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Abstract

This paper presents a novel cross-layer approach (LLE-TCP) designed for performance enhancement of TCP over a
large variety of wireless networks. LLE-TCP avoids TCP ACK packet transmission over the wireless channel. As a result,
the saved time can be utilized by the nodes for data packet delivery. The proposed scheme enhances the protocol stacks of
the wireless sender (or a base station) and the receiver with cross-layer ARQ agents which support ACK suppression. ARQ
agent suppresses the outgoing ACKs at the receiver side and generates them locally at the sender or base station.

The performance evaluation of the proposed approach is performed via simulations as well as IEEE 802.11 testbed
experiments for single-hop and infrastructure network scenarios. LLE-TCP demonstrates the performance improvement
in the range of 20-100% depending on the transmitted TCP/IP datagram size.

Among the factors contributing to performance enhancement are: medium busy time reduction, reduced sensibility to
link errors, reduced round trip time (RTT), and improved congestion control.

A good level of throughput fairness as well as a fair coexistence with state-of-the-art TCP modifications ensures proper
functionality of the proposed approach, while performance advantages extended even on non-LLE-TCP users favor an
incremental deployment of the technique in existing networks.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Wireless communications clearly represent a fast-
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growing sector in the framework of data networks
[1]. Mainly, wireless technologies provide mobile
access to networks and services — omitting the
requirement for a cable (and fixed) infrastructure,
thus enabling fast and cost-effective network organi-
zation, deployment and maintenance.
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As a drawback, the capacity offered by wireless
links is relatively low as compared to wired net-
works. Such capacity limitations derive from the
very physical nature of the wireless medium, charac-
terized by limited and shared bandwidth, time-vary-
ing behavior, interference, etc.

Nevertheless, wireless technologies are envisaged
to be widely deployed in the last mile — connecting
end-user to the core of the network, while leaving
transport of data in the core to cable/optical archi-
tectures. Indeed, last mile is the most critical issue in
today’s network architectures. The characteristics of
the last mile links often determine the performance
of the overall network, representing the actual
capacity bottleneck on the entire path from the data
source to the destination and influencing the charac-
teristics of traffic patterns flowing through the
network.

In particular, wireless networks suffer from sev-
eral performance limitations, in some cases related
to excessive burden deriving from the layering par-
adigm employed for the TCP/IP protocol stack
design. Indeed, TCP/IP was originally designed
for wired links which general characteristics
include high bandwidth, low delay, low probability
of packet loss (high reliability), static routing, and
no mobility. On the contrary, in the wireless
domain, performance is constrained by available
transmission spectrum, employed modulation and
available transmission power. Loss probability
experienced by packet transmission is in general
higher on the wireless medium rather than on
wired links: while bit error rate (BER) varies from
1078 to 107° for wired channels, it varies from
1072 up to 107! for wireless channels [2]. Such
error rates are unacceptable for the transmission
control protocol (TCP) [3], designed for wired net-
works, which delivers over 85% of Internet traffic
[4,37]. The reason for that is in the additive
increase multiplicative decrease (AIMD) conges-
tion control which treats all losses as congestion
losses and thus underestimates the actual capacity
provided by the network.

In order to counteract such variation of BER,
forward error correction (FEC) can be employed
at the link layer. However, FEC is not the proper
solution to provide reliable transmission on wireless
networks. The main drawback is the waste of trans-
mission resources deriving from its employment in
absence of errors, therefore suggesting the usage
of feedback information from the receiver in order
to extrapolate information on the channel status.

Thus, a traditional and widely implemented
approach to increase reliability of wireless links is
based on the usage of an automatic repeat request
(ARQ) protocol at the link layer.

ARQ provides a dynamic way to decrease error
rate present on the wireless links by increasing the
delivery delay. The most commonly used ARQ
scheme in wireless networks is “‘stop & wait”: the
sender is not allowed to send the next packet in
the queue until the receiver positively acknowledges
the successful delivery of the previous one. The
advantage derives from the fact that only corrupted
packets are retransmitted, introducing a level of
overhead adapted to the conditions of the link. Sca-
lability and low computational cost of implementa-
tion resulted in the employment of the ARQ
principles in most of the wireless networks.

Table 1 presents a summary of the characteris-
tics of the wireless network standards, aimed at
underlining the common features and similarities
among them. The data presented for technologies
that are not yet standardized (IEEE 802.11n) are
based on available drafts. The reader should refer
to the references for more details on cellular net-
works [5], IEEE 802.11 local area networks [6]
and WiMax metropolitan area network [7]
standards.

From the analysis of the table it is clear that,
while employing different approaches at the physical
layer (in terms of modulation, data rate, transmis-
sion bandwidth), most of the presented technologies
provide reliable communications by employing dif-
ferent ARQ schemes at the link level.

