
Handling Feature Interactions in
the Language for End System Services

Xiaotao Wua ∗and Henning Schulzrinneb

a Avaya Labs Research, Avaya Inc., USA
b Department of Computer Science, Columbia University, USA

June 25, 2006

Abstract

One big difference between Internet telephony and the public switched tele-
phony network (PSTN) is that the PSTN usually assumes dumb endpoints, while
Internet telephony has intelligent endpoints that can perform services. Performing
services on endpoints may introduce many new communication services, make
telecommunication services more distributed, and make the entire telecommuni-
cation network more robust and efficient. At the same time, it may also make
telecommunication services more difficult to manage and require new techniques
to create and compose services. In this paper, we first introduce the new scripting
language, called the Language for End System Services (LESS), which we de-
fine specifically for end system service creation. LESS is extended from the Call
Processing Language (CPL) and uses a tree-like structure to represent telecom-
munication services. Based on this tree structure, we propose a method based on
LESS action conflict tables and a tree merging algorithm to detect potential feature
interactions and help to resolve any conflicts detected. We integrated the method
for handling feature interactions into our LESS-based end system service creation
environment, which is part of our Session Initiation Protocol- (SIP) based user
agent, SIPc. SIPc can execute LESS scripts for end system services and contains a
service manager that can handle feature interactions.

1 Introduction

Telecommunication networks are moving from the circuit-switched public switched
telephone network (PSTN) to packet-switched Internet telephony. A major difference
between Internet telephony and the PSTN is that the PSTN usually assumes dumb
endpoints while Internet telephony incorporates intelligent endpoints. In Internet tele-
phony, endpoints usually have CPU and memory, so they are programmable and can
perform services such as call forwarding, transfer, and call screening.

∗Work mainly carried out while the author was at Columbia University. Email addresses:
xwu@avaya.com (Xiaotao Wu), hgs@cs.columbia.edu (Henning Schulzrinne)

1



Performing services on end systems may introduce many new communication ser-
vices, make telecommunication services more distributed, and make telecommunica-
tion networks more robust and efficient overall. At the same time, it may also make
telecommunication services more difficult to manage, thus require new techniques for
creating and composing services.

In this paper, we first introduce a new scripting language we defined for end sys-
tem service creation, the Language for End System Services[1] [2], or LESS. As an
extension of the Call Processing Language (CPL) [3], LESS enables comparatively in-
experienced end users to create services that run on Internet telephony endpoints. This
language is designed to make it impossible for users to do anything more complex (or
dangerous) than describe Internet telephony services, but powerful enough to handle
many commonly used services. In our technical report on end system service exam-
ples [4], we show that LESS can handle a big part of the services defined in AT&T
5ESS switches [5], ITU-T recommendation Q.1211 [6], and CSTA Phase III [7]. We
also discuss how to use LESS to describe services involving other Internet applications
such as email, web, presence notification, instant messaging, and networked appliance
control.

Like PSTN services, Internet telephony end system services also have problems
with feature interaction. ”Feature interaction is an inevitable by-product of feature
modularity.” [8] While modularity enables efficient service creation, it may also cause
feature interactions among multiple service scripts running on one or more devices.
When users create new services, they often focus on their immediate needs without
checking existing services, so feature interactions are likely to arise between newly
created scripts and the old ones. One design goal of LESS is to facilitate the easy
detection and resolution of feature interactions among LESS scripts.

LESS inherits CPL’s tree-like structure to represent communication services. This
structure enables the back-and-forth translation between graphical and textual repre-
sentations of LESS scripts and makes it easy to handle feature interactions among
LESS scripts. In this paper, we introduce a tree-merging algorithm to detect interac-
tions among LESS scripts. The algorithm is based on the LESS action conflict tables,
which we carefully define for analyzing LESS-based feature interactions. Once a fea-
ture interaction is detected, our algorithm can clearly identify the conditions that may
cause the interaction, and our service management system can then guide users in re-
solving any feature conflicts detected.

Several methods already exists to handle feature interactions in CPL, but because
feature interactions in LESS are very different from those in CPL, those methods can-
not fully handle the feature interactions in LESS. In Section 1.1, we detail the differ-
ences between LESS and CPL in handling feature interactions and discuss the existing
methods. We then briefly introduce LESS in Section 2. Section 3 shows the LESS
action conflict tables. Section 4 discusses our tree-merging algorithm based on those
action conflict tables. In Section 5, we present the implementation of our LESS-based
service creation and execution environment for handling feature interactions. Section
6 concludes the paper and discusses our future work.

2



1.1 Related work

Most of the work discussed in this paper is based on the Session Initiation Protocol
(SIP) [9]. SIP is an IETF standard used to setup Internet telephony call sessions. With
extensions, such as those for presence [10] and for instant messaging [11], SIP can also
handle functions beyond multimedia session setup. The definition of LESS is based on
SIP.

LESS extends CPL and inherits many CPL characteristics, such as the tree-like
structure, without user-defined variables and loops, and the inability to run external
programs. However, there are many differences between LESS and CPL. CPL was de-
signed to run on network servers such as SIP proxy servers; therefore, CPL focuses on
call signaling routing. On the other hand, LESS is designed for endpoints, which are
usually at the end of call signal routing paths. Therefore, LESS focuses on initiating,
or terminating call sessions and controlling endpoints. Some CPL-defined signaling
actions, such as proxy, cannot be used on endpoints, while LESS incorporates many
new actions that are not in CPL but are required by endpoints such as call, accept,
transfer and user interaction actions. LESS also defines new triggers for user inter-
actions and timer event handling. Furthermore, LESS can handle presence information,
instant messaging, and other Internet applications such as networked appliance control.
In addition, because LESS runs on endpoints, it can acquire the context information
that is only available to endpoints for service handling such as the availability of audio
devices. For these reasons, feature interaction handling in LESS is very different from
that in CPL.

Several methods exist on feature interactions in CPL. Xu et al. proposed to translate
CPL into a formal language to check feature interactions [12]. Amyot et al. developed
a tool called FIAT for filtering inconsistencies among features, then implemented a
translator to convert CPL to the FIAT input language [13]. FIAT has a user-friendly
web-based user interface for handling conflicts detected among CPL scripts. Nakamura
et al. analyzed possible semantic warnings in an individual CPL script, then extended
the analysis to multiple scripts by defining an operator to combine multiple scripts into
one [14]. Because LESS is extended from CPL, we can use these approaches to detect
and resolve feature interactions. However, because of the many differences between
LESS and CPL, the existing work cannot fully handle feature interactions in LESS.

All the existing work focuses on call routing services because they are CPL-based.
Thus, they do not handle signaling actions for endpoints such as accept, terminate,
and call. These new signaling actions in LESS can introduce many interesting feature
interactions that could not occur among CPL scripts. Though the existing work may be
extended to handle feature interactions in LESS, the work in this paper, especially the
action conflict tables, can be of great help for their extensions.

We also noticed that both Nakamura and Xu’s work handle feature interactions
among multiple users’ scripts because CPL scripts run on proxy servers that are usually
owned by ISPs. ISPs may have the right to access multiple users’ service scripts.
However, LESS scripts usually run on endpoints that cannot access other users’ scripts.
Thus, in general, we do not expect to handle feature interactions among multiple users’
LESS scripts.

In fact, even if there were a centralized server that could access all the LESS scripts

3



of multiple users, privacy concerns would make it difficult to resolve the detected inter-
actions. For example, user Bob has a script that keeps calling Alice every 10 minutes,
but Alice has a script that rejects all calls from Bob. According to Nakamura’s work,
the combined script causes a CRAE (call rejection in all execution paths) semantic
warning. But can we inform Bob that his calls to Alice will always be rejected? The
answer depends heavily on the social context surrounding Bob and Alice. For example,
in an enterprise environment that requires employees to share service information, Bob
may be informed about the conflict. In this case, multi-user feature interaction handling
is possible and very useful. But in a residential environment, to protect Alice’s privacy,
Bob should not be informed. In the latter case, the conflict cannot be resolved.

