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Abstract

In this paper, we propose a low-complexity auction framework to distribute spectrum in real-time among a large

number of wireless users with dynamic traffic. Our design consists of a compact and highly-expressive bidding

format, two pricing models to control tradeoffs between revenue and fairness, and fast auction clearing algorithms to

achieve conflict-free spectrum allocations that maximize auction revenue. We develop analytical bounds on algorithm

performance and complexity to verify the efficiency of the proposed approach. We also use both simulated and real

deployment traces to evaluate the auction framework. We conclude that pricing models and bidding behaviors have

significant impact on auction outcomes and spectrum utilization. Any efficient spectrum auction system must consider

demand and spectrum availability in local regions to maximize system-wide revenue and spectrum utilization.

Keywords: Auctions, Spectrum, Algorithms.

1. Introduction

Reliable and efficient spectrum access is vital for
the growth and innovation of wireless technologies.
Unfortunately, historical (and current) spectrum
regulations allocate different spectrum to different
technologies using long-term leasing to prevent in-
terference among them. Over time, this has led to
significant over-allocation and under-utilization of
spectrum, which is slowing down wireless deploy-
ments. To realize efficient spectrum usage, we must
migrate from the current static spectrum access to
dynamic spectrum access [3,27].

One promising solution is spectrum trading that
applies pricing based incentives to motivate users to
sell and lease under-utilized spectrum. One partic-
ular form of trading mechanism is auctions, which
is widely known for providing efficient allocation of
scarce resources [5,14]. Sellers use auctions to im-
prove revenue by dynamical pricing based on buyer

demands, while buyers benefit from auctions since
they assign resources to buyers who value them
the most. Example auction systems include energy
markets [5], treasury bonds [4] and commercial
goods [14].

In this paper, we consider a dynamic spectrum
auction system where a seller auctions spectrum
among users with dynamic demands while maximiz-
ing system revenue. User demands change over time
and hence the seller must derive auction results in
real-time. Figure 1 illustrates a general spectrum
auction scenario where n buyers (wireless service
providers) bid for spectrum from a seller (govern-
ment agencies or spectrum owners) who auctions its
spectrum periodically, i.e. every hour. These new
types of auctions are significantly different from tra-
ditional auction systems, and face the following new
challenges:
– Constrained by radio interference. Auction out-

comes are constrained by radio interference. Buy-
ers in close proximity interfere with each other
and can not use the same spectrum; while well-
separated buyers can reuse the same spectrum.
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Fig. 1. A dynamic auction scenario. (left) An auctioneer
auctions spectrum to buyers periodically. (right) A conflict
graph illustrates the interference constraints among buyers.

Spectrum auctions need to explicitly account for
the impact of interference when determining allo-
cations and prices, making the corresponding op-
timization problem NP-complete. Therefore, solv-
ing the auction becomes much more complex.

– Supporting diverse demands. Users have diverse
demands that vary over time, and they expect
to obtain and pay for what they need. These in-
clude both traditional long-term stable usage and
short-term spontaneous usage to support bursty
traffic. For example, occasional events like sports
and conferences will create a spike in demand at
a specific location for a short period of time.

– Requiring online multi-unit allocations. In spec-
trum auctions, users wish to obtain different
amount of spectrum at their desired power level,
and may be willing to pay differently depending
on the assignment. The system needs a bidding
language to allow buyers conveniently express
their desire, and do so compactly. The system
needs a fast allocation algorithm to distribute
resources in real-time.

While there exists a critical need for dynamic
spectrum auctions, we observe that existing solu-
tions are not suitable to support real-time opera-
tions. In particular, existing solutions for multi-unit
auctions apply combinatorial auctions as the most
general framework [12]. These auctions require com-
plex bid expression that grows exponentially with
the size of goods, and apply complex allocation and
pricing process that requires solving NP-hard prob-
lems. Hence, they are in general intractable and not
suitable for real-time dynamic hourly auctions.

In this paper, we consider the problem of real-
time dynamic spectrum auctions to distribute spec-
trum among a large number of buyers in a large ge-
ographic area. We focus on computational-efficient

channel allocation/pricing algorithms to support
large scale networks with real-time spectrum trad-
ing. While the problem is NP-hard, we show that by
restricting bids and radio interference constraints
judiciously, we can design a practical and efficient
auction system that is simple, scalable and yet pro-
vides powerful performance guarantees. Our work
differs significantly from prior works on spectrum
auctions [7,17,20,29] which assume small scale net-
works. We also perform extensive experiments to
understand the impact of pricing models and bid-
ding behaviors on spectrum utilization and revenue.