However, the link layer is not the only layer
which acknowledges packet delivery: TCP reliability
is obtained through the utilization of a positive
acknowledgement scheme which specifies TCP
receiver to acknowledge data successfully received
from the sender. TCP header reserves special fields
for enabling it to carry acknowledgement informa-
tion. As a result, the TCP receiver can produce a
TCP acknowledgment (TCP-ACK) as standalone
packet or, in case of bi-directional data exchange,
encapsulate it into outgoing TCP segments.

Whenever a TCP segment is transmitted over the
wireless link, the sender first receives an acknowl-
edgement at the link layer. Then, TCP entity at
the receiver generates an acknowledgement at the
transport layer. This acknowledgement represents
an ordinary payload for the link layer, which should
be acknowledged by the link layer of the sender
node.
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Table 1
Characteristics of leading wireless technologies
Technology Nominal range Frequency band Channel bandwidth Physical rate TCP/IP throughput Mobility ARQ
Wireless wide area networks (WWAN)
GSM 3-35km 900 MHz, 1800 MHz 200 kHz 9.6-57.6 kbps 4-38 kbps Seamless Yes
(2G) (TDMA) 800 MHz, (TDMA)1.23 MHz global
1900 MHz (CDMA) (CDMA) roaming
(E)GPRS 200 kHz (TDMA) 56-115 kbps 32-84 kbps Yes
(2.5G)
EDGE 384 kbps (48-60 kbps 300 kbps Yes
per timeslot)
3G 1900-2025 MHz, 5 MHz large range 144 kbps, 120 kbps, Yes
2110-2200 MHz medium range 384 kbps, 310 kbps,
small range 2 Mbps 1.6 Mbps
Wireless local area network (WLAN)
IEEE 40-100 m 2.4 GHz 22 MHz 1/2 Mbps 0.7/1.4 Mbps Nomadic Yes
802.11 subnet
802.11b 11 Mbps 5 Mbps roaming Yes
(Wi-Fi)
802.11a 5GHz 54 Mbps 25 Mbps Yes
802.11g 2.4 GHz 54 Mbps 25 Mbps Yes
802.11n 5 GHz 20/40 MHz 250+ Mbps 100+ Mbps Yes
Wireless metropolitan area network (WMAN)
IEEE Up to 50 km 11-66 GHz 20, 25, 28 MHz 32-134 Mbps Fixed No
802.16
(WiMax)
IEEE 2-11 GHz 1.75-20 MHz 4-75 Mbps 3.22-56 Mbps Fixed Yes
802.16a
IEEE 1-4.5 km 2-6 GHz 5 MHz 15 Mbps Pedestrian Yes
802.16¢ mobility—
regional
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Summarizing, in most of the available wireless
network architectures (see Table 1), a single TCP
data packet transmission is acknowledged three
times: one at the transport level and two times at
the link layer, and (for each acknowledgement)
physical and link layer overhead is added. This
results in a relevant performance reduction. For
example, in case a wireless medium supports multi-
ple rates (like in WiFi or WiMax), physical layer
preamble and header are always transmitted at the
lowest bitrate — for backward compatibility as well
as due to communication range limitations — there-
fore penalizing performance more at higher bitrates.

Optimization of the acknowledgement scheme
will obviously bring performance improvement
through the reduction of the medium-busy time
and would require interaction between the transport
and link layers — thus requiring proper cross-layer-
ing schemes.

This paper targets cross-layering as a possible
solution, presenting a novel cross-layer approach,
called link layer ARQ exploitation TCP (LLE-
TCP), where the main performance advantages are
achieved through the optimization of interlayer
automatic  repeat request (ARQ) scheme
functionality.

The structure of the paper is the following: Sec-
tion 2 provides an overview of the state-of-the-art,
while Section 3 introduces the proposed scheme,
outlining the different implementation scenarios.
Finally, Section 4 presents experimental results
and Section 5 concludes the paper.

2. Related work and motivation

The literature on data transfer optimization in
wireless scenarios is huge, for that reason this section
overviews only closely related works, while for a
more precise survey the reader should refer to [8,9].

Many proposals for TCP performance optimiza-
tion over wireless networks target the root of the
problem, i.e. TCP flow control and error recovery
mechanisms, introducing different TCP modifica-
tions. A well-known modification in the considered
scenario is TCP Westwood [17] with its variations
[18,19]. An estimate of the available capacity on
the end-to-end path is computed by using appropri-
ate filtering of returning ACK flow. Then, upon loss
detection, the outgoing rate is adjusted to fit the
available bandwidth-delay product instead of per-
forming blind window reduction. TCP Veno [20]
implements delay-based congestion control by esti-

mating the number of backlogged packets in the
bottleneck buffer — a technique originally proposed
in TCP Vegas [21]. In addition, it tries to distinguish
between congestion- and loss-related losses based
on the estimated bottleneck buffer size preventing
window reduction for non-congestion related losses.