Neither Nakamura nor Xu addressed how to resolve feature interactions. The FIAT
system of Amyot et al provides a viable way to resolve feature interactions. FIAT has
a web interface and involves end users in resolving feature interactions. It provides
suggestions like Add EXCEPTION, DISABLE, SET PRIORITY, and TOLERATE,
as well as human-understandable explanations to guide users in resolving the detected
feature interactions. We consider it one practical way to involve end users in resolv-
ing feature conflicts. Our implementation also uses a popup dialog that shows users
the detected feature conflicts and asks users to make a choice. Our feature interaction
detection algorithm can clearly identify the conditions that may cause the detected in-
teractions. We can then present the conditions to users in a human-readable way and
ask users to make decisions. The users’ decisions can be saved in our service manage-
ment system. However, our user interface for resolving feature interactions is different
from the FIAT system in that we do not define different suggestions for users, but in-
stead ask users to make a choice among the actions they originally defined in their
own services. We then automatically prioritize, disable, or merge services, or tolerate
the conflicts based on users’ choices. In addition, we integrated our service learning
and service risk management work into our feature interaction handling implementa-
tion. Users can receive suggestions that have been inducted from their call histories and
have more options for reduced-risk call handling actions. We detail our implementation
in Section 5.

There are also some existing works on feature interaction in policies [15], and
on using logic programming [16][17] to detect feature interactions. These works can
handle event-based call processing, which is also the call processing model for LESS
and CPL. But those works do not address the feature interactions on endpoints among
end user created services, which is the focus of this paper.

Some researchers proposed to use architectural approaches to deal with feature
interactions in general. Architectural approaches attempt to clearly define the relation-
ships among features to make feature composition possible. One simple architectural
approach statically defines the precedence of all the features, then executes features
in order. This approach is far from enough to deal with complex communication ser-
vices because in many cases, the precedence of features is dynamic when performing
communication services.

Other more sophisticated architectural approaches are available to handle interac-
tions among well-modularized features, such as the pipe-and-filter architecture [18],
the Distributed Feature Composition (DFC) [19], and the agent-based architecture
[20]. We will not describe these architectural approaches in detail but note one fact

4



that makes them unsuitable for end-user-created LESS scripts. All these approaches
assume that features are carefully designed and modularized, and thus handle feature
interactions based on this assumption. They assume features following the pipe-and-
filter architectural style: ”Feature components are independent, they do not share state,
they do not know or depend on which other feature components are at the other ends of
their calls (pipes), they behave compositionally, and the set of them is easily enhanced
[18]” [19]. This assumption can be held for many existing PSTN services, which are
designed by professional service designers, and are carefully checked to make them
compositional.

However, for services created by inexperienced service creators, such as CPL or
LESS scripts, this assumption is unlikely to hold. Users may create an ill-formatted
feature that overlaps with existing features or a monolithic script that should be di-
vided into multiple modules. It is difficult to use architectural approaches to handle
these ill-formatted features in end systems. Sometimes, architectural approaches may
be required to reconstruct the ill-formatted features, and compose the reconstructed
features to achieve the expected results. The reconstruction certainly gives the features
a better format, but it is not the original format the users are familiar with. For exam-
ple, in Figure 1, feature1and feature2conflict when the time is between 2:00PM and
3:00PM on Dec 25, 2004. The preferable serviceshown in the figure takes feature1’s
decision if the caller is sip:t@a.com, but takes feature2’s decision if not. Defining the
precedence between the two services cannot resolve the conflicts. However, merging
two trees into one, as the figure shows, can easily resolve the conflicts.

incoming

2:00PM
~3:00PM
12/25/04

redirect to
sip:s@b.com accept accept reject

caller is
sip:t@a.com

incoming

caller is
sip:t@a.com

redirect to
sip:s@b.com reject

accept

incoming 2:00PM
~3:00PM
12/25/04

feature-1 feature-2 preferable service

Figure 1: Merging two trees to get a preferable service

Part of the work in this paper was published in our paper [21] in International Con-
ference on Feature Interactions in Telecommunications and Software Systems (ICFI’05).
This paper corrects many errors in the action conflict tables in the ICFI paper. It also
illustrates in great detail the relationship between action conflicts and end system ca-
pabilities and introduces the concept of using service risk management and service
learning to handle feature interactions. In addition, this paper introduces LESS and
presents our implementations in much more detail.

5



2 Language for End System Services (LESS)

2.1 Requirements for an end system service creation language

An end system service creation language or a subset of that language must be simple,
easy to understand, safe for creating error-free services, and powerful enough to allow
comparatively inexperienced users to build a wide range of services. The language
should also be extensible to allow the introduction of more complicated concepts and
elements in order to enable experienced service programmers to build more powerful
services.

Because users may want to have the same services on different devices, a platform-
neutral high-level language is called for. The language must be able to express user
interactions and control media streams. It should also be extensible to accommodate
new Internet services. Because we must restrict its power to ensure its simplicity and
safety, we do not expect that the language to handle all kinds of services. Thus, it need
not be Turing-complete.

In Internet telephony, services are not restricted to a small number of named ser-
vices such as “call forwarding busy”; rather, it appears more plausible to have policy-
based or rule-based services, e.g., certain events under certain conditions invoke certain
actions, similar to the way email user agents, for example, support message filtering
and forwarding. Using rules to describe a service is easier to understand than using
C/C++ or Java to program a service; however, those rules must be powerful enough to
represent a wide range of telecommunication services [4].

2.2 High-level abstraction

Figure 2 shows how LESS abstracts communication services. A LESS script is a col-
lection of event handling rules. The events can be an incoming call, an outgoing call,
or a timer event. For example, a LESS event handling rule can be ”when an incoming
call arrives, check the caller of the call, if the caller is sip:tom@example.com, reject
the call.” LESS uses a structured way to describe the rules so a LESS interpreter can
interpret the rules and perform the desired communication services. A LESS event
handling rule consists of a trigger, zero or more switches, and one or more actions.
Modifiers are used to provide arguments for actions. A rule is invoked only when a sig-
naling or nonsignaling event matches its trigger, e.g., an incoming call event matches
an incoming trigger.

Figure 2: Call decision making process in LESS

6



Once a trigger is invoked, switches check the status of triggers and their context
for decision making. For example, an address-switch checks the caller and the
callee’s addresses and makes call decisions based on those addresses; for example,
accept, reject, or redirect calls. Modifiers can provide action arguments. For
example, a location modifier can specify the target uniform resource identifiers
(URI) of a redirect or a call action. One action may be followed by additional
processing, e.g., more switches for condition checking and more actions for event han-
dling. Multiple actions can also be executed in parallel.

The relationship between triggers and actions is important in defining LESS. Ac-
tions are used to handle the event that invokes a trigger. Not every action can apply
to every trigger. In LESS definition, we clearly define the triggers each action can
apply to. For example, an accept action, which automatically accepts an incoming
call, can only be used in an incoming trigger. We cannot use an accept action in
an outgoing trigger, which handles outgoing SIP INVITE requests. In addition, in
a LESS script any LESS action may not invoke another LESS trigger, thus avoiding
infinite loops. In this way, a LESS call action does not invoke a LESS outgoing

trigger.
LESS inherits the CPL tree-like structure in which LESS elements, such as trig-

gers, switches, and actions are called nodes. Each node has one or more outputs that
can connect to additional nodes to further process an event. For example, the script
fragment in Figure 3 shows an address-switch with two outputs. The first output
handles incoming calls from sip:tom@abc.com. The second output handles calls
from others.

