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This paper studies the interplay between a profit-maximizing network and a number of users
competing for the finite bandwidth on each link. In our setting, the objectives of the network and
the users are ‘misaligned’, in that the prices that optimize the network’s profit do not maximize
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them by revealing their preferred amounts of bandwidth. A first contribution of this work is an
iterative procedure for a single-link model. In this provably convergent scheme, the link adapts
the price to achieve profit maximization, and each individual user adapts its demand for
bandwidth so as to maximize its ‘compensated utility’, where utility is a function of its allocated
bandwidth. Importantly, the scheme relies on communication between the link and the individual
users, but not between users. In practice, the utility of the users (ISP s) strongly depends on the
level of satisfaction experienced by their clients (the end-users). We show how the iteration
scheme can be adapted to the more natural situation of utility being a function of the loss
probability, rather than a function of the bandwidth. Since the end-users’ supply of traffic is not
fully known to the ISP s, we develop a Bayesian approach for estimating the loss probability
from measurements; we do so in the practically relevant context of Gaussian input traffic. The
resulting estimator proves to be particularly useful for risk-averse ISP s.
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1 Introduction

For reasons of scalability, many on-line systems are organized in a decentralized way. It is
clearly of much interest to devise procedures that help improve their performance, but at
the same time are relatively simple to implement. Importantly, in a decentralized setting,
control procedures should be based on ‘local information’ only. Thus a rather restrictive
constraint is imposed on the set of feasible control strategies.
In the context of modern communications networks several examples of on-line systems
with decentralized control can be found. Consider for instance a (broadband) network
that sells resources (bandwidth in the setting of the present paper) to Internet Service
Providers (ISP s; in this paper ‘users’). These ISP s, in turn, sell Internet connectivity
to clients in the corporate and residential market (in this paper ‘end-users’). The ISP s
need network bandwidth in order to be able to offer the end-users an acceptable Qual-
ity of Service (QoS), as agreed upon in a Service Level Agreement (SLA); for a further
discussion of this hierarchy, see [4]. The amount of bandwidth each ISP chooses to buy
should maximize its utility, where utility expresses the extent to which the end-users can
be guaranteed their SLA, compensated by the price to be paid by the ISP to the network.
However, the network has a potentially conflicting objective. When selling resources to
the ISP s, it usually aims to maximize profit. Since the amount of bandwidth on each link
of the network is finite, the ISP s are essentially competing for this scarce resource.
The question that naturally arises is that of the coordination of the competition between
the users. A complicating issue is that in practice the users cannot communicate directly
with each other. Instead, they rely on individual communication with the network, for
each of the links that they traverse. More precisely, the network sets the prices (which
they charge the users per supplied unit of bandwidth), and each user reacts to these by
revealing their preferred amount of bandwidth. This is done without knowing the reac-
tion of the other users. The network can then adapt the prices and the process continues.
Clearly, it is desirable that these (iterative) price and bandwidth adaptations are such that
convergence is guaranteed to the utility-maximizing allocation and profit-maximizing
price. The development of such a procedure is a main contribution of this paper.

The bandwidth allocation reached reflects both the users’ and the network’s objectives.
One could term these objectives ‘aligned’, if it is in the network’s interest to set prices
that ensure that the equilibrium allocation also maximizes the users’ aggregate utility;
this is often referred to as ‘social welfare optimization’. An example of such an aligned
setting is studied by Kelly [10, Section 2]; its convergence to an equilibrium solution (by
applying an iterative optimization-based flow control scheme) was analyzed in detail by
Low and Lapsley [13], and Kelly et al. [11], whereas Johari and Tan [9] and Vinnicombe
[21] addressed related stability issues. In fact, the setup of [10] enforces that the users
and the network coordinate their actions so that the social optimum is reached. One can
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alternatively consider the situation in which the network imposes a utility function on
each route that achieves a certain fairness criterion [16].
It is not realistic to assume that the network and the users always have aligned objec-
tives. As explained above, this paper focuses on such a ‘misaligned situation’, in which
the network acts as a monopolist and wishes only to maximize its profit (subject to the
link capacity constraints), while each individual user optimizes its compensated utility.
We study a model in which the network acts as a price-sette, while the users act as price-
takers, and adjust their desired bandwidths according to the prevailing price. In this
scenario, both parties’ objectives have an impact on the final allocation of capacity, and
corresponding prices. It is therefore natural to expect that the resulting prices and alloca-
tions will deviate from the ones under social welfare maximization.

The differences between the outcomes of social welfare optimization and monopoly mar-
kets have been well researched in the economic literature, see in particular the seminal
work by Pigou [18]. Informally, one could say that monopoly markets are usually ben-
eficial for the supplying party (the network, in our situation), but create a ‘welfare loss’
for the participants (the users, in our situation). Recently, the term price of anarchy was
introduced to quantify this welfare loss [19]; it reflects the inefficiency of the equilibrium
solution. Huang, Ozdaǧlar and Acemoǧlu [8] showed, in a given setting, that for specific
types of utility functions, the monopoly equilibrium coincides with the social welfare
equilibrium, with regard to bandwidth allocations. Ozdaǧlar [17] considered the price
of anarchy in the context of routing and flow control in a network consisting of multiple
parallel links, where a cost per unit bandwidth and a congestion-based cost were im-
posed on each user. For a utility curve satisfying stated conditions, she derived a bound
on the efficiency of the solution by comparing the equilibria reached in the monopolist
and social welfare optimization contexts, respectively.

Instead of considering the price of anarchy, we focus our attention on devising an iter-
ation scheme by which the network and users achieve their respective equilibrium so-
lutions. We impose the condition that the solution be found in a distributed manner;
importantly, each user does not have any information about the other users’ preferences.
We derive an optimization-based scheme for price updates (network) and bandwidth up-
dates (users), which is provably convergent. In the first part of this paper it is assumed
that the users’ utilities are functions of the bandwidth allocated.
As discussed, the users (ISP s) have guaranteed their clients (end-users) a certain per-
formance, for instance in terms of a packet loss probability. For this reason it may be
more natural to consider a setup in which the user’s utility curve is not a function of the
bandwidth x, but rather of the loss probability δ ≡ δ(x) that is realized when the user
is allocated x. To be able to use such a framework, the users must have a procedure to
estimate the loss probability δ(x) as a function of the allocation x. However, δ(x) depends
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not only on x, but also on the characteristics of the traffic offered by the end-users; for a
given x, the loss probability is larger when the end-users generate higher loads, or when
the traffic rate fluctuates more fiercely in time.
The reasoning of the previous paragraph motivates the need for the ISP s to measure
the traffic of their clients, so as to estimate the function δ(x) on-line, and then to insert
this estimate in their (loss-probability-based) utility function. We propose a procedure
that estimates δ(x) in a Bayesian way [6], which yields conservative estimates, and is
therefore particularly useful for risk-averse ISP s. The analysis is based on the assumption
of Gaussian traffic; this is justified as long as the traffic aggregation level (for instance in
terms of numbers of end-users) is sufficiently high [3, 12, 15], which is typically the case
for large ISP s.