This paper makes four key contributions:
– A compact and highly expressive bidding language

– piecewise linear price-demand (PLPD). Each
buyer expresses its demand as the amount of spec-
trum desired at each particular per-unit price.
PLPD can approximate a very broad class of de-
mand curves with high accuracy. It allows bidders
to express fairly sophisticated valuations in a sin-
gle bid, and do so very compactly.

– Pricing models to explore tradeoffs of revenue and
fairness. We investigate two pricing models, a
simple uniform pricing model where all winners
pay the same per-unit price, and a discriminatory
pricing model where winners’ per-unit prices are
different. While the decision of pricing model de-
pends on the tradeoff between revenue and fair-
ness, we focus on designing allocation algorithms
for both models and exploring their impact on
auction outcomes and user allocations.

– Low-complexity allocation algorithms with ana-
lytical bounds. While the revenue-maximizing
auction problem is NP-hard, we propose low-
complexity approximation algorithms to derive
prices and allocations. Our algorithms are sup-
ported by strong theoretical bounds on perfor-
mance and complexity. Our algorithms run in
polynomial time (1 min for 3500 nodes using a
3.0 GHz processor with 1 GB RAM.) while the
optimal solution takes exponential run time (4
hours for 80 nodes).

– Extensive experiments and evaluations. We per-
form extensive experiments to examine the pro-
posed system, and explore the impact of bidding
behavior, network topology and pricing model.
Results show our algorithms run in real-time and
produce near optimal solutions. We conclude that
to maximize revenue and spectrum utilization,
prices must be determined based on local demand
and spectrum availability.
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The rest of the paper is organized as follows. In
Section 2 we describe the general model of spectrum
auction, the impact of wireless interference and dis-
cuss some related work. In Section 3 we propose
the auction framework and introduce our bidding
language and pricing models. We describe auction
clearing algorithms for both pricing models in Sec-
tion 4 and derive theoretical bounds on performance
and complexity in Section 5. We show experimental
results in Section 6. We discuss in Section 7 several
practical issues related to the proposed framework
and conclude in Section 8.

2. Preliminaries and Related Work

This section briefly describe multi-unit auctions,
existing solutions and challenges on the problem of
spectrum allocation under interference constraints.

2.1. Background on Auctions

Auctions have been widely used to provide effi-
cient allocation of scare resources, including the sale
of single-item indivisible goods, single-item, multi-
unit bundles [13,31] and multi-item, multi-unit bun-
dles [12] (e.g. bonds). A successful auction system
must not only produce financial efficiency [22], but
also provide (a) efficient bidding process and (b) fast
clearing (or winner determination) process.

First, users express their preferences for various
outcomes by submitting bids. There is often an in-
verse relation between the “expressiveness of the
auction” and the computational complexity of de-
termining the winners in the auction. Combinato-
rial auctions allow users to express their bids over
arbitrary subsets of the goods, but are known to
be intractable to solve optimally, or even approxi-
mately [30].

Next, given a set of bids, auctioneers use auction-
clearing algorithms to compute the revenue-
maximizing prices and allocations. Auction-clearing
is simple for single-item single-unit auction: assign
the item to the bidder with the highest bid. How-
ever, auctioning multi-unit items can be much more
complex since multiple winners split the items. The
complexity of clearing algorithms also depends on
the complexity of bidding language. A comprehen-
sive study of market clearing algorithms for single
item, multiple-unit auctions was given by [31].

Auction outcomes and the corresponding clearing
algorithms also depend on the pricing model used.

– Uniform pricing. The auctioneer determines a
per-unit price and applies it to all winning bid-
ders. The auction clearing problem here is to
determine a market-clearing price that maxi-
mizes the auctioneer’s revenue. Ebay multi-unit
auctions [13] have been using this model.