<address-switch field="origin">
<address is="sip:tom@abc.com"> <accept/> </address>
<otherwise> <reject/> </otherwise>

</address-switch>

Figure 3: Address-switch example

Figure 4: An example of the tree-like structure for trigger handling

7



Each LESS script starts at a trigger node, which then connects to a switch node or
an action node. The outputs of the switch or action node are connected to additional
nodes until a node with no specified outputs is reached. There are no back references
from a child node to its ancestors or to itself. Later in this paper, we use the term LESS
decision treeto refer to a LESS script. A LESS decision tree can be converted to a set
of event handling rules if we define a rule as the path from the root of a decision tree (a
trigger node) to a leaf of the decision tree (an action node). Figure 4 shows a decision
tree, which represents the LESS service script shown in Figure 5.

<?xml version="1.0"?>
<less> <incoming>
<address-switch field="origin">
<address is="sip:t@abc.com"> <accept/> </address>
<otherwise> <priority-switch>

<priority equal="emergency"> <accept/> </priority>
<otherwise> <reject status="486" reason="Busy"/>
</otherwise>

</priority-switch> </otherwise>
</address-switch>

</incoming> </less>

Figure 5: LESS script example

2.3 LESS elements

As we describe in Section 2.2, LESS has four kinds of elements: triggers, modifiers,
switches, and actions. We briefly introduce these elements below. The complete defi-
nitions are in the Internet draft we submitted to the IETF [1]. A trigger is an entry point
to every service, and is the same as the toplevelaction defined in CPL. Table 1
shows the definitions of the triggers in LESS.

Trigger Basic/Extension Events to handle
incoming basic definition incoming calls
outgoing basic definition user made outgoing calls
timer basic definition timer events
subscription event extension incoming event subscriptions
notification event extension incoming event notifications
message IM extension incoming instant messages

Table 1: LESS triggers

In end systems, an outgoing call is usually triggered by a user interaction, e.g.,
dialing a number and pressing a call button. The outgoing trigger in fact handles user
interactions. Thus, in a LESS script the call action, which automatically generates
outgoing calls, does not invoke the outgoing trigger.

8



Modifiers can provide action parameters. Table 2 shows the definitions of the mod-
ifiers in LESS.

Modifier Basic/Extension Definition
location basic definition add a URI in the location set
remove-location basic definition remove a URI from the location set
lookup basic definition lookup URIs and add to the location set
media media extension change media attributes of calls

Table 2: LESS modifiers

Switches represent the choices a LESS script can make. Table 3 shows the switches.

Switch Basic/Extension Make decisions based on
time-switch basic definition the time of executing a LESS script
address-switch basic definition the addresses, e.g., the caller’s URI
priority-switch basic definition the priority of the original call
string-switch basic definition the free-form strings in a call request
language-switch basic definition the languages in which the originator

of a call wishes to communicate
status-switch basic definition people’s status, e.g., busy
event-switch event extension the event values in an event

subscription or notifications
where-switch location extension the physical locations of people

Table 3: LESS switches

Actions represent users’ decisions for trigger handling. Table 4 shows the actions.
LESS can be easily extended to have more triggers, switches, modifiers, and ac-

tions. In the LESS XML schema, we define four abstract elements: ‘trigger’,
‘switch’, ‘action’, and ‘modifier’. We constructed the LESS tree structure
based on these abstract elements. We then require that all the new triggers, switches,
modifiers, and actions must be the ‘substitutionGroup’ of the abstract ele-
ments. Using ‘substitutionGroup’ for LESS extensions can preserve the tree
structure so that the tree-merging algorithms defined here can also be applied to LESS
extensions in the future. However, because the LESS action conflict tables, which we
introduce in the next section, can only be constructed by experts, we require that people
who define a LESS extension must also be able to define action conflict tables for that
extension.

3 Feature interaction detection in LESS

Feature interactions among multiple LESS scripts may occur if multiple actions are in-
voked at the same time. There may be no interactions among the features; sometimes,
the interactions are desired, but in many situations features conflict. For example, for

9



Action Basic/Extension Definition Parameters
accept basic definition accept a call none
reject basic definition reject a call code, reason
redirect basic definition redirect a call permanent
call basic definition make a call none
terminate basic definition terminate all calls none
mail nonsignaling send an email none
log nonsignaling log events none
wait nonsignaling wait a duration of time duration

for subsequent actions
media-update media extension change media setup none

for ongoing sessions
transfer mid-call extension transfer existing calls none
merge mid-call extension merge existing calls into none

a conference call
alert UI extension play alerting messages uri, ...
sendmsg IM extension send instant messages none
approve event extension approve event subscriptions none
deny event extension deny event subscriptions none
defer event extension defer the decision on none

event subscriptions
subscribe event extension send an event subscription none
notify event extension send an event notification none

Table 4: LESS actions

an incoming call, one script performs an action to accept the call, while another script
performs an action to log the call. The accept and log actions do not interact. In
another example, when a user is already in a call session and receives a new call, one
script performs an action to transfer the existing calls, while another script performs
an action to automatically accept the new call. If there is only one audio input/output
resource in the user agent, the accept action must be performed after the transfer
action. In this case, the feature interaction is desired. Based on this observation, the
relationships among actions must always be analyzed. Because we must also consider
the availability of resources of an endpoint, such as the number of audio devices, in de-
ciding whether two actions conflict, we must analyze the relationship between feature
interactions and end system capabilities.

E.J. Cameron et al. [22] classified feature interactions into three dimensions –
customer-system, single-multiple user, and single-multiple component dimension –
and five categories – SUSC (single-user-single-component),SUMC (single-user-multiple-
component), MUSC (multiple-user-single-component),MUMC (multiple-user-multiple-
component), and CUSY (customer-system). End system services usually experience
single-user interactions. In other words, in this paper we focus only on SUSC and
SUMC feature interactions. One exception is the interaction between the caller’s pref-

10



erences and the callee’s service scripts, which involves multiple users. We discuss this
kind of multi-user feature interaction in Section 3.4.

In the PSTN, feature interactions may occur when multiple users share one end
device. However, in Internet telephony, different people usually have different URIs
even if they own the same end device. This is different from the PSTN situation, in
which multiple persons sharing one end device also share one logical address – the
phone number. Because of this difference, in Internet telephony end systems, we can
still perform single-user feature interaction handling even if multiple users use one
device.

For single-user feature interactions, we can define preconditions and expected re-
sults for LESS actions. Based on the preconditions and expected results, we can con-
struct action conflict tables and use the tables to detect feature interactions. In the
sections that follow, we categorize LESS actions into call control actions, presence no-
tification actions, and other actions such as instant messaging and networked appliance
control. For each set of actions, we first analyze the preconditions and their expected
results, then check both SUSC and SUMC feature interactions.

3.1 End system call control actions

The call control actions can be signaling or nonsignaling actions, and can be in different
call stages. Table 5 shows the actions.

stage/action Signaling actions Nonsignaling actions
Incoming call handling accept, reject, redirect log, mail, wait (all stages)
Outgoing call setup call
Mid-call stage transfer, media-update, merge
Call termination terminate

Table 5: Call control actions

For signaling actions, the actions that belong to the same call stage usually con-
flict. For example, an end system can only choose among the accept, reject, or
redirect actions to handle an incoming call. Actions at different call stages may also
interact. For example, accepting an incoming call then transferring the call is a desir-
able interaction; however, rejecting a call then transferring the call is an undesirable
interaction. In this case, the nonsignaling actions do not conflict with the signaling
actions.