The organization of this paper is as follows. In Section 2 we present our model and
some preliminaries. In Section 3 we analyze the situation in which the utility curves are
functions of the bandwidth allocated, and present a provably convergent iterative scheme
for the prices and the allocations. Section 4 adapts this iterative scheme to the situation
in which each ISP’s utility is a function of the loss probability; it is explained in detail in
Section 5 how the loss probability may be estimated from measurements. In Section 6 the
procedures are illustrated through numerical experiments. Section 7 presents concluding
remarks.

2 Model and preliminaries

In this section, we present our model of a profit-maximizing network that is used by
utility-maximizing routes. The problem is stated in microeconomic terms, and a number
of preliminaries and first observations are given.

Links. Let L denote the set of all physical links and assume each link ` ∈ L has a finite
service capacity (i.e., bandwidth) c`. Each link ` ∈ L has the authority to set a price p` for
each unit of bandwidth, with the aim of maximizing the total network profit.

Routes. A route is defined as a subset of the links, starting at an origin node and ending
at a destination node. Let R denote the set of routes in the network. Each route r ∈ R
is allocated the same amount of bandwidth at any link that it traverses, and when allo-
cated xr units, it derives a utility Ur(xr). Routes can be identified with users (ISP s). The
routes are ‘at the mercy’ of the network, in the sense that they request capacity given the
prevailing prices; they choose the amount of capacity that maximizes their compensated
utility (defined as utility less cost; a precise definition follows later). We assume that the
routes cannot co-operate; in this way, we preclude the possibility that routes can collude
to try and bring the prices down.
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Identifying routes with ISP s, the utility optimization described above reflects the route’s
task to satisfy the Service Level Agreement (SLA) that it has agreed upon with the end-
users. Clearly, the extent to which the ISP is able to meet the SLA of its customers de-
creases as the loss probability increases, whereas the loss fraction decreases in the amount
of bandwidth allocated. Therefore it is natural to assume that, for every ISP r, the utility
curve Ur(xr) increases in xr.
As is customary, cf. [10], we assume that these utility functions are strictly increasing and
concave in xr. In addition, for reasons that will become clear below, we assume that the
utility functions are differentiable, with derivatives that are one-to-one.

If the network sets prices that are too high, then the routes will request very low amounts
of bandwidth. The profit derived from this allocation will not be large, and the network is
not satisfied. Conversely, if the prices are very low, the capacity requested will be larger,
however possibly not large enough to offset the decreased prices. In addition, the routes’
requests may exceed the finite link capacity. Therefore, there may be an optimal set of
prices that balance these opposing forces. Importantly, observe that the objectives of the
various ISP s are not aligned with the network’s objective. Let us now look in more detail
at a formal description of these objectives.

User optimization problem. As stated above, routes (or users) occupy a subset of the physi-
cal links. As the route is meant to transport a stream of data packets, it requires the same
amount of bandwidth from each link that it traverses. A route r ∈ R is faced with the
total price of xr

∑
`∈r p` when acquiring xr units of bandwidth. Since we assume that

the routes cannot co-operate with each other, they make their decision solely based on
their own utility function and the prevailing prices. Hence the user optimization problem is
given by

max
xr≥0

Ur(xr)− xr ·
∑
`∈r

p`. (1)

Let U ′
r(xr) denote the derivative of the utility function for route r with respect to xr, and

Vr(xr) denote the inverse of this derivative. By the conditions imposed on the utility
functions, the solution to the user problem can be expressed as (with pr :=

∑
`∈r p`)

xr(pr) := Vr(pr), (2)

assuming the right-hand side of (2) is non-negative. In essence, xr(pr) defines a demand
function for bandwidth for each route r, which, as expected, decreasing in price. We make
the added assumption that the utility functions induce demand functions that are twice
continuously differentiable with respect to pr.

Network optimization problem. Now we know how user r reacts to price pr, the next ques-
tion is how the prices are set. Recall, the links must set p` to maximize its profit in a
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distributed manner. If the routes request capacity equal to ~x ≡ (xr, r ∈ R), then the
profit equals the sum of the revenues earned on each link:

∑
`∈L (p` ·

∑
r:`∈r xr); for ease

we leave out the cost to the network in providing bandwidth to the routes. Since the ca-
pacities ~x are defined by the demand curve (2), the profit can be expressed as a function
of the price, with ~p ≡ (p`, ` ∈ L):

π(~p ) =
∑
l∈L

(
p` ·

∑
r:`∈r

xr(pr)

)
. (3)

While the links choose prices that maximize their objective (3), they must also adhere to
a number of constraints. In the first place there must be constraints requiring that the
capacity requested by the routes on a specific link is no larger than the link capacity. In
addition, we impose a cap on the the prices that each link may charge, pmax; for ease
we assume that this maximum price is the same for each link. Such a maximum price
may be due to regulatory reasons, but we illustrate in Section 3 that it is useful from
a mathematical perspective as well. We denote the vector of price caps pmax. We thus
obtain the following network optimization problem

max
~p

π(~p)

subject to
∑
r:`∈r

xr(pr) ≤ c` for ` ∈ L

0 ≤ pr ≤ pmax for r ∈ R. (4)

We assume that
∑

r:`∈r xr(
∑

`∈r pmax) < c`; this guarantees this if every link chooses its
maximum price, the resulting capacity requests will be feasible.

The formulation (4) is a static optimization problem. So from the network’s perspective,
if it could be solved centrally, the profit-maximizing prices could be set, and the problem
solved. However, there are issues that preclude this from happening.

• First, we seek a distributed implementation. We assume that there is no central con-
troller of the network, and hence any decision regarding the change in prices must
be performed in a manner that does not require direct communication between the
links.

• In addition, observe that the formulation given in (4) combines the prices charged
by the links and the demand functions of the routes. We assume that the demand
functions are not known by the links; they can only ‘ask’ the routes to reveal how
much bandwidth they want at posted prices. This implies that any solution of this
problem requires iterative feedback between the links and the routes that traverse
it.

The idea of reaching the solution dynamically is even more pertinent when the
routes experience a change in their utility functions (for example because the traffic
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offered by the end-users changes; when the end-users’ load increases more capacity
is needed to meet the SLA s, and therefore the utility assigned to a given capacity
decreases).

The intuitive explanation of a distributed mechanism is that each link should learn the
demand curves of the routes during some sort of bidding process: the network advertises
a set of prices ~p1, and sees the responses xr(~p1) for r ∈ R; then the network changes the
prices to ~p2, and sees the new responses xr(~p2) for r ∈ R, etc. This bidding process must
be automated, that is, performed through agents, to be practical in a network setting.
Importantly, the algorithm that will be presented in the next section allows a distributed
implementation.

