on the Internet provides a guideline in understanding the service

time distribution. Several works on the measurement of packet size distributions of the Internet have been

published [19], [21], [22], and all show very common features. It is not possible, in practice, to obtain

the complete packet size distribution; however, with tremendous effort in Internet measurement [19], [21],

[22], it is fair to assume that the first and second moments of the packet size distribution of the Internet

traffic can be determined. Then, the first moment matching or two moment matching schemes can be

applied [8].

In what follows, we illustrate a simple first order mapping scheme for the packet size distribution using

a negative exponential distribution. Based on the Internet measurement, it is assumed that the Internet

traffic consists of three types of packet sizes, {40, 550, 1500} bytes, with a distribution of {40%, 50%,

10%}. Because there is only one parameter in an exponential distribution, we map the first moment so

that the average packet size (441 bytes) in the mapped negative exponential distribution is the same as that



7

in the above typical Internet packet distribution. We used the negative exponential distribution assumption

of packet sizes in our simulation study. However, our probing method is not limited to exponentially

distributed packet sizes. In [8], we proposed mapping the first and second moments of the packet size

distribution into a generalized distribution. This two-moment mapping scheme achieved a better accuracy

than the first moment mapping scheme.

3) Knowledge about the Network Services: It is also a prerequisite to understand how packets are

transmitted in the network, such as the queueing discipline at the routers. One common assumption

used in current measurement work is the First-In-First-Out (FIFO) queueing scheme deployed in Internet

routers. It is still largely true for most current Internet routers; however, various Active Queue Management

(AQM) and different packet scheduling algorithms, i.e., Weighted Fair Queueing (WFQ), have started to

be deployed in routers. In the loss-based model [6], [7], the reason for the packet dropping is assumed to

be due to buffer overflow only. With the application of AQM, more packet dropping is possibly observed.

This indicates the potential inaccuracy of the loss-based available bandwidth estimation by overestimating

the packet loss probability and, hence, underestimates the available bandwidth.

4) Model Construction: The system illustrated in Figure 2 is modelled as a single server, a finite

capacity queue operating in continuous time, which accepts two classes of customer arrivals, the probing

packet arrivals and the cross traffic packet arrivals. The probing packet arrival process is assumed to be

independent and probing packets are referred to as customers of class 1. The arrival rate of the probing

stream is denoted as λ1 and the service rate is µ1. The cross-traffic packets are referred to as customers

of class 2, and the arrival rate of cross traffic is denoted λ2 and the service rate is as µ2. Assume that the

queueing system is in a steady state; therefore, the traffic intensity ρ = ρ1 + ρ2 = λ1

µ1
+ λ2

µ2
< 1. The load

of the cross traffic is also denoted as ρCT = ρ2. Denote the buffer size of K packets (K ≥ 1) including

the packet in service.

C. The Inference Problem

1) Metric Selection: The inference problem involves an appropriate selection of an observable metric

set Y and the resolution of the inverse of F . A “good” metric (y ∈ Y ) ought to be observable in the

sense that it is sensitive to X , and, yet, the inference procedure F−1(Ŷ , Θ) leads to a stable estimated

X̂ , being robust to measurement noises.

The IPPM working group of the IETF defined some end-to-end performance metrics [15], including
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delay (RFC2679 and RFC2681), delay variation (RFC3393), throughput (RFC3148) and loss (RFC2680

and RFC3357). These candidate metrics are delay-related or loss-related. The throughput-based measure-

ment has turned out to be too intrusive because it injects too much traffic into the network, and it can

also be considered as a loss-related metric because the transmitted traffic is the total input traffic minus

the traffic dropped in the network.

The available bandwidth measurement, based on the analysis of the loss process of the probing stream,

was discussed in [6] and [7]. The work in [1], [2] and [8] rely on the measurement of the delay performance

of the probing stream. To the best of our knowledge, the model-based available bandwidth measurement

using delay-variation has not been investigated. Of particular interest in our investigations, is the SCV of

the inter-departure time between two consecutive probing packets. In a real measurement system, given

the measured SCV of the probing stream, inverting the function F helps to infer the load of the cross

traffic on the end-to-end path between two end nodes.

2) Inference Procedures: With the assumption that cross traffic is a simple Poisson arrival process and

only a single bottleneck exists, the active Poisson-type probing problem can be formulated into a queueing

analysis problem in regard to the performance metrics of the probing stream. These assumptions lead to a

tractable mathematical treatment; however, it is also important to examine the robustness of the proposed

model when these assumptions do not hold.

In the loss-based model, the loss process of the probing stream was analyzed using M1 + M2/M/1/K

and M1 + M2/D/1/K in [6]. In the delay-based model, the departure process (delay process) of the

probing stream can be analyzed using an M1 + M2/GIi/1 queueing system [23] to capture the impact

of cross traffic on a Poisson probing stream. A heavy traffic approximation approach [24] can also be

employed to analyze the delay process of the probing stream in the above queueing system.