On the contrary, flow control solutions adjust
outgoing rate without providing reliability of data
delivery, for real-time multimedia traffic applica-
tions. Proposals in this category can be imple-
mented as an additional transport layer protocol
or flow control above transport layer on top of
unreliable UDP or RTP protocols. Rate adaptation
protocol (RAP) [27] and datagram congestion con-
trol protocol (DCCP) [28,29] are examples of rate
control protocols, while TCP-friendly rate control
(TFRC) [35] is an equation-based rate control pro-
posal designed to achieve a good fairness with
TCP flows coexisting on the network. Analytical
rate control (ARC) [36] improves the way losses
are treated in TFRC by distinguishing between con-
gestion related and random losses making ARC
appropriate for wireless networks.

The main drawback preventing deployment of
the proposed TCP modifications and other rate con-
trol protocols is in the requirement for sender proto-
col stack modification which is difficult to perform
in world-wide scale. This motivated multiple
attempts to hide undesirable characteristics of the
wireless links from the transport layer while keeping
TCP sender’s stack unchanged.

One of the first of such attempts to mask losses on
the wireless link from a fixed sender is proposed in
[10]: the snoop agent introduced at the base station
performs local retransmissions triggered by sniffing
duplicate ACKs coming from the wireless receiver.

In [11], the authors of explicit loss notification
(ELN) method propose to notify the TCP sender
about the reason of the loss, in order to distinguish
between errors on the wireless link and congestion-
related packet drops. Based on such feedback, the
sender node follows congestion control procedure
only in case of packet lost due to congestion, and
simply retransmits the packet without window
reduction otherwise.

Connection-splitting solutions, such as Indirect
TCP (I-TCP) [12], M-TCP [13], or Mobile-End
Transport Protocol (METP) [38], break end-to-end
connection into fixed and wireless sections. Each
section uses a transport protocol optimized for
such specific environment. Connection splitting
solutions and more generic group of performance
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Table 2

Compearison of the proposed LLE-TCP approach with existing state-of-the-art solutions

Group Solution Optimization layer E2E Modifies fixed Ease to Ease to

sender unplug deploy

TCP modifications TCP Westwood Transport Vv N4 X X
TCP Veno
TCP Vegas

Non-TCP congestion RAP Transport/above Vv Vv X X

control DCCP transport

TFRC
ARC

Connection splitting I-TCP Transport X Vv
M-TCP VAR v v
METP X X

PEPs Snoop Transport/link Vv X Vv Vv
LLE-TCP vooox v v
(proposed)

enhancement proxies (PEPs) [14] achieve good level
of TCP performance improvement. However, they
violate TCP semantics and end-to-end principle of
Internet protocol design (i.e. an acknowledgement
received by the sender does not indicate successful
data delivery up to the destination node).

After a detailed analysis of the existing solutions
(briefly overviewed above), we identified the cross-
layer approach as an appropriate principle for the
design of the proposed LLE-TCP protocol. More-
over, we target the design objectives derived both
from the link layer as well as split-connection
approaches, which can be summarized as follows:

from link layer solutions:

1. Preserve end-to-end TCP semantics.

2. No direct modification of the widely deployed
TCP implementation.

3. Flexible on/off style on-demand performance
optimization, i.e. optimization is performed only
in case the node operates in the wireless network
and optimization is desirable.

from connection splitting approaches:

4. Focus performance optimization on the wireless
section of the connection.
5. Low implementation complexity.

In order to satisfy the design objectives presented
above, the proposed solution performs joint optimi-
zation at the transport and the link layers. This idea
can be included in a wide range of recently-pro-

posed solutions for optimizing wireless network
design that are labeled as “Cross-Layer Design”
[15,16] methodologies, that extend the layering prin-
ciples by allowing interdependence and joint design
of protocols crossing different layers.

Furthermore, the proposed approach can be clas-
sified as performance enhancement proxy (PEP) solu-
tion, designed to be implemented at the base station
for TCP optimization in an heterogeneous network
environment.

Table 2 presents a top-level comparison among
existing approaches and the proposed LLE-TCP
solution in terms of layer for optimization, preserv-
ing end-to-end (E2E) TCP semantics, the require-
ment for protocol stack modification at the fixed
sender, the simplicity to deactivate optimization
technique if no wireless network is present, as well
as the possibility for wide deployment.

The reader should note that LLE-TCP is not
constrained to any specific TCP implementation
and thus can lead to additional performance gains
if applied jointly with TCP or other rate control
optimization techniques.

3. The proposed scheme (LLE-TCP)

In this paper, we propose link layer ARQ exploi-
tation TCP (LLE-TCP) approach to exploit the
information of the link layer ARQ scheme for a
more efficient acknowledgement of TCP packet
delivery.”

