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Abstract

Soft-state is a well established approach to designing robust network protocols and applica-
tions. However it is unclear how to apply soft-state approach to protocols that must maintain
a large amount of state information in a scalable way. For example the Border Gateway Pro-
tocol (BGP) is used to maintain the global routing tables at core Internet routers, and the
table size is typically above 180,000 entries and continues to grow over time. In this paper,
we propose a novel approach, Persistent Detection and Recovery (PDR), to enable large-state
protocols and applications to maintain state consistency using a soft-state approach. PDR
uses state compression and receiver participation mechanisms to avoid per-state refresh over-
head. We evaluate PDR’s effectiveness and scalability by applying its mechanisms to maintain
the consistency of BGP routing table between routers. Our results show that the proposed
PDR mechanisms are effective and efficient in detecting and correcting route insertion, mod-
ification, and removal errors. Moreover, they eliminate the need for routers to exchange full
routing tables after a session reset, thus enabling routers to recover quickly from transient
session failures.

Key words: reliability, fault tolerance, network state management, soft-state, state
consistency, refresh overhead

1 Introduction

The soft-state approach has been widely adopted in designing robust Internet protocols
and applications. For example most network routing protocols take this approach. In
the Routing Information Protocol (RIP) [1], each router send its routing table to its
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neighbor routers every 30 seconds; if any entry in one’s routing table is not refreshed
for 180 seconds, it is considered obsolete and removed. In the Open Shortest Path First
(OSPF) protocol [2], each router broadcasts a link state update message at least every
30 minutes, even when the link state has not changed. These periodic refresh messages
not only automatically recover any lost update messages in the past, but also repair
any corrupted state at the receiving router, which could be caused by hardware errors
or even deliberate attacks. Moreover, the absence of refreshes for a piece of state signals
that the state may have become obsolete, and the router removes any state after it has
not been refreshed for an extended period of time. Such automatic state expiration not
only helps remove obsolete state due to a link failure or a router crash, but also helps
remove false state inserted by attackers automatically. In short, a soft-state protocol
can recover from errors due to known or even unknown causes.

Despite the simplicity and robustness offered by the soft-state approach, not all the
protocol designs adopted this approach. One of the primary reasons is the overhead
associated with the periodic transmission of refresh messages. When a protocol or an
application must maintain a large amount of state, such periodic refreshes become infea-
sible. For example, in 2003 a typical backbone router on the Internet needed to maintain
100K+ entries in its routing table, and sending the full table would consume more than
5M bytes of bandwidth (see further discussions in Section 5). The global routing table
continues to grow and today a typical backbone router maintains over 180K routes [3].
In addition to the bandwidth overhead, there is also a significant overhead associated
with assembling and processing the refresh messages periodically. Applications such as
large-scale distributed simulation and multi-party Internet gaming also face a similar
challenge in maintaining the consistency of a large amount of state. For instance, sol-
diers engaged in a large-scale battle simulation need to have a consistent view of the
combat environment for the simulation to work correctly. Such simulations may involve
a huge amount of state that describes the current locations and status of thousands of
soldiers, weapons, vehicles, equipments, etc. The soft-state refresh approach is clearly
unsuitable in this context.

Up to now protocols and applications that must maintain a large amount of state have
been using a hard-state approach, which relies on reliable message delivery to establish,
modify, and remove state between nodes. All state information is sent once only and is
kept at the receiving end indefinitely, until and unless explicit notification is received
for any further change or removal. For example, the Border Gateway Protocol (BGP)
[4] used for inter-domain routing is such a hard-state protocol. BGP uses TCP as a
reliable transport protocol to deliver all the updates between adjacent routers. Upon
the establishment of a BGP connection, a router sends its whole routing table to the
other end; after that it only advertise incremental changes to the neighbor, without
using any of the periodic state refresh or state timeout mechanisms commonly employed
by other routing protocols. One direct consequence of this design is that stale routes
caused by software bugs and other unexpected faults would persist in the
routing table. For example, a well-known software bug from a major router vendor
caused BGP routers to delete route withdrawal messages before they were processed [5].
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As a result, routers would keep using those stale routes that should have been removed
by the withdrawal messages. Hardware failures (e.g. memory corruption) and malicious
attacks can also lead to routing table inconsistencies ([6],[7],[8]).

Our work has two main objectives. First, we would like to propose mechanisms that can
efficiently maintain a large amount of state while achieving the robustness of soft-state
refreshes. Previous work on soft-state protocols either does not directly address the
issue of large state space [9,10] or otherwise sacrifices the robustness of the protocol in
order to handle the increasing amount of state [11–18] (see Section 6 for more discus-
sion of related work). Our proposed solution, Persistent Detection and Recovery (PDR),
follows the soft-state paradigm of state management, and uses state compression and
receiver participation to detect and recover state inconsistencies between nodes without
incurring per-state refresh overhead. PDR is a generalization of the refresh reduction
mechanisms that we proposed in [19] and [20]. The key idea behind PDR is state com-
pression – each node compresses its entire state space into a digest and then periodically
exchanges the digest with neighboring nodes to assure state consistency. Compared to
other compression techniques, our state compression techniques have the following two
novel features: (1) the digest supports quick identification and recovery of state incon-
sistencies in a large state space, and (2) the digest can be incrementally computed as
state entries are updated.

