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Abstract

Increases in scale, complexity, dependency and security for networks have motivated
increased automation of activities such as network monitoring. We have employed
technology derived from active networking research to develop a series of network
monitoring systems, but unlike most previous work, made application needs the
priority over infrastructure properties.

This choice has produced the following results: (1) the techniques for general in-
frastructure are both applicable and portable to specific applications such as network
monitoring; (2) tradeoffs can benefit our applications while preserving considerable
flexibility; and (3) careful engineering allows applications with open architectures
to perform competitively with custom-built static implementations.

These results are demonstrated via measurements of the Lightweight Active Mea-
surement Environment (LAME), its successor, Flexible LAME (FLAME), and their
application to monitoring for performance and security.

1 Introduction

The bulk of research on Active Networks [1,2] has been directed towards build-
ing general infrastructure [3,4], with relatively little research driven by partic-
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ular network functions. Recently, the focus has shifted slightly as researchers
seek network functions with a clear need for some form of extensibility, and
design appropriate domain-specific active-network substrates. The main ex-
perimental question to be answered in such cases is whether the desired level
of flexibility can be achieved while meeting the safety and performance re-
quirements of the particular function in question. Several experiments have
been reported in this direction, including the use of smart packets for network
management [5] and the design of a system for flexible intra-domain routing[6].

A third such function, that we discuss in this paper, is network monitoring,
which is becoming increasingly critical for supporting the reactive mecha-
nisms needed to make the Internet more efficient, robust and secure. Network
providers need to analyze properties of network traffic in order to adequately
provision and fine-tune the network infrastructure. Furthermore, the network
occasionally finds itself in abnormal situations caused by distributed denial of
service attacks, network routing outages, etc.. Real-time monitoring can po-
tentially detect such conditions and react promptly. Finally, analysis of traffic
is needed for network management, accounting and the verification of compli-
ance with diverse policies.

When examining current network monitoring architectures, the weaknesses of
the basic abstractions used and the need for a more flexible interface becomes
evident. Static implementations of monitoring systems are unable to keep up
with evolving demands. The main issue is that routers offer a set of built-

in monitoring functions but router vendors only implement functions that
are cost-effective: those that are interesting to the vast majority of possible
customers. If one needs functionality that is not implemented on the router,
then it becomes difficult - if not impossible - to extract the needed data from
the routers. Furthermore, as customer interests evolve, router vendors can only
add functionality on the time-scale of product design and release; it can be
months or years from the time customers first indicate interest until a feature
makes it into a product. Another critical issue is that the need for timely
deployment cannot always be met at the current pace of standardization or
software deployment, especially in cases such as detection and prevention of
denial-of-service attacks.

The thrust of our research is to determine whether programmable traffic mon-
itoring systems that are flexible enough to be useful, and safe enough to be
deployed, can perform well enough to be practical. In this paper, we report
on the design and implementation of FLAME, a system for flexible network
monitoring. FLAME decouples packet monitoring from packet forwarding, of-
fering a flexible monitoring substrate operating in an environment of common
IP forwarders. Our design has three main features. First, it allows efficient
implementation of functions that cannot be easily integrated in current router
designs. Second, it offers robustness through the use of lightweight protection
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mechanisms to prevent crashes or information leaks due to malicious or mis-
behaving functions. Third, it provides a flexible policy model allowing users
with different degrees of trust to use the system.

Aspects of our work that were novel at the time have now been validated
by their acceptance in the larger community. In network measurement, the
advantages of directly using scripts or code operating on packets rather than
publishing sanitized traces for offline processing are now widely recognized[7–
9]. Additionally, the Cyclone-based safety model first used in FLAME has
been adopted in other systems for the purpose of allowing safe general-purpose
kernel extensions[10] and for upgrading TCP algorithms on end-hosts through
safe mobile code[11].

Our OpenBSD-based prototype, tested on a 1 GHz Pentium PC, provides
approximately 1,300 processing cycles per packet for monitoring modules on
a fully-loaded 1 Gbit/s link. A typical workload on our system was measured
to consume approximately 800 cycles per packet. The safety overhead for the
same workload was measured to be approximately 25%.

2 Architecture

There are three main design goals in FLAME:

Flexibility. For a monitoring system to offer the needed flexibility it is impor-
tant to provide a programming abstraction at the lowest possible level. Our
system structure needs to allow users to inject their own code for processing
packets and extracting the needed information.

Performance. Performing per-packet computations in real time (or near-real
time) requires adequate processing capabilities as well as efficient handling of
communication, computation and memory resources. Furthermore, executing
multiple applications on the same infrastructure introduces complications. It
increases the system complexity and the overall execution overhead. For the
architecture to be scalable such overheads must be avoided.

Security. A monitoring system that allows several users to inject code in
the data-path needs to be robust against malicious or faulty modules. Fine-
grained security models are needed to increase usability because more precise
policies can be specified and enforced. For example, for some users the system
should allow access to the payload (under specific conditions) and for others,
the IP addresses of the packet must be anonymized. The challenges in this
dimension lie both in the specification, as well as the enforcement of policy for
the loaded applications. This is a critical issue as security must be carefully
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Fig. 1. FLAME Architecture

KeyNote-Version: 2

Authorizer: NET_MANAGER

Licensees: TrafficAnalysis

Conditions:

(app_domain == "flame" && module == "capture" &&

(IPsrc == 158.130.6.0/24 ||

IPdst == 158.130.6.0/24))

-> "HEADERS-ONLY";

Signature: "rsa-md5-hex:f00f5673"

-----

KeyNote-Version: 2

Authorizer: NET_MANAGER

Licensees: TrafficAnalysis

Conditions:

(app_domain == "flame" && module == "capture" &&

@num_cycles == 40000 && @stackspace_limit == 4096 &&

@memory_limit == 128000) -> "ALLOW";

Signature: "rsa-md5-hex:9a203ee8"

Fig. 2. Example module cre-
dentials.

balanced with performance and flexibility.

