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Abstract

We present the distributed multi-constrained routing (DMR) protocol for the
computation of constrained paths for QoS routing in computer networks. DMR
exploits distance vectors to construct a logical shortest multipath (LSM) for each
destination with regard to a given optimization metric, from which a set of non-
dominated paths are locally derived at each node. As such DMR is able to find
feasible paths as well as optimize the utilization of routing resources.

DMR operates in line with the hop-by-hop, connectionless routing model assumed
in the IP Internet, and maintains instantaneous loop freedom. Nodes running DMR
need not maintain a global view of network state (topology and resource informa-
tion), and routing updates are sent only to neighboring nodes. This is in sharp con-
trast with all previous approaches that rely on complete or partial network state
for constrained path computation, which incurs excessive communication overhead
in large networks and is hard to achieve in practice.
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1 Introduction
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The goal of quality-of-service (QoS)
routing is two-fold: (a) finding the
feasible paths from source to destina-
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tion that satisfy multiple constraints
simultaneously (e.g., bandwidth, re-
liability, end-to-end delay and jit-
ter); and (b) routing the traffic in
such a way that network resources
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are efficiently utilized. The first is
the multi-constrained path (MCP)
computation problem that is known
to be NP-complete, and the second
is called the multi-constrained path
optimization (MCPO) [1].

As Section 2 describes, existing dis-
tributed QoS routing approaches
have one or more of the following
limitations: (1) requiring the avail-
ability of timely global network state
at each node, and some approaches
even assume that the distribution
of routing constraints is known [2],
which is hardly achievable in practice
due to the dynamic nature of QoS-
related parameters (e.g., residual
bandwidth, queue lengths) and non-
negligible propagation delay of com-
munication mediums; (2) addressing
QoS routing subject to only a single
constraint (e.g., bandwidth [3,4]); (3)
computing only the shortest paths
with regard to (w.r.t.) an optimiza-
tion metric, and as such may not
satisfy multiple constraints simulta-
neously [2,3,5,6,20]; and (4) consid-
ering only either multi-constrained
path computation or path optimiza-
tion, but not both, even though they
are strongly related with each other.

Hence, a solution is needed for dis-
tributed multi-constrained routing
that (a) adheres to the IP routing
model (hop-by-hop and connection-
less oriented), (b) does not require
global network state to be made
available at each node, and (c) finds
multi-constrained paths while op-
timizing the overall routing perfor-
mance according to the given opti-
mization metric. This is the subject
of this paper.
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Fig. 1. Non-dominated paths in
{Cost x Delay} space

The path measurement of a mini-
mal metric (e.g., bandwidth) is de-
termined by the minimal value of
this metric of all links in the path;
while that of an additive (e.g., de-
lay) or multiplicative metric (e.g.,
loss possibility) equals to the sum or
product of its values of links along
the path. Multiplicative metrics are
not considered because they can be
translated into additive metrics by
using logarithm.

Mieghem and Kuipers [9], and Smith
and Garcia-Luna-Aceves [6] have
shown that maintaining only non-
dominated paths for each destination
is sufficient to compute constrained
feasible paths. Path p is dominated
by path ¢ if

w] < w?, for additive metrics
wi > w?, for minimal metrics

(1)

for all 1 = 1, 2...k, if there are k rout-
ing metrics being considered. A path
is called non-dominated if it is not
dominated by any other path. Using
path domination reduces the com-
plexity of constrained path compu-
tation, because the capability of QoS
provisioning from source to destina-
tion can be accurately represented by
the set of non-dominated paths be-



tween them. Figure 1 depicts a set of
points in {Cost x Delay}, which cor-
respond to the set of paths between
a source-destination pair, when the
link weight consists of cost and delay.
In Figure 1 (a), the path represented
by point X is dominated by B, which
has shorter delay and less cost. How-
ever, there exists no clear better
or worse relation between any two
paths amongst {A, B,C, D, E}, be-
cause none dominates another, and
any routing request falls in the feasi-
ble area (shadowed area I of Figure
1 (b)) can be supported by at least
one of such non-dominated paths.

We present the distributed multi-
constrained routing (DMR) proto-
col, which constitutes the first so-
lution for the distributed compu-
tation of non-dominated loop-free
paths subject to multiple constraints
that does not require each node to
maintain complete network state.
DMR consists of three main compo-
nents: (a) ordering of routes based
on logical distances, which are op-
timization metrics obtained from
the various weight components of
links (e.g., bandwidth, delay, relia-
bility, etc.); (b) establishing a logical
shortest multipath (LSM) for each
destination w.r.t. the specified op-
timization metric; and (c) tracking
the raw weight of every path re-
ported by neighboring nodes when
establishing LSMs to derive a set
of non-dominated paths! for each
destination.

1" Extensive simulations show that sat-
isfying success ratios can be achieved
by maintaining only a small number of
non-dominated paths, e.g., 5.

Section 2 summarizes related work
and Sec. 3 describes the network
model used in our discussion. Sec-
tion 4 describes DMR in detail. Sec-
tion 5 presents its complexity anal-
ysis. Section 6 compares DMR with
other QoS routing algorithms, and
shows that DMR attains similar per-
formance but without requiring each
node to have complete network state
as in all prior solutions.

2 Related Work

Path selection subject to two con-
straints is not strong NP-complete,
and the computation complexity de-
pends on the values of link weight
in addition to the network size [10].
Accordingly, Chen and Nahrstedt
[11] proposed to scale one compo-
nent of the link weight down to an
integer that is less than [“C%], where
x is a pre-defined integer and c;
is the corresponding constraint on
weight component w;. They prove
that the problem after weight scal-
ing is polynomially solvable by an
extended version of Dijkstra’s (or
Bellman-Ford) algorithm, and any
solution to the latter is also a solu-
tion to the original MCP. The run-
ning time of the extended Dijkstra’s
and Bellman-Ford algorithms are
O(2?N?) and O(zEN), respectively,
where F is the number of links and N
is the number of nodes. As we have
shown [7], satisfactory performance
is achievable only when parameter
x is large enough (e.g.,, x = 10),
which incurs considerable computa-
tion complexity at the source nodes.



Another commonly used scheme for
MCEP is to define a good link-cost (or
path-weight) aggregation function
based on the routing metrics being
considered. Then any shortest path
algorithm can be used to compute
the optimal path w.r.t. the resulting
aggregated metric. Jaffe [10] was the
first to use a linear link-cost function
w(u,v) = aw;(u,v) + fws(u,v), in
which o, € Z*. Ever since, both
linear and non-linear aggregation
functions have been proposed. The
major limitation of this approach
is that the ability to find feasible
paths based on an aggregated met-
ric largely depends on the quality of
the function being used, and most of
them are empirical heuristics. Conse-
quently, the shortest path computed
w.r.t. a singular metric may not si-
multaneously satisfy the multiple
constraints being considered.

The implementation strategies for
QoS routing can be classified into
centralized source routing and dis-
tributed routing. Most constrained
routing algorithms proposed to date
use centralized approaches, i.e.,
they compute feasible paths at each
source, and simply assume the avail-
ability of global network state when-
ever they are needed. Centralized
MCP algorithms suffer from high
computation complexity at source
nodes, sluggish response to net-
work changes, and excessive over-
head required by the dissemination
of topology and resource informa-
tion throughout the network, which
significantly limits their scalability.