2 The basic concept of LLE-TCP approach was initially
presented at the Globecom’04 conference [34].
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The basic idea behind LLE-TCP approach is to
shift TCP ACK generation point from mobile recei-
ver to the base station. This is achieved by introduc-
ing an ARQ agent within the protocol stack of the
base station which generates TCP ACK packets
based on incoming traffic analysis. As a result,
wireless link resources in terms of bandwidth and
transmission delay associated with TCP ACK trans-
mission over wireless channel can be released.

Reference scenarios for LLE-TCP deployment
are represented by single hop wireless network (ad
hoc network specified by IEEE 802.11, see Fig. 1a)
and infrastructure network (IEEE 802.11, IEEE
802.16 or cellular network, see Fig. 1b).

Nowadays, wireless networks are mostly used as
a last-mile solution for data communications which
can be found in almost every office, airport, coffee
shop, etc. In this scenario, mobile nodes are con-
nected to the core network using a set of mobile
routers serving as bridges between fixed network
infrastructure and mobile devices. Multiple studies
show that TCP performance is poor in such envi-
ronments [10], the main reason of which lies in com-
pletely different characteristics between fixed (wired)
and wireless parts along the end-to-end data con-
nection [8].

Infrastructure network (Fig. 1b) is chosen as a
reference scenario for LLE-TCP presentation, while
implementation details in ad hoc single-hop net-
work scenario (Fig. 1a) are presented later.

Furthermore, when implementation details are
described, reference platform is the Linux OS open
protocol model, with the assumption that other
operating systems such as MS Windows have rele-
vant conceptual similarities.

3.1. Cross-layer ARQ agent
LLE-TCP requires implementation of a software

module, called ARQ agent, inside base station (BS)

Fixed Source

woom
e “

i o
II f’*\
’ o \\
[Pod ~,
” ~

a) Single-hop network

protocol stack above the link layer. The ARQ agent
sniffs the ingress traffic from the fixed network
assuming to have access to the network and trans-
port layer headers. Whenever a TCP data packet
is detected, the agent stores flow-related informa-
tion such as flow sequence number carried by the
packet.

Fig. 2 shows LLE-TCP packet delivery diagram
while ARQ agent flowchart is presented in Fig. 3.

Assuming to have a successful TCP data segment
delivery, the ARQ agent starts preparation of a
TCP ACK which acknowledges the packet just
transmitted to the transport layer. Such acknowl-
edgement is generated as a standalone TCP packet
containing the ACK bit set to ‘1’ in its header and
no data payload. This generation does not require
an implementation of TCP layer in a conventional
sense, as it consists of simple copy of appropriate
TCP header fields (such as connection port num-
bers, flow sequence number, ACK flag, and ACK
sequence number) into a TCP ACK packet template
previously allocated in memory. Then, generated
TCP ACK is not sent to the TCP sender immedi-
ately, but stored in the buffer.

As soon as TCP data packet is successfully deliv-
ered (indicated by the received link layer acknowl-
edgement), the link layer notifies ARQ agent by
sending “Tx. Success” event. Otherwise, “Tx. Fail-
ure” event is sent, indicating that, after all possible
retransmission attempts, the link layer is not able
to deliver the packet.

On “Tx. Success” event, the ARQ agent releases
the prepared TCP ACK packet to the fixed host,
while in case of failure it simply drops the generated
TCP ACK releasing the associated memory
resources.

On the receiver side, module referred as ARQ cli-
ent in Fig. 2 silently drops all standalone non-dupli-
cate TCP ACK packets which are artificially
generated at the sender side.

Base Station/
Access Point

Fixed Network
Infrastructure

b) Infrastructure network

Fig. 1. Reference network scenarios considered for LLE-TCP implementation.
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Fixed Host Base Station Mobile Node
(FH) (BS) (MN)
TCP | ARQ agent | | MAC | | MAC | |ARQ Client TCP
TCP Data H —
J — PHYLL | TCP Data -9
- AccessTCP header NCIP DR >
- Get IP addr, port,seq. number
- Generate TCP ACK & store y
¢ PHY/LL
Overhead LL-ACK |—
Tx. Success TCP ACK
@——| TCP ACK

Fig. 2. LLE-TCP packet delivery.

New data from
fixed network

Is TCP data
packet?

Generate TCP ACK and store
it in the buffer

v

Forward TCP data packet to
the link layer for transmission
and remain waiting for link
layer feedback

Is LL-ACK
received?

Forward packet to
mobile node

Send generated TCP ACK to
the fixed sender

Drop generated TCP
ACK from the buffer

Fig. 3. ARQ agent flowchart.