2.1 Architecture overview

The high-level view of the FLAME architecture is shown in Figure 1. Users can
submit code to the monitoring station using a simple Web-based interface. The
code submitted consists of a kernel-level module Kx, a user-level module Ux,
and a set of credentials Cx. The submitted code is then processed by a trusted
compiler and loaded on the monitoring station, in order to perform its intended
functions. We will discuss these components in the following paragraphs.

Kernel Modules When the user submits a module to FLAME, a segment
of the module is intended to run in the kernel. This piece of code, Kx, is placed
on a specialized data-path, along with other such kernel modules, in order to
operate on every packet received on the link. Every kernel module is allowed
to execute up to a predetermined amount of time, before it is preempted by
the next module in the data-path. The maximum execution time, as well as
limits on memory consumption, are determined by the credentials, Cx, that
the user provided to the system.

User Modules While the kernel modules, Kx, perform the bulk of the pro-
cessing for the user, the user-level module Ux is responsible for higher level
functions such as collecting the statistics from the kernel, and possibly passing
them back to the user. Communication between the user- and the kernel-level
modules is possible by using an ioctl(2) 1 call provided by the FLAME sys-
tem. User-level modules are executed as standard operating system processes.

1 ioctl is a standard mechanism in Unix operating systems for passing information
between user and kernel space, particularly for setting or querying device drivers.
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Credentials The final piece of data that users provide to the monitoring
station is a set of credentials Cx. These credentials contain information about
the resource constraints of the user code. Specifically they tell the system how
many cycles the kernel module is allowed to consume, and how much memory
it is permitted to allocate. The credentials are checked once at load time, and
therefore don’t burden the performance of the system.

We have chosen a Trust Management [12] approach to mobile code security.
Entities in a trust-management system (called “principals”) are identified by
public keys, and may generate signed policy statements (which are similar in
form to public-key certificates) that further delegate and refine the authoriza-
tion they hold. This results in an inherently decentralized policy system: the
system enforcing the policy only needs to consider the relevant policies and
delegation credentials, which the user must provide. The KeyNote [13] im-
plementation is used as our trust management system. An example KeyNote
credential is shown in Figure 2. In the current FLAME design, we perform
policy compliance checks while loading the incoming object code.

Although the FLAME prototype specifies policies using KeyNote, we are in-
vestigating the specification and representation of higher-level policies in a
new project, the results of which are intended for use in FLAME-like systems.

Trusted compiler and loader The code for the kernel and user modules
is written in Cyclone [14] and is processed by a trusted compiler upon submis-
sion. The compiler guarantees that memory references are contained, in order
to avoid stray pointers and buffer overflows. After compilation the object code
is handled by our loader which loads the kernel modules inside the operating
system kernel and starts the user process.

Exception Handling To handle exceptions caused by the module code
executing in the kernel we modified the trap handler of the operating system
to catch possible exceptions originating from the loaded code. The trap handler
checks to see whether the source of the exception is from within a FLAME
module. For example, if a trap is caused by dereferencing a null pointer, the
handler checks whether the pointer resides inside the memory allocated to a
FLAME module. If the trap originated within a FLAME module, then the
handler does not cause a system panic. Instead, the module is terminated and
control is returned to the FLAME scheduler.

Bounding Execution Time The simplest method for bounding execution
time would be to prohibit backward jumps. This has the advantage of pro-
viding an upper bound on execution time that is linear to the length of the

5



program. The drawback of this method is that it makes programming cumber-
some. One alternative is to execute each installed module as a kernel thread
and context switch between threads when they exceed their allocated time
slot. However, preemptive scheduling and context switching are costly when
we only need sequential execution of monitoring functions on incoming pack-
ets. We take a different approach similar to [15]: we augment the backward
jumps with checks of a cycle counter; if the module exceeds its allocated exe-
cution time we jump to the next module. This adds an overhead of 5 assembly
instructions for the check, and another 6, if the check succeeds, to initiate the
jump to the next module.

Bounding Memory Use The scheduler specifies a limit on stack space
allowed for each module. The function-calling checkpoint function (added by
the cyclone compiler) checks the current stack pointer against the limit and
jumps back to the scheduler if the limit is exceeded. This allows stack limits
to be separated from time limits.

Every module also has its own separate memory allocator that only manages
a small and reserved chunk of memory. The allocation algorithm is a sim-
plified version of a generic purpose memory allocator used in C and C++
programming. The scheduler allocates the reserved space before instantiating
the module and no dynamic memory allocation is needed afterwards.

Finally, to ensure proper packet buffer access, we re-encapsulate the packet
in a Cyclone-compatible structure when the kernel passes the packet to a
Cyclone module. This structure records the length of the packet so modules
cannot access beyond the buffer.

SMP support We dispatch each packet, on arrival, to a single processor and
execute all modules there. Section 3.3 discusses the trade-offs between either
pinning modules or pinning packets to processors. If packets are processed
on multiple processors, a single module may run concurrently on two or more
processors and may experience race conditions that could corrupt the module’s
persistent memory region. FLAME does not export an IPC or synchronization
interface, so FLAME itself must enforce mutual exclusion between multiple
instances of the same module. The scheduler locks each module upon entry,
and equal priority modules are selected for execution in random order. If
the scheduler finds that a lock is held, the scheduler simply chooses another
module.
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3 Evolution

In this section we briefly present the historical progression of our system and
the issues raised while designing and implementing the architecture.

3.1 The LAME system

LAME [16] attempted to provide the flexibility and safety properties needed
for programmable network monitoring (traffic access policies, crash and cor-
ruption safety and support for multiple concurrent applications) using only
off-the-shelf components. The meta-goal of this work was to show that exper-
imental active networking systems can be easily prototyped on top of existing
operating systems and that the focus of researchers’ efforts should be on ap-
plications rather than infrastructure.