Distributed MCP algorithms com-
pute feasible paths locally at each

node, and forward packets based only
on their destination addresses on a
hop-by-hop basis. Distributed rout-
ing is more responsive, robust and
scalable than centralized schemes,
because nodes independently make
routing decision and therefore are
able to respond to network dynamics
quickly.

Based on TAMCRA [13], and its ex-
act modification SAMCRA, Mieghem

et al proposed a hop-by-hop destination-

based only (HbHDBO) QoS routing
protocol [2], which has a worst-case
complexity O(kNlog(kN) + k*CE),
where k£ is the number of non-
dominated paths maintained at each
node and C' is the number of con-
straints being considered. A node
that runs HbHDBO uses a modified
Dijkstra’s algorithm to compute &
non-dominated paths for each desti-
nation, based on a non-linear weight
function w(p) = ma:v(“”—(m), where

Ci
¢; 1s the constraint on metric w;. For

HbHDBO to work correctly, global
network state is required at each
node, and routing constraints must
also be known a priori. However, in
the worst case, k can grow exponen-
tially large, and the performance of
HbHDBO also varies with the num-
ber of constraints.

Sobrinho adopts an algebraic ap-
proach and investigates the path
optimization problem in the con-
text of Hop-by-Hop QoS routing [5].
In Sobrinho’s algebraic framework,
routing is separated into path weight
functions that define routing opti-
mization requirements (e.g., widest-
shortest path, most-reliable path),
and the algorithms that compute the



optimal paths based on the aggre-
gated metric defined by the weight
function being used. Sobrinho es-
tablishes the algebraic properties
that a path weight function must
have for any routing algorithm to
converge correctly (i.e., to give the
optimal paths w.r.t. the aggregated
metric). Though the results obtained
by Sobrinho establish a generalized
framework for QoS-oriented path op-
timization, they cannot be applied
to constrained path optimization,
because paths are optimized only
w.r.t. the given path weight func-
tion, rather than being computed to
satisfy multiple constraints.

On the basis of Sobrinho’s work,
Smith and Garcia-Luna-Aceves [6]
proposed an improved algebra to ad-
dress multi-constrained path compu-
tation, in which a new partial order
relation C is introduced. C is used to
select the mazimal element from a set
of comparable paths, such that only
those non-dominated paths are kept
for each destination. A boolean traf-
fic algebra is also introduced to de-
scribe the traffic allowed over a link,
such that policy oriented constraints
(for traffic engineering) can also be
expressed and considered in the path
computation. Ignoring the cost spent
on the evaluation of boolean expres-
sions, the proposed generalized Di-
jkstra’s algorithm has a complexity
of O(NW?2A?), where W is the max-
imal value of link weights and A is
the maximal number of true assign-
ments in the traffic algebra. The ma-
jor limitation of approaches based on
a traffic algebra is that boolean satis-
fiability itself is NP-Complete, which
unfortunately is not taken into ac-

count for the performance analysis
of the proposed algorithms.

3 System Model

We model the network as a directed
graph G = {V, L}, where V is the
set of nodes and L is the set of links
interconnecting the nodes. N and E
are the cardinalities of V and L, i.e.,
N = |V|] and E = |L|, respectively.

We assume that each link [, , is as-
sociated with a link weight vector
w(u,v) = {wy, we...wy }, in which w;
is an individual weight component,
i.e., a single routing metric. Accord-
ingly, any path p from a source to a
destination can be assigned a path
weight vector w? = {w},w}...w}},
where w} = Y, o, w(u,v), if w; is
an additive metric (e.g., delay); or
w? = min(w;(u,v)), ly, € p, if w; is
a minimal metric (e.g., bandwidth).

The logical distance (LD) of path
p is given by a path function fP
based on the weights of its consist-
ing links. In QoS routing, f? is usu-
ally used to specify how the routing
should be optimized. For example, in

bandwidth-inversion shortest-path

routing, fP = 2l %;lu,v € p

where B(u,v) is the available band-
width of [, ,, such that the shortest
path, in term of inverted bandwidth,
is preferred. In contrast, in most-
reliable path routing, we can define
[P = 3, —log(prob(u,v)),lu, €
p, where prob(u,v) is the reliable
probability of [, ,, such that the most
reliable path is preferred. We call f?
the optimization function, and the



logical distance computed by f? the
optimization metric, given that the
path with minimal logical distance is
also optimal w.r.t. the optimization
requirements implied by fP. Note
that an optimization metric should
not be confused with an actual rout-
ing metric, which can be bandwidth
or delay for instance.

It is worth pointing out that logical
distances are not necessarily simple
real numbers. A logical distance is a
real number only if the optimization
function fP can be given by a close-
form expression. This is the case
for the bandwidth-inversion shortest
path (3, | %), the most-reliable
path (3, , —log (prob(u,v))), or the
aggregated metric used in the In-
terior Gateway Routing Protocol
(IGRP) [15]: f* = L+ £, where k
is a positive constant, L and D are
the path length and capacity, respec-
tively. Otherwise, a logical distance
can be a tuple consisting of multi-
ple routing metrics. For example for
widest shortest-path (WSP) routing,
a path with the shortest distance
(e.g., hops) is preferred, and if mul-
tiple such shortest paths exist, the
one with the maximal bandwidth is
preferred. The fP for WSP is then
defined by (X Dy, min(B,,)), in
which D, , and B, , are the distance
and bandwidth of each comprising
link /,, ,, along the path. As a result, to
compare the precedence between two
paths, only bandwidth or distance
is not enough. Tuple < D, B > has
to be used as the logical distance for
each path (D and B are distance and
bandwidth, respectively), and path
p with logical distance <D1, B1> is
better than path ¢ with <D2, B2>,

only if

D1 < D2V (D1 =D2A Bl > B2)
(2)

Similarly, in least-cost shortest-path

routing (LCSP), tuple < D,C > is
used as the logical distance for each
path, in which D is the distance and
C is the cost. Function f? is defined
by (3 Dy, Y Cu,) over all compris-
ing link [, , of a path. Path p with
< D1,C1> is preferred over path ¢
with <D2,C2>, only if

D1< D2V (D1 =D2AC1<C2)
(3)

By extrapolating the real-number
metrics used in conventional best-
effort routing to logical distances, it
is handy to compute optimal paths
in the context of QoS routing, pro-
vided that a total order properly
exists amongst the logical distances
defined by the optimization function
f? being used.

4 Distributed Multi-Constrained

Routing (DMR) Protocol
4.1 Principles of Operation

Let LD;'- denote the logical distance
from node ¢ to destination 7 as known
by node 3. LD;k denotes the logical
distance LD;-c from node k, which is
a neighbor of node 7, to destination
7, as reported to node 7 by node k.
F LD; denotes the feasible logical dis-
tance (FLD) of node i for destination
7, which is an estimate of the min-
imal logical distance maintained for
destination j by node :.