IV. MODEL-BASED AVAILABLE BANDWIDTH INFERENCE: LOSS-MODELS VS. DELAY-MODELS

In Section IV-B, the end-to-end available bandwidth is inferred based on the measurement of the loss

process and we highlight the ineffectiveness of the loss-based models. In Section IV-C, we present a

delay-gap model using queueing analysis and evaluate the impact of the buffer size on the delay-gap

model using simulations. in Section IV-D, the queueing analysis and simulation results show that the

SCV-based model provides a promising light-weight probing methodology in the end-to-end available

bandwidth inference.
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A. Simulation Configurations

The network model used in this section is shown in Figure 4. It is a single-hop path. (In spite of the

simplicity, the analysis and simulation can still illustrate the insights. We will present the experiment

results in a more general multi-hop topology in later sections.) The link is modelled using a single-server

drop-tail queue with a processing rate equal to the link bandwidth. This queue is assumed to deploy the

FIFO scheduling scheme. The maximum queue size is equal to the buffer size of the router. This link

has a bandwidth capacity of 2 Mbps and the buffer size is 500 Kbytes. There are 10 homogeneous cross

traffic sources, and the packet size of the cross traffic follows a negative exponential distribution with a

mean value of 441 bytes. For each set of simulation points for the evaluation of the loss models, there

are 11 batches in one simulation run and the length of each batch is 105 probing packets. The first batch

of probing packets are not used to collect statistics in order to avoid the effect of the transient states.

The latter 10 batches simulation results are used to calculate the 95% confidence intervals, indicated

by the error bars in the figures. The delay information is much easier to measure compared to the loss

measurement and, hence, the length of each batch is set to 104 probing packets for the evaluation of the

delay model while the accuracy and robustness of the measurement are still good. The whole simulation

model was constructed using SimLib 2.2 [25].

Probing Stream

10 Cross Traffic 
Sources 

SND C

...

RCV

10 Cross Traffic 
Sinks ...

Fig. 4. A single hop path.

B. Loss Model using M1 + M2/M/1/K

In [6], the network characteristics were inferred via moment-based estimators. The inference (queueing)

models were developed for a single node case based on the single bottleneck assumption. Two models

were used, M + M/M/1/K and M + M/D/1/K, to simultaneously estimate the cross traffic intensity

and the buffer size of the bottleneck link given the bottleneck capacity. Multiple inference schemes were

proposed based on the moment estimators of the packet loss probability (PL), server utilization (U ), the
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expected response time (R), the conditional loss probability (qL) (the probability that two consecutive

losses occur), and the conditional non-loss probability (qN ) (the probability that a probing packet arrives

to find room in the buffer given that the previous probing packet was also admitted into the queue). The

best scheme was shown to be the inference via the estimators of the packet loss and the expected response

time using the simulation study. (A brief summary of the equations used in the related inference schemes

can be found in Appendix I.)

Considering the end-to-end measurement situation, the packet loss is not easily measured during the

measurement period (there is, possibly, no loss at all) and the slow convergence is within expectation; the

server utilization cannot be measured without the cooperation of the network; due to the possible clock

drifting between the sender and the receiver, the estimation of the expected response time of the probing

packets is, possibly, inaccurate based on the arriving time instant to the queueing system at the sender

side and the departure time instant out of the queueing system at the receiver side. Since the packet loss

probability, the conditional loss probability, and the conditional non-loss probability are the only three

“good” candidate metrics in the end-to-end measurement scenario, the schemes of PL − qL, PL − qN ,

qL − qN are evaluated in the later part of this section.

In M1 + M2/M/1/K, the probing stream is generated with the arrival rate of λ1 and the cross traffic

is generated with the arrival rate of λ2. The average service rates of two streams are µ1 = µ2 = µ.

This indicates that the configuration of the probing stream ought to ensure that the probing packet size

is the average packet size of the cross traffic packets. The aggregate traffic intensity is ρ = λ1+λ2

µ
. In the

remaining of this section, we discuss the impact of the buffer size using the M1 + M2/M/1/K model as

well as simulations.

Figure 5 shows the relationship between the loss probability PL and the normalized probing load1 ρ1

for different buffer sizes. Only when the probing stream congests the path (ρ → 1), loss events start to

be observable in practice (e.g., PL ≤ 0.01). For measurement purposes, it is important to really detect

the loss events in order to provide information for the available bandwidth inference. To obtain a loss

measurement of PL = 0.01, at least 100 probing packets have to be sent out to detect 1 packet loss. For a

practical statistically-reliable measurement of PL = 0.01, 10 times (or even higher) the required number

of the packets should be sent out (i.e., at least 1000 probing packets). This implies a heavy measurement

1This normalized probing load is ρ1 = probe arrival rate ∗ probing packet size/bottleneck link capacity.
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overhead and long measurement intervals.
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Fig. 5. The relationship between the loss probability PL and the Poisson probing load ρ1 = λ1
µ

with different buffer sizes (K) using (5).

In Figure 6, we can observe that the measurement operating point ensures an aggregate load approaching

to 1 when the buffer size increases in order to have a practical measurable PL = 0.01. When K = 10

packets, the aggregate load (ρ) is larger than 0.71 for the measurement point PL = 0.01. When K = 80

packets, the required aggregate load (ρ) increases very quickly to 0.99 for detecting PL = 0.01. This

indicates that even if the cross traffic load is small, i.e., ρCT = 0.1, the probing load has to be as high as

ρ1 = 0.89 so that a loss probability PL = 0.01 is practically measurable when K = 80 packets.
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Fig. 6. The sensitivity of the loss probability when PL = 0.01 on the Poisson probing load ρ1 with Poisson-type cross traffic and different
buffer sizes (K) using (5).