LAME was implemented as a daemon that manages the lifecycle of monitoring
modules on the system. Modules can be written in any language (including C)
and are presented to the LAME daemon as shared libraries with known entry
points for initialization and per-packet processing. The modules are setup as
separate UNIX processes to provide protection against crashes and isolation
between different modules. Modules use the familiar libpcap(8) API for read-
ing packets from the network [17,18], and the LAME daemon intercepts these
references when loading the module and invokes custom wrapper functions to
perform all the necessary policy-related functions.

3.2 The FLAME system: rethinking LAME

The limitations of LAME were mostly performance-related: the high cost of
context switching grows as the number of modules increases (given that each
module has to execute as a separate process for reasons of protection), and
the networking subsystem in the commodity OS introduces further overheads
that limit the performance of the system.

The FLAME system [19] addresses the performance limitations of LAME in
two ways. First, we avoid the high price of safety of the process-based isolation
model by executing all modules in the same address space. This is achieved
using the language-based safety mechanisms of Cyclone along with a mini-
mal set of modifications for limiting the processing time of each application.
Although this requires the use of a new language for writing applications, in
most cases porting C applications to Cyclone has been fairly straightforward.
Second, we inject the compiled Cyclone modules in the kernel of the operating
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system to avoid the cost of copying packets and switching context from kernel
to user-space. Because the kernel code is limited to fast-path packet processing
only, we also allow users to supply additional user-level functions to enable
post-processing of results in a similar fashion to LAME.

3.3 SHAME: fine-tuning a second generation FLAME

SHAME [20], the latest version of FLAME, provides three engineering en-
hancements to the original prototype: support for polling-driven packet pro-
cessing, kernel-independent packaging and support for multi-processors.

Polling. Interrupt-driven I/O in commodity operating systems introduces
a performance bottleneck as the load (and therefore, the frequency of inter-
rupts) increases[21,22]. To avoid this problem SHAME uses polling as imple-
mented in some of the more advanced NICs. This has resulted in a significant
performance improvement compared to the original FLAME prototype. (See
measurements in Section 5.1).

Kernel-independent packaging. FLAME was originally packaged as a
modified OpenBSD kernel that included the kernel-level core of FLAME and
the necessary hooks in the network stack and device drivers (i.e., for polling).
We encountered three practical problems with this approach. First, as the un-
derlying OS evolves this requires porting the FLAME package for each new re-
lease of the OS. Second, it requires additional effort for maintaining backward
compatibility as the FLAME system itself evolves. Third, it discourages the
use of the system given the need to rebuild the kernel, especially when the ker-
nel modifications conflict with FLAME. We therefore re-engineered FLAME
as an external, loadable kernel module that requires no kernel patching at
all. One problem we faced is that there was no standard device-independent
API for polling devices in the original OpenBSD prototype. However, more
recent releases of the Linux OS provide such an API (called NAPI) and similar
support is being developed for FreeBSD. The current generation of SHAME
on Linux uses NAPI. Additionally FLAME requires the use of a custom trap
handler. For this, FLAME modifies the entry point to the interrupt handler
for page faults, using assembly language. (This small piece must be reimple-
mented for each architecture.)

SMP support. FLAME modules are expected to run in isolation, thus the
main challenge we faced when FLAME began to use multiple processors was
in the design of the scheduling algorithm. Our main concern is to maximize
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throughput. FLAME has multiple network monitoring modules processing
multiple incoming packets. Two strategies of allocating tasks to processors are
natural: either bind modules to processors and have each packet flow through
each processor in sequence, or dispatch each incoming packet to a processor
and execute all applicable modules on that processor.

Context switching of FLAME modules is very lightweight; all modules run in
the kernel address space and only require some preliminary memory allocation
and setup of Cyclone structures. Switching to a FLAME module is more sim-
ilar to a function call (with static, private data) than a context switch. Mod-
ules are only preempted because of violating a resource limit and therefore
are never resumed. They can be cleaned up immediately and no intermediate
state need be stored.

The primary method of maximizing throughput is to keep processor utilization
high by avoiding stalls, such as cache misses and keeping the load on all CPUs
balanced, so that no processor needs to wait.

Binding modules to processors has the obvious advantage of minimizing the
instruction cache footprint and reducing the likelihood of cache misses. If
each processor has a smaller number of modules, it is more likely that the
code for each module will be resident in the I-cache the next time the module
is executed. It also eliminates any need for synchronization (FLAME isolates
all modules from each other, so two distinct modules will not share a common
data structure). The only sharing would be between two instances of the same
module; but if we bind modules to processors, then only one instance of a
module ever executes at a single time.

However, there are two problems with this approach. First, reducing I-cache
misses does nothing to reduce misses on the packet in the data cache. Further,
the same packet will take misses in each processor it migrates to. Second, it is
impossible to choose an a priori partition of the modules such that the com-
bined execution time of the set on each processor is equal for every packet.
Consequently, we either have idle processors or extra bookkeeping and buffer-
ing as the packets progress through each processor at different rates.

Consequently, we chose to dispatch each incoming packet to a processor and
execute all applicable modules on that processor. This reduces the number of
cache misses on the packet and also reduces idle processor time. When a CPU
finishes processing a packet, it acquires a new packet from the input queue.
The only time a CPU is idle is when the packet queue is empty.
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4 Applications

We discuss applications, some of which have been implemented on FLAME to
demonstrate the flexibility and investigate the performance of our system. We
chose applications that are not currently supported by routers, which makes
them likely candidates for deployment using a flexible system like FLAME.
We also emphasize applications beyond basic network measurement research:
functions that are of practical interest to network operators for performance
and security.