Our second objective is to illustrate, by using BGP as an example, how different PDR
mechanisms can be applied to the same protocol and what are the trade-offs between
different mechanisms. We apply two PDR mechanisms to BGP, each using a different
state compression technique. The first mechanism uses the Bloom Filter technique [21]
and the second mechanism uses the Digest Tree technique that we proposed in [19].
The performance metrics used in the evaluation include error recovery ratio, recovery
time, bandwidth overhead, computation overhead and storage overhead.

The remainder of this paper is structured as follows. Section 2 introduces background
information on BGP and BGP’s route inconsistency problems. Section 3 elaborates the
design rationale of our PDR approach. In Section 4, we describe two PDR mechanisms
as they are applied to BGP. In Section 5, we present evaluation methodology and the
results from our performance evaluation. We discuss related work in Section 6, and
conclude the paper with our future work in Section 7.

2 BGP Route Inconsistencies

The Internet is composed of a large number of independently managed Autonomous
Systems (or ASes). The Border Gateway Protocol (BGP) [4] is used to propagate reach-
ability information among ASes. BGP is a path-vector routing protocol. Its route distri-
bution and convergence properties are quite similar to those of distance vector routing
protocols. However, in order to detect routing loops which are inherent in distance-
vector routing, BGP attaches a complete path (called an “AS path”) to each route.
More specifically, a BGP route contains an address prefix representing the destina-
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tion network and an AS path to reach the address prefix, together with a set of path
attributes associated with the AS path (e.g. the next-hop router’s IP address).

To exchange routing information, two BGP routers first establish a BGP session that
runs on top of a TCP connection. The routers then exchange their full routing tables
through a series of BGP messages. After the initial routing table exchanges, each router
sends only incremental updates for new or modified routes. When a router discovers
that it can no longer reach a previous reachable address prefix, it sends a message to
its neighbor to withdraw the route. A BGP message may advertise a new route (an
Announcement), change an existing route (an Implicit Withdrawal), or withdraw an
existing route (a Withdrawal). In addition, BGP routers also use periodic keep-alive
messages to detect neighbor router crashes and link failures.

2.1 Definition of BGP Route Inconsistency

Neighboring BGP routers exchange routes and store them in the Routing Information
Bases (RIBs). Assuming RA and RB are two neighboring routers, we denote RibOutA,B

as the set of routes that RA sends to RB, and RibInB,A the set of routes that RB

learned from RA. BGP supports export and import routing policies; an export policy
controls which routes to send to each neighbor and an import policy decides which
received routes to save and use. We make two assumptions: (1) RA applies its export
policy before putting routes in RibOutA,B; and (2) RB stores all the received routes in
RibInB,A before applying its import policy.
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Fig. 1. An Example of Routing Faults.

Ideally, we should have RibOutA,B = RibInB,A. However, faults or attacks may lead to
inconsistencies between them. Examples of such faults and attacks include, but are not
limited to, memory corruption, failure to remove a stale route, and insertion of an invalid
route. Figure 1 illustrates how RibInB,A may become inconsistent with RibOutA,B. Since
we focus on the communication between two neighboring routers, we use the simplified
terms RibOutA and RibInB in the remainder of this paper.
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2.2 Causes of BGP Route Inconsistencies

BGP route inconsistencies can be caused by software bugs, hardware failures, and mis-
configurations. Routing table corruptions have indeed occurred multiple times in opera-
tional networks (e.g. [6,7,22]). Misconfigurations have frequently led to false information
being injected into the global routing system. ([23],[24]). Moreover, the current BGP
implementation is vulnerable to attacks. An attacker may try to inject a false BGP
message into the BGP session. The false message can change the status of the session,
modify or remove existing routes, or even announce false routes, all of which can cause
routing inconsistencies ([8,25]).

Furthermore, because each received BGP route is associated with a particular BGP
session, a reset of the session leads to removal of all the routes learned over that session,
causing the router at each end of the broken session to look for alternative paths for
those routes. The Graceful Restart mechanism [26] was introduced to mitigate routing
instability during transient session resets. It allows a router to continue to use the routes
learned from its neighbor after its BGP session with the neighbor goes down, under the
assumption that the physical connectivity still exists between the two BGP neighbors,
i.e. the session reset is caused by other types of transient failures. The Graceful Restart
does not remove the need for neighbors to exchange their entire routing table once the
BGP session is re-established. This table exchange incurs both a high bandwidth cost
and a high processing overhead, as well as a delay in repairing routes that may have
become stale during the session down time.

Session resets can be caused by congestion [27,28]. In addition, an attacker can reset a
BGP session by disrupting the underlying TCP connection [29]. Worse yet, one session
reset may be able to trigger a vicious cycle of session resets, as the large volume of
BGP messages generated by the table exchange can cause the keep-alive messages on
other BGP sessions to be dropped. As we will show later in the paper, our PDR design
can substantially speed up the routing state recovery after a BGP session is up, thus
improving the overall network performance either with, or without, the deployment of
the Graceful Restart mechanism.