– Discriminatory pricing. The auctioneer charges
different prices to different bidders. While pro-
ducing higher financial revenue, this model is also
perceived as less ”fair” to bidders than the uni-
form pricing model.
The various issues that arise in uniform pricing

versus discriminatory pricing models have been
studied in diverse markets such as US treasury se-
curity auction [24], government bonds auction in
UK [4], and electricity auctions in California [5,19].
For one time auctions, discriminatory pricing al-
ways generates more revenue. On the other hand,
uniform pricing is simple, and provides “fairness”
to bidders and promotes aggressive bidding [24].
However, uniform pricing is suspect to collusion
among the bidders [6] and for an unsettled mar-
ket, it might be more dangerous with respect to
the amount of revenue it generates [24]. Because of
these complex factors, we leave the choice of pricing
model to auctioneers, and focus on designing effi-
cient bidding language and fast clearing-algorithms
for both models.

In addition to having different pricing models,
auctions can be one-time or iterative. For one-time
auctions, buyers input bids once, and auctioneer de-
termines allocations and prices based on this input.
In iterative auctions, the bidding proceeds in multi-
ple rounds where buyers can change their bids from
round to round based on market feedback.

2.2. Related Work on Spectrum Auctions

There are multiple complementary ways to de-
sign spectrum auctions [26,27], each applicable
to different scenarios. First, the system can allo-
cate/auction transmit power to minimize interfer-
ence [17,18], while all buyers use the same spectrum
band. Second, the system can allocate conflicting
users with orthogonal channels to avoid interfer-
ence, and compute appropriate prices and alloca-
tions to maximize system utility. Prior work in this
category uses cellular network model. The work in
[20] uses a demand responsive pricing framework,
and applies iterative bidding to maximize social
welfare for small scale networks. In [9], the authors
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propose the general problem in cellular systems
and centralized heuristics for small scale networks.
Ryan et al. [29] proposed a hybrid pricing model to
reduce the frequency of auctions – use simple auc-
tions during peak period while applying a uniform
price to all buyers during off-peak. There has also
been a parallel stream of Iwork which has focussed
on allocation of spectrum to users for a given sin-
gle access provider [28]. Also, a lot work has gone
into coordination algorithms, both centralized and
distributed [7,8,15]. A good survey on dynamic
spectrum access can be found in [1].

Interference Constraints in Spectrum Auc-
tions. Spectrum auction differs from conventional
auctions because it has to address radio interfer-
ence. Given bids, the problem of auction-clearing
becomes the problem of interference-constrained
resource allocation. Next, we briefly discuss the im-
pact of interference and the corresponding spectrum
allocation problem.

We start from a sample scenario in Figure 1 where
nodes A to F are wireless access points that pro-
vide network access for their associated users. Since
A and B are located close to each other, their as-
sociated users will receive signals from both nodes.
Signals from non-associated access points become
interference and could disrupt communications. To
avoid interference, A and B should not use the same
spectrum frequencies. Assuming spectrum consists
of M channels, we use FA and FB to represent the
spectrum assigned to A and B, i.e.

FA = {sA
1 , sA

2 , ...sA
M}

where sA
k = 1 if the kth channel is assigned to A, and

otherwise 0. Let fA = |FA|/M , fB = |FB|/M rep-
resent the normalized spectrum assigned to A and
B, respectively. We can represent the interference
constraint between A and B as

Interference Constraints: FA ∩ FB = ∅, i.e.
sA

k sB
k = 0, ∀k ∈ [1, M ]; and fA + fB ≤ 1.

Figure 1 shows the graphic interpretation of the con-
straints as a Conflict Graph. Vertices represent ac-
cess points, and an edge exists between any two ver-
tices if they conflict. Under interference constraints,
we define the auction clearing problem as:

Maximize
∑

i∈bidders

fipi(fi), subject to (1)

fi ≤ 1 (2)

Interference Constraints (3)

priceprice

quantity

revenue

price

bi

bi/ai

bi/2

bibi/2

bi/(2ai)

b2i /(4ai)

revenue

quantity

price

revenue

Fig. 2. On the left, linear demand curve (top) and the cor-
responding revenue generated (bottom) and on the right a
concave piecewise linear demand curve (top) and the corre-
sponding piecewise quadratic revenue function.

where pi(fi) represents the per-unit price that the
bidder i pays if he obtains fi · M unit of spectrum.

This problem is an integer programming problem
because the model requires integer-valued variable;
it is also non-linear because the objective function
is quadratic. This problem is also known to be NP-
hard. Jain et al. [21] were the first to study a class of
related optimization problems and proposed an ex-
ponential time algorithm to solve it optimally. The
works of [2,10,23] have provided polynomial time ap-
proximation algorithms with provable performance
guarantees to maximize the total system through-
put. Our work builds on existing works of [10,31]
to solve spectrum auction problems that maximize
revenue under interference constraints.