4.1 Performance monitoring

4.1.1 Trajectory sampling

Trajectory sampling [23], is a technique for coordinated sampling of traffic
across multiple measurement points, effectively providing information on the
spatial flow of traffic through a network. The key idea is to sample packets
based on a hash function over the invariant packet content (e.g. excluding
fields such as the TTL value that change from hop to hop) so that the same
packet will be sampled on all measured links. Network operators can use this
technique to measure traffic load, traffic mix, one-way delay and delay vari-
ation between ingress and egress points, yielding important information for
traffic engineering and other network management functions. Although the
technique is simple to implement, we are not aware of any monitoring system
or router implementing it at this time.

We implemented trajectory sampling as a FLAME module that works as fol-
lows. First, we compute a hash function h(x) = φ(x) mod A on the invariant
part φ(x) of the packet. If h(x) > B , where B < A controls the sampling
rate, the packet is not processed further. If h(x) < B we compute a second
hash function g(x) on the packet header that, with high probability, uniquely
identifies a flow with a label (e.g. TCP sequence numbers are ignored at this
stage). If this is a new flow, we create an entry into a hash table, storing flow
information (such as, IP address, protocol, port numbers etc.). Additionally,
we store a timestamp along with h(x) into a separate data structure. If the
flow already exists, we do not need to store all the information on the flow,
so we just log the packet. For the purpose of this study we did not implement
a mechanism to transfer logs from the kernel to a user-level module or man-
agement system; at the end of the experiment the logs are stored in a file for
analysis.
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4.1.2 TCP RTT measurements

We implemented a simple method for obtaining approximate round-trip time
measurements experienced by TCP flows on a network link. Round-trip de-
lays provide a reasonably good estimate of end-to-end performance, mostly
because of their role in TCP congestion control [24]. Additionally, measuring
the round-trip times observed over a specific ISP provides a reasonable qual-
itative measure of the ISP’s infrastructure and the connectivity to the rest
of the Internet. Finally, observing the evolution of round-trip delays can be
used to detect network anomalies on shorter time scales, or to observe the
improvement (or deterioration) of service quality over longer periods of time.
For example, an operator can use this method to detect service degradation
or routing failures in an upstream provider and take appropriate measures,
such as re-routing traffic through another peer ISP.

The implementation on FLAME is both simple and efficient. We watch for
TCP SYN packets indicating a new TCP flow, and then look for the match-
ing TCP ACK packet in the same direction. The difference in time between
the two packets provides a reasonable approximation of the round-trip time
between the two ends of the connection. 2 For every SYN packet received,
we store a timestamp into a hash-table. The first ACK after a SYN usually
has a sequence number which is the SYN packet’s sequence number plus one.
Thus, we can use this number as the key for hashing. In addition to watching
for SYN packets, the application needs to perform lookups for every ACK re-
ceived. The hash-table can be appropriately sized depending on the number of
flows and the required level of accuracy. A different algorithm that computes
both RTTs and RTOs, but is significantly more complex and therefore not ap-
propriate for real-time measurement, as well as an alternative, wavelet-based
method are described in [25]. Note that none of these algorithms (including
ours) work for parallel paths where SYN and ACK packets are forwarded on
different links. Retransmission of the SYN packet does not affect measure-
ment, as the timestamp in the hash-table will be updated. Retransmission of
an ACK packet introduces error when the first ACK is not recorded. However,
if this happens rarely, then the error is not significant compared to the over-
all RTT statistics. If this happens frequently, due to a highly congested link,
then a cluster of samples around typical TCP timeout values will appear in
the overall statistics, and can therefore be detected and interpreted.

2 Factors such as operating system load on the two end-points can introduce error.
We do not expect these errors to distort the overall picture significantly, at least
for the applications discussed here. These applications take statistics over a num-
ber of samples, so individual errors will not significantly alter the result. In fact,
individually anomalous samples may be used to indicate server overload or other
phenomena.
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4.1.3 Customized flow measurements

The flow abstraction[26] is widely used in the Internet for measuring network
usage, through standard router mechanisms such as Cisco’s NetFlow[27]. A
flow is a collection of packets observed on a network link that has a set of
common characteristics.

In most current implementations the classification of packets into flows is based
on source and destination address (or prefix), protocol version and application
port numbers. The problem with this approach is that it gives very little
flexibility to ISPs for adapting flow measurements to their needs. For instance,
to support ECN [28] flow measurements, one needs to classify traffic based on
network prefixes but also separate marked from unmarked packets. This is
not supported by any of the existing router accounting mechanisms: NetFlow
allows either per-ToS (which is used for ECN marking) or per-AS or per-
network accounting tables.

Customized flow measurement modules are easy to implement in a flexible
system like FLAME. To demonstrate the flexibility of FLAME we have imple-
mented a proof-of-concept module for measuring ECN flows, with the low-level
kernel module handling packet classification and the user-level code flushing
the tables to the application, based on time and memory thresholds.

Other examples of possible customizations to flow measurements include content-
based classification for measuring applications that do not communicate over
well-known ports (such as FTP and a growing number of peer-to-peer sys-
tems) and extracting finer-grained or application-level statistics (such as Web
browser usage, object sizes in persistent HTTP/1.1 connections, etc.)

4.2 Security applications

The main benefit of implementing internal-network security mechanisms using
FLAME is the ability to adapt rapidly and deploy new mechanisms as new
threats become known. We discuss some security functions below.

4.2.1 IP Traceback

The current Internet architecture offers little protection against ill-behaved
traffic. In recent years Distributed Denial of Service (DDoS) attacks have
increased, which has led to the study of appropriate “traceback” mechanisms.
A traceback mechanism detects the attack source(s), despite the fact that IP
source addresses may be spoofed by the attacker, and responds by confining or
blocking traffic from the attacking sites. FLAME allows an implementation of
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IP Traceback [29–31] without requiring modification of router functionality to
support confinement or traffic blocking. This observation also agrees with the
general FLAME philosophy of flexible monitoring on simple IP forwarders.
Although these mechanisms have been developed for quite a while, the lack
of flexibility in existing routers has so far resulted in limited deployment and
thus less effective DDoS protection.