LLE-TCP approach does not change or override
any of the TCP flow control mechanisms. However,
suppression of TCP ACK transmission over the
wireless channel and corresponding impact on the
delay component reduces the round trip time

(RTT) of the connection. As a consequence, this
results in an additional TCP performance gain due
to faster window evolution and faster reaction to
packet losses performed by the additive increase
multiplicative decrease (AIMD) TCP flow control
mechanism [22].

Regarding backward compatibility and incre-
mental deployment, in case the base station does
not support LLE-TCP functionality (which can be
negotiated within the network registration proce-
dure) the mobile station should use standard TCP
implementation by switching off ARQ client soft-
ware module.

In single-hop ad hoc network scenario (Fig. 1a)
ARQ agent is implemented at the wireless sender
protocol stack, and TCP ACKs generated are not
routed over the network (like in case of infrastruc-
ture network scenario) but locally delivered to the
TCP layer.

The logical attachment of the ARQ agent to the
link layer brings scalability to the proposed solu-
tion. Nowadays, the link layer of wireless networks
is commonly implemented inside the firmware of
wireless cards. Insertion of LLE-TCP functionality
into the firmware releases resources of the main
CPU, thus simplifying integration issues. Moreover,
being attached to the link layer, the ARQ agent can
be implemented within the wireless card driver.
Nevertheless, both implementations enable LLE-
TCP operation only in the desired scenarios, i.e.
in wireless networks employing ARQ at the link
layer.
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3.2. TCP connection phases

Fig. 4 presents the modifications performed by
LLE-TCP over the standard TCP functionality
within the three main phases of the TCP connection:
connection establishing, data transmission, and con-
nection termination.

Connection establishment phase, also called
“three-way handshake”, accomplishes important
tasks such as sequence number synchronization
and negotiation of the size of the contention win-
dow. For that reason, the ARQ agent performs
ACK suppression only for the third handshake in
connection establishment and full ACK suppression
for data exchange and connection termination
phases.

In case of bidirectional data exchange, TCP
encapsulates ACK into outgoing data packets.
The receiver node does not suppress ACKs from
packets of such type. However, suppression is per-
formed at the sender side by the ARQ agent, which
keeps track of the number of the last acknowledged
TCP segment. In case the incoming packet acknowl-

N (7

Sender Receiver
SYN=1, Seq=X » ]
SyN=1, Ack=1, Seq=Y Connection
Establishment
ACK=1, Ack=Y+1 N
DATA ]
DATA, ACK=1 Data
o
Exchange
S — (¢ |
""""""""""" > |
——MN=1 ]
4%, Connection
Aok Termination
__________________ ’
—— Unchanged TCP ACK
J— Suppressed TCP ACK

Fig. 4. Acknowledgement suppression performed by LLE-TCP.

edges a segment number lower or equal to the
already acknowledged one, the ACK flag is cleared.

In order to ensure proper functionality of the fast
retransmit [23] introduced in TCP Reno, duplicate
ACKs are never suppressed neither by ARQ agent
at the receiver node nor at the sender node.

3.3. Congestion control

Another relevant improvement of LLE-TCP lies
in the possibility of enabling congestion control by
the base station. Network congestion occurs when
the amount of data sent into the network exceeds
the available capacity, and AIMD window evolu-
tion of best-effort TCP is a relevant cause of the
congestion. It continuously increases the outgoing
rate until are start to be dropped due to router buf-
fer overflows. A detailed study of network conges-
tion, which motivated the employment of end-to-
end congestion control, is performed by Floyd
et al. in [24].

A TCP connection between a fixed host and a
mobile node traverses fixed and wireless sections
of the network. Moreover, limited capacity of the
wireless link makes it the bottleneck in most of the
cases. In this situation, TCP sender at the fixed host
will always try to increase outgoing data rate — caus-
ing multiple buffer overflows at the base station due
to congestion. For every packet drop, TCP window
is decreased at least to its half and the dropped
packet, which was already transported over the
fixed network, is retransmitted on the whole end-
to-end path.

The problem of congestion can be solved by
enhancing the functionality of LLE-TCP with the
possibility of accessing the receiver advertise win-
dow (rwnd) (i.e. to exploit the TCP header field
on every ACK for specifying the amount of an
empty buffer space left at the base station).

Originally, rwnd was proposed in order to notify
the sender node about the amount of free space left
in the receiver’s buffer [25]: at any given time, the
sender should not send more data than currently
allowed by the minimum between the congestion
window and the advertised rwnd. This prevents
overflows in case incoming data rate is greater than
packet processing rate at the receiver node.

However, wireless last-mile networks have typi-
cally low capacity, which positions the communica-
tion link to be a bottleneck (rather than the node’s
computational or storage resources). Indeed,
the maximum size of TCP congestion window in
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wireless networks is usually bounded by several tens
of packets [26]. This makes the mobile node capable
of processing such a limited amount of data. Never-
theless, in order to provide full support of rwnd
functionality, the ARQ agent at the mobile receiver
is specified “not to block™ any outgoing packets
which specify buffer exhaustion.