3 Persistent Detection and Recovery (PDR)

Persistent Detection and Recovery (PDR) is designed to ensure state consistency in
large-scale systems. It uses soft-state periodic messages to protect against a wide range
of faults and attacks. In presenting the main PDR design principles, we first discuss the
need for a soft-state approach and the limitations of this approach. We then describe
the design of PDR which uses the following two basic approaches to implement soft-
state in an efficient way: (a) compressing the large amount of state into a compact form
for state refreshes; and (b) utilizing receiver participation in the error detection and
recovery process.
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3.1 Necessity and Limitations of Soft-State

In our model, a sender and receiver exchange a very large amount of state information
over a long period of time. The sender initially announces the state information and
may later announce changes, additions, or removals to any part of the state information
at any time. The receiver listens for announcements and maintains a copy of the state
information learned from the sender. The objective is to ensure that the state informa-
tion stored at the receiver precisely matches the state information sent by the sender.
The problem is challenging due to the potential large-scale of the data and strong fault
model in which data may be altered due to faults or attacks. For example, data may be
corrupted either in transit, or after being received, due to known or unknown causes.

A hard-state approach will ensure that state information is correctly recorded at the
receiver. After that point, the state is considered to be correctly announced to the re-
ceiver and no further updates are sent unless the state changes. There has been much
debate over whether soft-state or hard-state is a better approach. Notably, [10] com-
pared several variations of the basic soft-state mechanism with a hard-state mechanism.
We agree with one of their findings that the addition of acknowledgment in a soft-state
mechanism can improve the state consistency; in fact we proposed adding acknowledg-
ment to RSVP, a soft-state protocol, in [19]. However, we believe that their conclusion
of a hard-state approach over-performing a soft-state approach most of the time in
terms of state consistency is based on a limited fault model, which does not consider
faults and attacks that can remove, insert or modify state at the receiver end. Suppose
a hard-state protocol has marked some state data as correctly received and no further
updates for this data will be sent. At this point, our fault model allows an error at the
receiver to corrupt the state. Since there is no further updates for this state from the
sender, the invalid state will remain at the receiver indefinitely until the sender changes
the state again.

To overcome such faults and attacks, all state must be periodically re-checked using
fresh data from the sender. The basic soft-state approach simply resends all state peri-
odically; any corrupted state will be corrected by the next periodic refresh update, and
any existing state will be deleted if it is not refreshed after sufficient time elapses. This
provides strong protection against faults and attacks. However, when the amount of
state information is large, this basic soft-state approach suffers from high refresh over-
head due to two design characteristics. First, each piece of state is treated separately
and therefore periodic refreshment incurs per-state overhead. Second, the refreshes are
open-loop, i.e. the sender sends refresh messages in a blind and brute-force way, without
any feedback from the receiver to adjust the transmission for better performance.

The high overhead of soft-state protocols has long been recognized and several solu-
tions proposed. Most of the existing overhead reduction mechanisms ([13–15,30]) try
to reduce the refresh overhead by adjusting the refresh timer values. For example, the
Scalable Timer mechanisms ([13]) achieves a constant refresh overhead by increasing the
refresh interval. Although these timer-based mechanisms can recover from unexpected
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state inconsistencies, the longer refresh interval means longer recovery time in case of
unexpected state corruption. As an example, if a BGP table with 3000 routes (about
150K bytes of data) is refreshed every 60 seconds, the resulting bandwidth overhead
would be around 20Kbps. But if the number of routes increases to 100,000 (5M bytes of
data), then maintaining the same refresh overhead requires increasing refresh interval
to 2000 seconds, more than half an hour. Assuming the occurrence of faults or attacks
is uniformly distributed over time, it will take 1000 seconds on average to correct a
state inconsistency, a delay that is intolerable by BGP as well as many other protocols
and applications.

Below we show quantitatively that a higher refresh interval leads to lower state consis-
tency. We measure state consistency using the percentage of time when two peers have
consistent state information (following [9] and [10]). Suppose that faults and attacks
strike a state entry e at a rate of λ and refresh messages are sent at a rate of µ (both
arrivals follow a Poisson process), we can use a simple Markov chain to model this
scenario. The Markov chain has only two modes 0 (consistent) and 1 (inconsistent). It
transits from 0 to 1 with a rate of λ (rate of faults and attacks) and from 1 to 0 with a
rate of µ (rate of refreshes). The percentage of time when two peers have a consistent
value for e is p0 = µ/(λ + µ) = 1/(λ/µ + 1). This result means that, if we increase
the refresh interval (µ will decrease and λ/µ will increase), the state consistency p0 will
decrease.

To further illustrate the effect of increased refresh interval, we plot p0 in Figure 3. When
λ/µ is 0.01, p0 is around 0.99 (the state is consistent 99% of the time). Now suppose
the number of state entries is increased by a factor of 10, but we would like to maintain
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the same overhead. In order to keep the refresh overhead constant, we need to increase
the refresh interval by 10 times. λ/µ then becomes 0.1 and p0 will drop to 0.909. If the
number of state entries is increased by another factor of 10, the state consistency will
further drop to 0.5.

For the above reasons, we do not directly tune the refresh interval in our approach.
However, timer adjustment mechanisms can still complement our approach as long as
the combination of these different mechanisms can still satisfy the requirements for state
consistency and recovery latency.

3.2 The Design of Persistent Detection and Recovery

PDR operates in two phases; a detection phase and a recovery phase. During normal
operation, PDR operates in the detection phase and the periodic digests are used to
detect any inconsistencies between the state at the sender and the state at the receiver.
A node sends periodic refreshes to its neighbor and each refresh contains a digest of the
node’s state. If the neighbor’s state does not match the digest, PDR enters the recovery
stage to identify the out of sync data and restore consistency between the sender and
receiver.