We implement Traceback on FLAME by simply monitoring traffic and record-
ing the upstream router for each packet, with the option of using sampling
to reduce the cost of monitoring and the quantity of data collected by each
FLAME system. We use out-of-band communication to recursively trigger
traceback on neighboring FLAME systems to find the source of the attacks.
Once the attackers have been traced, router control commands are initiated
from the monitor to an appropriate management interface to block or oth-
erwise confine the attacking traffic. In our experiments we used PC-based
routers with the ALTQ [32] QoS API for blocking the attacking sites; in the
general case we believe existing router mechanisms are sufficient for reacting
to attacks, once the attack has been identified. In this work we do not address
the question of how the attack is identified. We assume that external mech-
anisms (such as server-, or link-overload detectors) will trigger the traceback
mechanism on FLAME-enabled network elements.

4.2.2 Distributed Worm detection

The concept of “worms” and techniques to implement them have existed since
the early descriptions in [33,34]. A worm compromises a system such as a
Web server by exploiting system security vulnerabilities; once a system has
been compromised the worm attempts to replicate by “infecting” other hosts.
Recently, the Internet has observed a wave of “worm” attacks [35]. The “Code
Red” worm and its variants infected over 300,000 servers in July-August 2001.

This attack can be locally detected and prevented if the packet monitor can
obtain access to the TCP packet content. Unfortunately, most known packet
monitors only record the IP and TCP header and not the packet payload. We
have implemented a module to scan packets for the signature of one strain of
“Code Red” (the random seed variant):

... GET /default.ida?NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN .....

If this signature is matched, the source and destination IP addresses are
recorded and can be used to take further action (such as blocking traffic from
attacking or attacked hosts etc.). Despite the ability to locally detect and pro-
tect against worms, widespread deployment of an extensible system such as
FLAME would still have improved the fight against the worm.
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It is worth noting that the “Code Red” worm attacked the Internet by ex-
ploiting a security bug less than 4 weeks after the bug was first discovered.
The worm attacked over 300,000 hosts within a brief period after it was first
launched. Only the most supple worm detection systems are likely to be able
to respond promptly enough to have shut down this threat. While most intru-
sion detection systems do provide rule-based extensibility, it is unlikely, had
Code Red been more malicious, that the correct rules could have been applied
in time.

On the other hand, we know of a mechanism that is able to deliver worm
defenses at least as fast as the worm — another worm. A safe open architecture
system can allow properly authenticated worms (from, say, CERT) to spread
the defense against a malicious worm. In the future, detecting a worm may not
be as simple as searching for a fixed signature, and more complicated detection
and protection programs may require the flexibility of programmable modules.

We have reported some preliminary results in this direction in [36]. We have
designed COVERAGE, a cooperative immunization system that helps defend
against computer worms. The nodes in our system cooperate and inform each
other of ongoing attacks and the actions necessary to defend. We use a sim-
ple model that uses random polling to evaluate the trustworthiness of worm
activity reports from remote nodes, as well as the amount of resources the
system should allocate for responding to the various active worms.

The design of FLAME is ideal for implementing this kind of functionality.
Providing a general-purpose packet monitoring system is likely to reduce cost
due to the shared nature of the infrastructure, increase impact by coupling the
function with network management (to allow, for example, traffic blocking)
and result in more wide-spread deployment and use of such security mecha-
nisms.

5 Performance evaluation

We present experiments evaluating the performance of FLAME, the cost of
applications, safety overheads and sustainable workloads.

The test network consists of 4 PCs connected to an Extreme Networks Summit
1i switch. The switch provides port mirroring to allow any of its links to be
monitored by the FLAME system on one of the PCs. All PCs are 1 GHz Intel
Pentium III with 512 MB memory, OpenBSD 2.9 operating system except for
the monitoring capacity experiments where we used the Click [37] code under
Linux 2.2.14 on the sending host, and the SHAME version of the system
with polling support under Linux 2.4.20. All hosts use the Intel PRO/1000SC
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Module gcc Cyclone Cyclone Cyclone

protection protection

optimized

Traj. Sampling 381 420 458 430

+10.2% +20.2% +12.8%

RTT analysis 183 209 211 211

+12.4% +15.3% +15.3%

Worm detection 24 44 54 44

+83.3% +125% +83.3%

LRD estimation 143 154 158 156

+7.6% +10.4% +9%

Fig. 4. Module processing costs (in

cycles) and protection overheads.

Gigabit NIC.

5.1 System performance

We determine how many processing cycles are available for executing moni-
toring applications at different traffic rates. We report on the performance of
FLAME (with and without the interface polling enhancement) as well as of
LAME.

The experiment is designed as follows. Two sender PCs generate traffic to one
sink, with the switch configured to mirror the sink port to the FLAME moni-
tor. The device driver on the FLAME system is modified to disable interrupts
and the FLAME system is instrumented to use polling for reading packets off
the NIC. To generate traffic at different rates, we use the Click modular router
system under Linux on the sending side. All experiments involve 64 byte UDP
packets. The numbers are determined by inserting a busy loop into a null
monitoring module consuming processing cycles. The sending rate is adapted
downward until no packets are dropped at the monitor. This may seem overly
conservative because packet losses occur when even one packet is delivered to
FLAME too early. However, the device driver allocates 256 RxDescriptors for
the card to store 2K packets. Therefore the card can buffer short-term bursts
that exceed the average rate without incurring packet loss, but cannot tolerate
sustained rates above the limit. In Figure 3 we show the number of processing
cycles available at different traffic rates, for LAME, FLAME without polling,
and FLAME with polling enabled.