To check feature interactions between two actions, we must define the execution
order of the actions and check possible interactions in different orders. For example,
if we want to check the interactions between action A and action B, we first check the
situation in which A is performed before B. It consists of two steps: checking whether
A’s result changes or conflicts with the precondition of B, and checking whether B’s
result changes the expected result of A. We then check the interactions in a different
execution order with B performed first. The preconditions and expected result of each
action are shown in Table 6.

11



action precondition call states device states
accept incoming call setup

pending, media de-
vices available

call setup finalized,
a session is setup

media devices oc-
cupied

reject call setup pending call setup finalized no change
redirect call setup pending call setup finalized no change
call media devices

available
if accepted, a ses-
sion is setup

if accepted, media
devices occupied

transfer one or more ses-
sions, media de-
vices occupied

if succeeds, all ses-
sions terminated

if succeeds, media
devices available,
otherwise, media
devices occupied

media-update one or more ses-
sions, media de-
vices occupied

all sessions alive media transmission
changed, e.g., held,
or muted

merge one or more ses-
sions, media de-
vices occupied

all sessions merged media devices oc-
cupied

terminate one or more ses-
sions, media de-
vices occupied

all sessions termi-
nated

media devices
available

Table 6: The context assumption and expected result of call control actions

We further investigate the cause of feature interactions and find five kinds of inter-
actions. We call the first action conflict, which has the expected result of two actions
conflicting, e.g., the conflict between an accept and a reject action.

We call the second attribute conflict, in which two actions have the same name but
different attributes. LESS modifiers should be treated as action attributes. Two actions
with the same name conflict if their modifiers are different. For example, two scripts
conflict if they both perform redirect actions, but to separate locations.

We call the third interaction resource competition conflict. Two actions may com-
pete for resources such as audio devices. For example, if there is only one audio device
in an end system, two calls using the one audio device will cause a conflict such as
accepting an incoming call and making an outgoing call to another address at the same
time.

We call the fourth interaction disabling conflict. It occurs when one action’s ex-
pected results make another action’s preconditions impossible. For example, if a script
terminates existing sessions, another script cannot execute media-update action
because the precondition of media-update assumes one or more existing sessions.
The disabling conflicts are similar to the semantic warnings in the paper by Nakamura
et al. [14].

We call the last kind of interactions “enabling interactions”. It occurs when one
action’s expected results enable another action’s preconditions. This kind of interaction

12



is desirable. For example, the accept action can enable the transfer action for the
same call.

3.1.1 SUSC feature interactions

accept reject redirect transfer merge
accept A(m) C C E E
reject C A(r) C D D
redirect C C A(a) D D
transfer E - - A(a) C
merge R - - C -
m-update R1,E1 - - C C
term E - - D D
call R - - E E

m-update term call
accept E E R
reject D D E
redirect D D E
transfer C C E
merge C C R
m-update A(m) C R1,E1

term D - E
call E E R

m-update: media-update, term: terminate, -: no interaction, C: action conflict,
A(m): attribute conflict on media, e.g., using video or not

A(r): attribute conflict on code/reason, e.g., using 4xx or 6xx response in SIP
A(a): attribute conflict on address, e.g., redirect to different addresses

E: enabling, D: disabling conflict, R: resource competition
R1: media-update for unholding calls competes resources with call or accept

E1: media-update for holding calls enables call or accept

Table 7: Call control action conflict table for handling incoming trigger

Table 7 shows the conflict table for call control actions. One assumption in the
table is that a call usually requires audio, and there is also one audio device in an end
device. For video and text conversations, people can watch multiple video windows
and handle multiple instant messaging sessions simultaneously if the CPU power or
network bandwidth allows, so we do not consider resource competition for video and
text conversations.

The table is asymmetrical. The cell of row m, column n and the cell of row n,
column m may not have the same values. In this table, row actions are performed
before column actions. For example, row 1, column 4 means accept thentransfer.

13



3.1.2 SUMC feature interactions

A user’s service scripts can be hosted on the user’s end devices and signaling servers
in the network. However, scripts in different places may interact. For example, if the
scripts on a SIP proxy server reject all calls, the scripts on the destination end devices
can never be executed. When a proxy server proxies a call to all the end devices of
a user in parallel, if one of the end devices (e.g., the voicemail server) automatically
accepts the call immediately, the other end devices never have the chance to accept
the call. These examples involve one user but multiple end devices for the user so
they are SUMC feature interactions. We divide these kinds of SUMC feature interac-
tions into two categories: end system–proxy serverand end system–end systemfeature
interactions.

End system–proxy server feature interactions: End system–proxy server feature
interactions are caused when the CPL scripts on proxy servers interact with the LESS
scripts on end systems. There are only three signaling actions for CPL: proxy, redirect,
and reject. Every action may interact with the actions on end systems. For incoming
calls, proxy server scripts are executed before end system scripts. They may interact in
two ways: proxy server scripts may block the execution of end system scripts or proxy
server scripts may overlap with end system scripts. For outgoing calls, end system
scripts are executed before proxy server scripts, and proxy server scripts may modify
the result of end system service scripts. Table 8 shows the possible interactions for
incoming call handling.

server/end accept reject redirect
reject block overlap block
redirect block+ block+ block/overlap+

proxy block+ block+ block+

+: depending on the URI to which to redirect or proxy a call

Table 8: Interactions between services on end systems and proxy servers for incoming
call handling

As shown in the table, if a proxy server uses the proxy action to handle an incom-
ing call, and an end system tries to use the accept action to handle the same call, the
proxy action blocks the execution of the accept action. The accept action is exe-
cuted only if the target URI of the proxy action is equal to the end system’s URI. So
we use block+ to mark the interactions that depend on the target URI of the redirect
or proxy actions.

Table 9 shows the possible interactions for outgoing calls and call termination han-
dling. In this table, end system actions are performed before proxy server actions.

End system–end system feature interactions: End system–end system feature in-
teractions involve multiple end devices belonging to one user. These kinds of fea-
ture interactions are the most complicated feature interactions for end system services.
They sometimes also involve service scripts running on proxy servers. For example,

14



end/server reject redirect proxy
call block modify -
transfer block modify -
terminate N/A N/A -

Table 9: Interactions between services on end systems and proxy servers for outgoing
call and call termination handling

if a SIP proxy server sequentially proxies a call with a voicemail server at the last, the
auto-accept script running on the voicemail server does not affect other end devices’
behavior. However, a proxy server can also proxy a call to a number of locations at
the same time. This type of parallel proxying is known as forking [9]. When a proxy
server does forking, if the timeout value of the auto-accept script running on the voice-
mail server is set as zero or as a very small value, it may render other end devices
unable to accept incoming calls. Thus we must also consider proxy server scripts when
we handle end system–end system feature interactions. Table 10 summarizes the action
conflicts between two end systems.

end1 / end2 accept reject redirect
accept C - C
reject - - A(r)
redirect C A(r) A(am)

C: action conflict, A(r): conflict based on reason attribute,
A(am): conflict based on address and media attribute

Table 10: Action conflicts between two end systems for incoming call handling

The table shows that during the call setup stage, the forking proxy in Internet tele-
phony systems may cause multiple end devices to receive an incoming call setup re-
quest at the same time. If they all try to accept the call, or try to redirect the call to
separate locations, a feature conflict occurs. To resolve this kind of feature conflict, the
forking proxy must choose a single best response.

In SIP, there are different status codes for rejecting a call. If one end system rejects
a call using a 603 Busy everywhere status code, other end systems should not try
to redirect the call. This is similar to the Basic Rule BR1 in [12]. Typically, a person
would not talk with another person using two different end devices of the same media
type. The A(am) in the table indicates such feature interactions. The redirect action
may also cause call forwarding loops, which can be detected by checking the locations
of the actions based on the table.