Figure 7 shows the relationship between the conditional loss probability qL and the normalized probing

load ρ1 for different buffer sizes. The qL curves appear to be insensitive to the buffer size. Since a packet
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drop is a rare event when ρ < 1, the conditional loss probability is even harder to obtain in the actual

measurement. This was verified by the M1+M2/M/1/K simulation results, which are presented in Figure

8. In Figure 8(a) (K = 20), the measured conditional loss probability has a large variation indicated by

a large confidence interval when ρCT = 0.26 and the probing load ρ1 is small. As shown in Figure 8(b),

the situation is even worse. Besides the large measurement variation, there are practically no conditional

loss events recorded during the simulation when the probing load is small in four different cross traffic

load scenarios. This implies that measuring the conditional loss probability for the available bandwidth

inference does not provide a reliable result.
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Fig. 7. The relationship between the conditional loss probability qL and the Poisson probing load ρ1 with Poisson-type cross traffic and
different buffer sizes (K) using (7).
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Fig. 8. The relationship between the conditional loss probability qL and the Poisson probing load ρ1 with Poisson-type cross traffic and
different buffer sizes (K) in simulation.
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From the above discussions, all of the PL − qL, PL − qN , qL − qN inference schemes have practical

difficulties when the probing load is small. To ensure a more observable loss measurement, Salamatian,

Baynat and Bugnazet [7] proposed to further increase the probing load so that the aggregate load ρ ≥ 1.

However, this negates the advantage of the model-based measurement without congesting the network.

C. Delay-Gap Model using GI1 + GI2/GIi/1/∞

The analysis of the delay process of the probing stream in GI1 + GI2/GIi/1/K, depicted in Figure 2,

is difficult because packet dropping may destroy the delay pattern. Under the assumption that the buffer

size is infinite, the original queue becomes GI1 +GI2/GIi/1/∞. In this section, we will also discuss the

impact of packet dropping on the delay pattern of the probing stream when the buffer size is finite and

the cross traffic is modelled as an aggregate Poisson process.

Figure 9 depicts the time diagram of the delay process in GI1 + GI2/GIi/1/∞. Denote the n-th

probing packet arrival as Cn of the class-1 customer arrival (the probing stream). Its service time is Xn.

Let In denote the inter-arrival time (i.a.t.) between the n-th and (n + 1)-st probing packets and Dn the

corresponding inter-departure time (i.d.t.). Ny denotes the number of arrivals from the cross traffic stream

which occur during the inter-arrival time Cn and Cn+1. Zn is the waiting time of Cn. Yj is the service

time for the j-th packet from the cross traffic stream between the arrival of Cn and Cn+1. When probing

packets traverse the network along a path in the multi-class queue as depicted in Figure 4, the departure

process of the probing stream is determined by its arrival process and the disturbance from the cross

traffic and the network service process.

Cn arrives 

arrival

Cn+1 arrives

Cn departs Cn+1 departs

In

Zn Xn

Fn Dn

Y1 Xn+1

Time

Y2 YNyY3 ...
Queue

Fig. 9. The time diagram of the delay process in GI1 + GI2/GIi/1/∞.

The delay gap ratio is defined as the ratio between the average inter-departure time Dn and the average

inter-arrival time In of the probing packets. This ratio essentially provides first-order delay information

of the delay process.
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With the FIFO scheduling algorithm in a queue with an infinite size, E[Ny] = λ2/λ1, E[In] = 1/λ1.

When ρ < 1, for a queue with an infinite buffer, the waiting time of probing packets is finite. These

packets eventually leave the queue after their service. Due to the flow conservation law, the departure rate

of the probing stream equals its arrival rate. Note that the inverse of the packet arrival rate is E[In] and

the inverse of the packet departure rate is E[Dn]; therefore, E[Dn] = E[In]. Thus,

GapRatio =
E[Dn]

E[In]
= 1.

If ρ ≥ 1, the server is always busy; therefore,

Dn =
Ny∑
j=1

Yj + Xn+1.

Ny is the number of packet arrivals from the cross traffic stream during the inter-arrival time In. Since

ρCT < 1; therefore, E[Ny] < +∞. All these random variables are assumed to be independent, and

E[Yj] < +∞ and E[Xn+1] < +∞; thus

E[Dn] = E[Ny]E[Yj] + E[Xn+1] < +∞.

By considering the GI1 + GI2/GIi/1/∞ queueing system, the above equations can be simplified as

follows: E[Xn+1] = 1
µ1

, E[Yj] = 1
µ2

, E[Dn] = E[Ny]E[Yj] + E[Xn+1] = λ2

λ1µ2
+ 1

µ1
; hence,

GapRatio =
E[Dn]

E[In]
=

λ1

µ1

+
λ2

µ2

= ρprobe + ρCT .

Therefore,

GapRatio =

{
1, ρ < 1
ρprobe + ρCT , ρ ≥ 1

(1)

Note that the above independence assumptions are fair. Ny and Yj are the parameters of the cross traffic.

Xn+1 is the service time of probing packet n + 1. The cross traffic stream and the probing stream are

assumed to be two independent streams. Hence, Ny, Yj and Xn+1 are independent.

Intuitively, Equation 1 deals with the first order delay information of the arrival process and the departure

process of the probing sequence. The cross traffic burstiness does not impact the measurement of the

average input gap and the average output gap for an infinitely-long probing sequence. However, in practice,

we cannot send infinitely-long probing sequences. The impact of the traffic burstiness on the accuracy of a

finite-length probing sequence should be investigated carefully. Nevertheless, according to our simulation

study, when the probing sequence consists of more than 4000 probing packets, the measured SCV of the
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probing sequence converges to the theoretical value. With a few hundred probing packets, the average

gap of the probing sequence also converges to the theoretical value.