3.2.1 Inconsistency Detection Using Soft-State State Compression

A good state compression technique is the key to a PDR mechanism. As discussed
above, we require soft-state periodic messages to protect against a wide range of faults
and attacks, but traditional soft-state mechanisms suffer from high refresh overhead. To
overcome this problem, our PDR first compresses the state to produce a digest and then
periodically sends these resulting digests. The main advantage is that the compressed
digests require substantially less bandwidth overhead, but an efficient digest alone is
not sufficient. This sections identifies the key requirements and benefits. 1

The most important question our work addresses is how to organize the state in the
right structure for compression. The structure must have the following properties:

• The compression technique must dramatically reduce the amount of bandwidth re-
quired to send the state. For a large system, sending the uncompressed state with a
sufficiently short refresh period requires too much overhead. The primary motivation
for introducing the compression is to save bandwidth. But adding compression intro-
duces new computational requirement and new complexity into the soft-state design,
thus the bandwidth saving must be substantial enough to both enable the sending of
frequent digests and make up for the added cost in complexity.

• The compression technique must be incrementally computable. For a very large-scale
system, recomputing the complete digest after any change may place too high a

1 Note previous techniques for managing refresh timers apply equally well to managing the
timers for PDR digests.
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computational burden on the sender in generating the digest and on the receiver in
comparing the digest.

3.2.2 Inconsistency Recovery Using Receiver Participation

Traditional soft-state protocols operate in an open-loop mode where the sender period-
ically reports state to the receiver. In PDR, this open-loop mode is again used to send
periodic digests to the receiver. However once an inconsistency is detected, PDR uses
receiver participation to quickly identify and correct the inconsistent state. By intro-
ducing receiver participation, a new advantage is introduced: a PDR digest does not
have to carry all the information to precisely identify the location of errors. Instead, the
digest serves as a launching point for quickly finding the inconsistency using a process
where both sender and receiver participate in the identification process.

Based on the basic concepts of periodic soft-state digests and receiver participation in
state recovery, we now show how PDR can be used in BGP.

4 Two PDR Mechanisms for Improving BGP Routing Consistency

BGP has to deal with a wide variety of faults and attacks that can remove, modify or
insert routes. Robustness against only fail-stop type of failures, such as node crashes
and link failures, is not enough to ensure continued functioning of inter-domain routing.
Moreover, we need mechanisms that can scale as the BGP table grows. Ten years ago,
there were fewer than 20,000 routes in a typical BGP routing table, but in 2006 a
default-free BGP table has grown to as many as 180,000 routes [3]. In the remainder of
this paper, we present two different PDR mechanisms, BFilter and DTree, that can
satisfy the above requirements.

4.1 Fast Routing Table Recovery with Bloom Filter (BFilter)

In [20], we proposed the FRTR (Fast Routing Table Recovery) mechanism for BGP. It
uses Bloom filter [21] for state compression. To distinguish this mechanism from the
next one, we refer to it as BFilter.

Figure 4 illustrates how a Bloom filter digest is computed. The basic idea of Bloom filter
is to apply multiple hash functions h1, h2, . . . , hk to every element in a set and mark
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the corresponding bits in the digest. Suppose we use an l-bit digest (d) to represent
a set of n state entries (S). l/n is called the Encoding Ratio and we denote it α. The
digest is initially set to all zero. For each r ∈ S, we first compute the k hash values
(i.e. h1(r), h2(r), . . . , hk(r)) and then set the corresponding bits in the digest to be 1.
More specifically, let d(i) denote the i’th bit in d, then d(hi(r)) = 1 for 1 ≤ i ≤ k after
the hashing. Note that some of the hash values of r may map to bits that have already
been set to 1, in which case those bits simply remain to be 1.

In the context of BGP, the set S is the BGP table and the elements are BGP routes.
We normally choose the encoding ratio α to be a small value, e.g. 5, to lower the
storage overhead and bandwidth overhead. For example, with an encoding ratio of 5,
a BGP table with 100K routes can be encoded into a digest of 62.5K bytes, which
is substantially smaller than the total size of the raw BGP routes (5M bytes in this
case). In the remainder of this section, we describe how BFilter works and discuss the
trade-offs of various parameter choices.

4.1.1 Operations

Identifying Invalid Routes First, routers periodically send the Bloom filter digests
of their outgoing routing table (RibOut) to their neighbors. When a router R receives
a digest from its neighbor, it examines the routes in its incoming routing table (RibIn)
associated with the neighbor. If a route r does not match the digest, i.e. d(hi(r)) 6= 1
for any i (1 ≤ i ≤ k), then r is an invalid route and R removes r from its routing table.
Otherwise, i.e. r matches the digest, then r is refreshed. More specifically, we associate
each BGP route with a cleanup timer, usually set to three times the refresh interval.
Refreshing r basically reinitializes the timer. If the cleanup timer expires, this route is
removed from the routing table. This mechanism helps removing orphaned or falsely
inserted routes.

Detecting Missing Routes After all the invalid routes are removed, R computes a
digest over all the remaining valid routes. If this digest still does not match the received
digest, R is missing some routes. This step is called the “missing routes test”.

Recovering Missing Routes Although R can detect that it is missing some routes,
it does not know which routes are missing. Therefore, it requests for the missing routes
from its neighbor by sending the prefixes of all the valid routes. The neighbor then
replies with all the routes whose prefixes do not appear in R’s message. Moreover, the
neighbor may detect some prefixes that should not have been in R’s list (i.e. “false
positives”). In this case, it will withdraw those prefixes.