3 Single-link network

In this section, we consider the network as a single link of capacity c, shared by a set of
ISP s, each denoted r ∈ R. For this single-link model, we devise a distributed algorithm.
The reason for commencing with a simplified network is twofold. First, analyzing the
single-link model allows immediate insight into the differences between social welfare
maximization and the profit maximization scenario that we explore in this paper. These
insights are detailed in Section 3.1. Second, conditions required for convergence of the
devised distributed algorithm are simpler to check in the single-link case. We make a
remark regarding extension to the network setting at the conclusion of this section.
Because we concentrate on a single link, we may suppress the dependence on `, and we
denote by p the price of bandwidth. Thus the optimization problem user r is faced with
is maxxr Ur(xr) − xrp, and the demand curve is given by xr(p) = Vr(p). For the sake
of completeness, we translate the formulation (4) to the single link case. The network
problem is given by

max
p

p ·
∑
r∈R

xr(p)

subject to
∑
r∈R

xr(p) ≤ c

0 ≤ p ≤ pmax. (5)

Since each demand function is decreasing and continuous in p, the aggregate demand
f(p) :=

∑
r xr(p) is also. Therefore, the link capacity constraint defines a minimum price

pmin below which the constraint is violated. Of course, pmin could be negative. If this is
the case, the non-negativity constraint makes the link capacity constraint redundant. We
assume that pmin 6= 0 for technical reasons.
Since the feasible region is closed and π(p) is continuous over it, there exists an optimal
solution. If the restriction that p ≤ pmax was omitted, it is possible that no finite opti-
mum exists. Take for example the case where Ur(xr) is concave, but xr(p) is convex with
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xr(p) → κ, a finite value, when p →∞. Then the link can make the price arbitrarily high
and π(p) →∞. This shows that the introduction of pmax serves a mathematical purpose,
besides reflecting the regulatory environment.

3.1 System Optimization versus Profit Optimization

Before describing the iterative scheme, we first consider, through two insightful lem-
mas, the differences between the equilibrium solutions of the system-optimizing (social-
welfare) and profit-maximizing problems in the single-link case, respectively.
The optimization-based flow control that Kelly et al. [11] and Low and Lapsley [13] per-
formed are examples of system optimization, where the network acts in such a way that
the equilibrium maximizes aggregate utility,

∑
r Ur(xr). However, the equilibrium vector

of bandwidths ~x(s) resultant from these scenarios may not be the same as that attained
via the profit-maximizing problem described above, denoted ~x(π). Under system opti-
mization all of the link capacity c is allocated to the routes, under profit optimization this
is not necessarily the case.

Lemma 3.1 The equilibrium reached yields an aggregate utility∑
r

Ur(x(s)
r ) ≥

∑
r

Ur(x(π)
r ),

where this inequality can be strict. In economic terms, the profit maximization scenario creates a
possible welfare loss because the network acts as a monopolist.

Proof. Consider the objective function π(p) of the link problem (5). Let x′r(p) denote the
derivative of route r’s demand function with respect to p. Suppose that there exists a
maximizer 0 < p? < pmax, where p? satisfies

π′(p?) = p?
∑
r∈R

x′r(p
?) +

∑
r∈R

xr(p?) = 0.

Since this is independent of the total available bandwidth c, the link capacity constraint
may or may not be active at the optimum and therefore there may be bandwidth on the
link left unallocated at p?. If spare capacity exists, aggregate utility is strictly less than in
the welfare optimization case, since aggregate utility could be increased by allocating the
excess capacity to one of the ISP s.
We analyze separately the cases in which the utility functions do not admit a solution
to the above equation. If the cap on prices pmax comes into effect, then by assumption∑

r xr(pmax) < c, and hence there is unallocated link capacity at equilibrium. If p? = 0,
then the link capacity constraint is inactive by assumption. Hence, again, there is unal-
located capacity at equilibrium. Therefore, by the same argument as above, aggregate
utility is strictly less than in the welfare-maximizing scenario.
Finally, if p? = pmin, then all link capacity is allocated to the ISP s. The aggregate utility
can only be as great as

∑
r Ur(x

(s)
r ), but no larger. 2
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Lemma 3.2 The allocated bandwidth to each route under profit maximization is not greater than
the allocated bandwidth in the system (social-welfare) optimization case. That is,

x(π)
r ≤ x(s)

r for all r ∈ R.

Proof. Consider the optimal allocations under the profit-maximizing and the aggregate
utility-maximizing scenarios; x

(π)
r and x

(s)
r , respectively. The latter can be mapped to

some price q for which U ′
r(x

(s)
r ) = q. The maximum profit to the link is

π(p?) = p?
∑
r∈R

x(π)
r ≥ q

∑
r∈R

x(s)
r ,

since the left-hand side is optimal.
Since the total allocated bandwidth in the profit scenario is not greater than for social
optimization, we must have that p? ≥ q. Since each demand function is a decreasing
function of price, x

(π)
r = xr(p?) ≤ xr(q) = x

(s)
r . 2

These results are intuitive; in economic terms, they highlight the difference between a
monopoly market and perfect competition, and the welfare loss that results from the
former.

Corollary 3.1 It follows from Lemma 3.2 that if all link capacity is allocated, then it is
done so in a system (socially) optimum way. ♦

3.2 Existence of a solution

As the single-link problem is one of constrained optimization with respect to a one-
dimensional variable p, the constraints reduce to a feasible interval from max{0, pmin}
to pmax. Since pmin 6= 0, at any time at most one constraint is active. Therefore, trivially,
there is no linear dependence between the constraint gradients of the active constraints
and hence any local maximizer is regular [1, Section 3.3].
The concavity of the utility functions is not sufficient to guarantee a unique optimal solu-
tion of (5). Recall, the objective function and constraints of the link problem are written
in terms of the demand functions xr(p) of each route. The assumptions on the utility
functions guarantee that the demand functions xr(p) exists, but do not imply that they
are concave (or convex). With π(p) = pf(p), we have that

π′′(p) = 2f ′(p) + pf ′′(p);

f ′(p) is negative, but f ′′(p) could be both positive and negative. We conclude that π(p) is
not necessarily concave, and hence we cannot guarantee the existence of a unique opti-
mum.
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Let L(p, η, γ) denote the Lagrangian of the network problem, with η the multiplier of the
link capacity inequality constraint and γ the vector of multipliers of the price inequality
constraints:

L(p, η, γ) := pf(p)− η(f(p)− c)− γ1(p− pmax) + γ2p. (6)

Recall pmin was defined as the solution to f(p) = c and hence is implicit in the statement
of the Lagrangian.
We proceed by assuming the second-order sufficient conditions (SOSC) for inequality con-
strained problems hold [1, Proposition 3.3.2], which can be described as follows. Let
∇p denote the derivative operator with respect to p. Then the SOSC state that the triple
(p?, η?, γ?) describes a local maximum if it satisfies

∇p L(p?, η?, γ?) = 0, f(p?) ≤ c, 0 ≤ p? ≤ pmax, η? ≥ 0, γ? ≥ 0;

where

η? = 0, γ? = 0 if the corresponding constraint is inactive;

η? > 0, γ? > 0 if the corresponding constraint is active (‘strict complementarity’);

yT∇2 L(p?, η?, γ?) y < 0,

for all vectors y 6= 0 such that the active-constraint gradients at p? are perpendicular to y.