Action conflicts between two end systems can be more complicated, and not just for
incoming call handling. For example, two end systems that handle two different calls
but transfer their calls to the same destination may cause the destination to reject one
call. Table 11 shows the more complicated action conflicts between two end systems.

15



end1 / end2 call transfer terminate
accept A(am) A(am) -
reject - - -
redirect A(am) A(am) -
call A(am) A(am) -
transfer A(am) A(am) -
terminate - - -

A(am): conflict based on address and media attribute

Table 11: More complicated action conflicts between two end systems

3.2 End system presence and event notification actions

We base our event-based services on the SIP event notification architecture [23]. Fig-
ure 6 shows the architecture.

PA-1

PUA-1

PUA-2

Proxy
/Registrar PA-2

SUB

NOT

SUB

NOT

REGISTER

PUB

PUB

PUA-3
XCAP

presentity watcher

SUB: SUBSCRIBE, NOT: NOTIFY, PUB: PUBLISH

Figure 6: SIP event notification architecture

In this architecture, a Presence User Agent (PUA) manipulates presence informa-
tion for a presentity. A PUA is an entity that can acquire the presence information of
a human, program, or collection of humans and/or programs and can transmit the state
information to a presentity. A presentity is an entity that provides presence information
to a presence service. The presence service can then send the presence information
to watchers interested in the information. A watcher is a logical entity that requests
presence information about a presentity, or watcher information about a watcher, from
presence services. There can be multiple PUAs per presentity. A presence agent (PA)
can access presence data manipulated by PUAs for the presentity, and can then re-
ceive SUBSCRIBE requests, respond to them, and generate notifications of changes
in presence state. One way for a PA to access the data is by co-locating the PA with
the proxy/registrar. Another way is to co-locate the PA with the PUA of the presentity
[10]. In Figure 6, PUA-2 and PA-1 may co-locate together so PA-1 can directly access
the presence information of PUA-2. PA-1 can also co-locate with the proxy/registrar
and access the presence information through SIP REGISTER requests sent by PUAs.
If a PUA and a PA are not co-located, the PUA can use SIP PUBLISH [24] requests to
send their status to the PA. PA-2 may use SIP SUBSCRIBE requests to ask for pres-
ence status stored in PA-1, and PA-1 will use SIP NOTIFY requests to send the status.

16



PUA-3 may use XCAP [25] to retrieve the status information stored at PA-2.
Feature interactions for event-based services can be SUSC or SUMC interactions,

depending on whether the PUA and the PA of a user are co-located or not. If a PUA
and a PA are co-located, we must deal with SUSC feature interactions; otherwise, we
must deal with SUMC interactions.

Actions related to event-based services can be divided into two categories. One
category handles incoming subscriptions, such as approve or deny. The other sends
outgoing messages, such as the subscribe and notify actions. Feature conflicts can
be categorized into action conflicts and action attribute conflicts, the same as those we
define in Section 3.1.

3.2.1 SUSC feature interactions

For an incoming subscription, approve and deny actions conflict. Approve actions
with different attributes such as different subscription expiration times also conflict.
Similarly, deny actions having different reasons conflict. Subscribe and notify

actions do not conflict with other actions, but they may cause action attribute conflicts.
Two subscribe actions will conflict if they have the same destination and the same
event package, but differ in other attributes such as the expiration time. Two notify

actions will conflict if they have the same destination and the same event package (e.g.,
presence), but different event descriptions (e.g., one presence status is open, the other
is closed).

3.2.2 SUMC feature interactions

For an incoming subscription, a PA can decide whether to approve or deny it. A PA
can also set the subscription status as pending, and send a notification to the PUA about
the watcher-list changes [26]. Once the PUA gets the watcher-list, the PUA will use
XCAP to update the watcher-list document on the PA to authorize the subscription. A
user may have multiple PUAs. Feature interactions may occur among the PA and all the
PUAs involved in handling incoming subscriptions. For an incoming subscription, if a
PA and a PUA make different decisions (for example, the PA approves a subscription
but the PUA denies the subscription), an action conflict occurs.

3.3 Other end system services

In Internet telephony, end systems can support instant messaging and networked appli-
ance control. Therefore, we also analyze feature interactions for these services.

3.3.1 Feature interactions for instant messaging

LESS has only one action for instant messaging, namely sendmsg, which is used to
send a message. If we ignore the content of messages, there are no conflicts between
multiple sendmsgs. However, the content of a sendmsg may have special meanings in
some circumstances. For example, if we use SIP MESSAGE to perform shared web
browsing [27], the message content is used to convey URL information. In general, we
consider that two sendmsgs of differing content conflict.

17



Instant messaging may also experience SUMC feature interactions. One incoming
message may be sent to multiple contacts of a user. If more than one contact can
automatically send a message back, SUMC feature interactions may occur. There is
little difference between SUSC and SUMC instant messaging feature interactions: both
depend on whether the message content conflict.

3.3.2 Feature interactions for networked appliance control

Internet telephony user agents can control networked appliances. For example, when
getting an incoming call, a UA can automatically turn off a nearby stereo. Networked
appliance control services can be very complicated. Different sensors may trigger dif-
ferent control actions, and the actions performed by multiple networked appliances
may conflict. For example, turning on an air conditioner to cool a room and turning
on a heater to warm the room conflict. Kolberg et al. described these kinds of feature
interactions in detail in [28].

If multiple LESS scripts try to control a networked appliance to perform different
actions, feature interactions may occur. Different networked appliances may have dif-
ferent interactions. For example, when controlling a lamp, power on and power off

conflict. To control a stereo, the power on action enables the tune action. To ana-
lyze feature interactions, we must first identify the appliance we want to control and
its available control actions. We must then build the preconditions and expected result
tables for the control actions. From these tables, we can build the action conflict tables
for the device. We choose to use lamp control as an example for feature interaction
analysis. Keep in mind that networked appliance control actions may interact with call
control actions. For example, the brightness of the lamp in a person’s room may affect
the perceptual quality of the person’s video communications.

The commands for a lamp can be power on, power off, dim, and bright. Table
12 shows the preconditions and expected results of the lamp control actions.

precondition expected result
power on - The lamp is on.
power off - The lamp is off.
dim The lamp is on. The lamp is dimmer and still on.
bright The lamp is on. The lamp is brighter and still on.

Table 12: Context assumption and expected results of lamp control actions

Table 13 shows the conflict table, which assumes that multiple scripts are trying
to control the same device at the same time. We also added two call control actions,
accept and call, to show that networked appliance control actions may cause fea-
ture interactions with call control actions. In the table, the power on action makes
dim and bright possible, and the bright or power on action may provide a better
environment for a video call, so we use enablingto mark this kind of interactions.

Networked appliance control intrinsically involves multiple components, the con-
troller and the appliances. If multiple users try to control one networked appliance at

18



power on power off dim bright accept call
power on - C E E E(V) E(V)
power off C - C C C C
dim - C A C C C
bright - C C A E(V) E(V)

A: attribute conflict, C: conflict, E: enabling, E(V): enabling video communications

Table 13: Interactions between lamp control actions

the same time, MUMC feature interactions may occur. If all users access one device
through the same appliance controller, e.g., a networked appliance gateway, the poli-
cies residing on the controller may help resolve the conflicts. For example, the con-
troller administrator may define user priorities. User actions having higher priority may
override user actions having lower priority. If multiple users access a device through
different controllers, intercontroller communication is required to solve possible fea-
ture conflicts. This kind of feature interaction is beyond the scope of the LESS-based
feature interaction handling.