3. Spectrum Auction Framework

To support real-time dynamic spectrum trading,
we propose a computational-efficient auction frame-
work with simple and effective bidding and fast auc-
tion clearing algorithms. Specifically, buyers use a
compact and yet expressive bidding format to ex-
press their desired spectrum usage and willingness
to pay, while sellers execute fast clearing algorithms
to derive prices and allocations under different pric-
ing models. We present the proposed bidding for-
mats and the corresponding optimization problems
under different pricing models. We describe fast auc-
tion clearing algorithms in Section 4.

We begin by making several assumptions on the
spectrum auction system. First, assuming each
buyer bids for spectrum with specific but fixed power
requirements, we focus on the problem of channel
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allocation only 1 . The seller divides its spectrum
into a large number of homogeneous channels with
equal power limit and transmission bandwidth. We
use centralized auction where the seller collects bids
and auctions spectrum in single rounds periodically.
In Section 7 we discuss extensions to heterogeneous
channels, decentralized systems and iterative auc-
tions, as well as practical mechanisms to acquire the
knowledge of interference constraints. We model
interference constraints using the widely-used pro-
tocol interference model [21], a succinct model to
formulate the impact of interference in resource al-
location problems. Using this model, we represent
interference constraints as a conflict graph, shown
in Figure 1. In Section 7 we will discuss practi-
cal considerations on realistic characterization of
interference.

3.1. Piecewise Linear Price-Demand (PLPD) Bids

A good bidding language should provide expres-
sive but concise bids. We propose to use piecewise
linear demand curves that not only satisfy both re-
quirements, but also lead to low-complexity clearing
algorithms. A bidder i expresses the desired quan-
tity of spectrum fi at each per-unit price pi using a
continuous concave piecewise linear demand curve.

A simple example is linear demand curves

pi(fi) = −aifi + bi, ai ≥ 0, bi > 0, (4)

where the negative slope represents price sensitivity
of the buyer – as the per-unit price decreases, de-
mands in general increase. When ai > 0, the revenue
produced by each bidder is a piecewise quadratic
function of the price. Figure 2 shows the quantity
fi(pi), and the revenue generated Ri(pi) as a func-
tion of the price pi:

fi(pi) =
bi − pi

ai

, 0 ≤ pi ≤ bi (5)

Ri(pi) = fi(pi)pi =
bipi − pi

2

ai

(6)

For linear demand curves, the revenue is a quadratic
function of price, with a unique maximum at pi =
bi/2. Further,

pi → 0, Ri(pi) → 0

pi → bi, Ri(pi) → 0.

1 Extensions to joint channel and power allocations are be-
yond the scope of this paper, and will be addressed in a
future study.

b1 b2 bn

feasible region

price

revenue

pf

Fig. 3. The revenue as a function of clearing price p in the
uniform pricing model.

We note that any piecewise linear demand curve
can be expressed as a conglomeration of a set of in-
dividual linear pieces (see Figure 2). For ease of ex-
planation, we will use linear demand curves to de-
scribe auction problems and solutions. However, our
algorithms and proofs easily generalize to concave
piecewise linear demand curves.

PLPD is suitable for dynamic spectrum auctions
because of the following advantages. First, it is sim-
ple and yet highly expressive. PLPD can approx-
imate any arbitrary continuous concave functions,
and hence supports a broad class of demands. Sec-
ond, using PLPD, the auction is single-shot with
sealed-bid. This eliminates the need for iterative bid
refinement as well as bidder feedback and signaling,
and could prevent collusion among bidders. Since
auctioneers no longer need to collect bids iteratively,
the use of PLPD is particularly suitable for real-
time auctions. Finally, PLPD produces (piecewise)
quadratic revenue functions which significantly sim-
plify the auction-clearing problem.

Although auction revenue and efficiency depend
on buyer’s social and financial strategy and their
PLPD formats, we do not address mechanisms to
compute the optimal PLPD curves. Instead, we as-
sume that each buyer has its own curve, and fo-
cus on how to solve the auction-clearing problem
given the bids. We perform experiments in Section 6
to explore the impact of various bidding behaviors,
particularly aggressive versus conservative bidding.
In Section 7, we also discuss extensions to iterative
auctions where buyers adjust their PLPD bids iter-
atively based on market feedback.