4. Experimental results

LLE-TCP is a general solution designed for any
network implementing multiple positive ARQ
schemes at different layers. However, as reference
scenario for performance evaluation of the pro-
posed approach, IEEE 802.11 wireless LAN is cho-
sen as the most wide-spread and well-analyzed
environment nowadays. Evaluation results are
obtained through simulations in ns-2 network simu-
lator [30] and then validated by experiments on an
IEEE 802.11b testbed.

Following the design objectives, the experiments
are conducted in the following network scenarios:
single-hop and infrastructure wireless networks.

TCP Reno is chosen for comparison as the most
common reference implementation of the TCP pro-
tocol, currently operating within the protocol stack
of the majority of operating systems. The through-
put of a single TCP connection is evaluated against
the size of the TCP/IP datagram as well as the link
error rate, which are chosen as the main factors
influencing LLE-TCP performance. The average
throughput is measured during the data exchange
phase in order to avoid the influence on the results
deriving from routing protocols, address resolution
protocol and slow start window evolution phase.

4.1. Simulation setup

In order to perform the experiments, the corre-
sponding software modules of the ns-2 network sim-
ulator (version 2.28 from February 2005) are
enhanced for supporting LLE-TCP functionality.
IEEE 802.11b is chosen as the physical layer stan-
dard in order to provide full agreement with the
results obtained on the testbed. The parameters
used in simulation of the wireless links are reported
in Table 3. The chosen channel frequency of
2.472 GHz, transmission power of 31.6 mW, and
receiver sensitivity threshold of 5.82 x 10~ W corre-
spond to a transmission range of 22.5 m. Results
obtained during simulations are averaged over 10
runs with different seeds used for initialization of

Table 3

Simulation parameters

Parameter name Value
Slot 20 ps
SIFS 10 ps
DIFS 50 ps
PLCP preamble + header 192 ps
Data rate 11 Mbps

Basic data rate
Propagation model

1 Mbps
Two-ray ground

random generator while the duration of each simu-
lation is set to 100 s. The rest of ns-2 configuration
parameters are set to their default values unless
explicitly specified.

4.2. WLAN testbed setup

The testbed is built with two laptop computers
running OS Linux (Fedora Core 3 with kernel ver-
sion 2.6.9) equipped with IEEE 802.11b Orinoco
Silver cards. In order to support the desired func-
tionality, LLE-TCP modules are inserted into Ori-
noco_cs drivers version 0.13d used by wireless
cards.

Iperf (version 1.7.0) [31] performance measure-
ment tool is used for throughput measurements.
Experimental results are averaged on 10 runs of
5 min each.

Due to limited number of the available resources,
testbed experiments are performed only in the sin-
gle-hop scenario, where two stationary computers
located within transmission range are connected
using the “ad hoc” connection mode.

The size of the TCP data packet remains constant
within single flow duration, while NO_DELAY
socket option is turned on in order to avoid data
concatenation performed by Nagle algorithm [32].

4.3. Single-hop network

The single-hop scenario is built by 2 nodes
located within transmission range: one of them con-
tinuously transmits data, while the other one serves
as a passive receiver.

Fig. 5a presents throughput comparison between
the proposed LLE-TCP and TCP Reno implemen-
tations obtained with and without RTS/CTS
exchange employed at the link layer.

The maximum LLE-TCP throughput corre-
sponds to the largest datagram size of 1500 bytes
(most common MTU in Ethernet) and is equal to
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Fig. 5. (a) Throughput and (b) performance improvement
achieved by LLE-TCP against TCP Reno (simulation results).

6.09 Mbps for LLE-TCP. With the same configura-
tion, TCP Reno implementation achieves only
5.08 Mbps. In case of RTS/CTS exchange, LLE-
TCP achieves 4.71 Mbps while TCP Reno provides
only 4.1 Mbps.

The improvement level achieved by LLE-TCP is
inversely proportional to the TCP/IP datagram size
(see Fig. 5b), which derives from the 40 bytes fixed
size of the TCP ACKs (including TCP and IP head-
ers). As a result, the level of the improvement is pro-
portional to TCP ACK/datagram size ratio. Being
fixed at around 20% for the maximum datagram
size, it rises up to 50-70% for the smaller packet
sizes. However, the general rule is that as the data-
gram size tends to the size of TCP ACK the
improvement level tends to 100% (in case a TCP
ACK is generated for every TCP data packet).