A node 7 that runs DMR maintains a
routing entry for each destination j,
which includes F' LD;, LD;- and the
successor set chosen for j (denoted by
S;) . Node ¢ maintains a neighbor ta-
ble that records the logical distance
LD}, reported by each node k in its
neighbor set N* for each destination
j; and a link table that reflects the
link state w(i, k) for each adjacent
link li,ka k € N

Given that each node must run DMR
for each destination, we focus on
the operation of node i’s compu-
tation of the set of non-dominated
paths for a destination j. Provided
that each node maintains up to x
non-dominated path for destination
j, node ¢ may receive and record x
values of LD, from each neighbor
k; node 7 also reports to its neigh-
bors the logical distances of the z
non-dominated paths from itself to
destination 7, of which the minimal
value is also used as the feasible log-
ical distance F' LD;- of node 7. For
destination j we have LD; = 0,
FLD} =0, and LD}, = 0,Vk € N7,
where 0 is the zero as defined by fP.
When a node is powered up, F'LD is
set to 6o, the infinity as defined by
fP, and all the other entries are set
to empty. We also assume that node
© knows the state of each outgoing
link w(i, k), k € N°.

When node 7 receives an input event
at time ¢, node 7 behaves in one of
three possible ways:

(1) Node ¢ remains idle and all dis-
tance estimates are left unchanged

(2) Node i receives LD} from neigh-
bor k, updates the estimates LD;-,C

and leaves all other estimates un-
changed

(3) Node i updates S}(t) and FLD}(t)
for destination j based on the follow-
ing equation

Si(t) = {k|LD(t) < FLD}(t), k € N'}
(4)

and updates its feasible logical dis-
tance as follows

FLD’(t) = min (LD}, () @ ld(i, k)(t))
(5)

for all LD¥ reported by each neigh-
bor k and over all neighbors in N°.

In Egs. (4) and (5), Id(4, k) is the log-
ical distance of the adjacent link /; ,
and @ is the binary operator defined
by fP, which is used to combine two
paths (or links) and compute the log-
ical distance of the resulting compos-
ite path.

In addition, node i refreshes the log-
ical distance of each non-dominated
path maintained for j (up to x non-
dominated paths), and sends neigh-
bors updates if any change occurs;
otherwise, it leaves all other esti-
mates unchanged.

4.2 Loop-freedom in DMR

Loop-freedom is well understood in
the context of shortest-path rout-
ing (e.g., [17-19]), and in DMR we
extrapolate the inherent ordering of
loop-free shortest-path routing to
the case of logical distances.

A set of logical distances D is total-
ordered w.r.t. < if the following four



properties are satisfied: (1) < is re-
flexive, ie., a < a,Va € D; (2) <
is anti-symmetric, i.e., if @ < b and
b < a, then a = b; (3) < is transitive,
ie.,ifa < band b < ¢, then a < ¢
and (4) for Va, b € D, either a < b or
b < a. a < bdenotes that a < b while

a # b.

For example for WSP, if LD(p)
and LD(q) are the logical dis-
tances of two paths p and ¢, respec-
tively, then LD(p) < LD(q) only if
DP < DUV (DP = DI A BP > BY);
for LCSP, LD(p) < LD(q) only if
DP < DIV (DP = DIACP < C9).

When only a single additive metric
is considered, < and < reduce to the
normal < and <; and Eq. (4) reduces
to the source node condition (SNC)
in [17], which considers path dis-
tances in positive real numbers only,
on which the total order < and < are
always well defined. The proof that
using Eq. (4) to change successor
sets cannot lead to loops is presented
elsewhere [20] in the context of se-
lecting an z-optimal path set, and is
omitted here for brevity.

4.3 Routing optimization

The aggregate of the routing entries
for destination j maintained at each
node forms a directed graph rooted
at 7, which is a subgraph of network
G and denoted by SG; that includes
links {l;x|k € S} for Vi € V'}. If rout-
ing converges correctly, SG; is a di-
rected acyclic graph (DAG) in which
each node can have multiple succes-
sors for node j.

Although multiple SG; can exist for
the destination j, to achieve rout-
ing optimization in constrained path
computation, DMR constructs SG;
in a way that the path with short-
est logical distance for destination
j is always maintained (by Eq. (4)
and (5)), and as such makes SG; an
optimal successor graph w.r.t. the
given optimization metric. The mul-
tiple paths computed between node
1 and destination j are called the log-
tcal shortest multipath, denoted by
LSM ;, and is such that at least one
of the paths in it has the minimal
logical distance for j.

Like the distributed Bellman-Ford
(DBF) algorithm [16], DMR com-
municates logical distances only
amongst neighboring nodes, and
therefore avoids expensive routing
overhead caused by disseminating
link-state information throughout
the network. However, major differ-
ences exist between DMR and DBF.
First, DMR can optimize the rout-
ing as defined by an abstract opti-
mization function f?, as well as the
simple metrics used in best-effort
routing. Second, DMR maintains z
non-dominated paths for each desti-
nation, and therefore is also able to
support multi-constrained path se-
lection. Lastly, DMR is a loop-free
QoS routing protocol due to the use
of Egs. (4) and (5).

4.4 Handling Network Dynamics

Even though Egs. (4) and (5) guaran-
tee loop-free non-dominated paths,
it may be the case that node 7 is un-



able to find a neighbor £ that has
reported a logical distance that is
smaller than the feasible logical dis-
tance (FLD}) maintained at node
1. When this occurs, node 7 must
increase FLD;- in order to choose a
new set of successors, but in a way
that all nodes whose LSMs for j in-
volve node ¢ have incorporated that
update in their own computations of
logical distances and feasible logical
distance.

DMR uses diffusing computations to
accomplish the above task by coor-
dinating node 7 with all upstream
nodes that use node 7 in their LSMs
for destination j. Accordingly, nodes
running DMR can be in two states:
ACTIVE or PASSIVE. A node 1 is
in passive state if its successor set
S} given by Eq. (4) includes nodes
that can provide the optimal path
with the shortest logical distance for
j, i.e., the multiple paths between
nodes ¢ and j form an LSM. Nodes
in passive state behave much like
DBF, i.e., they simply use Eq. (5) to
compute the shortest logical distance
for destination j, without having to
establish any coordination with their
neighbors.

Node 7 becomes active when none of
its neighboring nodes in S} can pro-
vide the optimal path for destination
j. At this point, node ¢ must syn-
chronize with its upstream nodes be-
fore it is allowed to increase its log-
ical feasible distance in order to ob-
tain a new set of successors. To be-
come active, node ¢ originates a dif-
fusing computation by sending each
neighbor a QUERY that reports the
desired logical distance for destina-

tion j. Node ¢ detects the termination
of this diffusing computation when
it has received a REPLY from each
neighboring node. After that, node
1 can be sure that all the upstream
nodes using ¢ for destination j either
are no longer in the successor graph
SGj, or have incorporated the new
logical distance that node 7 reported
in its query, and as such is free to raise
its feasible logical distance to the de-
sired value.