3.2. Pricing Models and Auction-Clearing Problems

We now describe the auction clearing problem un-
der both uniform and discriminatory pricing mod-
els. Note that when ai = 0, the clearing problem
becomes a classical weighted throughput maximiza-
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tion problems with good solutions [10,11,21]. In this
paper, we assume the general cases where ai > 0.

Uniform pricing – The auctioneer sets a clear-
ing price p. Each bidder obtains a fraction of spec-
trum fi(p) = (bi − p)/ai and produces a revenue
of Ri(p) = (bip − p2)/ai. Any bidder i with bi ≤ p
gets zero assignment. The optimization problem be-
comes to search for the revenue-maximizing price p.
Without loss of generality, we assume that bidders
1 to n are labeled in increasing order of bi, i.e. b1 ≤
b2 ≤ b3 ≤ . . . ≤ bn. And b0 = 0. For a given price p,
we compute the revenue R(p) as:

R(p) =
∑

i∈[1,n], bi>p

Ri(p) =
∑

i, bi>p

bip − p2

ai

.

Since each Ri(p) is a quadratic function of p, the
total revenue is a continuous piece-wise quadratic
function as shown in Figure 3. Each of the quadratic
piece has a parabolic shape.

The overall auction clearing problem becomes

Maximize
∑

i∈[1,n], bi>p

bip − p2

ai

, subject to

Interference Constraints (7)

fi =
bi − p

ai

. (8)

Discriminatory pricing – When the clearing
prices are non-uniform and vary across i, the opti-
mization problem becomes

Maximize
n
∑

i=1

(−aif
2
i + bifi), subject to

Interference Constraints (9)

−aifi + bi ≥ 0, fi ≥ 0 (10)

3.3. The Optimal Clearing Algorithm

Both clearing problems are NP-hard. We first
briefly describe an optimal solution with exponen-
tial run time complexity. We will use it as a bench-
mark for evaluating approximation algorithms.

Consider a single channel of the wireless spec-
trum. If we allocate this channel to any bidder,
none of his neighbors in the conflict graph can be
allocated this channel. Thus if we consider a max-
imal independent set of the conflict graph, then
all bidders corresponding to the independent set
can use the same channel simultaneously. Based
upon this observation, Jain et al. [21] proposed an

optimal algorithm to resolve interference conflicts:
their approach results in a linear programming
(LP) problem with an exponentially large number
of constraints. Clearly solving such an LP requires
exponentially large amount of time and hence not
feasible for large number of bidders. We used a
variant of this algorithm in our experiments to pro-
duce the optimal solution in order to compare the
quality of our approximations. In the next section,
we propose fast approximation algorithms to solve
these problems in polynomial time.

4. Fast Auction-Clearing Algorithms

In this section, we propose centralized approxima-
tion algorithms to solve the auction clearing prob-
lems. We show that by judiciously relaxing the in-
terference constraints, we can develop fast approxi-
mations to the original NP-hard clearing problems
in polynomial time. Note that in this paper, we as-
sume the auctioneer has global information on inter-
ference constraints and bids. We will discuss exten-
sions to decentralized auction systems in Section 7.

4.1. Simplifying the Interference Constraints

The auction clearing problem is complex because
the discrete interference constraints grow exponen-
tially with the number of buyers. We propose to re-
strict the interference constraints and reduce them
into a number of constraints that grow linearly
with the number of buyers. The new constraints
are stricter and hence lead to a feasible but sub-
optimal solution. We show that analytically this
sub-optimal solution can never be too far off from
the optimal one.

To simplify the constraints, we assume that the
spectrum is finely partitioned into a large number of
channels. And each buyer i obtains a normalized al-
location of {fi : i = 1, 2, . . . , n} where fi ≤ 1.0. For
example, a 1MHz spectrum band is divided into 100
channels of 10kHz each. A buyer i with fi = 0.143
will obtain b0.143× 100c = 14 channels. In practice
this rounding down will lead to some loss of revenue.
However, if the number of channels is significantly
larger than the highest node degree in the conflict
graph, the loss will not lead to undue reduction in
revenue. Hence, in the following, fi behaves as a con-
tinuous variable.

In the following, we refer to each buyer as a node
in the conflict graph. We define a neighbor of a node i
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as any node that interferes with i and hence connects
to i in the conflict graph.