Results obtained from the testbed experiments
(see Fig. 6a) closely approximate those obtained
from simulations. The average difference between
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Fig. 6. (a) Throughput and (b) performance improvement
achieved by LLE-TCP against TCP Reno (testbed experiments).

simulation and testbed results is around 3%. The
improvement level presented in Fig. 6b has obvious
quantitative difference with the results obtained
from simulations. This comes from the fact that
testbed implementation does not support TCP
ACK generation within data packet transmission
time. For that reason, the time for TCP ACK gen-
eration and its processing delay by the protocol
stack of the sender node correspond to the differ-
ence measured in the presented results.

Since LLE-TCP improvement derives from the
number of TCP ACKs generated by the receiver,
the performance of the proposed approach is ana-
lyzed against TCP Reno with one ACK per data
packet (One-Ack) as well as Delayed-ACK
(DelAck) acknowledgement strategies. Fig. 7 pre-
sents simulation results in the presence of link errors
with the TCP/IP datagram sizes fixed to 1 kbytes.
Link error model is implemented on packet level
and follows uniform distribution with a given
packet error rate (PER).
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Fig. 7. LLE-TCP throughput comparison against TCP Reno
with different acknowledgement strategies in different packet loss
conditions.

Average improvement achieved by LLE-TCP is
equal to 23% for One-ACK and 7% for DelAck
scenarios.

Summarizing, we experienced that the improve-
ment of LLE-TCP scheme is highly dependant on
TCP/IP datagram size: it ranges from 20% to
100% giving more advantages for applications pro-
ducing smaller packets. This represents a positive
feature of LLE-TCP, since multiple statistical stud-
ies show that 50% of Internet traffic includes packet
sizes less than 100 bytes [4].

Another observation is that an increase of chan-
nel error rate does not greatly modify LLE-TCP
improvement level. This derives from the fact that
complete elimination of TCP ACK transmission
over the wireless link avoids error propagation in
case of locally generated acknowledgements. How-
ever, data packets are still subject to transmission
errors.

4.4. Infrastructure network scenario

In the infrastructure network scenario, the TCP
source located in the fixed network communicates
through the access point with a mobile node
located in the mobile part of the network. The
configuration of wireless link follow IEEE
802.11b standard, while the parameters of wired
link (100 Mbps, 5ms) mimic the case a coffee
shop user connecting to an Internet server located
within the city or a state. The access point ingress
buffer policy is FIFO and buffer size is limited to
700 packets.

The fact that LLE-TCP proxy approach can be
applied to different transport-layer TCP imple-
mentations motivated us to compare the results
achieved by LLE-TCP implemented on top of
the following transport layer protocols: TCP
Reno, TCP NewReno [39], TCP Westwood [17],
FAST TCP [41], TCP with selective acknowledge-
ment (SACK) option [40], and TCP Illinois [42] —
all considered suitable transport protocols for a
heterogeneous network environment. The imple-
mentation code for the protocols not included
into standard ns-2 distribution is obtained from
packages provided by the authors. All the
configuration parameters are set to their default
values.

Throughput performance results with respect to
different packet sizes are presented in Fig. 8. All
the evaluated versions of TCP maintain a similar
level of throughput due to simplicity of wireless-
cum-wired topology as well as sufficient bottleneck
buffer resources at the base station. In this scenario
LLE-TCP performance ranges from 35% for large
packets to 70% for small packets.

In error prone environment (Fig. 9) all TCP ver-
sions maintain similar level of throughput for small
error rates (PER <0.20). For higher error rates,
TCP Reno and TCP NewReno degrade their perfor-
mance down to zero for PER = 0.32, while LLE-TCP
is able shift this point to PER = 0.36, leading to a
throughput performance similar to that achieved by
TCP SACK approach. However, the most relevant
LLE-TCP performance improvement is demon-
strated in case when TCP FAST with its fast window
dynamics is not able to tolerate high error rates and
drops the throughput down for PER = 0.25. In such
scenario, the usage of LLE-TCP allows TCP FAST
operation up to PER = 0.37.

In order to evaluate the behavior of the proposed
approach in multi-flow communications, we config-
ured the fixed sender node to initiate multiple con-
nections to the different mobile nodes in the
infrastructure network scenario. This scenario is
targeted to the evaluation of two parameters: fair-
ness and coexistence.

Fairness is evaluated by computing flow through-
put and Jain’s fairness index [43] in the scenario
with LLE-TCP enabled and comparing results with
those obtained in the original scenario without
LLE-TCP support.

Another important factor that must be consid-
ered for the design of a new protocol is coexistence
with protocols already implemented in the network.
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Fig. 8. (a) Throughput and (b) performance improvement achieved by LLE-TCP in infrastructure network scenario (with no wireless link

errors).

The importance of coexistence factor is underlined
in the evaluation of TCP Vegas [33], where it is
shown that TCP Vegas can operate properly only
in case it is the only transport protocol running in
the network. Otherwise, congestion based TCP pro-
tocols like TCP Reno grab all the available band-
width, dramatically reducing the throughput of
TCP Vegas down to zero.