Recovering from Session Resets When the BGP session goes down, R marks all the
routes learned from its neighbor as obsolete so that these routes do not participate in
route selection (but they are not removed). When the session is up, it receives a digest
instead of a whole BGP table from its neighbor. It then examines the routes in its
RibIn against the digest. If a route matches the digest, the route’s status changes from
obsolete to valid. Otherwise, it is removed from the RibIn. The router also executes the
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“missing routes test” and requests any missing routes from its neighbor. In this way,
only new and changed routes are transfered between the routers.

Route Group Optimization If we compute a digest over a RibOut that has over
100K routes, the digest would exceed the BGP message size limit and must be sent in a
series of fragments. This is generally considered undesirable because the receiver has to
wait till all the individual pieces have arrived before it can start processing the digest.
A better approach is to divide the RibOut into multiple groups by the prefix ranges and
then process the routes sequentially in each group, so that the digest for each group of
routes can fit into one BGP message. When the sender transmits a digest to the receiver,
it also includes in the message the starting and ending prefixes of the corresponding
route group. The receiver sorts its routes in the same order. When it receives the
digest message, it uses the starting and ending prefix to identify which routes in its
RibIn should be matched to the digest. This optimization can significantly reduce the
bandwidth overhead needed for error recovery. In a straight-forward implementation,
in order to identify a single missing route, the receiver needs to send the prefix list of
all the probably valid routes in its RibIn to the sender. By dividing its routing table
into multiple route groups, the receiver can associate the missing route with a specific
route group and therefore much less information needs to be exchanged.

4.1.2 Performance Analysis

In this mechanism, detecting inconsistencies takes 0.5 round-trip time. If the inconsis-
tencies are caused by injected or orphan routes, no additional recovery time is needed
because these routes can be removed once they are detected. However, if there are miss-
ing or modified routes, recovering from these inconsistencies will take an additional one
round-trip time.

The level of state consistency is directly related to the false positive rate of the Bloom
filter. Bloom filter does not produce false negatives, which means that if a route r
does not match the digest, the route must be invalid. However, it could produce false
positives, i.e. an invalid route may still match the digest. The false positive rate f is a
function of the encoding ratio α (= l/n) and the number of hash functions k. It can be
computed as follows. First, let p denote the probability that d(i) = 0 after the digest is
computed.

p = (1 −
1

l
)k×n ≈ e−k×n

l (1)

The false positive rate f is the probability P(∀i, 1 ≤ i ≤ k, d
(

hi(r)
)

= 1) given that r
is not a member of the set in question, i.e.,

f = (1 − p)k ≈ (1 − e−k×n

l )k = (1 − e−k/α)k (2)

Equation 2 shows that given the number of hash functions (k), the larger the Bloom
filter digest (α), the lower the false positive rate (f). In general, the lower the false
positive rate, the higher the probability (q) of detecting and correcting a false route,
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i.e. q = 1−f = 1−(1−e−k/α)k. We plot the relationship between k, α and q in Figure 5.
As you can see, the detection probability q increases with the encoding ratio
α for a given number of hash functions k. For example, when k is 3 and α is 5, q
is 91% (i.e. 91% of the inconsistencies can be detected and corrected). If we increase α
to 8, then q is increased to 97%.

4.2 Fast Routing Table Recovery with Digest Tree (DTree)

The DTree mechanism is similar to BFilter, but the digest is computed using a Digest
Tree data structure that we proposed in [19]. At the base of the digest tree is a hash
table with m slots, each hash slot corresponding to one leaf node of the digest tree (see
Figure 6). The tree has a branching factor of b and a height of h = logb m.

We first hash all the BGP routes into the hash table and compute a checksum over
each route. Then we concatenate the checksums of all the routes in each hash slot
and compute a checksum for each hash slot. The hash table then produces m level-1
checksums. These checksums are divided into groups of size b and a level-2 checksum
is computed over each group, so we get m/b level-2 checksums. This process continues
iteratively until there are no more than b checksums in the final set. This final set, i.e.
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the root of the digest tree, is called the Digest d of the BGP routes.

4.2.1 Operations

Similar to BFilter, routers periodically send their digests to their neighbors. If a received
digest and the local digest match, R refreshes all the corresponding routes in its RibIn;
otherwise R starts a recovery phase in which the two routers traverse the digest tree
to discover and repair the inconsistencies. Below we explain the recovery phase in more
detail.

Upon receiving a mismatching digest, R identifies the first mismatching checksum S1

in the two digests, it then sends an error message containing the lower-level checksums
used to compute S1. The neighbor looks for the first mismatching checksum (S2) in the
error message and sends the children of S2 in another error message. This procedure
is repeated until the checksum (Sh+1) causing the problem is found. Then the route
corresponding to the checksum will be sent by the neighbor. Note that in this example we
assume only one route is the culprit, but in practice multiple routes may be inconsistent
and therefore multiple paths in the Digest Tree may be traversed in parallel.

4.2.2 Performance Analysis

It takes 0.5 round-trip time to discover that routing inconsistencies exist. Since the
neighbors can compare two levels of the digest tree in each round-trip time, repairing
all the inconsistencies takes up to (h + 1)/2 = (logb m + 1)/2 round-trip times. One
way to speed up the recovery is to stop at an intermediate level and refresh all those
routes that correspond to the problematic checksums at this particular level. In other
words, we recover faster by not traversing too far into the tree, but we may increase
the bandwidth overhead as some consistent routes may end up being refreshed.