Node ¢ returns to passive state if at
least one of the newly obtained suc-
cessors (by Eq. (4) ) provides the
shortest logical distance for destina-
tion j; otherwise, node 7 immediately
starts another diffusing computation
by sending out new queries and con-
tinues to stay in active state. The
mechanism used by DMR ensures
that node ¢ can return to passive
state after a finite number of active
phases. After becoming passive, node
1 sends each neighboring node an
UPDATE to announce the changes
that occur to its routing table, if
there is any. For further details of
diffusing computations, readers may
refer to [17].

4.5 Path-Weight Propagation and
Deduction

For each non-dominated path p com-
puted for destination j, besides the
logical distance, its raw path weight
wP must also be maintained, because
we need wP to verify whether p can
be a feasible path when a request to
forward traffic arrives. DMR exploits
the same routing messages used for



the exchange of logical distances to
track wP, and as such incurs no more
communication overhead.

Given that C constraints are be-
ing considered, the distance vec-

tor reporting a path p for desti-
nation j by node k is a tuple of

{7, LDf,pwf}, in which LD;-C and
pwf = {pwk(1), ...pwk(m)...pwk(C)}
are the logical distance and the asso-
ciated path weight for p, respectively.
Provided that pw}(m) = 0 for an ad-
ditive metric and pwj(m) = oo for a
minimal metric, then after receiving

the distance vector from neighbor
k via adjacent link /;;, whose link
weight is w(i, k) = {wy, ...wp, ...wc},
node ¢ can compute the correspond-
ing path weight for j by

_ pw}“(m) + Wm add. metric

w?(m) =
pwj(m) {mm (pw;f’(m),wm) min. metric

(6)
where m = 1,2...C.

Assume that the minimal logical dis-
tance reported by neighbor & for des-
tination j at node i is LD}, and that
the current feasible logical distance
for j at node 7 is FLD;-. According to
Eq. (4), path [; xop (operator o is used
to concatenate two paths or links) is
now considered as a candidate path
for j if

LD} < FLD} (i.e., ke S (7)

Path [;;, o p can be upgraded to a
non-dominated path either if not be-
ing dominated by any path currently
maintained for j, or by removing ex-
isting paths that can be dominated

by li,k op.

10

4.6 Erample

Figure 2 demonstrates how nodes
that run DMR exploit distance vec-
tors to deduce their non-dominated
path sets for the destination j with-
out knowing global network state.

In Figure 2 (a), solid arrows mark the
logical shortest multipath (LSMj)
from node 7 to 7, in which each node
is labeled with (LD, FLD), i.e., its
shortest logical distance and feasi-
ble logical distance for j; and each
link is labeled with the associated
logical distance as calculated by a
given f? (for simplicity, we assume
that the logical distances used in
this example are positive real num-
bers and operator @ is the simple
addition operator +). According to
S;- = {n|LD;n < FLD;,n € N}
(Eq. (4)), nodes 7, a and e can have
multiple feasible successors that can
be used to forward traffic for 7, and
the neighbors which provide the
shortest logical distances for destina-
tion j are included in the successor
sets S;, S and S%, respectively.

Figure 2 (b), Figure 2 (c) and Fig-
ure 2 (d) show how non-dominated
paths can be deduced based on mech-
anisms introduced in Sec. 4.5, at
nodes that are two hops, three hops
and four hops away from j. Nodes
are labeled with the non-dominated
paths p(C, D) that they compute for
7, and links are labeled with their
link weights that consist of two addi-
tive metrics (C, D), where C' and D
are the cost and delay, respectively.
Solid arrows indicate the directions
to which distance vectors are propa-



(a) Compute logical shortest multipath LSM ;

P(2.2)

p,(5:3)
(c) Compute non - dominated paths at a and d

P(48) ™ p,(65)
R(7.6) N\~

(d) Compute non - dominated paths at i

Fig. 2. Operation illustration, two additive metrics

gated upstream the logical shortest
multipath LSM} towards i. To be
clear, each non-dominated path com-
puted by DMR is also highlighted by
a dash-dot arrow.

At node e, two paths (¢, j) and
(f,7) are reported from neighbor ¢
and f, respectively, and both have
the path weight (1,1). By applying
Eq. (6), e obtains two paths for j:
(6, Caj) = (35 5) and (eaf,j) = (553)'
Because neither dominates another,
node e keeps both as the non-
dominated paths for j, and reports
them to its upstream neighbors a, d in
the logical shortest multipath LS M ;,
as shown in Figure 2 (b). Nodes a and
d behave similarly after receiving the
paths reported by their successors,
and derive two non-dominated paths
for 7 accordingly. Though node a
receives four paths (one from each
of k and b, and two from e), path
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(a,b,c,7) = (8,6) is dominated by
path (a,e, f,j) = (6,5), and path
(a,e,c,j) = (4,7) is dominated by

path (a,k,c,j) = (3,7), as such are
not inserted into the non-dominated
path set of node a, as depicted by Fig-
ure 2 (c). Because Eq. (4) is not sat-
isfied, path (k, ¢, p, j) cannot be used
by node k for destination j, though
its weight (1.5, 3) is not dominated
by another path (k,¢,j) = (2,2), as
shown by Figure 2 (b).

Node 7 finally can have four non-
dominated paths for destination
j, as depicted in Figure 2 (d):
(iaa;k,c,j) = (458)a (i,a,e,f,j)
(7,6), (i,d,e,c,j) (6,7) and
(i,d,e, f,7) = (8,5). Note that the
number of paths maintained by node
7 is more than the number of succes-
sors maintained in S; This cannot
be achieved by using prior distance-
vector based multipath routing pro-



tocols such as DASM [19] and MDVA
[18], and is accomplished by DMR
without knowing complete network
topology.

4.7 Optimization Function fP

In practice, the choice of f? is policy-
oriented or application-oriented, be-
cause there does not exist an abso-
lutely better or best routing opti-
mization metric for a given network.
Therefore, the strategy adopted by
DMR is to specify the properties
that an optimization function must
have, instead of specifying a specific
fP. The advantage of this approach
is that, diversified routing optimiza-
tion policies can be defined and im-
plemented, and the convergence of
DMR is also ensured simultaneously
if fP is properly selected.

More specifically, as long as the f?
being used is both monotone and
isotone! | within finite time after the
last link-state change occurs in the
network, DMR converges correctly,
and maintains the optimal path for
each destination. The specification
and correctness proof of DMR are
presented in Appendices A, B.

The reason that f? must be mono-
tone and isotone for DMR to con-
verge correctly is that, unlike the

1 Monotone means that the logical dis-
tance of a path cannot decrease when
the path is extended, and isotone means
that the order < between two paths
must be preserved when they are pre-
fixed or suffixed by a common third
path. Readers can refer to [8] for details.
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metrics used in best-effort rout-
ing, QoS routing often requires that
the paths for a destination be opti-
mized w.r.t. an abstract function f?,
for which the sub-optimal structure
property does not always hold. Sub-
optimal structure means that any
subpath of a shortest path between
source and destination is also the
shortest between the two end nodes
of this subpath. Consequently, the
total order relation < between two
paths may not be preserved after
extending them by a third common
path. This can be illustrated by the
examples depicted in Figure 3. We
assume that nodes used in our discus-
sion run a DBF-like distance-vector
protocol.