3.4 Feature interactions between caller’s preference, end system’s
capabilities and users’ service scripts

Sometimes, a caller may explicitly express preferences in a call signaling message
[29]. These preferences include the ability to select which URI a request is routed to,
and to specify certain request handling directives in proxy servers. For example, the
Reject-Contact: *;mobility="mobile" header in a SIP INVITE request
expresses a desire not to route a call to a mobile device. The caller’s preferences may
conflict with the callee’s service scripts. These kinds of conflicts cannot be detected
offline. However, they are easy to detect by checking the callee’s service script actions
and the value of the Reject-Contact header in the caller’s SIP message. If a feature
interaction occurs, the caller’s preferences should override the callee’s service script
actions. For example, Alice uses a mobile phone and has a service script that automat-
ically accepts calls from Bob. However, Bob does not want to talk to a mobile phone
so he puts Reject-Contact: *;mobility="mobile" in his request. In this
case, Alice’s phone should not accept the call. Sometimes, service script actions may
also conflict with end system capabilities. For example, for an incoming video only
call to an end system with only audio capability, an accept action is not appropriate.
In this case, system capabilities should always override script actions. In this example,
the end system should prompt the user for proper handling.

The action conflict tables in previous sections contain several assumptions about
end system capabilities, e.g., with one audio input/output device, or with enough band-
width and CPU resources to handle multimedia calls. Although these assumptions
hold for many Internet telephony endpoints, some endpoints may have more or fewer
resources. Most of the action conflict table elements will not be affected by the differ-
ence. But some action conflicts, such as the conflicts caused by resource competition,

19



should be adjusted to reflect the difference. In our implementation, we collect system
information and adjust action conflict tables based on that information.

4 Using tree-merging to detect and resolve feature in-
teractions

Because LESS has a tree-like structure, it would be straightforward to merge multiple
LESS decision trees into one to resolve feature conflicts. After merging, there is only
one active LESS script for an end device for each trigger. The merging algorithm holds
for services running on the same device. However, for service scripts on different
devices, such as the SUMC feature interactions discussed in Section 3.1.2, the merging
algorithm can only detect feature interactions, it cannot resolve them. We will still
keep the original scripts after merging so that users can modify them independent of
the merged script. Although users can edit services based on a merged script, editing
services based on the original scripts could be easier since they are created by the users
themselves, while the merged script is created by a machine. In this way, no conflicts
arise when we execute service scripts, and we can still keep service modularity so users
can easily maintain their services and create new services efficiently. One potential
problem in this approach is that modifications to the original scripts may interact with
users’ decisions for resolving earlier conflicts. This problem can be easily resolved by
using the same algorithm to detect feature conflicts between the merged tree and the
modified script.

4.1 Tree merging algorithm

<less> <incoming>
<string-switch field="organization"> <string is="ABC Inc.">
<address-switch field="origin"> <address is="sip:tom@abc.com">
<string-switch field="subject"> <string is="group meeting">
<accept/>

</string> </string-switch>
</address> <otherwise>
<location url="sip:tom@vmail.abc.com"> <redirect/> </location>

</otherwise> </address-switch>
</string> </string-switch>

</incoming> </less>

Figure 7: Sample script for defining decision rules

In a LESS decision tree, the path from the root of the tree to each leaf node is called
a decision rule. A rule is composed of a trigger, the actions in accordance with the trig-
ger, and a list of switch nodes and action nodes along the path from root to action node.
We call the list of switch nodes and action nodes a rule path. For example, for the script
in Figure 7, a decision rule can be represented as
{incoming, accept, {{string-switch,organization="ABC Inc."},

20



{address-switch, origin="sip:tom@abc.com"}, {string-switch,
subject="group meeting"}}}. A decision consists of the items in a rule path and
the actions in accordance with the trigger. A rule path can be validated based on Naka-
mura’s work [14]. Changing the orders of items in a valid rule path does not affect the
decision.

To facilitate rule merging, we must normalize the rules generated from LESS de-
cision trees. The normalization process sorts switches in a rule path, e.g., ordered as
address-switch, time-switch, status-switch, string-switch,
priority-switch, where-switch, language-switch, and event-switch. It
also merges the switch nodes with the same switch name into one node in a rule
path. For example, a normalized rule for the script above is {incoming, accept,

{address-switch, origin="sip:tom@abc.com"}, {string-switch,
subject="group meeting", organization="ABC Inc."}}. Because switches
are independent of each other, normalized rules are functionally equal to the original
rules. The overall multiscript merging process is shown in Figure 8.

set base-rule-set empty
foreach LESS-tree {
convert the LESS-tree into a rule set
foreach rule in the rule set {

normalize the rule
}
merge the normalized rule set into base-rule-set

}
convert merged base-rule-set into a decision tree

Figure 8: Tree merging process

if (two rules have different triggers) {
no rule conflict

} elseif (actions in two rules do not conflict) {
no rule conflict

} elseif (no overlap between rule path in two rules) {
no rule conflict

} else {
two rules conflict,
return the rule path overlap and action conflict information
prompt to the script owner to judge

}

Figure 9: Checking two rules conflict or not

Figure 9 shows the conflict checking process of two rules. During the process, we
can use the action conflict table in Section 3 to check whether two actions conflict. If
the actions in two rules conflict, we must check whether any conditions match both rule
paths. We call the conditions matching two or more rule paths an overlap. Figure 10

21



shows the algorithm for determining an overlap.

set overlap-set empty
foreach switch-node1 in rule-path1 {
if (there is a switch-node2 in rule-path2
that has the same switch name) {

if (the overlap between switch-node1
and switch-node2 is empty) {

return empty overlap-set
} else {

insert the overlap into overlap-set
}

} else {
insert switch-node1 into overlap-set

}
}
foreach switch-node2 in rule-path2 {
if (there is not a switch-node1 in rule-path1
that has the same switch name) {

insert switch-node2 into overlap-set
}

}
return overlap-set

Figure 10: Determining overlap between two rule paths

Once we find the overlap and the conflicting actions, we can present the informa-
tion to users to make decisions. It is straightforward to form a human-understandable
description because LESS defines a very limited number of switches and actions. We
can simply design the description format for each switch and action, and then compose
a sentence based on the description format. In general, there is no need to use compli-
cated natural language processing techniques to present the conflict information. For
example, for the situation in Figure 1, we can ask the user ”For an incoming call, if
the time is between 2:00PM and 3:00PM on Dec 25, 2004, and if sip:tom@abc.com
calls you, what would you like to do?”. We can provide two choices for the user: redi-
rect the call to sip:conf@abc.comor automatically accept the call. We can record the
user’s decision and build a normalized rule set without conflicts. Any resolution of
feature interactions for end system services must involve end users because only they
can make decisions about what they need. Because end systems can directly interact
with end users, and end users can directly modify their scripts, involving end users in
feature interaction resolution is practical and necessary.

After resolving feature interactions, the normalized rules should be converted back
to a decision tree for service execution. The conversion is straightforward. We start by
setting an empty tree, then go through every rule and incorporate the rule’s switches
into the tree. Finally, we put the rule’s actions at appropriate branches of the tree.