There are two main observations to make on these results. First, as expected,
the polling system performs significantly better, roughly 2.5 times better than
the non-polling system. Second, the number of cycles available for applications
to consume, even at high packet rates, appears reasonable. In the next sections
we will discuss these figures in light of the processing needs of our experimental
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applications.

5.2 Workload analysis and safety overheads

We instrumented the application modules using the Pentium performance
counters to obtain an accurate indication of the processing cost for each ap-
plication. We read the value of the Pentium cycle counter before and after the
execution of application code for each packet. Due to lack of representative
traffic on our laboratory testbed, we fed the system with packets using a packet
trace from the Auckland-II trace archive provided by NLANR and the WAND
research group at the University of New Zealand. This is especially important
as the processing cost for each application depends on specific properties of
the traffic, such as, for instance, IP addresses and flow arrival vs. overall traffic
rate. The measurements were taken on a 1 GHz Intel Pentium III with 512
MB memory, OpenBSD 2.9 operating system, gcc version 2.95.3, and Cyclone
version 0.1.2.

We compare the processing cost of a pure C version of each application to the
Cyclone version, with and without protection, and using additional optimiza-
tions to remove or thin the frequency of backward jumps (these modifications
were done by hand). The difference between C and pure Cyclone indicates the
incremental cost of basic pointer-safety needed for safe monitoring modules,
whereas the difference between pure Cyclone and protected Cyclone reflects
the cost of the additional safeguards such as controlling backward jumps. We
measure the median execution time of each module, averaged over 113 runs.
The results from this experiment are summarized in Table 4. There are four
main observations to make. First, considering also the results presented in the
previous section, it appears that the cost per-application is well within the
capabilities of a modern host processor for a reasonable spectrum of traffic
rates. Second, the cost of protection (after optimization), while not insignif-
icant, does not exceed by far the cost of an unprotected system. Third, the
costs presented are highly application dependent and may therefore vary. Fi-
nally, some effort was spent in increasing the efficiency of both the original
C code as well as the Cyclone version; implementing monitoring modules re-
quires performance-conscious design and coding. Thus, care must be taken not
to overstate these results. This experiment does indicate that it is feasible to
provide protection mechanisms in an open monitoring architecture, enabling
support for experimental applications and untrusted users. However, the num-
bers should not be considered representative of off-the-shelf compilers and/or
carelessly designed applications.
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5.3 Modeling supportable workloads and traffic rates

We can roughly model the expected performance (maximum supportable packet
rate) of FLAME as a function of workload (number of active modules). We
derive the model from our measured system performance from Section 5.1, and
the costs of our experimental applications and the measured safety overheads
from Section 5.2.

We can approximately fit the number of available cycles to a0r
b0 , where r is

transmission rate in packets per second and a0 and b0 are constants. Com-
puting a0 and b0 using least squares, and dropping the data point at 848k
packets per second 3 , we get that the number of available cycles for processing
is 3 × 109r−1.1216. The rate of packets per second, r, can itself be computed
as B/8s where B is the transmission rate in bits per second, and s is the
mean packet size in bytes. Assuming a mean module computation cost of 210
cycles per module (based on the assumption that our applications are rep-
resentative), and using our measured overhead of 60 cycles per module, we
can support a workload of b1

9
108r−1.1216c modules for an incoming traffic rate

of r packets per second, without losing a single packet. Conversely, we can
compute the maximum traffic rate as a function of the number of available
cycles, c, by r = 2.816× 108c−0.8916 (or r = 1.914× 106n−0.8916, where n is the
number of modules).

To apply this model on an example, consider a fully-utilized 1 Gbit/s link,
with a median packet size of 250 bytes, which is currently typical for the
Internet. In this scenario, r, the input packet rate, is approximately 500,000
packets per second. The model predicts enough capacity to run 5 modules.
For comparison, note that we measured the maximum loss-free transmission
rate for 1310 cycles on a 1 GHz Pentium to be 500,004 packets per second;
1310 cycles comfortably exceeds the total processing budget needed by the
4 applications in this study (841 cycles with safety checks, and 731 cycles
without any safety checks). Alternatively, with 20 active modules loaded, and
an average packet size of 1K bytes (full-size Ethernet data packets, with an
ack every 2 packets), the system can support a traffic rate over 1 Gbit/s.

The demonstrated processing budget may appear somewhat constrained, as-
suming that users may require a much richer set of applications to be executed
on the system. However, in evaluating the above processing budget, three im-
portant facts need to be considered. First, faster processors than the 1 GHz
Pentium used for our measurements are already common, and processors are

3 The fit is remarkably good for packet rates under 500,000 packets per second.
The fit is good for packet rates up to about 800,000 packets per second, but our
measurements when the gigabit network was running full bore sending 64 byte
packets (small), yielded fewer available cycles than predicted by our model.
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likely to continue improving in speed. Second, a flexible system like FLAME
may not be required to cover all monitoring needs: one can assume that some
portion of applications will be satisfied by static hardware implementation
in routers, with an open architecture supporting only those functions that
are not covered by the static design. Third, the figures given above represent
the rate and workload at which no packets are lost. As the number of active
applications increases, it will be worthwhile to allow the system to degrade
gracefully. The cost of graceful degradation is an increase in the constant per-
module overhead due to the added complexity of the scheduler — thus packet
loss will occur under slightly lighter load than in the current configuration,
but an overloaded system will shed load gracefully.

A straightforward approach is to cycle through the applications in priority
order, and monitor the average number of cycles between packets. A threshold
slightly below the mean cycle count can be used as an execution limit to
abort low priority modules if the system falls behind. The packet buffer should
provide adequate cushioning to ensure that the highest priority modules never
miss any packets. In this manner, adding non-essential applications (e.g., for
research purposes) will not hurt critical functionality (e.g., billing, or security),
as increasing traffic rates saturate the system, and may thus be safely admitted
for executing on the system. Although our current implementation does not
provide this feature, it appears reasonably easy to implement.