3.3 Iterative scheme

As discussed earlier, distributed implementation requires that the optimum of (5) is found
without the link having complete knowledge of each ISP’s demand function, and each
ISP being unaware of the demand functions of the other ISP s. Instead, updates to both
the prices and the allocated bandwidths must be performed iteratively, as reactions to
one another. We require that the information transferred between the ISP and the link be
local.
Since there is a separation between the users and the link, a first-order method is more ap-
propriate; second-order methods (such as Newton-type schemes) typically involve non-
local information. In the general network setting, first-order methods also fit with the
requirement that links do not communicate directly with one another. The most basic
first-order method involves the Lagrangian defined in Section 3.2. Its convergence, how-
ever, relies on the Hessian being concave at the local maximum. This is stronger than the
second-order sufficient conditions and hence may not be satisfied.
For the single-link network, we proceed by defining the augmented Lagrangian

Lm(p, η) := π(p)− 1
2m

(
( max{0, η + m(f(p)− c)})2 − η2

)
,
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where only the link capacity constraint is involved. The form of the second term (a
penalty function) is derived by appending slack variables to the inequality constraints,
adding a penalty for violation and finally maximizing over the slack variables analyti-
cally [1, Section 4.2].
Assume the SOSC hold. Then by [14, Ch. 13, Prop. 1], there exists an m̄ such that for all
m > m̄, the augmented Lagrangian Lm(p?, η?) has a local maximum at p? with penalty
parameter m. First-order Lagrange methods, while normally described using the original
Lagrangian (6), can be applied with the augmented version also, when m > m̄. The aug-
mented Lagrangian not only allows us to use first-order methods, but imposes a penalty
m on infeasibility. This has the benefit of discouraging iterates to stray too far from the
feasible region.
Let pj denote the price per unit bandwidth at the j-th iteration, and ηj denote the multi-
plier value at the j-th iteration. The first-order augmented Lagrangian method is defined
through the updates

ηj+1 := max
{

0, ηj + ε
(
fj+1 − c

)}
, (7)

pj+1 :=
[
pj + ε

(
fj+1 + f ′j+1[pj −max{0, ηj + m(fj+1 − c)}]

)]pmax

0
, (8)

where fj+1 :=
∑

r xr(pj) and f ′j+1 :=
∑

r x′r(pj); also, [x]ab is defined as min{max{x, a}, b}.
There exists a neighborhood around (p?, η?) and an ε̄ such that for all ε ∈ (0, ε̄], (p?, η?)
is a point of attraction of the updates given by (7)-(8). This follows from a variation
of Proposition 4.4.2 in [1]. Details of the proof of convergence for a first-order method
applied to the augmented Lagrangian for inequality-constrained problems can be found
in the Appendix.
The update formulae (7)-(8) involve the demand functions for all routes r ∈ R, through
the fj+1 and f ′j+1 terms. However, as discussed earlier, there is a separation between
the link and the ISP s. Hence, the network does not know the individual ISP s’ utility
functions (and hence demand curves). Therefore the function f(p) must be learned by
the link at each iteration, by combining the requests that each route submits. The price
update pj+1 not only involves fj+1, the current total demand for bandwidth at the pre-
vailing price, but also its derivative f ′j+1. This could be implemented by the requirement
that each ISP, in addition, submits an ‘elasticity’ x′r(pj) at each iteration. Since each ISP
knows its own utility function, this is not an unrealistic requirement. The algorithm for
the single link network could operate as shown below.

Algorithm 3.1 — Profit Maximization
1. At iteration j, the link sets its price pj and broadcasts it to the routes that traverse it.
2. Each ISP r ∈ R sees the current price and responds with two pieces of information:

xr(pj) = Vr(pj) and x′r(pj) =
d
dp

Vr(pj).
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3. Through agents, these requests are aggregated and the link sees a total desired bandwidth of
fj+1 and its corresponding derivative f ′j+1.
4. Using the updates (7)-(8), the link updates its price to pj+1 and its multiplier to ηj+1.
5. It re-broadcasts a price of pj+1, and the process continues until a pre-specified convergence
criterion is met.

Remark 3.1 In the setting described in this (and the previous) section, it is assumed that
the utility functions Ur(xr) are increasing and convex for xr ≥ 0. It can be questioned,
however, whether this is a realistic assumption in practical situations. In fact each ISP has
to be capable of handling a certain average rate that is generated by the end-users, say µr

on route r; if the ISP is allocated less than µr, then the ISP fails to transmit all traffic, and
therefore it is unlikely that SLA s are met. Hence each route r requires at least bandwidth
µr, and on top of that some extra bandwidth xr can be allocated. In other words: the
total bandwidth allocated, say x̄r, is the sum of the average rate µr (needed to ensure that
all incoming traffic can be handled) and ‘excess bandwidth’ xr (needed to provide QoS;
the higher xr, the better the QoS delivered). Therefore it is natural to assume that in this
context the utility function is strictly increasing and concave in the excess bandwidth xr

(rather than the total bandwidth x̄r).
It is easy to adapt the Algorithm 3.1 to the situation described above. The user maximizes
the utility of the excess bandwidth xr less the cost of the bandwidth x̄r = µr + xr,

max
xr≥0

Ur(xr)− (µr + xr)p,

whereas the network solves

max
p

p ·
∑
r∈R

(µr + xr(p)) under
∑
r∈R

(µr + xr(p)) ≤ c,

and p ∈ [0, pmax]; this yields the optimal price p?, so that the total assigned bandwidth to
user r is µr + xr(p?) = x̄r.

Using the same approach as for the original problem, we should use the updates

ηj+1 := max
{

0, ηj + ε
(
fj+1 + µ̄− c

)}
, (9)

pj+1 :=
[
pj + ε

(
fj+1 + µ̄ + f ′j+1[pj −max{0, ηj + m(fj+1 + µ̄− c)}]

)]pmax

0
, (10)

where fj+1 and f ′j+1 are the total demand and derivative of total demand for excess band-
width, respectively, and µ̄ :=

∑
r∈R µr. ♦

Remark 3.2 The first-order method can be extended to the general network setting; then
a vector of prices should be updated. Convergence to a local maximum ~p? can be guar-
anteed if the second-order sufficient conditions are satisfied for the larger problem, and
it can be shown that ~p? is regular. As expected, this is more complicated in the network
case. We do not include further details here. ♦
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In this section, we have assumed that each ISP assigns utility to bandwidth. As argued in
the introduction, it may be more natural to consider the situation that utility is a function
of the loss probability, as this is what the ISP has negotiated with its end-users. The next
section addresses the optimization problem for this situation.

4 Gaussian traffic; utility as a function of loss

In this section we briefly review the concept of Gaussian queues, and provide some ex-
amples of possible utility functions. These examples show that the utility curve can be
considered a function of the loss probability δ, rather than the bandwidth xr allocated to
route r. Finally we explain how to change Algorithm 3.1 so that it can be used in this
situation.

4.1 Gaussian queues

As argued by [3, 12, 15], aggregate traffic streams in packet networks can be accurately
approximated by Gaussian processes, in particular when the traffic aggregation level (for
instance in terms of numbers of users) is sufficiently high. This class of models covers a
broad range of correlation structures, including long-range dependence.
The total amount of traffic Ar(t) offered to the r-th ISP in an interval [0, t] is Normally
distributed with mean µrt and variance vr(t). Suppose this ISP is allocated an amount of
bandwidth x̄r = µr + xr (cf. Remark 3.1). With the assumption of Gaussianity, we focus
on the performance measure

δ(xr) := P(Ar(T ) ≥ (µr + xr)T ), (11)

that is, the probability that the total offered traffic over this chosen time-scale exceeds the
allocated bandwidth. The choice of an appropriate T is primarily a task of the network
manager, and depends on the types of applications being used; for further guidelines, see
[20]. We rescale time such that T ≡ 1; for brevity we write vr ≡ vr(1). The quantity δ(xr)
can be approximated as in [20]: the Chernoff bound yields

δ(xr) ≈ exp
(
− x2

r

2vr

)
, (12)

for xr > 0, and 1 else.
As argued in Remark 3.1, one has to allocate to route r minimally the mean rate µr, and
in addition an excess rate xr that can be determined by the iterative algorithm of the
previous section. In practice, however, ISP s will assign utility to the loss probability that
they experience rather than to (excess) bandwidth as such; recall that this is because it is
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the loss probability that they agreed upon with their clients (in the SLA). We can define,
for every function Ur(·), a function Ūr(·) such that

Ur(xr) = Ūr(δ(xr)) = Ūr

(
exp

(
− x2

r

2vr

))
;

the last equality is based on Approximation (12).