From (1), there exists a transition point when the aggregate load ρ = 1. When ρ < 1, the average

inter-departure time (E[Dn]) equals the average inter-arrival time (E[In]) of the probing packets. In [2],

the IGI/PTR algorithms essentially utilize this property of the delay process of the probing stream to

identify this transition point. Note that the identification of this transition point requires that the probing

rate has to be large enough to congest the network (ρ ≥ 1) for a period of time. The existence of this gap

transition point also explains the basic principle used in Pathload [1]. When the delay gap is larger than

1, it equivalently indicates that the one way delay of the probing packets is exhibiting a strong increasing

trend. When the delay gap equals 1, this one way delay increasing trend is practically not observable.

The delay gap in (1) is obtained under the assumption of infinite buffer size. In practice, probing packets

are prone to being dropped because of buffer overflow or active buffer management. This packet dropping

can destroy the structure of the delay gap pattern. In case of packet dropping, only a delay gap of two

consecutive probing packets are collected for statistical computation, namely, a conditional gap ratio. To

this end, each probing packet is assigned a unique sequence number when it is sent out. This sequence

number increases by one whenever a new probing packet is sent out. By checking the sequence number

of received packets, the receiver extracts those consecutive probing packets for data collection. In Figure

10 are plotted this conditional gap ratio for two different buffer size (K) with increasing probing load. In

Figure 10, when the buffer size is finite, the gap ratio is not increasing linearly with the increasing probing

load as predicted using (1). When the buffer size is small (K = 20 packets), the packet dropping is more

severe and the location of the transition point is shifted. When the buffer size becomes larger (K = 200

packets), this delay gap transition point is preserved to some extent. In both cases, in order to ensure the

identification of this transition point, the overall load should be ρ > 1, at least temporarily. This partially

explains why Pathload and IGI tend to overestimate the available bandwidth [11]. Another reason might

be that this transition point exists at ρ = 1, the link is already congested and packet dropping occurs;

hence, those elastic TCP flows might detect packet dropping and slow down their transmission rate. As

a result, the probing stream grabs more available bandwidth.
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Fig. 10. The relationship between the conditional gap ratio and the Poisson probing load ρ1 with Poisson-type cross traffic and different
buffer sizes (K) in simulation.

D. SCV-based Model using GI1 + GI2/GIi/1/∞

1) Overview: The delay variation is defined as Jn = Dn − In. Note that there are possible negative

jitters as well as positive jitters. Negative variation corresponds to a clustering of packets. This may result

in buffer overflow; a positive variation corresponds to a dispersion of the packets and this may result in

excessive delay. Because In is known in advance (the customers of class 1 are probing packets under

the control), the task of characterizing Jn is reduced to find the property of Dn. For different probing

streams, the queueing models can be constructed correspondingly. When the path load is less than 1, the

average output gap equals the average input gap regardless of the types of arrival processes of the cross

traffic and traffic intensity. Therefore, this first order characteristics of the delay process cannot provide

information about the exact load of the cross traffic when ρ < 1. Therefore, we turned our investigation to

the second order characteristics of the delay process of the probing stream. The SCV of the inter-probing

packet arrival time at the receiver is defined in (2). The SCV is a dimensionless metric used to describe

the delay variation of the probing stream. Intuitively, SCVDn is a normalized version of the variance of

Dn with respect to In because E[Dn] = E[In] when ρ < 1. It shows how the departure process of the

probing stream is disturbed with respect to its arrival process due to the impact of the cross traffic. The

absolute variance of Dn cannot offer an accurate information about the load of the cross traffic; only the

relative variance of Dn with respect to In can serve our purpose of estimating this load.

SCVDn =
V ar [Dn]

E2 [Dn]
(2)
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2) Poisson Probing: For a Poisson probing stream and a Poisson cross traffic stream, the GI1 +

GI2/GIi/1/∞ queue becomes M1+M2/GIi/1/∞. SCVDn in M1+M2/GIi/1/∞ is analytically solvable

using the procedure reported in [23] (see Appendix II). SCVDn is influenced by various factors, including

the variance of the probing stream, the variance of the packet size of the cross traffic, and the load of

the cross traffic. The first two are determinable parameters and the last one is the targeted measurement

metric. The relationship between SCVDn and the normalized probing load ρ1 with Poisson-type cross

traffic and different probing packet sizes using M1 + M2/GIi/1, is shown in Figure 11. It is different

from the delay gap ratio in that, when ρ < 1, SCVDn is significantly influenced by the load of the cross

traffic, and this effect can serve as the basis for the inference of available bandwidth.
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Fig. 11. The relationship between SCVDn and the Poisson probing load ρ1 with Poisson-type cross traffic and different probing packet
sizes (L) using M1 + M2/GIi/1/∞ (GI1 = D and GI2 = M ).

Figure 11 depicts the relation between the load of the cross traffic and the conditional SCVDn . We
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solved the M1 + M2/GIi/1 queueing model using a numerical method, because there is no closed-form

solution for M1 + M2/GIi/1. The plots in Figure 11 are obtained using an iterative algorithm. Based on

these plots, we can observe that the SCV is much more differentiable with respect to the load of cross

traffic when the probing packet size is small (e.g., 40 bytes) than when the probing packet size is large

(441 bytes, 1500 bytes). Of particular interest is that SCVDn exhibits an almost linear relationship to

the probing load when the probing packet size is L = 40 bytes. This promising result indicates that a

simple relationship can be established between the available bandwidth and SCVDn . When the probing

packet size (L = 441 bytes) equals the average packet size of the cross traffic, SCVDn is not sensitive

to the load of the cross traffic. This implies that the probing packet size should be much smaller than

the average packet size of the cross traffic. In our probing method, we recommend to use the probing

packet size of 40 bytes to ensure an invertible function so as to infer the load of cross traffic. Sending

small probing packets also minimizes the probing load and 40 bytes is the smallest IP packet size when

TCP/UDP protocols are used.