Based on our results, we can assert that FLAME is able to support a rea-
sonable application workload on fully loaded Gbit/s links. Using FLAME on
higher network speeds (e.g. 10 Gbit/s and more) does not currently seem
practical and is outside the scope of our work.

5.4 Performance of FLAME-based distributed worm defense

As a final case-study on the ability to do real work under such tight processing
constraints, we evaluate the behavior of a FLAME-based cooperative worm
defense, COVERAGE 4 , as the per-module budget on the FLAME nodes de-
creases.

In COVERAGE, nodes throughout the Internet scan locally for potential
worm attacks, and periodically probe randomly selected remote sites to ex-
change information. COVERAGE modules in FLAME are limited to scanning
for, or filtering out, only a small number of potential worms per packet. Scan-

ning a packet for a worm simply asks whether the worm is present, in an
attempt to determine whether this pattern actually represents a dangerous
worm. Filtering for a given worm occurs if COVERAGE has decided this

4 The algorithms used in COVERAGE are described more fully in [36].

18



0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

time (minutes)

fraction of scanning routers
fraction of infected hosts

Fig. 5. Fractions of infected hosts and scanning edge-routers over time.

worm is attacking, and COVERAGE is attempting to destroy all instances of
infected messages. The periodic polling, done in a user space process, deter-
mines the relative priority of all known worms (as well as potentially acquiring
new modules to look for other worms). COVERAGE ranks the worms by vir-

ulence, an estimate of how long, given their recent rate of growth, it would
take them to cover the entire network 5 . The FLAME per-module processing
budget limits the number of worms that COVERAGE can scan for.

We model the FLAME budget by setting a threshold value of virulence. COV-
ERAGE will not have enough cycles to care about worms less virulent than
threshold. Thus, if we say that threshold = 5, then COVERAGE will not
have sufficient cycles to scan for a particular worm until they are within 5
measurement intervals of covering the entire network. If the measurement is
1 minute, then COVERAGE does not begin to react until 5 minutes before
a worm is poised to conquer the entire network. If the threshold is 20, then
FLAME has enough capacity to allow COVERAGE to consider many more
worms, and to catch them at a correspondingly earlier period in their growth.

We evaluate the effectiveness of COVERAGE when under heavy attack by
worms, and consider the effect of limited FLAME processing cycles by varying
threshold.

5 The ranking actually incorporates some randomness to ensure that COVERAGE
has a chance to get some information about low virulence worms in order to deter-
mine whether they have exceeded threshold.
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5.4.1 Results

We limit our simulation to a simple, relatively small network of 100,000 edge-
routers, each connected to 8 hosts. The network contains 2,000 domains con-
sisting of 50 edge-routers each. We set the local-domain polling interval of
COVERAGE agents to 1.8 seconds , the maximum and minimum remote
polling intervals to 6 seconds and 1.8 seconds, respectively.

Our analysis uses four metrics. First, we estimate the total effect of the attack
by integrating the number of infected nodes over time. Second, we compute
the maximum number of infected nodes at the height of the attack; this is
another indicator of success and a measure of the penalty imposed by inad-
equate scanning cycles allowed by FLAME. Third, we consider the number
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of FLAME-based edge-routers actively scanning/filtering this worm. This is a
measure of the computational overhead of the response mechanism. Our fourth
metric, the total number of messages sent, measures the communication cost
between the (non-FLAME) COVERAGE agents.

Figure 5 displays a single example run of the COVERAGE algorithm against
a worm. One can see the initial stage of the infection and the response of
the algorithm: the worm manages to infect roughly 10% of the hosts; coop-
eration between COVERAGE agents results in a rapid activation of filtering
on roughly 60% of the network effectively eliminating the worm. Soon after
stopping the attack, most COVERAGE agents deactivate scanning/filtering
of this worm (when the worm is quiescent, the background scanning rate has
about 4% of the edge-routers permanently scanning for the worm).

The progress of infections of differing virulence is shown in Figures 6 and 7.
Figure 6 shows that both very fast and very slow worms are able to infect a
large fraction of hosts before COVERAGE halted their growth. Fast worms
achieve this by brute force; slow worms by stealth. Fewer available FLAME
cycles (lower values of threshold) exacerbate the situation. Figure 7 shows
that the net effect of the fast worms is actually less significant than the slow
worms; although fast worms infect a larger fraction of nodes, they are also
detected much earlier, and the worm is contained far more rapidly than the
slow worm.

(In both graphs, data points at the far left represent such slow worms that
they were still growing at the end of the simulation, and COVERAGE had
not yet identified them as malevolent or above threshold.)

Figure 8(a) shows the communication costs of the non-FLAME COVERAGE
agents. In general, slower worms impose a larger communication burden be-
cause COVERAGE modules need to spend more time and messages convincing
each other that this worm is above threshold. We see that when the COVER-
AGE modules running as part of FLAME (the packet scanners) have fewer
available computation cycles, this imposes a larger burden on the non-FLAME
agents (the user-space modules that communicate with each other and prior-
itize the tasks of the FLAME modules).

Figure 8(b) shows the average fraction of nodes scanning for a worm as a
function of the virulence of the worm. We see that, in general, slower worms
cause a larger fraction of nodes to be actively scanning. This is because a
node scans from the time it believes a worm to be dangerous until the danger
has abated. For slow worms, the scanning duration for the early detectors is
significantly longer than the late detectors; and all continue to run until the
worm is contained. For fast worms, there is only a short interval between the
time that the first node detects it, and everyone is convinced that the worm
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Fig. 8. Total communication cost and normalized integral of scanning
activity. Both are plotted vs. infection rate of attacking worm.

is dangerous, and, finally, the worm is contained. However, regardless of the
speed of the worm, there is a minimum scanning duration, and hence scanning
cost decreases to a limit as worm speed increases. In the plots of both com-
munication and scanning costs we see that the extremely slow growth worms
at the left of the figures were not simulated long enough for the detectors to
identify them as a threat.