Fig. 10 illustrates results obtained with all 10
evaluated flows using the same TCP protocol ver-
sion and no LLE-TCP enabled (Scenario 1) as well
as with LLE-TCP enabled for 5 out of 10 evaluated
flows (Scenario 2). Average and cumulative flow
throughputs presented in Fig. 10 are extended with
the computed Jain’s fairness index and summarized
in Table 4 for both scenarios.

The results demonstrate that LLE-TCP flows
injected into a network running state-of-the-art

TCP implementations achieve a good fairness level.
The reason for that is in the design of LLE-TCP,
which does not change flow control or error recov-
ery of underlying TCP version — the whole optimiza-
tion being done only by shifting TCP ACK
generation point.

Slight unfairness of less than 1% (see Table 4) is
an outcome of the reduced RTT for LLE-TCP
flows. This phenomenon, known as RTT unfairness
of TCP flows [44,45], is the consequence of receiver-
driven congestion window evolution.

As an outcome of multi-flow the experiments,
we observe the stability of LLE-TCP in multi-
flow communication scenarios as well as good
coexistence with all evaluated TCP versions.
This underlines the possibility for an incremental
deployment, i.e. there is no need to replace already
existing products (drivers or wireless cards) which
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do not support the LLE-TCP functionality while Table 4

bringing the approach to the market. LLE-TCP fairness
TCP protocol Jain’s fairness index (%)
Scenario 1 Scenario 2
8
Il Average flow throughput (LLE-TCP Off) TCP Reno 0.95 0.94
7t [ Average flow throughput (LLE-TCP On) 1 TCP Newreno 0.97 0.95
[ cumulative flow throughput (LLE-TCP Off) TCP Westwood 0.99 0.98
R 6 I cumulative flow throughput (LLE-TCP On) 4 TCP FAST 0.97 0.97
r 5| TCP SACK 0.90 0.89
= TCP Tllinois 0.68 0.68
>
24
[=2]
g,
K- [ . .
= Good level of fairness and cumulative through-
20 put values underline that the capacity increase com-
1t ing from TCP ACK suppression over the wireless
o 1 link is equally shared between contending flows,

TCP TCP  TCP TGP TCP  TCP leading to relevant benefits for the network users.
Reno NewReno Westwood FAST  SACK lllinois LD : :
This is another argument in favor of an incre-
Fig. 10. LLE-TCP fairness and coexistence. mental deployment of LLE-TCP, which will ensure
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performance benefits not only for the users which
update their products with the proposed approach,
but also for those who do not.

5. Conclusions

This paper presented a novel yet generic
approach for performance enhancement of TCP
over wireless networks. Performance improvement
comes from cross-layer optimization of ARQ
schemes employed at different layers of the protocol
stack.

The proposed solution, LLE-TCP, avoids TCP
ACK transmission over the wireless link through
local generation of ACKs at the sender node (in a
single-hop scenario) or at the base station (in the
infrastructure scenario).

While LLE-TCP is designed for any networks
which employ multiple ARQ schemes at different
layers of the protocol stack, main benefits are
achieved over wireless links with heavy overheads
added at the link and physical layers.

The evaluation of the proposed approach is
performed via simulations as well as testbed
experiments in IEEE 802.11 WLAN scenario.
Results presented for single-hop and infrastruc-
ture network scenarios demonstrate an improve-
ment in the throughput in the range of 20-100%
— depending on the packet size used by the
connection.

Summarizing, main improvements of LLE-TCP
are:

Throughput and medium busy time. The reduction
of medium busy time for the transmission of TCP
ACK packets over the wireless link clearly brings
to a corresponding relevant improvement in terms
of TCP throughput. Improvement level highly
depends on the size of TCP segment as well as on
the channel error rate.

Channel error rate. A passive reduction of
channel error rate comes from the absence of
TCP ACK packets on the reverse channel (they
are generated locally at the sender side, and
therefore channel errors have no impact on
them).

Round trip time (RTT) reduction. TCP ACK
suppression reduces RTT by the time required for
TCP ACK transmission over the wireless link. Since
TCP performance is reversely proportional to the
RTT of a connection and the evolution of the con-

gestion window is based on the receiver feedback,
faster feedback allows faster reaction to packet
losses.

Fairness & coexistence. Together with the per-
formance advantages, LLE-TCP scheme ensures
a good level of fairness as well as proper coexis-
tence with standard TCP Reno protocol. More-
over, it provides benefits not only for the users
employing LLE-TCP, but also for those who do
not.

As a result, an incremental deployment which
can be performed over an existing and already oper-
ating network provides a direct way for improving
the overall data transfer performance of the
network.
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