Unlike WSP, shortest-widest path
(SWP) routing attempts to find the
path having the maximal bandwidth,
and the one with shortest distance
is selected if multiple such paths are
found with the same bandwidth. It
is easy to verify that isotone is not
true in SWP. In Figure 3 (a), links
are labeled with (B,D) where B is
the bandwidth and D is the dis-
tance (in hops), respectively. Node 1
chooses node 2 as the successor for
destination j because path (1,2,7)
offers more bandwidth (5M) than
path (1,7) (2M); node S has no other
choice but node 1 as the successor for
destination j. As a result, when each
node selects its successor distribu-
tively, the path formed from S to j is
(S,1,2,j) =< 2M,3 >, which is not
optimal because path (s,1,j) =<
2M,2> and <2M,2><<2M,3>.

Figure 3 (b) is an example in which
the monotone property does not



Fig. 3. Counter examples — when iso-
tonicity or monotonicity fail

hold. Assume that link /; o and Iy,
have negative cost -1, and the f?
used is simple addition ) lc; where
lc; is the cost of every intermediate
link in the path. It is easy to see that
the paths for destination j at nodes
1 and 2 can oscillate and never con-
verge. In this simple scenario, the
result is obvious, because DBF can-
not converge if the topology contains
negative cycles [21]. More optimiza-
tion functions can be found in [4,8].

5 Complexity Analysis

At node 7, provided that up to z non-
dominated paths are maintained for
each destination, the space complex-
ity is O(z| N*|N+zN) = O(z|N*|N),
where |N?| is the number of neigh-
bors of node 7, because the main
routing table and each neighbor ta-
ble have O(N) entries, and each en-
try can keep up to z routes for each
destination. In practice, the num-
ber of non-dominated paths between
source and destination can be expo-
nential [12]. Though Yuan [12] shows
that O(N?1g(N)) non-dominated
paths need to be maintained to have
high probability of finding feasible
paths, simulations show that DMR
can achieve a satisfactory success ra-
tio for MCP by maintaining a small
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number of non-dominated paths.
The computation complexity is the
time taken for a node to process dis-
tance vectors regarding a particular
destination, and it is easy to see that
it is O(z|N?|). When only the sin-
gle shortest path is maintained, then
the space and computation complex-
ity reduce to O(|N*|N) and O(|N?)),
respectively, which are the same as
that of DBF [16].

The time complexity of DMR is
the time it takes to converge af-
ter a single change in the network,
and the communication complexity
is the amount of messages required
to propagate this change before all
nodes that run DMR integrate it
and update their routing tables ac-
cordingly. In practice, however, the
timing and range of link changes oc-
cur in complex patterns for which
closed form expressions are difficult
to obtain. Section 6.1 simulates the
time and communication complexity
of DMR by comparing with typical
distance-vector and link-state rout-
ing protocols widely used in Internet.

6 Simulation

We implemented DMR in NS2 net-
work simulator [22]. Three types of
topologies are used: ANSNET, Pure-
random graph and Warman graph.
ANSNET is widely used by Chen and
Nahrstedt [11] and other researchers
to study QoS routing algorithms. In
Pure-random graphs, the existence of
the link between any two nodes is
determined by a constant probabil-
ity {p-] 0 < p» < 1}, while in Wax-



man graphs, p, is defined by p, =
aeiBiL,O < a, 8 < 1, where d is the
distance between two nodes and L is
the maximal internodal distance in
the graph, such that geographical lo-
cation is also accounted for.

For all configurations, each link
weight component is uniformly
distributed in [10,20], except for
ANSNET with two constraints, in
which the first component is uni-
formly distributed within (0, 50],
while the second is within (0,200]!.
Each source-destination pair is ran-
domly chosen from the networks, and
all results presented here are aver-
aged over 5000 randomly generated
routing requests, for different ranges
of routing constraints. Routing met-
rics being considered are additive
unless specified otherwise, because
most algorithms proposed for MCP,
and those being used to compare
with DMR in our simulations, only
address additive constraints. The f?
used by DMR is a linear combina-
tion that considers each link-weight
component equally, which is defined
by fP =¥ aw;, a = 1/k, if there are
k constraints. It is easy to verify that
this function is both monotone and
isotone.

6.1 Routing Complexity

We compare DMR with the distance-
vector (DV) routing protocol based
on DBF [16], and the link-state (LS)

1 The purpose of such configuration is
to compare with existing simulation re-
sults of MCP algorithms, e.g. in [23].
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routing protocol based on Dijkstra’s
algorithm (using ANSNET). Both
DV and LS used in the simulation
are the original implementations in
NS2 and with all the pre-configured
parameters unchanged. The types of
input events studied are: (1) rout-
ing establishment (i.e., establishing
routes for all destinations at each
node for the first time since nodes
are powered on), (2) single link fail-
ure, (3) single node failure, and (4)
a sequence of link failures. We only
simulate link or node failure because
they are the extreme situations that
may cause logical distances to in-
crease or network partitions, which
are the worst case for schemes based
on distance vectors.

For each protocol, we record the
operation count(OC), which is the
iterations of the main loops in its
implementation (sum over all nodes
in the network); the message count
(MC), which is the total number of
messages propagated over all links
(both operation count and message
count are measured since the start
of the simulation until all nodes stop
updating their routing tables); and
the convergence time (CT), which is
the time since the start of an event
until all nodes stop updating their
routing tables. For a single link or
node failure, multiple nodes and links
are randomly chosen; and for a se-
quence of link failures, multiple links
are randomly selected to go down
at different simulation time instants.
Table 1 presents results for routing
establishment, single link and single
node failure, and Table 2 presents the
result when a sequence of links fail.
For each evaluation metric, we show



Table 1

Complexity comparison — single event, ANSNET

Route establishment
DMR | DV | 1s
CT || 128411 (ms) 192443 (ms) 52345 (ms)
MC 6029+466 1690+22 4945414
OoC 6645415532 52691+1501 46331£165
Link failure
DMR DV LS
CT 90146 (ms) 50+8 (ms) 61+5 (ms)
MC 6070£499 18204131 529545
oC 667121+5318 5584012411 55204437
Node failure
DMR ‘ DV ‘ LS
CT || 192425 (ms) 32943 (ms) 6216 (ms)
MC 6341+323 2772844266 5293+5
ocC 6944313649 2210758+329170 54951484

both the mean and the standard de-
viation of the collected samples.

For route establishment, DMR has
the best CT and similar OC com-
pared to LS and DV. DMR sends
more updating messages than LS or
DV does (though they are still in
the same order) because in the cur-
rent implementation of DMR, each
message contains only one distance
vector. The communication overhead
of DMR can be further reduced by
allowing multiple vectors in each up-
dating message. .S takes the longest
time to stop updating routing tables
because nodes that run LS need to
conduct the Dijkstra’s algorithm on
the whole topology for every newly
received link-state update, while
nodes that run DMR or DV only up-
date routing entries for the destina-
tion being reported by each message.
DMR and DV behave similarly in the
case of a single link failure, because
the degree of ANSNET is more than
one, and no network partition occurs
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when only one link fails. However,
due to the counting-to-infinity prob-
lem, DV incurs a large number of
steps when a single node fails. This
is the reason why the MC and OC
of DV are one or two orders of mag-
nitude more than that of DMR and
LS. Though the DV in NS2 uses a
heuristic - split horizon plus reverse
poison to work against routing loops,
they cannot handle routing loops

properly.