In summary, we see that COVERAGE degrades gracefully, even when FLAME
makes only a small number of computational cycles available to the COVER-
AGE modules. However, there does appear to be a cliff between a threshold of
2.5 and 5, under which the communication burden climbs rapidly and the effec-
tiveness of the anti-worm measures degrades noticeably. Fortunately, for this
application (assuming that the cost of identifying particular worms remains at
roughly the current levels), the computing budget offered by FLAME under a
reasonable number of modules seems comfortably above the point of collapse.
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6 Related work

The main thrust of our research has been to investigate the three-way tradeoff
between flexibility, performance, and safety and security in network monitor-
ing applications. Encouraged by the progress in the Active Networking, we
designed several extremely flexible network monitoring system, culminating
in SHAME.

In other active networking research, Smart Packets [5] and ABLE [38] provide,
as does SHAME, programmable platforms for network management applica-
tions. SHAME, Smart Packets, and ABLE, all adopt approaches that are
similar in principle to Management-by-Delegation (MbD) models [39]. The
key difference lies in the level of abstraction. ABLE allows applications to poll
SNMP interfaces from inside the network, while Smart Packets operate on a
management interface at the language level. In both cases the management in-
formation and control settings are pre-defined subsets of the managed element
state. In contrast, as we outlined earlier, our work was motivated by the need
for more flexibility than is provided by pre-defined subsets, such as exported
SNMP interfaces. Therefore we argue for arbitrary packet-level traffic mea-
surement approach instead of relying on the already abstracted SNMP-based
metrics. In particular, FLAME, and its successor SHAME, dynamically install
arbitrary modules in the monitoring system, close to the information source.

Another active-networking effort related to our work is the SENCOMM project
at BBN[40]. The SENCOMM architecture focuses on the use of smart packets
for polling monitoring information on active network elements, and also pro-
vides support for dynamically loading monitoring modules, written in Java,
on the active network elements.

Outside the Active Networking community, numerous techniques have been
developed for flexible network monitoring. The first generation of a tools such
as tcpdump were based on the Berkeley Packet Filter [41] (BPF). The Packet
Filter provides operating system functionality for user-level traffic monitoring.
Users define filters in a “filter language” and pass them to the system, to exe-
cute on a “filter machine” inside the kernel. The filters specify which packets
the user is interested in. These packets are then passed to the user-level ap-
plication for processing. Although BPF provides a programming facility, the
filter language has no access to a store. This lack of persistent memory lim-
ited the language to stateless filters. As such, we are not aware of any early
filter programs that did anything other than simple demultiplexing. Provid-
ing a richer programming environment for network monitoring at the packet
filter level was proposed in [18], and later in [42]. More recent descendants of
BPF, such as ipf[43] and pf[44], support limited state. The state, however,
is hardwired, limited to the necessary fields to support hard-coded rules, such
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as NAT, and match TCP packets to ongoing connections.

The work most closely related to our is Windmill [45], an extensible network
probe environment which allows loading of “experiments” on the probe, with
the purpose of analyzing protocol performance. Windmill includes a facility
to demultiplex a single packet stream to multiple applications. The current
FLAME implementation does not provide such a facility, since most appli-
cations we considered are interested in processing the entire traffic stream.
Further, Windmill was designed for a trusted environment and assumes that
applications are reliable, and thus does not provide the safety mechanisms of
FLAME. In contrast to FLAME, Windmill also does not efficiently scale to
higher network speeds or application workloads, as it operates in user space.

OC3MON [46] is a dedicated host-based monitor for snooping on 155 Mbit/s
OC3 ATM links. The host is attached to the link using an optical split-
ter so that the monitoring function does not interfere with regular service.
The host monitors packets and records the captured headers in files for post-
processing. No real-time functionality for packet processing is considered in
the original design. Because OC3MON performs most of its work in an isolated
post-processing phase, it finesses the issues of performance and security that
FLAME must confront head on. For higher speed networks, the DAG series
of monitoring-specific network cards have been developed, implementing some
standard header processing functions in hardware [47].

Netramet [48] implements an SNMP-based Traffic Flow Measurement Archi-
tecture and Meter Management Information Base. Netramet inherits the lim-
itations of SNMP and standards-based protocol designs with regard to their
limited flexibility.

The NIMI project [49] provides a platform for large-scale Internet measure-
ment using Java- and Python-based modules. NIMI only allows active mea-
surements, while the security policy and resource control issues are addressed
using standard ACL-like schemes.

7 Summary and Concluding Remarks

In this paper we have reported on our experiences with building, measur-
ing, and refining an open architecture for network traffic monitoring. Several
interesting observations are worth reporting:

The techniques developed to build general infrastructure are applicable and

portable to specific applications. LAME was built using off-the-shelf compo-
nents. FLAME, in contrast, required us to write custom code. However, it
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was constructed using “off-the-shelf technology”. That is, the techniques we
used for extensibility, safety, and efficiency were well-known, and had already
been developed to solve the same problems in a general active-networking in-
frastructure. In particular, the techniques used for open architectures are now
sufficiently mature that applications can be built by importing technology,
rather than by solving daunting new problems.

Nevertheless, careful design is still necessary. Although the technology was
readily available, our system has gone through three architectural revisions,
after discovering that each version had some particular performance problems.
Care must be taken to port the right techniques and structure, otherwise
the price in performance paid for extensibility and safety may render the
application impractical.

Programmable applications are clearly more flexible than their static, closed
counterparts. However, to the limited extent that we have been able to find ex-
isting custom applications supporting similar functionality, we found that care-

ful engineering can make applications with open architectures perform compet-

itively with custom-built, static implementations.

More experience building applications is certainly needed to support our ob-
servations, but our experience so far supports the fact that high performance
open architecture applications are practical.
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