Since the height of the Digest Tree (h) determines the recovery speed, we can also speed
up the recovery by increasing the branching factor b thereby decreasing the tree height
(h = logbm). However, since the digest size depends on the branching factor, this will
increase the bandwidth overhead in both the detection phase and the recovery phase 2 .

If we increase the size of each checksum and keep everything else constant, DTree should
be able to detect more inconsistencies. More specifically, suppose we insert a false route
into RB’s routing table. Let’s designate the digest trees computed by the two peering
routers DTreeA and DTreeB. The Digest Tree technique can detect the false route only
if DTreeA and DTreeB have different hashes in all the tree nodes from their root to
the particular leaf node. Suppose the hash function has a collision probability of p and
the tree has h levels. Assuming that the hashes are independent from each other, the
probability that RB will detect and correct the false route is q = (1 − p)h+1. Note that
the route itself has a hash so there are h+1 hash comparisons. We plot q using different

2 The bandwidth overhead in the recovery phase is linear with respect to b · (h + 1) =
b · (logbm + 1), which increases as b goes up when b ≥ 2.
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Fig. 7. Probability of Detecting and Correcting a False State using Digest Tree

p and h in Figure 7. As shown in the figure, lower p (collision probability) and lower
h (tree height) can both result in a higher detection probability. However, the larger
checksum will lead to a higher bandwidth overhead.

4.3 Comparison

The fundamental difference between BFilter and DTree is that the latter uses a hier-
archical structure to recursively compute the digest while the former has a flat digest.
As a result, DTree can maintain a constant bandwidth overhead during the error de-
tection phase regardless of the size of the routing table. BFilter, on the other hand, has
a bandwidth overhead that increases linearly with the total number of routes although
the overhead is much smaller than sending the raw routing table.

The difference in structure also leads to different behavior during the recovery phase.
More specifically, with DTree, one needs to traverse the tree from the root to the leaves
in order to recover the individual inconsistencies, while BFilter allows one to recover the
inconsistencies within 0.5 to 1.5 round trip times. In addition, the hierarchical DTree
digest may be more difficult to implement than the flat BFilter digest.

5 Evaluation

We now evaluate the performance of three instances of the two state compression tech-
niques: (a) a two-level Digest Tree with a branching factor of 110, (b) Bloom Filter
with an encoding ratio of 5, and (c) Bloom Filter with an encoding ratio of 8. To sim-
plify our discussion, we denote these three schemes as DTree, BFilter-5 and BFilter-8
respectively.

5.1 Methodology

We simulate two BGP peers RA and RB. RA advertises its routing table to RB. We
then introduce random errors into RB’s RibIn and measure the error recovery ratio and
the overhead of each mechanism. We generate four types of errors: insertion, removal,
modification and mixed errors (a combination of the previous three types of errors). An
error has the following effects on a route r:
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• Removal: remove r from the routing table;
• Insertion: insert a more specific route of r into the routing table. For example, if r’s

prefix is 129.250.0.0/16, a route to the prefix 129.250.0.0/17 will be inserted;
• Modification: modify r’s path attributes;
• Mixed Errors: first randomly choose one of the above three types of errors with

equal probability, then introduce the chosen error to the routing table.

We ran the simulation using routing tables obtained from the RIPE RRC00 monitoring
point [31]. Since the results from different routing tables are similar, we present only
the results for one routing table with 101,404 routes that was used by an operational
router in a major US ISP.

To compute a Bloom Filter digest, we first compute a 128-bit MD5 hash over each
route and then choose three 13-bit values as the hashes of the route (i.e., k = 3). We
use a digest size of 1024 bytes and an encoding ratio (α) of 5 or 8. In other words, each
digest can encode a group of 1638 routes for α = 5 or 1024 routes for α = 8 (we adopt
the Route Group Optimization mentioned in Section 4.1.1). Because the two encoding
ratios produce quite different results in some cases, we present both results.

To compute a digest using the Digest Tree technique, we use a 2-level or a 3-level tree
structure with a branching factor between 64 and 110. The digests of the tree nodes
are computed using CRC32. Since the results are similar for the two tree levels and the
different branching factors, we present only those for the 2-level tree with a branching
factor of 110.

Note that the parameters we have chosen are by no means the optimal values. In fact,
it is impossible to choose the appropriate values for a particular application without
knowing its state consistency requirement, the minimum available bandwidth, the typ-
ical error type, the expected error probability and storage availability. However, we do
discuss the trade-offs of different parameter values whenever possible.

5.2 Error Recovery Ratio

Figure 8 compares the percentage of errors corrected by the three schemes. The X-axis
is the probability of error (Pe) in log scale. We have chosen 9 different Pe’s in the range
of [0.0001, 0.9]. For each Pe, we perform 30 simulation runs to obtain the 95% confidence
interval of the mean error recovery ratio. Note that the current BGP would not detect
any of the errors, i.e., its error recovery ratio is 0.

First, it is clear that DTree has the highest error recovery ratio. In fact, DTree corrected
all the errors in all of our experiments, i.e. its error recovery ratio is 100%, regardless of
the error type and error probability. This is also true when we use a branching factor
lower than 110 and a slightly higher tree structure. In our experiment, we use a two-level
digest tree and the collision probability of CRC32 is 2−32, so the detection probability
is very close to 1 which is consistent with our analysis in Section 4.2.2.
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Fig. 8. Error Recovery Ratio: (a) removal errors; (b) insertion errors; (c) modification errors;
and (d) mixed errors.