For a sequence of link failures, if
links are chosen such that a node
loses all its adjacent links at some
point, DV again behaves poorly due
to counting-to-infinity; otherwise, its
performance is comparable to DMR
and LS. This is the reason why the
standard deviations of DV’s MC and
OC are high. Because the last link
failure may not be the cause for a
node to loose all its adjacent links,
the CT of DV on average can be
less than that of DMR and LS. We
observe that the MC, OC and CT



Table 2

Complexity comparison — multiple events, ANSNET

A sequence of link failures
DMR DV LS

cT 104483 ms 92436 ms 106430 ms

MC | 7553+764 53670£44038 8347+32

OC || 818948043 | 3993506:3022200 | 911984202
of LS start exceeding that of DMR. amiegn i 5 S
This is intuitive because more link- 0_98,“,‘*;\ 7=::*:735,fjﬂ=8===,==¢-=ﬁ=:;;:-é=-§‘,2t
state updates need to be sent out to 0061 AT .L\ ST
keep nodes updated about the cur- & .,/ e . ___*____,,—""4
rent network state, and the routing ¢ . S
tables also need to be refreshed more % MEae e e
frequently in order to cope with the § oeal 2N ;\ """ L
latest changes. The more link failures oeol |5 iRt &
occur, the worse LS performs. This — 11< BURS| el e’
further proves that having timely - DVR-9 LR o

0.8

global network state at each node
is not a good approach in practice,
especially when the network state
changes often, which usually is the
case in QoS routing.

The above results clearly show that
DMR can provide differentiated QoS
provisioning with better or compara-
ble routing complexity than shortest-
path routing protocols designed for
best-effort traffic only.

6.2 Routing Success Ratio of Con-
strained Path Computation

We compare DMR against central-
i1zed algorithms that require complete
network-state information, and show
that DMR attains similar or bet-
ter performance than them. Three
evaluation metrics are presented:
success ratio (SR), existence per-
centage (EP) and competitive ratio
(CR), which are first introduced by
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Fig. 4. ANSNET, three additive con-
straints

Yuan [12], and defined as follows

routing requests being routed

SR = -
total routing requests
(8)
Ep— requests routed by exact alg.
N total routing requests
(9)
CR — requests routed by heuristic alg.

requests routed by exact alg.
(10)

E'P equals the SR of an exact algo-

rithm, and indicates how difficult it
may be to find a feasible path that
meets the given request (a small EP
means that it is hard to find a feasible
path for the given constraints); CR
indicates how well a heuristic algo-
rithm can work in comparison to the
exact algorithm with the same E'P.



Table 3

SR comparison, each constraint is uniformly distributed ~ [z, z2], ANSNET (32

nodes 54 links)

Exact | DMR | EDFS | JSP | KKT
c1~[50,65],ca ~[200,260] | 0.2476 | 0.2476 | 0.2476 | 0.2442 | 0.2476
¢1~[75,90],c2 ~[300,360] | 0.4846 | 0.4790 | 0.4836 | 0.4632 | 0.4838
c1 ~[100,115], c2 ~[400,460] | 0.7050 | 0.6974 | 0.6918 | 0.6776 | 0.6992
c1 ~[125,140], c2 ~[500,560] | 0.9026 | 0.8942 | 0.8892 | 0.8718 | 0.8952
c1 ~[150,165], c2 ~[600,660] | 0.9740 | 0.9714 | 0.9564 | 0.9524 | 0.9740
Table 4
SR comparison, Pure-random graph (39 nodes 75 links)
Exact | DMR | EDFS | JSP | KKT
c1,c2~[10,20] | 0.1254 | 0.1254 | 0.1254 | 0.1230 | 0.1254
c1,c2~[20,30] | 0.4530 | 0.4442 | 0.4502 | 0.4242 | 0.4488
c1,c2~[30,40] | 0.6378 | 0.6282 | 0.6314 | 0.5920 | 0.6236
c1,ca~[40,50] | 0.9120 | 0.9056 | 0.8974 | 0.8830 | 0.9088
c1,c2~[50,60] | 0.9962 | 0.9942 | 0.9898 | 0.9908 | 0.9956
Table 5
SR comparison, Waxman graph (40 nodes 95 links)
Exact | DMR | EDFS | JSP | KKT
c1,c2~[10,20] | 0.1826 | 0.1806 | 0.1822 | 0.1752 | 0.1812
c1,c2~[20,30] | 0.5046 | 0.4976 | 0.5042 | 0.4798 | 0.4986
c1,c2~[30,40] | 0.8542 | 0.8470 | 0.8470 | 0.8168 | 0.8448
c1,c2~[40,50] | 0.9956 | 0.9944 | 0.9928 | 0.9812 | 0.9906

Figure 4 illustrates how the perfor-
mance of DMR varies with the size
of the non-dominated path set (i.e.,
the parameter z) maintained for
each destination, using ANSNET as
the topology. We observed that (1) a
satisfying SR can be achieved when
each node maintains a small size of
non-dominated paths, because five
non-dominated paths is sufficient to
achieve SRs no less than 98%, for
all ranges of constraints (EP ranges
from 0.23 to 0.99); and (2) the CR
of DMR approaches to a saturation
level and cannot be improved much
by increasing the value of z (the
curves of routing with five, seven and
nine non-dominated paths are al-
most overlapped). The main reason
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is that, satisfying Eq. (4) can also
exclude some feasible paths because
of the fP being used (see Figure 2
for an example). In what follows, the
size of non-dominated path set is set
to x = 5, unless specified otherwise.

Tables 3, 4 and 5 present SR compar-
isons of routing with two constraints
amongst EDFS [7], KKT (Korkmaz,
Krunz and Tragoudas [23]) and JSP
(a variation of Jaffe’s algorithm [10]:
Dijkstra’s shortest path algorithm

w.r.t. the aggregated link-cost func-
tion w(u,v) = [wlww) | walwo))

; c1, 2 U
where ¢; is the constraint on metric
w;), using ANSNET, Pure-random
and Waxman graphs, respectively.

As the baseline, we also implement




an exact algorithm, which has expo-
nential running time, but can give
all feasible paths, if there is any.

We observe that JSP lags behind all
the other algorithms in all scenarios,
which further confirms that paths
optimized w.r.t. a single aggregated
metric may not be a good approach
for constrained path computation.
EDFS outperforms DMR and other
algorithms when the constraints are
tight, and performs worse when the
constraints are moderate and loose,
for which EDFS has to iterate over
more exploring sequences to achieve
a better SR. Though both KKT and
DMR perform consistently and sim-
ilarly well, DMR solves general k-
constrained MCP problems (for both
additive and minimal constraints),
while KK'T only deals with two addi-
tive constraints and its running time
is unpredictable when constraints
become tight [7].