As presented in the previous sections, packet dropping may destroy the pattern of SCVDn . We are also

interested in the conditional SCVDn in that only Dn of consecutive probing packets are collected for the

computation of SCVDn . Figure 12 depicts the second-order property of the delay process of the probing

stream obtained by simulation with the different types of arrival processes of the cross traffic and traffic

intensities. The SCV proves to increase when the normalized probing load increases. For different types

of the arrival processes of the cross traffic (including Pareto, Hyper-Exponential, Poisson, Erlang), the

probing stream has a similar SCV, especially when the cross traffic is lightly loaded. When the load of

the cross traffic increases, the impact of the higher order statistics of the arrival process starts to occur;

however, the effect is still small. Therefore, the analysis of the per-class departure process for the Poisson-

type cross traffic can be used to infer the non-Poisson type cross traffic without much loss on accuracy.

In the simulation experiments of a multi-hop path in Section V, the arrival process of the cross traffic

is Pareto-type with a shape value of α = 1.9, the inference accuracy is still quite good even though the

model assumes Poisson-type cross traffic. What we conjecture is that the SCV of the probing stream is

dominated by the low frequency components of the cross traffic. This may be explained by the queueing

analysis in [26] and [27].

Figure 13 shows the relationship between the conditional SCVDn and the normalized probing load ρ1
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Fig. 12. Relationship between the conditional SCVDn and the normalized probing load with various type cross traffic arrival processes
and the probing packet size is 40 bytes.

for different buffer sizes (K). We can observe that the impact of the buffer size on SCVDn is very small

in both cases. This is due to the deployment of a small probing packet size (L = 40 bytes), and the

perturbation of the probing stream on the network is quite small; yet, SCVDn is quite differentiable in

various load situations. In addition, the model and simulation results match very well. This provides a

firm basis for accurate available bandwidth inference.

1

1.2

1.4

1.6

1.8

2

2.2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

C
on

di
tio

na
l S

C
V

D
n

Normalized Probing Load

ρCT=0.26:Simulation
ρCT=0.44:Simulation
ρCT=0.62:Simulation
ρCT=0.80:Simulation

ρCT=0.26:M1+M2/GIi/1
ρCT=0.44:M1+M2/GIi/1
ρCT=0.62:M1+M2/GIi/1
ρCT=0.80:M1+M2/GIi/1

(a) K = 20 packets

1

1.2

1.4

1.6

1.8

2

2.2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

C
on

di
tio

na
l S

C
V

D
n

Normalized Probing Load

ρCT=0.26:Simulation
ρCT=0.44:Simulation
ρCT=0.62:Simulation
ρCT=0.80:Simulation

ρCT=0.26:M1+M2/GIi/1
ρCT=0.44:M1+M2/GIi/1
ρCT=0.62:M1+M2/GIi/1
ρCT=0.80:M1+M2/GIi/1

(b) K = 200 packets

Fig. 13. The relationship between the conditional SCVDn and the Poisson probing load ρ1 with Poisson-type cross traffic and different
buffer sizes (K) in simulation.

3) Periodic Probing: For a periodic probing stream and a Poisson cross traffic stream, the GI1 +

GI2/GIi/1/∞ queue becomes D + M/GIi/1/∞. An exact calculation of SCVDn is difficult; hence, we

proposed a hybrid approximation for calculating SCVDn for periodic probing.
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As in [28] and also shown in (3), for a two-class queueing model of GI1 + GI2/GIi/1/∞,

CD
1 = ρ2

1C
S
1 + ρ2

2(
p1

p2

)(CS
2 + CA

2 ) + (1− ρ1ρ + ρ2
1)C

A
1 , (3)

where CD
i is the SCV of the departure process for class i, CS

i is the SCV of the service process for

class i, CA
i is the SCV of the arrival process for class i, ρi is the traffic intensity for class i and pi is

the probability that an arrival is from class i. Equation (3) is an approximation which can be solved by

simple iterative algorithms. Nevertheless, for our measurement practice, numerical solution still serves

our purpose.

Replace the periodic probing stream with a Poisson probing stream and maintain the other parameters

unchanged. The D + M/GIi/1/∞ queue becomes an M1 + M2/GIi/1/∞ queue, which can be exactly

analyzed in [23]. Our idea of analyzing the departure process of the periodic stream in D +M/GIi/1/∞
is to identify the relationship between these two queueing systems using (3). We propose an approximate

formula for calculating the SCVDn for a periodic stream as in (4), namely, “hybrid approximation”.

For a periodic stream with a constant probing packet size, CS
1 = 0 and CA

1 = 0.

SCV Periodic
Dn

= ρ2
1C

S
1 + ρ2

2(
p1

p2

)(CS
2 + CA

2 )

+ (1− ρ1ρ + ρ2
1)C

A
1

= ρ2
2(

p1

p2

)(CS
2 + CA

2 ).

For a Poisson stream with a constant probing packet size, CS
1 = 0 and CA

1 = 1.

SCV Poisson
Dn

= ρ2
1C

S
1 + ρ2

2(
p1

p2

)(CS
2 + CA

2 )

+ (1− ρ1ρ + ρ2
1)C

A
1

= ρ2
2(

p1

p2

)(CS
2 + CA

2 ) + (1− ρ1ρ + ρ2
1).