Secondly, Figure 8 shows that BFilter-8 has a higher error recovery ratio than BFilter-5
in most cases. This is because Bloom Filter with a higher encoding ratio has a lower
false positive rate, which in general leads to a higher error recovery ratio. Our results
again are consistent with the analysis in Section 4.1.2, i.e. the error recovery ratio of
BFilter-5 is around 91% while that of BFilter-8 is around 97% except in Figure 8(a)
and Figure 8(d) which we explain below.

Thirdly, the curves for the two Bloom-Filter based schemes show different characteristics
for different types of errors. There is an increasing trend in the cases of removal errors,
modification errors and mixed errors, while the curves for the insertion errors are rather
flat. Below we explain the differences.

For removal errors, when Pe is 0.0001, the recovery ratio is around 92.4% (α = 5) and
96.9% (α = 8). Both curves increase to 100% when Pe reaches 0.003, and stay at 100%
for higher error probabilities. This is because, with only removal errors, all the errors
are detected through the “missing routes test”. In this test, we compare the digests of
RA and RB to determine whether RB is missing any routes. The test can fail when all
the missing routes appear as false positives with regard to RB’s digest. As Pe increases,
more routes are removed from RB’s routing table. This larger difference leads to a higher
accuracy in the test.

On the other hand, the BFilter5 and BFilter8 curves for insertion errors stay around
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91% (α = 5) and 97% (α = 8) regardless of the error probability. This is because, in
this experiment, there are no missing routes so the “missing routes test” is irrelevant.
Instead, the inserted routes are detected by checking their hash values against the digest
from RA (let us call it “Bloom filter membership test”). The lower the false positive
rate with regard to RA’s digest, the higher the percentage of inserted routes detected
using this type of checking.

The curves for the modification errors show an increasing trend at the beginning (sim-
ilar to removal errors) but they flatten eventually (similar to insertion errors). This is
because a modified route is first detected by the “Bloom filter membership test” and
removed from the routing table, then we need the “missing routes test” to add the
correct route to the routing table. Therefore, the error recovery ratio of modification
errors is affected by both the false positive rate of the Bloom filter and the failure rate
of the missing routes test.

The figure for mixed errors shows that the Bfilter5 curve increases from around 90%
to 97% and stays there, and the Bfilter8 curve increases from around 96% to 99% and
stays there. We can expect that, if we have a different combination of errors, the curves
may move up or down depending on which type of errors is dominant. This is because
the result is roughly a combination of the error recovery ratios of the different types of
errors.

5.3 Bandwidth Overhead

In Figure 9, we show the bandwidth overhead of Full Table Exchange, Digest Tree and
Bloom Filter-based Digest. Note that the bandwidth overhead defined in this study is
not the total bandwidth consumption, but rather the amount of bandwidth consumed by
messages that do not directly repair errors (since they are unavoidable). For example, a
Digest message is considered part of the overhead, while a BGP update used to delete
a route after detecting an error is not considered overhead.

The top curve refers to the bandwidth overhead of a full BGP table Exchange. It
corresponds to the overhead of the traditional soft-state mechanism. It also represents
the overhead of the current BGP when it recovers from a session reset. It is clear
that this curve is much higher than the other three curves (except when the error
probability is close to 1 in (a) and (c)), which suggests that the PDR mechanisms
consume significantly lower bandwidth most of the time. This curve also shows a gradual
decrease in (a), (c) and (d). This is because the bandwidth overhead is caused by those
BGP updates that do not repair erroneous routes. As the error probability increases,
a higher portion of BGP updates in the routing table exchange become “useful” in
repairing routes and the bandwidth overhead decreases. The only exception is insertion
errors which cannot be repaired by any of the BGP updates directly, so the curve
remains high in (b).

In addition, we can also make the following observations. First, we can see that BFilter-
5 and BFilter-8 incur similar bandwidth overhead. Second, in Figure 9(a), (c) and (d),
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Fig. 9. Bandwidth Overhead: (a) removal errors; (b) insertion errors; (c) modification errors;
and (d) mixed errors.

the curve for DTree is lower than the other two curves for low error probabilities, but
it eventually rises above the other two curves at an error probability between 0.01 and
0.1. This is because multiple routes can be hashed to the same slot in the hash table.
When the error probability increases, it is more likely that at least one route in a hash
slot is false. However, in order to identify this one false route, the two peer routers need
to compare the hash of every route in that hash slot and each comparison incurs five
to eight bytes of overhead (an address prefix + a 32-bit hash). As the error probability
approaches 1, the bandwidth overhead will eventually include the hashes in every tree
node and the hash of every route.

5.4 Recovery Time

We define recovery time as the period of time from detecting the first error to receiving
the message that corrects the last error. The specific recovery time depends on the
round-trip time, the message processing time and several implementation details. If we
assume that the round-trip time (T ) is the dominant factor, then the recovery time
of Digest Tree is (h + 1)/2 · T and the recovery time of Bloom Filter-based Digest is
at most T . Because h is usually a small integer greater than or equal to 2, the Bloom
Filter-based Digest technique recovers slightly faster than the Digest Tree technique.
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Fig. 10. Comparison of Storage Overhead

5.5 Computation Overhead

Now we estimate the computation overhead of the two techniques. Suppose we want
to insert a route to a digest tree. We need to first compute a hash for this route and
then update all the hashes from the leaf node (i.e. the hash slot associated with the
route) to the tree root. Therefore, we need to compute h+1 hashes. On the other hand,
Bloom Filter-based Digest requires computing k hashes. Since both h and k are small
numbers, the two techniques should have comparable computation overhead if they use
similar hash functions.