7 Conclusion

DMR is a distributed QoS routing
protocol that uses distance vectors to
solve MCP problems without global
network state, guarantees loop free-
dom at any instant and last but not
last, considers routing optimization
as well as constrained path compu-
tation. Simulations show that DMR
outperforms the shortest-path rout-
ing protocols used in today’s In-
ternet, in terms of communication
overhead and running complexity;
also achieves a satisfactory routing
success ratio in comparison with
other popular centralized MCP algo-

18

rithms.

A Specification of DMR

Notation:
j: a particular destination j € V'

lc}'c: the logical cost of the adjacent link I; ; € L;
it equals to co for a non-existent or failed link

Ni: the set of neighbors connected through an
operational link with node 4, i.e., N* = {k[l; ; €
L, # %}

SJ’:: the successor set chosen by node ¢ for j, and
S{CN*

QS?: the set of neighbors for which a query has
been received but a reply has not been sent

statet: the state of node i for j, is either ACTIVE
or PASSIVE

LD;'.: the logical distance for j as known by node ¢

iPSet! the non-dominated path set for j main-
tained7 by node 1

SLD:: the shortest LD for j through S}

RLD?: the logical distance for j that node i re-
ports to all its neighbors

FLD:: the feasible logical distance used by node i
to evaluate whether 0-LFC can be satisfied when
choosing S]?

Lﬁ; &: the minimal logical distance from neighbor
k to j as known by ¢

iPSetj. & the non-dominated path set from neigh-
bor k to j as known by %

r;'.k: this flag is true if node 7 has sent a query
for j to neighbor k& but has not received a reply
from k, and false otherwise

p = p! ® p? means that path p is formed by
concatenating another two paths p! and p?;
iPSet < tPSet W p means that path p is inserted
into the non-dominated path set iPSet if p is
not dominated by any existing path in iPSet



For each destination j, node ¢ maintains a rout-

ing table that contains LD}, Si, iPSet!, FLD}, 9:
RLD;, QS}:, state§ and SLD;:; a distance table 10:
that contains LD%,,Vk € Ni; a link table that 11:
igcludes lc}'c,Vk € N and iPSet;'.,k; and a flag 12:
r;. i for each outstanding query for j. 13:
Pseudo-code at node i: 14:
15:
. . 16:
1: procedure INITIALIZE_NODE(j)
2: L,D;' g & 00 17:
3: T;-k <« false 18:
4: LD} o0 > except LD} <—(:) 19:
5: SLD} « oo > except SLD? « 0
6: FLD;'. — 00 > except FLDE < 0 %?
T RLD} « oo > except RLD} + 0 22'
8: S;: — ¢ > except S? = {i} 23:
9: QSi ¢ 9 4:
10: state! < PASSIVE 25:
11: for each n € N* do 26:
12: send {UPDATE,3,0,<null>,i} to
n
13: end for 27:
14: end procedure 28:
29:
30:
1: procedure UPDATE_SUCCESSOR-SET(3) 31
2: S% < {n|LD}, < FLD}[n € N'} > 39.
o-LFC ~
3: for each s € S]’. do ' 33:
4: for each p € iPSet!  do 34
ot p< p®lis > path deduction 35:
6: iPSet; — iPSet;- ¥ p > consider
multiple non-dominated 36:
paths
7 end for
8: end for o ] ]
9: SLD} « min{LD}, ®lci|s € St} > gg
SLD;'J—o‘oifS]’::qﬁ :
10: wSLD;] < the path weight associated with SLD;‘.
11: for each n € N* A néS]’: do 39:
12: z'PSetj.n.clear() > avoid stale path 40:
information 41:
13: end for
14: end procedure 42:
1: procedure PROCESS_VECTOR(mt, k, rld, < 43:
di wP>, j)
2: if 7 =14 then .
3: if mt = QUERY then 44:
4: send {REPLY,i,0,<null>,j}
to k 45
5: else
6: return 46:
T end if
8: end if 47:
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if mt = REPLY then
r;.k <« false
end if
iPSetj. e < iPSeté g ¥p > p=<dfwP>
LDiy «rid
update_successor_set(j)

LD « min{LD:_ @&Ici|n e N} >
Jn !
Bellman-Ford equation

wLD;-_ < the path weight associated with LDJZ'.

if state;'. = PASSIVE then > in passive
if LDt < SLDiVSi = ¢ then St
J J"J . J
does not provide optimal path
state; <« ACTIVE b become
active
if mt = QUERY then
QS;: — QS;: Uk
end if )
RLDJ‘. «— SLD;
for each n € Nt do
r]?n «— true '
send {QUERY,i, RLD;- , <
SLD;awSLD; >’j} to
n
end for
else ] > stay in passive
state; < PASSIVE
FLD: « min{LD;.,RLD;.} >
LD may decrease
update_successor_set(j)
flag < (RLD; # LD;-) ? true :
false
RLD; — LD;.
for each n € N* do
if n = kAmt = QUERY
then

send {REPLY,ji, RLD;’., <

LD‘;:'awLD;: >’.7}
ton
else if flag = true then

send {U PDATE,i,RLD},<

LD;.,wLDg >,5}
ton !
end if
end for
end if

else if state§ = ACTIVE A r;.n =
false,¥n € N* then
replies
FLD} < min{LD}, RLD}} > FLD
can increase only at the end of
an active phase
update_successor_set(j)

> receive all

if (LD} < SLD})V(Si = ¢ ARDj <
%) then
state;'. « ACTIVE
new active phase
if mt = QUERY then

> start a



48: QS < QSiUk
49: end if
50: RLD} + SLD}
51: for eaph n € N* do
52: rjn < true
53: send {QUERY, i, RLD}, <
SLD;7wSLD;'.>7j} to
n
54: end for
55: else )
56: state;- <~ PASSIVE b return
to passive' )
57: flag « (RLD} # LD}) ? true :
false ]
58: RLD} « LD}
59: for each n € Nl do
60: ifneQSivin=kAmt=
QUERY) then ,
61: send {REPLY, i, RLD}, <
LD‘;ZwaDj >’.]}
ton
62: else if flag = true then
63: send {UPDATE,i,RLD} <
LD;"wLDj >,5}
ton
64: end if
65: enc! for
66: QS ¢
67: end if
68: else > in active
69: if mt = QUERY then
70: if k € SIARLD? < SLD} then
71: QSi + QSi Uk
72: else ]
73: send {REPLY,i, RLD},<
LD;.,wLD;;>,j} to k
74: end if
75: end if
76: end if
77: end procedure

B Correctness Proof of DMR

A routing protocol is correct if the
following two properties are satisfied:
(1)(Safeness) the paths computed
for each destination are loop-free at
any time instant; (2) (Liveness) fi-
nite time after a sequence of network
changes, the shortest distance for
each destination maintained by each
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node converges to the correct value.