Therefore,

SCV Periodic
Dn

= SCV Poisson
Dn

− (1− ρ1ρ + ρ2
1) (4)

As shown in Figure 14, the SCVDn of the periodic probing stream is sensitive to the load of the

cross traffic; however, for the Poisson-type and Pareto-type cross traffic, the periodic probing stream has a

similar SCVDn . In addition, the proposed hybrid approximation predicts the SCVDn of the probing stream

quite accurately. In an inverse process, given the measured SCVDn , the intensity of the cross traffic can

be inferred accordingly.
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Fig. 14. The relationship between SCVDn and the Periodic probing load ρ1 with two types of cross traffic and probing packet sizes L = 40
bytes using the hybrid approximation.

4) Model Inference: The exact inference can be accomplished numerically using a standard non-linear

equation solver, since F−1 is already known. In our experiments, we used “fsolve” available in Matlab to

achieve the inversion of F−1. The inversion process in general only requires dozens of iterations in our

practice and this numerical inversion finishes in less than 1 second using a Pentium III PC.

In order to demonstrate the estimation accuracy, we introduce the notion of “Relative Estimation Error”,

which is defined as the ratio between the absolute estimation error and the true value of the cross traffic

intensity. Figure 15 shows the accuracy of the intensity inference of the cross traffic using the M1 +

M2/GIi/1 queue for Poisson-type cross traffic. The estimation accuracy improves with the normalized

probing load increasing. When the normalized probing load is larger than 0.05, the relative estimation

error is less than 5%.

In Figure 16, the accuracy of the intensity inference of the cross traffic using the hybrid approximation

for D + M/GIi/1 is depicted for Pareto cross traffic (α = 1.9) in the single-hop path depicted in

Figure 4. The estimation accuracy improves with the normalized probing load increasing. However, further

increasing the probing load does not improve the inference accuracy significantly. The reasons can be

two fold. One is that the Pareto-type cross traffic already breaks the assumption of Poisson cross traffic

in D + M/GIi/1. The other may be due to the nature of the approximate calculation for SCVDn of the

periodic probing stream. Nevertheless, when the normalized probing load is larger than 0.02, the relative

estimation error is less than 10%.
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Fig. 15. Accuracy of the Poisson probing using M1 + M2/GIi/1 with Poisson-type cross traffic and the probing size L = 40 bytes in the
single-hop path depicted in Figure 4.
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Fig. 16. Accuracy of the Periodic probing using the hybrid approximation for D + M/GIi/1 with Pareto-type cross traffic (α = 1.9) and
the probing size L = 40 bytes in the single-hop path depicted in Figure 4.

E. Summary

The network topology used in the simulation experiments of this section has only a single-hop. Despite

the simplicity of the simulation model, the loss-based model exhibits the difficulty with loss event detection

when the probing load is small and, hence, it is not suitable for providing a light-weight available

bandwidth measurement. We continue the performance evaluation of the SCV-based inference scheme

along more general multi-hop paths in Section V.
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V. MULTI-HOP EFFECTS

The loss process and the delay process of the probing stream in Figure 2 were analyzed using M1 +

M2/M/1/K, M1 + M2/GIi/1/∞ and D + M/GIi/1/∞ presented in Section IV-B, Section IV-C and

Section IV-D, respectively. These models assume a single congested link along an end-to-end path in

the sense that this link produces most of the losses and significant queueing delays on this end-to-end

path. Because this single-congested link assumption is still widely believed to be true [29], we focus on

the evaluation of our SCV-based inference scheme on multi-hop paths with only one congested link in

this section. However, with multiple tight links, underestimation of the available bandwidth may occur

because SCV of the probing stream tends to be cumulative. This issue will be investigated further in our

future work.

The network path used in this section is a 3-hop path (R1−R2−R3−R4), as in Figure 17. The probing

packets enter the network at router R1 and exit at router R4. The links along the path are classified as the

tight link and non-tight links. The tight link has the smallest link capacity along the path and the rest of

the links along the path are referred as non-tight links [1]. The tight link has capacity Ct and available

bandwidth At. The non-tight links have the same capacity Cnt and available bandwidth Ant. Cross traffic

is generated at each link from 10 random sources. These cross traffic connections only traverse one hop

on this path. The arrival process of the cross traffic follows a Pareto distribution with a shape value of

α = 1.9. The cross-traffic packet sizes follow an exponential distribution with a mean value of 441 bytes.

By controlling the arrival rate of the cross traffic, the load of the links can be varied. The probing packet

size is 40 bytes. The path tightness factor β is defined as the ratio between the available bandwidth in

the non-tight links Ant and that in the tight link At (i.e., β = Ant

At
≥ 1).

Shown in Figure 17, link 2 is the tight link (Ct = 10 Mbps) and link 1 and 3 are non-tight links

(Cnt = 50 Mbps). Those access links have a bandwidth capacity of 100 Mbps. Four cross traffic load

scenarios at the tight link (link 2) are simulated: ρCT = 0.80, ρCT = 0.62, ρCT = 0.44, ρCT = 0.26. For

ρCT = 0.80 at link 2, the available bandwidth of the links along this path from R1 to R4 are {42.0, 2.0,

42.0} Mbps, respectively. The cross traffic rates at other links are configured the same as the one at link 2.