Example 4.1 In this example we show that natural choices for Ūr(·) lead to functions
Ur(·) that satisfy the assumptions made in Section 2. Consider the following choices:
(1) Ūr(δ) = α(− log δ)β , for positive α and β ∈ (0, 1

2). Then

Ur(xr) =
α

(2vr)β
x2β

r ,

which is indeed strictly increasing and concave in xr.
(2) Ūr(δ) = α− β/(1− δ) for positive β. Now

Ur(xr) = α− β

(
1− exp

(
− x2

r

2vr

))−1

,

also strictly increasing and concave. ♦

We observe that we can rewrite the user optimization problem, for the single link, to
maxxr≥0 Ūr(δ(xr))−(xr +µr)p. To perform this optimization, we should adapt Algorithm
3.1 slightly, as will be explained in the next section.

4.2 Characterization of the demand curves

In Algorithm 3.1 the routes’ utilities depend on the bandwidth that they are allocated. We
now describe how the algorithm should be adapted to the situation where utility curves
Ūr(·) depend on the loss probability.
Recall, Step 2 of the algorithm required each ISP to tell the link (through agents) its cur-
rent demand at the prevailing price and its current derivative of demand at the prevailing
price. We now discuss how the ISP s can use knowledge of the function δ(xr) to calculate
these quantities. As we have seen earlier, the demand curve is defined as the solution to
the equation U ′

r(xr) = p. By assumption, we know a solution exists (see Section 2). Since
Ur(xr) = Ūr(δ(xr)), by the chain rule, we have

U ′
r(x) = Ū ′

r(δ(xr))
d

dxr
δ(xr). (13)

By equating Expression (13) to p, we find the demand for excess bandwidth at price p

(denoted xr(p)); in the algorithm, it can be found numerically, for example, via a Golden
Section search. The algorithm also requires x′r(p); we can approximate this by

d
dp

xr(p) ≈ xr(p + h)− xr(p)
h

, (14)
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for a small h > 0. These quantities can then be used in Step 2 of the algorithm, with
updates (9)-(10) used to adapt the price.
The above approach clearly requires that the ISP s know their required mean rate µr and
the function δ(xr). In a practical setting, however, the ISP s do not a priori know the µr

and vr of their customers. Therefore they may rely on measurements to estimate this loss
probability. In the next section we present two ways to estimate δ(xr) from measure-
ments.

5 Estimation of loss probabilities

In this section we describe two approaches to estimate the loss probability from mea-
surements. In the first place one could estimate the mean and variance, continue as if
these are the true parameter values, and insert them in the approximation; this approach
is called certainty equivalence. As will be discussed, it does not take into account the in-
herent randomness of the measurements, and therefore we propose a more conservative,
Bayesian alternative, based on the so-called Inverse Sanov theorem. We conclude this sec-
tion by showing how each ISP can use the Bayesian estimator to calculate the quantities
needed in Step 2 of the algorithm in the context of Gaussian queues.

Consider a single ISP; it is offered an amount of traffic per unit time, say A(1), that is
Normally distributed with unknown mean µ and variance v. There are essentially two
different ways to estimate ∆(x) := P(A(1) > x). A ‘frequentist approach’ would be to
first estimate the mean and variance of A(1). This would be done in the classical way:
measure traffic over non-overlapping windows of length 1, far enough apart to make sure
that they are just weakly dependent. We thus obtain observations a1, . . . , an. From this
sample, we can compute the estimates µ̂n := n−1

∑n
i=1 ai and v̂n := (n− 1)−1

∑n
i=1(ai −

µ̂n)2. Then one could proceed as if the estimates µ̂n and v̂n are the real parameter values
and apply (12), which yields

P(N (µ̂n, v̂n) ≥ x) ≈ exp
(
−1

2
(x− µ̂n)2

v̂n

)
.

This idea leads to the following approximation.

Approximation 5.1 The certainty-equivalence estimator of ∆(x) is

∆CE(x) := exp
(
−1

2
(x− µ̂n)2

v̂n

)
=: q(x | µ̂n, v̂n). (15)

We use the term ‘certainty-equivalence’ (CE), as it is based on the idea that the values
µ̂n and v̂n are the true ones, thus ignoring the inherent uncertainty of the estimates. This
explains why we expect that this approximation cannot be gauranteed to be conservative.
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The Bayesian alternative would be the following. First realize that the event {A(1) > x}
can be considered as the combination of two effects. In the first place, it could be that the
estimates µ̂n and v̂n of the mean and variance are too optimistic, i.e., lower than the true
values µ0 and v0. In the second place, it could be that, even if the estimates coincide with
the true values µ0 and v0, A(1) is unusually high (a ‘large deviation’).
Whereas the second probability can be approximated by standard large-deviations tech-
niques, the first probability can be estimated by applying the so-called Inverse Sanov the-
orem [6]. Suppose we know that the observations stem from a Normal distribution, and
suppose their realizations reveal a sample mean of µ̂n and a sample variance of v̂n. We
may be interested in the ‘probability’ qn(µ0, v0 | µ̂n, v̂n) that the observations actually
stem from a Normal distribution with mean µ0 and variance v0. One can show that the
following approximation can be used:

qn(µ0, v0 | µ̂n, v̂n) := exp (−nI(µ0, v0 | µ̂n, v̂n)) ; (16)

where

I(µ0, v0 | µ̂n, v̂n) :=
1
2

log
(

v0

v̂n

)
+

(µ̂n − µ0)2 + v̂n − v0

2v0
;

see [2, Thm. 6]. This statement, the Inverse-Sanov theorem, in fact says that the ‘proba-
bility’ of µ0, v0 deviating from µ̂n, v̂n vanishes exponentially in n. It is easily seen that
I = 0 for µ0 = µ̂n and v0 = v̂n and positive elsewhere; I is a so-called ‘relative entropy’
or Kullback-Leibler distance.
We thus obtain the following first approximation, that ‘conditions’ on the values of µ0

and v0. With q and qn as defined in (15) and (16),

∆(x) ≈
∫

µ0,v0

q(x | µ0, v0) · qn(µ0, v0 | µ̂n, v̂n) dµ0dv0.

To further approximate ∆(x), we can apply the principle of the largest term (cf. [5, p. 25]):
replace the integral by the maximum of the integrand. We thus obtain

∆(x) ≈ exp
(
−1

2
Qn(x, µ̂n, v̂n)

)
,

where

Qn(x, µ̂n, v̂n) := min
µ0,v0

Qn(x, µ0, v0 | µ̂n, v̂n);

Qn(x, µ0, v0 | µ̂n, v̂n) :=
(x− µ0)2

v0
+ n

(
log
(

v0

v̂n

)
+

(µ̂n − µ0)2 + v̂n − v0

v0

)
.