From the description in Sect. 4, it
is clear that DMR consists of two
mutually exclusive states: PASSIVE
or ACTIVE. In passive state, DMR
behaves much like DBF and uses
the Bellman-Ford equation to com-
pute the shortest logical distance for
each known destination in the net-
work; and nodes stay in passive as
long as the logical distance to des-
tination remains unchanged or de-
creases. Therefore, the proof of the
correctness of DBF [16] also applies
to DMR in passive state (if p? is both
monotone and isotone, see Lemma
B.4). However, DMR behaves dif-
ferently when the logical distance
to destination increases, for which
nodes send out queries and transit
into active state. In active state, a
node that runs DMR synchronizes
with upstream nodes and raises its
feasible logical distance up to a suf-
ficient value such that another set
of successors can be obtained. After
that, DMR returns to passive state
and again uses Bellman-Ford equa-
tion to computed shortest logical
distance for each destination.

Base on the observations above, to
prove the correctness of DMR re-
quires showing that (a) every non-
dominated path maintained for each
destination j is loop-free at any time
t (b) the time for a node to stay in
active state is finite (c) finite time
after a sequence of network changes,
each node 7 that runs DMR has at
least one successor which can provide
the shortest logical distance for each
destination j if the network is con-
nected, and no successor otherwise.



Theorem B.1 (Safety  property)
each path p € iPSeté- computed by
DMR is loop-free at any time t.

Proof Clearly, if FLD;.c =< RLD;?,
provided that LE;k is properly up-
dated at node 4, we have FLD¥ <
LD}, < FLD? if i chooses k as suc-
cessor for j according to o-LFC; i.e.,
S} = {k|LD}, < FLD}}. As aresult,
inequality FLD¥ < FLD} holds at
every intermediate node in any path
from ¢ to j, which is loop-free simply
because the strictly decreasing order
of FLD. Therefore, when o-LFC is
used to decide successor set S]i-, loop-
freedom can be ensured as long as the
feasible logical distance of a node ¢
is never set to a value larger than its
logical distance for destination j as
known by every neighbor k € N, i.e.,
F LD; =< LD;-c in every PASSIVE

7

and ACTIVE phase.

Let us assume that at time £, node ¢
transits from PASSIVE to ACTIVE
for destination j, then the proof is by
induction on t,. Let LD;(t) denotes
the minimal logical distance being re-
ported to aneighbor k¥ € N* by node i
at time ¢. Initially, all logical distance
value are set to co, hence FLD}(0) =<

LE?Z(O) Now assume that o-LFC is
true until time %,,, then we have

i k
FLD;(t) X LDj;,t € [0,t,)

(B.1)

At any time ¢, by the line 9 of
update_successor() and the line
15 of process_vector(), we have
LDi(t) = SLDi(t); by the line 23,
33, 50 and 58 of process_vector(),
we have SLD’(t) < RLD}(t); by the
line 30, 43 of process_vector(), we
also have F'D}(t) < LD}(t). There-
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fore, it is always true that

FLD}(t) < RLD(t), for Vt
(B.2)

Hence at time t,,, it follows that

FLDj(t,) X RLD}(t,) (B.3)
Now node 7 becomes ACTIVE at t,
by sending queries out and a neigh-
bor k € N* _receives a query at time
ty > ty,if LDY, is always updated cor-
rectly at node k (this is the assump-
tion on operational links, see Sect. 3),
from (B.2), we have

FLDi(t) < LD%(t),t € [tn, t1)
(B.4)

Let t5 be the time at which all replies
are received at node 7 and the current
active phase ends. Because F' LD; re-
mains unchanged, and also there is no
different RLD;- reported by 7 during
the active phase either, from (B.3),
the following statement is true

FLDi(t) < LD(t),t € [t1, )
(B.5)

at time o, according to (B.2), we also
have

FLDj(t2) X RLDj(t2) (B.6)
If the current active phase ends at ¢,
then FLDi(t) = LD}(t),t € [tn, ta].
Otherwise, if a new active phase
follows immediately, assume again
that at 3 > t, queries are sent
out and at t4 > t3 all replies are
received at node 7, by following a
similar arguing as above, we also
have FLD}(t) < LD%(t),t € [tn, t4].
Therefore, regardless how many
back-to-back active phases in which



node 7 stays, DMR ensures that
FLDi(t) < LD}(t),t € [tn, o).
By induction, FLD}(t) < LD%(t)
holds at any time ¢, and therefore any
path computed by DMR is loop-free
at all times.

Lemma B.2 Fvery active phase of
a diffusing computation has a finite
duration.

Proof In DMR, node i transits into
ACTIVE by sending queries to its
neighbors and remains in ACTIVE
until all neighbors send back replies.
An endless active phase happens
only when some of the neighbors
do not reply the outstanding query.
However, this cannot be true due to
the following reasons. First, a node
replies to a query immediately and
remains in the passive state as long
as the shortest logical distance can
be provided by its current successor
set. Second, only the upstream nodes
of node 7 in the successor graph SG);
can be affected by the transition of
node i, i.e., they also transit into AC-
TIVE if shortest path for j cannot
be found by local computation. By
generating a sequence of nodes, from
node % and all the way upstream the
successor graph SGj, because SGj
is loop-free at any time instant (as
proven by Theorem B.1), we finally
will reach the nodes that have not
replied yet and not in the successor
set for 7 of any node either. Because
a node that is not a successor of
any other node must reply to queries
immediately, and the diameter of
a practical network is finite, it fol-
lows by contradiction that any active
phase of a diffusing computation will
end in finite time.
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Lemma B.3 A node that runs DMR
can have only a finite number of back-
to-back active phases.

Proof An active phase can be
caused by a sequence of network
changes or queries sent from neigh-
bors. An infinite number of active
phases occurs when a node % has
back-to-back active phase without
replying pending queries from its
neighbor nodes, or experiences in-
finite number of changes. However,
this cannot be true because of the
following reasons. First, a query will
be blocked by adding its sender k
into QS;, and therefore node ¢ will
not receive the same query from k&
endlessly. Second, in practice we can
only have finite number of network
changes in a sequence, and each node
can only have finite number of neigh-
bors from which it can receive queries
or updates, a node eventually will
return to passive after a finite num-
ber of back-to-back active phases.
After that, all neighbor nodes hav-
ing pending queries will receive their
replies.

Lemma B.4 In a stable topology G,
if the fP being used is both monotone
and isotone, DMR always converges
correctly, i.e., each node that runs
DMR obtains the optimal path with
shortest logical distance for each des-
tination j € G in finite time.

Proof According to [8], for stable
topologies, a distance vector rout-
ing protocol always converges cor-
rectly w.r.t. the optimization met-
ric being considered, if and only if
the associated optimization function
fP is both monotone and isotone.



Based on the description in Sect. 4,
DMR behaves similar to DBF when
nodes stay in the passive state and
use Bellman-Ford equation to com-
pute the shortest logical distance for
each destination (except that multi-
ple successors are allowed if o-LFC
is satisfied). Therefore, the conver-
gence property established for all
distance-vector based routing proto-
cols (See [8], Sect. 6.2, Proposition
3-5) also applies to DMR. ?

Theorem B.5 (Liveness property)
within finite time after the last state
change occurs in the network, DMR
converges correctly.

Proof This follows immediately
from Lemmas B.2, B.3 and B.4.
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