Node-ALL Interference Constraints (NI) The
simplest constraint is to restrict i and every neighbor
of i to use different spectrum channels, i.e.

fi +
∑

j∈N(i)

fj ≤ 1, i = 1, 2, . . . , n (11)

where N(i) represents the set of neighbors of i and
n represents the total number of nodes.

While leading to simple interference free alloca-
tions, this constraint is more restrictive than neces-
sary. Using a sample topology, Figure 4 illustrates
the channel allocation using NI where each node
gets only one channel, although node a and d do not
conflict with each other and can both use channel 4.

Node-L-Interference Constraints(NLI) We
introduce a less restrictive constraint by imposing
an order among nodes. By integrating the order
in the allocation process, we can achieve much
more efficient allocations than that using the NI
constraints.

We define the concept of left of as: Given two
nodes i and j, with location coordinates (xi, yi) and
(xj , yj), respectively, node i is said be left of node j
if either xi < xj , or xi = xj and yi < yj .

Using this concept, the constraint becomes: the
sets of channels assigned to i and all of its left-of
neighbors should be different:

fi +
∑

j∈NL(i)

fj ≤ 1, i = 1, 2, . . . , n (12)

where NL(i) is the set of neighbors of i lying to its
left. Figure 4 compares the allocation results using
NLI and NI, and the original constraints (OPT).
We see that NLI achieves a more efficient channel
allocation than NI.

In the following, we apply NLI constraint to
develop approximation algorithms. We show that
while it is still more restrictive than the original
one, in both theory and practice, algorithms based
on NLI produce near-optimal channel allocations in
polynomial time. Further, NLI leads to the optimal
solution when the conflict graph is a tree.

4.2. A Toy Example: Fixed Per-Unit Price Auctions

To illustrate our algorithm, we start from a simple
model where each buyer pays a fixed per-unit price
regardless of the allocated amount, i.e. pi(fi) = bi,

a

b

c d

e

a

NI

b

c

d

e

NLI OPTNode

{1}

{2}

{3}

{4}

{5}

{2, 3}

{4, 5}

{1, 2, 3}

{4, 5}

{1}

{1, 4}

{2, 5}

{1, 3}

{4, 2}

{3, 5}

Fig. 4. Example network, the conflict graph and the channel
allocations by NI (Node-Interference), NLI (Node-L-Inter-
ference), and OPT (Optimal). There are a total of 5 chan-
nels.

ai = 0, ∀i. We approximate this problem by using
NLI as:

Maximize
∑

i

fibi, subject to

fi +
∑

j∈NL(i)

fj ≤ 1 (13)

0 ≤ fi ≤ 1 (14)

This is an optimization problem with linear con-
straints and a linear objective function and hence
can be solved easily using linear programming (LP)
in polynomial time. The quality of the solution pro-
duced by this LP is bounded by the following worst
case error guarantee, proved by [10].
Lemma 1

RLP ≥
1

3
ROPT, (15)

where RLP is the revenue generated by solving the
LP and ROPT is the optimum possible revenue.

Simulation results reveal that this worse-case bound
is almost never realized, and the LP solution is very
close to the optimal [10].

The above simple example can be solved using
linear programming because of its linear objective
function. However, the general auction clearing
problems are non-linear. Next, we design approxi-
mation algorithms for the general auction problems
and derive theoretical bounds on the performance
and complexity. In order to simplify the under-
standing, the algorithm objective functions along
with their names and pricing models are given in
Figure 5, the notation used will be clear in the next
section.

4.3. Clearing for uniform pricing (CAUP)

Under NLI, the optimization problem under uni-
form pricing model becomes
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Algorithm Pricing Model Objective Function

Maximize R(p) =
∑

i∈[1,n], bi>p
bip−p2

ai

CAUP Uniform Pricing subject to

fi +
∑

j∈NL(i) fj ≤ 1,

fi = bi−p
ai

Maximize
∑n

i=1(−aif
2
i + bifi)

CADP Discriminatory Pricing subject to

fi +
∑

j∈NL(i) fj ≤ 1,

−aifi + bi ≥ 0, fi ≥ 0

Fig. 5. The clearing algorithms and the objective functions used.

Maximize R(p) =
∑

i∈[1,n], bi>p

bip − p2

ai

subject to

fi +
∑

j∈NL(i)

fj ≤ 1, (16)

fi =
bi − p

ai

. (17)

The optimization is to find the optimal price p,
which is an one-dimension search process. We pro-
pose a two-step solution: first find the feasible val-
ues of p subject to interference constraints and then
search for the revenue-maximizing p.