Therefore, only link 2 is mostly congested and link 1 and 3 have a light load 1/5 of the load of link 2. The

path tightness factor β = 21. The buffer sizes of link 1 and 3 are set to 500 packets and the buffer size of

link 2 is set to 200 packets. The access links have buffers of 500 packets each. In this section, simulation
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Fig. 17. A 3-hop path used in ns-2 simulation.

experiments are conducted using ns-2 [30] to include the effects of various network components on the

performance of the proposed SCV-based inference scheme, including protocols, propagation delay, and

so on.

In Figure 18, the conditional SCVDn of a Poisson probing stream at the outport of each link is plotted.

At link 1, the overall load is light; therefore, the SCVDn of the probing stream is around 1. SCVDn at

the outport of link 1 is almost the same as the SCV of the arrival process of this Poisson probing stream

(SCVIn = 1). This can be explained using the light approximation in [31]. After the congested link at

link 2, a significant SCVDn is observed and this SCVDn traverses links 3, and is finally measured at the

probe receiver with little distortion.
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Fig. 18. The relationship between the conditional SCVDn and the Poisson probing rate with Pareto-type (α = 1.9) cross traffic along the
3-hop path depicted in Figure 17.

Figure 19 shows the accuracy of the load inference of the cross traffic using the M1 +M2/GIi/1 model

for the cross traffic of Pareto-type with a shape value of α = 1.9. The estimation accuracy improves with

an increasing probing rate for four cross traffic load scenarios. When the probing rate ρ1 is larger than 400
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Kbps, the relative estimation error is below 10%. However, further increasing the probing rate does not

improve the inference accuracy significantly. Note that the normalized probing load on the congested link

capacity (10 Mbps) is only 0.04. In contrast, using self-congestion based available bandwidth measurement

[1], [2], the probing load during the measurement period is a few Mbps in order to fill in the residual

capacity of link 2 for the purpose of measurement.
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Fig. 19. Accuracy of the Poisson probing using M1 + M2/GIi/1 with Pareto-type cross traffic (α = 1.9) and the probing size L = 40
bytes along the 3-hop path depicted in Figure 17.

The convergence speed of the inference scheme using Poisson probing is illustrated in Figure 20 for

four cross traffic load scenarios when the probing rate is λ1 = 2025 packets/s. After approximately 4000

probes, the estimation process converges and the relative estimation error is below 10%. Note that the

probing rate is λ1 = 2025 packets/s; therefore, within a few seconds, the probing process converges. In

addition, the packet size is 40 bytes and the bottleneck link capacity is 10 Mbps; hence, the normalized

probing load is quite light, approximately 6.5% of the bottleneck capacity.

We implemented the proposed SCV-based probing scheme, namely, SCVProbe, in ns-2. SCVProbe has

two variants: Poisson and periodic. SCVProbe is evaluated against Pathload in terms of probing accuracy,

convergence time and overhead. The probing accuracy is evaluated by comparing the available bandwidth

estimates against the real value; the convergence time is calculated considering the total time for the tool

to provide an estimate; the probing overhead is the total data bytes used by the measurement tool during

one measurement session.

The simulation configuration is the same as in Figure 17. The simulation duration lasts for 300 seconds.

The cross traffic connections start randomly between t = 0 and t = 10. The measurement tools start at
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Fig. 20. Evolution of the estimated cross traffic load vs. the number of probes with a Poisson probing rate λ1 = 2025 packets/s and the
probing size L = 40 bytes and Pareto-type cross traffic (α = 1.9) along the 3-hop path depicted in Figure 17.

t = 20. When the tools terminate and return with an available bandwidth estimate, we restart the tool

immediately. We run the periodic SCVProbe with the probing sequence of 4000 packets and probing

packet size of 40 bytes and the probing rate λ1 = 1599 packets/s. We configure Pathload using the

recommended parameters in [1], as shown in Table I.

TABLE I

SIMULATION PARAMETERS OF PATHLOAD FOR NS-2 EXPERIMENTS

Fleet Length 12 streams

Stream Length 100 packets

Bandwidth Resolution ω = 400 Kbps

Grey Region Resolution χ = 400 Kbps

PCT threshold 0.55

PDT threshold 0.4

Aggregate threshold 0.7

In Figure 21 are shown the measurement results of SCVProbe and Pathload. Pathload returns with a

range of available bandwidth, and the middle point of this range tends to be larger than the real available

bandwidth. The available bandwidth estimates measured by SCVProbe are quite close to the real value

and they have relative error rates smaller than 20% for the four scenarios with different cross traffic loads.

More importantly, these estimates by the periodic SCVProbe tend to be smaller than the real available

bandwidth. This conservative estimation helps not to over-use the network available bandwidth for actual

applications.

Our current implementation of SCVProbe uses a constant number of probing packets for one measure-
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Fig. 21. Comparison of measurement accuracy along the 3-hop path depicted in Figure 17.

ment session. Therefore, the overhead and convergence time are constant. For periodic SCVProbe with

the probing rate λ1 = 1599 packets/sec and the probing sequence of 4000 packets and the packet size of

40 bytes, the convergence time is around 2.5 seconds and the overhead of each SCVProbe measurement

session is 160 Kbytes. Figure 22 shows the probing overhead and the convergence time of Pathload.

Because Pathload is an iterative algorithm, the actual convergence time depends on the dynamic behavior

of the network. In Figure 22(a), the convergence time of most measurement sessions are shown to be

larger than 10 seconds. In particular, when the cross traffic is heavily loaded (ρCT = 0.8), Pathload takes

longer time to converge. Correspondingly, the probing overhead is over 1 Mbps mostly in Figure 22(b).
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Fig. 22. Probing convergency time and overhead of Pathload along the 3-hop path shown in Figure 17.