22



4.2 Feature interactions caused by multiple triggers

In most cases, no feature interactions arise between decision trees having different trig-
gers (root nodes). However, occasionally, actions caused by different triggers compete
for resources. For example, a timer trigger may invoke a call action at the same
time as an incoming call is automatically accepted. Both the outgoing call caused by
the timer and the accepted incoming call will try to use the one audio device and
cause a conflict. For an end system with limited resources, if multiple scripts have
different triggers, we can use the tree-merging algorithm to detect possible resource
competition. Figure 11 shows the algorithm.

for decision trees with different triggers {
rename every trigger as ’common-trigger’
store the original trigger information

}
perform regular tree-merging algorithm for ’common-trigger’
if (there is resource competition feature conflict) {
present the conflict along with the original trigger information
modify service scripts based on the decision of the user

}

Figure 11: Detecting feature interactions among the scripts with different triggers

5 Implementation

Figure 12: CUTE Figure 13: SIPC’s service manager

We have implemented a SIP based user agent, SIPC, which supports a range of

23



media types such as audio, video, whiteboard and desktop sharing. In addition to mul-
timedia communications, SIPC also supports the SIP event notification architecture
[23] for presence notification, the SIP MESSAGE method for Instant Messaging [11],
location sensing, the Service Location Protocol (SLP) [30] for networked resource de-
tection, and the SIP DO [31] method for networked appliance control. SIPC can also
invoke and control web browsers by using dynamic date exchange (DDE) to handle
email and web browsing. With all these functions, SIPC can perform all the services
mentioned earlier.

SIPC has two interfaces for service programming, a SIP common gateway interface
(SIP CGI) [32], and a built-in LESS interpreter to handle LESS service scripts. The
SIPC service manager cannot detect feature interactions between SIP CGI programs
and LESS scripts because SIP CGI programs can be written in a variety of program-
ming languages, such as C/C++, Perl, and Java. It can, however, detect and help resolve
feature interactions among LESS scripts. We built a service creation tool and integrated
it into SIPC. The tool is called CUTE, which stands for Columbia University Telecom-
munication service Editor. Figure 12 shows the CUTE user interface. A user can drag
triggers, switches, and actions to the CUTE drawing panel and build LESS decision
trees. Once a LESS service script is created, SIPC can show the script in its service
manager, as shown in Figure 13, and use it to handle users’ communication events. A
user can activate or deactivate services in the SIPC service manager. If there is more
than one active LESS script and they are in conflict, the service manager can use the
algorithm in this paper to detect the interactions and ask the user to make a decision.

Figure 14 shows the user interface for resolving a feature conflict. As the figure
shows, the SIPC service manager translates the context that can cause feature conflicts
into human-readable language, then asks users to choose an action to perform. The
translation is made straightforward by using the trigger and rule-path overlap informa-
tion of two services. Once a user makes a decision, the SIPC service manager tries to
prioritize services to resolve the conflict because the prioritization is easy for people to
understand.

As Figure 13 shows, services are listed in order with the services listed first ex-
ecuted first. Figure 14 shows that if a user chooses to reject a call according to
the In conferenceservice, the In conferenceservice is listed at the top of the Accept-
ing calls from Williamservice. Users can also manually change the order of services
by clicking the Move up or Move down button. This is similar to the method de-
fined in FIAT[13], but we do not explicitly ask users to set priority among or disable
features. If all the branches of a feature are redundant or shadowed [13] by features
having higher priority, the feature will be automatically disabled. Figure 13 shows the
disabled feature in light gray.

Compared with merging services, prioritizing services can help improve the feature
conflict resolution. In general, end users are not expected to create a very complicated
service manually. We assume that the depth of LESS decision trees created by end
users will be <= 10. In our performance test, which was run on a modest PC (2.0
GHz AuthenticAMD processor, 1.0 GB memory, running Windows XP Professional),
with a modest load (around 50 percent CPU usage by a load generator), and using Tcl
(an interpreted language) to implement our feature interaction detection algorithm, the
longest delay we observed for detecting feature conflicts between two LESS decision

24



Figure 14: Resolve feature interactions

trees, each with a tree depth of 10, was 2.498ms. However, after merging, in the worst
case the depth of a merged tree can be the summation of the depth of all the trees joining
the merge. The outcome can cause longer delays in calculating feature conflicts. Thus,
the SIPC service manager always tries to prioritize services to resolve feature conflicts.

However, as we discussed in Section 1.1, some conflicts cannot be resolved by pri-
oritizing services, especially when three or more services are in conflict. For example,
a user has three features in conflict: Fa, Fb, and Fc. Because the conflicts may be on
different branches of the decision trees of the features, the user’s choices may cause
Fa>Fb, Fb>Fc, and Fc>Fa (here, Fa>Fb means feature Fa has higher priority than
feature Fb). We cannot prioritize Fa, Fb, and Fc here to resolve the feature interac-
tions. In fact, the orders of features implies a directed graph. If the graph contains a
cycle, we cannot prioritize features to resolve the feature interactions. Instead, we must
merge the features in the cycle into one by using the tree-merging algorithm. Figure 15
shows the algorithm to find the cycle.

The SIPC service manager does not list the merged services, instead, it still lists the
original scripts but groups them in the list. Each original script has a reference to the
merged script. And every action in the merged script also has a reference to its original
script. This way, users can still edit their original scripts but use the merged script for
call handling.

The options provided by the SIPC service manager are not limited to the services
defined by the user. Integrating our service risk management implementation[33] into

25



// For a feature ’F’, we use ’F.higher’ to represent the set of
// features that have higher priority than ’F’, and ’F.lower’ for
// the features with lower priority than ’F’.
for every two features Fa and Fb in a user’s feature set {
if (Fa has higher priority than Fb) {

if (Fa.higher contains Fb) {
there is a cycle
use DFS (Depth-First Search) to find out the cycle and merge

} else {
add Fa into Fb.higher
foreach feature Fx in Fb.lower, add Fa into Fx.higher
add Fb into Fa.lower
foreach feature Fy in Fa.higher set, add Fb into Fy.lower

}
}

}

Figure 15: Finding the scripts to merge

the SIPC service manager offers users additional options. These options gives users a
chance to choose a reduced-risk action to handle a conflict. For example, as Figure 14
shows, the services in red are defined by the user. For each user-defined option, there
are several alternatives within that option. For example, a conference attendee has
an incoming call from sip:william@cs.columbia.edu, but the user does not
want to answer the call during a conference session. However, the attendee also does
not want to risk losing important calls from William by simply rejecting the call. The
additional options allow the user to transfer the call to a contact person, or to reduce risk
by using another communication method such as email or instant messaging. Figure 13
shows the alternative options for rejecting and accepting calls. The additional contact
information can be configured in the configuration dialog of the SIPC service manager,
as shown in Figure 16. If a user chooses an alternative option, he or she, in fact creates
a new service. The new service is listed in the SIPC service manager, and receives
higher priority than the two existing services.

The configuration dialog also shows system properties. We use the systeminfo
command to obtain CPU and memory information, the ping command to obtain ap-
proximate bandwidth information, the ICreateDevEnum interfaces to obtain the
number of available video capture devices, and the waveInGetNumDevs() and
waveOutGetNumDevs() functions to obtain the number of available audio devices.
From this information, the SIPC service manager calculates the maximum audio and
video sessions the system can support and adjusts the conflicts that may cause resource
competition shown in Tables 7, 10, and 11 to reflect the end system’s capabilities.
Those capabilities are also used to handle feature interactions between a caller’s pref-
erences and a callee’s capabilities, and are sent to other parties by using SIP NOTIFY
method.

If a user does not want to handle the detected feature conflicts, he or she can simply
click the Cancel button shown in Figure 14 to tolerate the conflicts. This action keeps

26



Figure 16: Configuration dialog Figure 17: Events and actions log

the current order of the features unchanged.
To make feature interaction resolution transparent to users, we are integrating our

service learning implementation [33] into the feature interaction handling process. By
learning from users’ call histories, we can infer users’ preferences for handling feature
conflicts and suggest a default choice for each user. In our current implementation,
we check the probability of the occurrence of a feature conflict from users’ event logs
and action logs as shown in Figure 17. The SIPC service manager can offer sugges-
tions to users based on probabilities. Currently, as a default setting, the SIPC service
manager checks events for the last 30 days. If a situation that caused a feature con-
flict did not occur within the last 30 days, the SIPC service manager suggests that the
user ignore the feature conflict. Otherwise, it tells the user the number of times the
situation occurred in the last 30 days and suggests that the user choose an option in-
stead of clicking the Cancel button. As shown at the bottom of Figure 14, the service
manager finds out that sip:william@cs.columbia.edu did not call the user
between 09:00AM and 10:00AM in the last 30 days, the service manager then infers
that sip:william@cs.columbia.edumay not call during the same time period
in the future and suggests that the user ignore the feature interaction.