The optimizing µ0, v0 can be found explicitly. The first order condition

d
dµ0

Qn(x, µ0, v0 | µ̂n, v̂n) = 2
(

x + nµ̂n − (n + 1)µ0

v0

)
= 0
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immediately leads to

µ?
0 = µ̂n +

x− µ̂n

n + 1
,

whereas on the other hand

d
dv0

Qn(x, µ0, v0 | µ̂n, v̂n) = −(x− µ)2

v2
0

+
n

v0
− n · (µ̂n − µ0)2 + v̂n

v2
0

= 0

leads to (after considerable calculus)

v?
0 = v̂n +

(x− µ̂n)2

n + 1
.

Inserting these into the objective function Qn eventually yields the following approxima-
tion.

Approximation 5.2 The Inverse-Sanov estimator of ∆(x) is

∆IS(x) :=
(

1 +
1

n + 1
· (x− µ̂n)2

v̂n

)−n/2

. (17)

It is interesting to see how this estimate behaves as a function of n. In the first place, we
observe that for small n, the estimate µ?

0 has a bias towards x, whereas for larger n, it
is close to µ̂n. A similar effect can be observed for v?

0 : the impact of x vanishes when n

grows, and for larger n it will be approximately equal to v̂n. Along the same lines it can
be argued that for large n the approximation (17) decreases to

exp
(
−1

2
(x− µ̂n)2

v̂n

)
.

In other words, when n grows large, the uncertainty of the estimates µ̂n and v̂n decreases,
and, as a result, the approximation ∆IS(x) converges to the certainty-equivalence-based
estimate (15). So, in general the frequentist and Bayesian approaches lead to different
approximations, where the Bayesian approach is the more conservative.

Remark 5.1 In the context of loss-probability-based utility functions, notice that the per-
formance measure of loss discussed in this section, ∆(x), is based on the total allocated
bandwidth. This is in contrast to the loss probability δ(x) based on excess bandwidth
(see Equation (11)). To use our estimators in the iterative scheme for allocating excess
bandwidth, we can use the following:

δCE(x) = ∆CE(x + µ̂n), and δIS(x) = ∆IS(x + µ̂n).

In doing this, the Inverse-Sanov (IS) estimator has an element of certainty-equivalence to
it, in that we use the sample mean µ̂n as the estimate of the true mean. However, as we
will see through our numerical example, using this Inverse-Sanov estimator still yields a
more conservative outcome.
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Remark 5.2 The Inverse-Sanov methodology (in conjunction with the principle of the
largest term) is a powerful tool in many other situations, and nicely captures the possible
‘dangers’ of using the CE-approach. Although it is not entirely in the scope of the present
paper, we have decided to include here an example that relates to measurement-based
admission control, as it nicely illustrates the advantages of the IS-approach.
Consider a link in a network, on which i.i.d. sources are active. Let each individual source
transmit traffic at a rate that is distributed as a random variable X , which we assume to
represent a Normal random variable, but with unknown mean and variance. Suppose
we are able to obtain n measurements of this traffic rate (which we assume to be inde-
pendent, and distributed as the random variable X), say, a1, . . . , an. The link has service
capacity c ≡ nc, and we focus on the regime of large n (i.e., we have many observations
at our disposal).
We first compute the number of sources that can be admitted for the CE-approach, under
the requirement that the probability of the aggregate input rate exceeding c is below ε,
based on a1, . . . , an. Denoting by the Xi the rates of the individual sources, we wish to
determine the biggest m such that

P

(
m∑

i=1

Xi ≥ nc

)
≤ ε.

As we consider certainty equivalence, we assume that the Xi follow a Normal distribu-
tion with mean µ̂n and variance v̂n. Applying the usual large-deviations approximation,
we see that to find m, we must solve

exp
(
−1

2
(nc−mµ̂n)2

mv̂n

)
= ε.

Elementary calculus yields that

m ≡ m(n) =
(

c

µ̂n

)
n−

(√
v̂n

µ̂n

√
c

µ̂n
·
√
− log ε

)√
n + o(

√
n). (18)

We now approximate the probability that the aggregate input rate exceeds c is below ε

under the CE-based admission control. Suppose that we accept these m sources. It is
natural to ask whether the probability of the aggregate input rate exceeding c is indeed
in the order of ε; if it is, then the CE-approach is a reliable method. Given our discussion
on CE, one might expect that the probability is larger than ε. To verify this, we follow the
Bayesian approach:

P

(
m∑

i=1

Xi ≥ nc

)
≈∫

µ0,v0

exp
(
−1

2
(nc−mµ0)2

mv0
− n

2

(
log
(

v0

v̂n

)
+

(µ̂n − µ0)2 + v̂n − v0

v0

))
dµ0dv0.
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Again applying the principle of the largest term, we find that the optimizing µ0 and v0

are

µ?
0 =

n

m + n
(c + µ̂n); v?

0 =
1
m
· 1
n + m

(nc−mµ̂n)2 + v̂n,

which yields the approximation, with m ≡ m(n) as given in (18),

P

(
m∑

i=1

Xi ≥ nc

)
≈
(

1 +
1
m
· 1
m + n

· (nc−mµ̂n)2

v̂n

)−n/2

.

According to (18) it holds that (nc−mµ̂n)2 = v̂n ·(c/µ̂n) ·
√
− log ε ·n+o(n), i.e., essentially

linear in n. With m ≈ nc/µ̂n, we obtain that for n large

P

(
m∑

i=1

Xi ≥ nc

)
≈ exp

(
−1

2
· µ̂n

µ̂n + c
· (− log ε)

)
= (

√
ε)µ̂n/(µ̂n+c)

= (
√

ε)µ̂n/(µ̂n+c/n).

Since for large n we have that µ̂n/(µ̂n + c/n) ≈ 1, we observe that this probability is
approximately

√
ε, which is considerably larger than ε.

We may draw the following conclusions from the above computations. In the first place,
consider CE-based admission control, i.e., admit m connections, with m as in (18). The
performance target is that the probability of exceeding c is below ε, but it turns out that
this probability is rather in the order of

√
ε, i.e., considerably too high. Apparently, the

uncertainty of the estimates µ̂n and v̂n is so strong that the CE-based admission control is
too optimistic.
In the second place, we observe that, in order to meet the performance target, one may
still use the CE-method, but now with an adjusted ε, i.e., ε′ := ε2. These observations
are in line with the findings of [7, Section 2]; notice that the approaches used are entirely
different. ♦

Example of our proposed loss estimators. Figure 1 shows the difference between the log of
the two loss estimators. Using a sample size of N = 50, we consider a system with traffic
source parameters µ = 2, σ = 0.15 and T = 1. The graph is generated by taking 20
samples from a N (2, 0.152) distribution, constructing the estimators ∆CE(x) and ∆IS(x),
respectively, and plotting the log of the means of the calculated quantities.
The graph shows the log of the two estimators of loss as the allocated capacity x increases.
The upper curve is the result of the IS estimator, confirming our previous observation that
it was the more cautious estimator of the loss probability.