5.6 Storage Overhead

Finally, we compare the storage overhead of these two techniques. Suppose there are n
routes. If each hash is s bytes and each tree node has b children, the storage overhead
of Digest Tree is n ·s+b · (bh−1)/(b−1) ·s. The storage overhead of Bloom Filter-based
Digest is n · α. In Figure 10, the two top curves correspond to the storage overhead of
Digest Tree with the branching factor 10 and 200 respectively. Both are obtained using
a two-level tree structure and a hash size of 4 bytes. The two lower curves correspond
to the storage overhead of Bloom Filter-based Digest with the encoding ratio of 5
and 15 respectively. These curves give the typical range of storage requirement that
an implementation may have. We can see that the storage overhead of Digest Tree is
generally higher than that of Bloom Filter-based Digest.

6 Related Work

Several mechanisms have been proposed to address the soft-state refresh overhead. Most
of them fall into the following three categories:

• Scalable Timer Mechanisms: these mechanisms adapt the refresh timer of a piece of
state dynamically to the total amount of protocol state so that the bandwidth used by
refresh traffic remains below a threshold. The most notable examples in this category
are the dynamic timer adjustment mechanism used by RTCP [11] (SAP uses a similar
mechanism [12]) and the “Scalable Timers” mechanism proposed by Sharma et al.
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for PIM [13].
• Staged Timer Mechanisms: these mechanisms set the initial refresh timer to a small

value and then increase the timer by a percentage after every refresh. There is usually
an upper bound on the refresh interval. One example of the Staged Timer mechanisms
is the variable heartbeat mechanism proposed by Holbrook et al. to achieve scalable
and timely distribution of data updates [14]. Pan et al. also proposed, in the context
of RSVP, an exponentially increasing refresh timer [15].

• Hard-state with Keep-alives: one extreme approach to refresh overhead reduction is to
convert a soft-state protocol to a hard-state protocol with keep-alive probes between
the two nodes. This approach has been proposed for RSVP [16], RIP [17], and OSPF
[18].

While the above approaches lessen the refresh overhead problem to various degrees, they
tend to result in lower state consistency when the network environment is unpredictable.
Their fundamental problem is simple assumptions of the network environment. For
example, the “hard-state with keep-alive” approach assumes that as long as the receiver
is alive and state updates are reliably delivered, the receiver’s state will be consistent
with the sender’s. This assumption overlooks the possibility that a network fault or
attack may corrupt the receiver’s state, resulting in a lower level of state consistency.

In [9], Raman and McCanne studied announce-listen protocols [32,33], which they call
“soft state-based data communication”. These protocols are usually used for data deliv-
ery in a multicast setting with the assumption that once a piece of data is delivered to
a receiver the data will remain consistent. As such, the subsequent announcements serve
only two purposes: (a) to recover from losses during transmission and (b) to reach new
multicast receivers. This is why they consider the transmissions of already consistent
data items mostly “redundant” and try to assign lower priority to these messages so
that other fresh data items can reach the receivers faster. This simple assumption does
not hold in our case because of the following reasons: (a) state information is not con-
sumed by the receiver the same way as real-time streaming data – it stays at the receiver
side to support certain decision making; (b) a piece of state may be modified or even
deleted by faults or attacks at the receiver side so state refreshes are as important as
state changes. Therefore the two-level priority scheme that they proposed, i.e. assigning
already consistent items a lower priority, cannot be directly applied to the management
of state consistency. However, the idea of prioritization still has its application in state
management. For an instance, some state entries may be more important than others,
e.g. some popular BGP routes receive much more traffic than the others, so it may be
desirable to give them a higher priority.

7 Conclusion

In this paper, we address a long-standing problem in protocol design – how to ensure
state consistency in a large-state protocol such as BGP without turning it into a hard-
state protocol? We show that, with our approach ”Persistent Detection and Recovery
(PDR)”, it is possible to follow the soft-state paradigm in an efficient manner. We

20



have demonstrated PDR’s effectiveness in improving BGP routing consistency. Our
simulation shows that the two PDR mechanisms, BFilter and DTree, are efficient in
correcting route insertion, modification and removal. Moreover, they eliminate the need
for routers to exchange full routing tables after a session reset, thus enabling routers to
recover quickly from transient session failures. Finally, we have shown that each of the
two proposed state compression techniques has its own trade-offs. Therefore, a protocol
designer needs to take into consideration all the requirements of his specific protocol to
choose the right parameters.

As our next step, we plan to apply PDR to other protocols to improve their state
consistency. The proposed PDR mechanisms are designed for BGP and RSVP. In both
protocols, there may be a large amount of state shared between neighboring nodes and
each node usually has a small number of neighbors. We have not applied PDR to the
scenario where each node broadcasts its state to all the other nodes. In addition, we plan
to study the scenario where the state on each node changes frequently. The challenge
here is to ensure that the recovery process does not interfere with the propagation of
new state changes.
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