6 Conclusion and future work

This paper introduces the Language for End System Services (LESS) which we defined
specifically for VoIP end system communication service creation. One LESS design
goal is to make it easy to detect feature interactions among LESS scripts. We propose
a tree-merging algorithm to handle LESS feature interactions based on the action con-
flict tables presented in this paper. We investigated a variety feature interactions among
LESS scripts and showed that our method can easily handle feature interaction detec-
tion and resolution for a language, such as LESS and CPL, having a tree-like structure.

27



We have developed a LESS-based service creation and management environment with
our feature interaction handling method built-in. We then integrated this service cre-
ation and management environment into our SIP user agent, SIPC. We also did some
preliminary work on building a user-friendly interface to help end users better under-
stand feature interactions and resolve any interactions they encountered. One solution
we are working on is to integrate our service learning implementation into the feature
interaction handling process. By service learning, we may make the feature interaction
resolution transparent to users in some situations, although we believe that in many
cases, feature interaction handling for end system services still requires involving the
end users.

7 Acknowledgements

The work is supported by a grant from FirstHand Technologies.

References
[1] Xiaotao Wu and Henning Schulzrinne. LESS: language for end system services in Internet telephony.

Internet Draft draft-wu-iptel-less, IETF, February 2005. Work in progress.

[2] Xiaotao Wu and Henning Schulzrinne. Programmable end system services using SIP. In Conference
Record of the International Conference on Communications (ICC), pages 789–793, May 2003.

[3] Jonathan Lennox, Xiaotao Wu, and Henning Schulzrinne. Call processing language (CPL): a language
for user control of Internet telephony services. RFC 3880, Internet Engineering Task Force, October
2004.

[4] Xiaotao Wu and Henning Schulzrinne. End system service examples. Technical Report CUCS-048-04,
Columbia University Department of Computer Science, New York, New York, December 2004.

[5] AT&T. 5ESS switch, the premier solution, feature handbook, issue 4, September 1987.

[6] International Telecommunication Union. General recommendations on telephone switching and sig-
naling – intelligent network: Introduction to intelligent network capability set 1. Recommendation
Q.1211, International Telecommunication Union, Geneva, Switzerland, March 1993.

[7] Ecma International. Services for computer supported telecommunications applications (CSTA) Phase
III. Standard 269, Ecma International, June 2004.

[8] Pamela Zave. An experiment in feature engineering. In Programming Methodology, February 2003.

[9] J. Rosenberg, Henning Schulzrinne, G. Camarillo, A. R. Johnston, J. Peterson, R. Sparks, M. Handley,
and E. Schooler. SIP: session initiation protocol. RFC 3261, Internet Engineering Task Force, June
2002.

[10] J. Rosenberg. A presence event package for the session initiation protocol (SIP). RFC 3856, Internet
Engineering Task Force, August 2004.

[11] Session initiation protocol (SIP) extension for instant messaging. RFC 3428, Internet Engineering Task
Force, December 2002.

[12] Yiqun Xu, Luigi Logrippo, and Jacques Sincennes. Detecting feature interactions in CPL. Journal of
Network and Computer Applications, article in press, December 2005.

[13] Daniel Amyot, Tom Gray, Ramiro Liscano, Luigi Logrippo, and Jacques Sincennes. Interactive conflict
detection and resolution for personalized features. Journal of Communications and Networks, 7(3),
September 2005.

[14] Masahide Nakamura, Pattara Leelaprute, Ken ichi Matsumoto, and Tohru Kikuno. On detecting fea-
ture interactions in the programmable service environment of internet telephony. Computer Networks,
45(5):605–624, 2004.

28



[15] Petre Dini, Alexander Clemm, Tom Gray, Fuchun Joseph Lin, Luigi Logrippo, Stephan Reiff-
Marganiec, and Kenneth J. Turner. Policy-enabled mechanisms for feature interactions: reality, ex-
pectations, challenges. Computer Networks, 45(5):585–603, 2004.

[16] T. Bolognesi and Ed Brinksma. Introduction to the ISO specification language LOTOS. Computer
Networks and ISDN Systems, 14:25–59, 1987.

[17] Nicolas Gorse, Luigi Logrippo, and Jacques Sincennes. Formal detection of feature interactions with
logic programming and LOTOS. Journal of Software and Systems Modeling, article in press, December
2005.

[18] David Garlan and Mary Shaw. An introduction to software architecture. In Advances in Software
Engineering and Knowledge Engineering, pages 1–39. World Scientific Publishing, 1993.

[19] Michael Jackson and Pamela Zave. Distributed feature composition: A virtual architecture for telecom-
munications services. IEEE Transactions on Software Engineering, August 1998.

[20] N. Griffeth and Hugo Velthuijsen. The negotiating agents approach to runtime feature interaction
resolution. Feature Interactions in Telecommunications Systems, IOS Press, pages 217–235, 1994.

[21] Xiaotao Wu and Henning Schulzrinne. Handling feature interactions in the Language for End System
Services. In International Conference on Feature Interactions in Telecommunications and Software
Systems (ICFI), June 2005.

[22] E. J. Cameron, N. Griffeth, Y. Lin, Margaret E. Nilson, William K. Schure, and Hugo Velthuijsen.
A feature interaction benchmark for IN and beyond. In Feature Interactions in Telecommunications
Systems, pages 1–23, Amsterdam, Netherlands, 1994.

[23] Adam Roach. Session initiation protocol (SIP)-specific event notification. RFC 3265, Internet Engi-
neering Task Force, June 2002.

[24] Aki Niemi. Session initiation protocol (SIP) extension for event state publication. RFC 3903, Internet
Engineering Task Force, October 2004.

[25] Jonathan Rosenberg. The extensible markup language (XML) configuration access protocol (XCAP).
Internet Draft draft-ietf-simple-xcap-08, Internet Engineering Task Force, October 2005.

[26] J. Rosenberg. A watcher information event template-package for the session initiation protocol (SIP).
RFC 3857, Internet Engineering Task Force, August 2004.

[27] X. Wu and Henning Schulzrinne. Use SIP MESSAGE method for shared web browsing. Internet draft,
Internet Engineering Task Force, November 2001. Expired.

[28] Mario Kolberg, Evan H. Magill, and Michael Wilson. Compatibility issues between services supporting
networked appliances. In IEEE Communications Magazine, November 2003.

[29] Jonathan Rosenberg, Henning Schulzrinne, and Paul Kyzivat. Caller preferences for the session initia-
tion protocol (SIP). RFC 3841, Internet Engineering Task Force, August 2004.

[30] E. Guttman, C. E. Perkins, J. Veizades, and M. Day. Service location protocol, version 2. RFC 2608,
Internet Engineering Task Force, June 1999.

[31] Stan Moyer, Dave Marples, and Simon Tsang. A protocol for wide-area secure networked appliance
communication. IEEE Communications Magazine, 39(10):52–59, October 2001.

[32] J. Lennox, Henning Schulzrinne, and J. Rosenberg. Common gateway interface for SIP. RFC 3050,
Internet Engineering Task Force, January 2001.

[33] Xiaotao Wu and Henning Schulzrinne. Service learning and service risk management in Internet tele-
phony. In Conference Record of the International Conference on Communications (ICC), IEEE, May
2005.

29