6 Numerical example

We illustrate the performance of the two loss estimators via a numerical example. Con-
sider a network of four links of capacity c = 20, shared by five ISP s, of the form given in
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Figure 1: Comparison of CE and IS loss estimators with N = 50; System parameters: µ = 2, σ = 0.15,
T = 1.

Figure 2. The routes are denoted by dashed lines, and traverse at least one link between
an origin and a destination node.

ROUTE 1

ROUTE 2
ROUTE 3

ROUTE 4
ROUTE 5

Figure 2: Network of four links shared by five routes

One ISP traverses 3 links, two ISP s traverse 2 links and the remaining ISP s traverse a
single link. We assume each ISP has a utility function of the form

Ū(δ) = α− β

(1− δ)
. (19)

As seen in Example 4.1, this utility function induces a utility function in terms of excess
bandwidth that is strictly increasing and concave. Given the form of (19), the demand
for excess bandwidth tends to 0 as the price p →∞. This implies that in this example we
know a priori that p? = pmax. The numerical example uses network parameters given in
Table 1.
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Network Parameter Parameter Value
Links c = [20, 20, 20, 20]
Utility function α = 1, β = 10
True mean µ = [3, 3, 3, 3, 3]
True standard deviation σ = [0.2, 0.2, 0.2, 0.2, 0.2]
Price cap pmax = 1 for all links
Step-size ε = 0.02

Table 1: Network parameters for numerical example.

Updates to the link prices and multipliers are made according to equations (9)-(10). From
these equations, it can be seen that, at each link, not only the demand for excess band-
width and the corresponding derivative should be known, but also the mean traffic rate.
In the measurement-based context, the ISP s must estimate these quantities based on ob-
servations on the system. At each iteration, an independent sample of size n is taken.
From this sample, the empirical mean can be calculated, and the ISP s are first allocated
this quantity as an estimate of the mean rate (the minimum amount required to carry
their traffic). This is aggregated on each link ` to estimate µ̄`, the total mean rate on link
`, leaving a remaining c` − ˆ̄µ` units of bandwidth available.
The amount of this remaining bandwidth that gets allocated to the ISP s is derived from
the demand for excess bandwidth. This depends on how δ is evaluated, which brings us
to our two loss estimators of Section 5. As explained, the Inverse-Sanov estimator ∆IS(x)
is more conservative than the Certainty-Equivalence estimator ∆CE(x), in the sense that
for a given bandwidth x, the estimated loss probability is higher using ∆IS(x).
Since we know a priori that in this example p? = pmax for all links, it follows that the
excess bandwidth demanded by the ISP s is larger when they use ∆IS(x) as the estimator
of the loss probability. The final profit π(p?) is made up of the link prices multiplied
by the total allocated bandwidth, where the latter is made up of the mean rate plus the
demand for excess bandwidth. Hence, the previous discussion implies that the profit will
also be larger when ∆IS(x) is used.

Figure 3 shows the profit derived as the iterative procedure progresses, when a sample
size of n = 20 is used. Profit is calculated as the current price multiplied by the esti-
mated mean rate plus the demand for excess bandwidth at the prevailing price. The solid
straight lines indicate the average behavior of the IS and CE estimators, respectively. As
expected, on average, the profit derived using ∆IS(x) is larger than when using ∆CE(x).
The difference between the profits can be thought of as a premium that the network earns
from being used by risk-averse ISP s.
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Figure 3: Derived profit using two estimators of loss and the first-order iterative method.

The difference between the IS and CE estimators is further highlighted by Figure 4. It
shows the total allocated capacity for the three-link route as the price update procedure
progresses. To aid comparison between the scenarios, we have removed the fluctuations
in bandwidth as the iterative scheme progresses and have only shown the ‘average’ be-
havior (achieved by assuming the ISP views a sample mean µ̂n and sample variance v̂n

equal to the true mean and variance at each iteration). The benefit of this is the ease with
which we can see how sample size affects the impact of the Inverse-Sanov estimator. The
bottom-most curve is the total allocated bandwidth when the ISP uses the CE estimator.
When using measurements, the ∆CE(x)-based total allocation fluctuates about this curve.
So, quite frequently, the CE-based allocation is below the true optimal allocation. The re-
maining curves are the total allocated bandwidth when using the IS estimator for various
sample sizes. The uppermost is when the smallest sample size n = 10 is used. Here the
ISP mistrusts the observed mean and variance, and hence compensates by demanding
more bandwidth. This mistrust diminishes as n is made larger (here n = 20, 50, 100 are
shown), which translates to a corresponding decrease in the profit to the network.

7 Concluding remarks and future work

This paper studied the workings of a network in which the network and the users of
the network have misaligned objectives. In particular, we considered the situation where
each link is able to set a price for bandwidth and the users vary their demand depending
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Figure 4: Total allocated capacity to ISP 1 in the network – includes mean rate + demand for excess
bandwidth.

on the prevailing price. Their demand is derived from a utility function, used to measure
how greatly they value bandwidth. In our context, the users can be thought of as ISP s
competing for the finite bandwidth on each link of the network. In economic terms, the
links are price setters and have the objective of maximizing their profit, while the users
are price takers and have the objective of maximizing their compensated utility (utility
less the cost of acquiring bandwidth). This can be contrasted with the network situation
in which the network and the users have aligned objectives, known as social welfare
maximization.

The first contribution of this paper was a provably convergent iterative update scheme
for a single link model. The procedure updated the price for bandwidth so the network
could achieve its maximum profit, while satisfying the link capacity constraints. It relied
on communication between each user and the link, but not between the users. It thus sat-
isfied the requirement of being distributed; this is often essential in the network context.
Users supplied the link their demand for bandwidth, as well as a measure of the elastic-
ity of their demand, at each iteration. This information was used by the link to optimally
increment the price.
The second contribution of the paper was to provide a way of using the derived iterative
procedure in a measurement-based context. This is required since each ISP is used by a
large number of end-users. The desire for bandwidth of these end-users fluctuates over
time and hence an ISP does not know its utility function with certainty. Instead it must
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base its decisions on observation of the system. We proceeded using the assumption of
Gaussian input traffic, appropriate here because of the high aggregation of end-users.
In this context, we derived an estimator of loss probability that is useful for risk-averse
ISP s. It was shown how this estimator could be used in the iterative procedure for band-
width and price updates, and we illustrated the modified update algorithm via a simple
numerical example.

The work contained here can be extended in several ways. First, the set up of the profit
maximization problems could be made more complex. This may be desirable if, for ex-
ample, users’ demand for bandwidth depended not only on the prevailing price, but
also on some measure of congestion present on the link. We anticipate that this would
make the iterative scheme more complicated. This is especially so given the requirement
that the scheme be distributed, and hence the ISP s cannot directly communicate with
each other. Another interesting possibility is to investigate the scenario where there exist
multiple network owners; hence the market for bandwidth is an oligopoly, rather than a
monopoly.
Instead of making the profit maximization more complex, it would also be of interest to
further investigate the convergence properties of the iterative scheme in the measurement-
based context. This may require use of stochastic approximation techniques and a more
in-depth analysis of the noise associated with the estimated quantities.