The above comparison study indicates that SCVProbe achieves similar or even better measurement

accuracy than Pathload with much less probing time and smaller overhead.
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VI. CONCLUSION

In this paper we investigated model-based available bandwidth measurement via the use of an active

probing stream. A general end-to-end measurement framework, capable of unifying the current research

approaches and highlighting insights in the measurement practice, is proposed. This framework helps to

design more efficient probing methodologies and to enhance the understanding of the network performance.

A comparison was conducted between the performance of the available bandwidth measurements based

on loss models and on delay models. The queueing analysis and the extensive simulations indicate that the

delay-based measurement exhibits more advantages over the loss-based measurements, such as accuracy,

overhead, robustness.

The queueing analysis on the delay process of the probing stream shows that a transition point exists for

the delay gap ratio when the path load ρ = 1. From a queueing analysis point of view, our study confirms

the basic self-congestion principle of the delay gap model [1]–[3], [11]. The extensive simulations revealed

that the buffer size appears to be part of the reason that Pathload and IGI tend to overestimate the available

bandwidth. The SCV-based inference scheme converges within a few seconds and the relative estimation

error can achieve to be less than 10% when the normalized probing load is larger than 0.04. However, the

current SCV inference scheme assumes that there exists only a single congested link along the end-to-end

path. Nevertheless, the basic methodology can be extended for paths with multiple congested links by

modelling the path as a series of tandem queues. The delay process of the probing stream along these

tandem queues is difficult to analyze in an exact queue analysis approach; therefore, we are investigating

an approximate analysis of the departure process of these tandem queues in a decomposition approach

[28].
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APPENDIX I
THE M1 + M2/M/1/K QUEUE

Following the derivations in [6], the intensity of the cross traffic and the buffer size were estimated

using the scheme of PL − qL (using (5) and (7)), the scheme of PL − qN (using (5) and (8)), the scheme
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of qL − qN (using (7) and (8)) and the scheme of PL −R (using (5) and (6)).

PL =
(1− ρ)ρK

1− ρK+1
, (5)

R =
1

µ(1− ρ)
− KρK

µ(1− ρK)
, (6)

qL = (
λ1

λ2

)
(1− a)−1 − (b/a)K+1(1− b)−1

(b/a)K+1 − 1
, (7)

qN = 1− (
λ1

λ2

)(
1− ρ

1− ρK
)(

1

bK+1 − aK+1
)

· ( a2(1− (ρa)K)

(1− a)(1− ρa)
− b2(1− (ρb)K)

(1− b)(1− ρb)
), (8)

where

a =
λ1 + λ2 + µ +

√
(λ1 + λ2 + µ)2 − 4λ2µ

2λ2

,

b =
λ1 + λ2 + µ−

√
(λ1 + λ2 + µ)2 − 4λ2µ

2λ2

.

APPENDIX II
THE M1 + M2/GI i/1/∞ QUEUE

In this section, the derivation of the M1+M2/GI i/1 queue is repeated following [23]. Let Φi(s)(i = 1, 2)

be the Laplace-Stieltjes transform (LST) of the service time distribution of class i and ηi(s) be the LST

of the distribution of a busy cycle consisting solely of class i customers.

ηi(s) = Φi(s + λi(1− ηi(s))) (9)

The inter-arrival times (i.a.t.) between successive customers of class 1 are assumed to be i.i.d., denoted

as r.v. I. Customers from class 2 arrive at the queue in the form of i.i.d. in the continuous time.

Let Wn be Cn’s waiting time (excluding service), and Fn = Wn + Xn its flow time. The LST of class

1 flow time, ΦFn(s), is the product of the waiting time LST ΦWn(s) and ΦXn(s) = Φ1(s). The LST of

the composite service time is denoted as ΦZ(s). Let Bn represent the busy cycle (possibly null) of the

cross traffic packets served after Cn until either Cn+1 enters service or the server becomes idle. In the

busy cycle Bn, the cross traffic packet arrivals are counted as B1
n, B2

n, . . .. Let Vn be the interval (possibly

null) from Cn’s departure from the system until Cn+1 enters service.

Dn = Vn + Xn+1
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The exact Laplace-Stieltjes transform of the inter-departure time distribution for each class in the M1 +

M2/GI i/1 queue on a first-come-first-served basis was derived and summarized as follows.

ΦDn(s) = ΦVn(s)ΦXn+1(s) = ΦVn(s)Φ1(s),

ΦVn(s) = Θ1(s) + Θ2(s)Φβ(s),

Θ1(s) = E
{
e−sBn ; In ≤ Fn + Bn

}
,

Θ2(s) = E
{
e−sBn ; In > Fn + Bn

}
,

Φβ(s) =
λ1

λ+s
+ λ2

λ+s
A(s)[Φ2(s)− η2(s + λ1)]

1− λ2

λ+s
η2(s + λ1)

,

A(s) =
λ1

λ− λ2Φ2(s)
,

Θ2(s) = ΦFn(λ− λ2η2(s + λ1)),

Θ1(s) = A(s)[1− ΦFn(λ− λ2η2(s + λ1))],

η2(s) = Φ2(s + λ2(1− η2(s))),

ΦFn(s) = ΦWn(s)ΦXn(s) = ΦWn(s)Φ1(s),

ΦWn(s) =
(1− ρ)s

s− λ(1− ΦZ(s))
,

ΦZ(s) =
λ1

λ
Φ1(s) +

λ2

λ
Φ2(s).