Appendix

This appendix contains details of the convergence of a first-order update scheme applied to the
augmented Lagrangian of an inequality constrained optimization problem, see Algorithm 3.1. A
key element in the proof are the update formulae (20)-(21); it is a straightforward exercise to verify
that these are in line with the update formulae of Algorithm 3.1, i.e., (7)-(8)

Our proof follows a similar format to Bertsekas [1, Prop. 4.4.2], which proves convergence of a
first-order scheme applied to the conventional Lagrangian of an equality constrained optimiza-
tion problem.
Consider the optimization problem:

max
x

J(x) subject to g(x) ≤ 0,

for which the SOSC holds true, and the optima x? are regular. Let η denote the vector of multipli-
ers of dimension L and let R denote the dimension of the x. Consider the augmented Lagrangian
with penalty parameter m (cf. Lm(p, η) introduced in Section 3), so that the function is locally
concave at (x?, η?).
Let xj and ηj be the j-th iteration of the control and the multiplier. The first-order update algo-
rithm can be described by xj+1 = G(xj , ηj) and ηj+1 = H(xj , ηj), where

H(x, η) := max{0, η + εg(x)}, (20)

G(x, η) := x + ε
(
∇J(x)−∇g(x) max{0, η + mg(x)}

)
; (21)
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here ∇J(x) and ∇g(x) denote derivatives with respect to x, and the max is taken element-wise.
Equalities to follow are also taken element-wise.
According to [1, Prop. 4.4.1], the iterations converge to a fixed point, provided that the system
starts in a neighborhood S such that the mappings G and H are continuously differentiable and
the eigenvalues of Γ?, a matrix of derivatives of G and H evaluated at the fixed point, lie within
the unit circle. If the mappings G and H are continuously differentiable in S, then the entries of
the matrix Γ are continuous. Since the eigenvalues of a square matrix depend continuously on
the entries [1, Prop. A.14], for small ε and (x, η) ∈ S, the eigenvalues will remain within the unit
circle.
It clear that (20) and (21) are both continuous functions (in x and η), but are not continuously
differentiable. G(x, η) has a discontinuity in its derivative at points where η = −mg(x), while
H(x, η) has a discontinuity in its derivative where η = −εg(x). These discontinuities mean that
we cannot immediately apply Proposition 4.4.1 [1], as is possible in the equality-constrained case,
to prove convergence.
We observe that away from these discontinuities, the mappings are continuously differentiable.
So, if we can establish that the optimal solution (x?, η?) is not at a discontinuity, then there exists
an open set around (x?, η?) where G and H are continuously differentiable.
At the optimal solution, there is a set of constraints that are active (gj(x?) = 0, for j in the active set
A(x?)) and a set of constraints that are inactive (gj(x?) < 0 for j 6= A(x?)). By strict complemen-
tarity, for j ∈ A(x?) we have ηj > 0 and for j 6∈ A(x?) we have ηj = 0. Therefore, η? 6= −mg(x?)
and η? 6= −εg(x?). Hence, the solution (fixed point of the updates) is not at a discontinuity and
therefore there is a neighborhood around (x?, η?) for which the mappings are continuously dif-
ferentiable. We thus consider Γ? in this neighborhood and show that its eigenvalues lie within
the unit circle.
Let In denote the identity matrix of dimension n ∈ N. For (x, η) in the neighborhood around
(x?, η?) for which the mappings are continuously differentiable, with a slight abuse of notation
with respect to vectors,

∇xG(x, η) = IR + ε∇2
xxLm(x, η)

∇ηG(x, η) =

{
−ε∇gj(x) if j ∈ A(x?)
0 otherwise

∇xH(x, η) =

{
ε∇gj(x) if j ∈ A(x?)
0 otherwise

∇ηH(x, η) =

{
1 if j ∈ A(x?)
0 otherwise.

Now consider the matrix of derivatives Γ?. Let the number of active constraints be denoted k,
and ∇Ag(x) denote the R × k matrix containing the constraint gradients (with respect to x) for
these active constraints. Then Γ? is given by

Γ? =

 IR + ε∇2
xxLm(x?, η?) ε∇Ag(x?) 0

−ε∇Ag(x?)T Ik 0
0 0 0

 , (22)

where 0 denotes a matrix of the appropriate dimension. The difference between Γ? for the in-
equality and the equality cases is that for the latter, there are no inactive constraints. Hence the
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block structure of Γ? is more complicated here. The matrix Γ? given in (22) can be written as
Γ? = IR+L − εB, where

B :=

 −∇2
xxLm(x?, η?) −∇Ag(x?) 0
∇Ag(x?)T 0 0

0 0 ε−1IL−k

 .

If we can show the real part of each eigenvalue of B is strictly positive, then we can use ε as a
‘scaling’ factor to ensure the eigenvalues lie within the unit circle. We are then done.
Let the vector ŷ denote the complex conjugate of the vector y. Let β be an eigenvalue of B and
let (z, w, v) 6= 0 be the corresponding eigenvector, where z, w, and v are complex vectors of
dimension R, k, and L− k, respectively. We have

Re

{
(ẑT, ŵT, v̂T)B

( z

w

v

)}
= Re

{
β(ẑT, ŵT, v̂T)

( z

w

v

)}
= Re(β)

(
‖z‖2 + ‖w‖2 + ‖v‖2

)
, (23)

by the definition of β being an eigenvalue of B, while using the form of B, we have

Re

{
(ẑT, ŵT, v̂T)B

( z

w

v

)}

= Re
{
− ẑT∇2

xxLm(x?, η?)z + ŵT∇Ag(x?)Tz − ẑT∇Ag(x?)w + v̂Tε−1IL−kv
}

= Re
{
− ẑT∇2

xxLm(x?, η?)z + v̂Tε−1IL−kv
}

, (24)

which follows, since for any real R× L matrix D, we have Re{ẑTDTw} = Re{ŵTDz}.
Combining equations (23) and (24) yields

Re
{
− ẑT∇2

xxLm(x?, η?)z + v̂Tε−1IL−kv
}

= Re(β)
(
‖z‖2 + ‖w‖2 + ‖v‖2

)
. (25)

It is left to prove that the left-hand side of (25) is positive for (z, w, v) 6= 0, since this implies that
Re(β) > 0, which is what we set out to show.
If z 6= 0 and/or v 6= 0, then the left-hand side of equation (25) is strictly positive. This is because
Lm(x?, η?) is locally concave, hence−ẑT∇2

xxLm(x?, λ?)z > 0 for z 6= 0. In addition, ε−1v̂TIL−kv >

0 for v 6= 0.
If z = 0 and v = 0, by the assumption that the eigenvector is not a vector of zeroes, this implies
that w 6= 0. Then, the left-hand side of (25) is zero and hence Re(β) = 0. Therefore, the equation

B

( z

w

v

)
= β

( z

w

v

)

reduces to∇Ag(x?)w = 0. Since x? is regular, the active constraint gradients are linearly indepen-
dent. Hence, w = 0. This yields a contradiction. Therefore, (25) is strictly positive, which implies
Re(β) > 0. This is what we set out to show. Therefore, for ε > 0, there exists a neighborhood S

of (x?, η?) such that if (x0, η0) ∈ S, then the first-order updates are a contraction mapping and
converge to (x?, η?) as j →∞.
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