Step I: find the feasible region of p subject to
interference constraints. We use the following
Lemma to simplify the search:
Lemma 2 There exists a unique price pT where for
any p, p ≥ pT , the channel allocation according to
(17) will satisfy the constraints defined by (16), and
for any p, p < pT results in allocations that violate
the constraints.

Proof: Assume that the buyers (1 to n) are sorted
by bi, b1 ≤ b2... ≤ bn. When p = bn, then fi = 0,
∀i. Obviously this allocation is feasible. From (17),
as the price decreases, buyers obtain more spectrum
and could violate the constraints. If there is a price
for which the constraints are violated, reducing the
price further will only increase allocations and con-
tinue to violate the constraints.

Therefore, the feasibility region of p is [pT , bn]. To
find pT , we use binary search over all possible values
of p ranging from 0 to bn. Let bj−1 ≤ pT < bj .

Step II: search for the revenue-maximizing
p. We divide the feasible region of p into intervals
(pT , bj ], (bj , bj+1], . . . , (bn−1, bn]. Within each inter-

val the revenue R(p) is a quadratic function, as ex-
plained in Section 3.1. Since every quadratic func-
tion has a single maximum, finding the optimal p
that maximizes the revenue function in a interval
[bk, bk+1] is straightforward. Hence, by finding the
maximum of the revenue function over all feasible
intervals we can find the optimal p.

4.4. Clearing for discriminatory pricing (CADP)

Using NLI, the problem becomes

Maximize

n
∑

i=1

(−aif
2
i + bifi), subject to

fi +
∑

j∈NL(i)

fj ≤ 1, (18)

−aifi + bi ≥ 0, fi ≥ 0 (19)

We propose an approximation algorithm using
separable programming [16], a special case of semi-
definite programming. This method allows one to
approximately solve a special class of non-linear pro-
grams using linear programming. In addition, semi-
definite programming can be solved within an addi-
tive error of ε in time polynomial in n and log(1/ε).

Separable Programming. Separable program-
ming depends upon the fact that the objective func-
tion R can be written as (i) a sum of separable terms,
i.e. in every term only a single variable appears and
(ii) each term is concave. Since each term in R is of
the form −aif

2
i +bifi, both the above conditions are

satisfied. Consider the single term Ri(fi) as shown
in Fig. 6 and an approximation of it by k piecewise
linear segments. We call the approximate revenue
function R̂i. We number the segments consecutively

8
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Fig. 6. Separable programming using piecewise linear seg-
ments to approximate a concave revenue function.

from left to right. Since the revenue function is con-
cave, the slope of the segments are monotonically
decreasing, i.e. s1 ≥ s2 ≥ . . . ≥ sk. Now we replace
the single variable fi and Ri with k new variables
{gα} as follows:

fi = g1 + g2 + · · · + gk (20)

R̂i = s1g1 + s2g2 + · · · + skgk (21)

gα ≤ uα (22)

gα ≥ 0 (23)
∑

α

uα =
bi

ai

. (24)

Here we have replaced the variable fi by k vari-
ables gα each of which range between [0, uα]. As
such, the above decomposition of fi as a sum of gα

variables has too much freedom: for a given value
of fi, we can construct many decompositions each
of which will give different values of R̂i. We need to
impose an extra condition which will make sure that
we end up with the correct R̂i. The condition is as
follows: if uβ > gβ > 0 for any β, then gα = uα for
all α < β and gα = 0 for all α > β. But, it turns
out that when we carry out the maximization, the
solution always satisfies the above condition. Inter-
ested readers can refer to [16] for additional details.
As a result, the approximate LP that we have con-
structed above always leads to the correct optimum
under maximization.

We will present the performance analysis and run-
time complexity of both CAUP and CADP algo-
rithms in Section 5. We conclude the present section
with an algorithm for obtaining a feasible channel
allocation to each user, given the outcome of our op-
timization problem, i.e. {fi}.

4.5. Scheduling Spectrum Usages

Given spectrum allocations {fi}, we need to
schedule the actual usage patterns, i.e. the index
of channels assigned to each buyer. We follow the
left of order in the NLI constraints. We start from
the leftmost node in the network and assign to it
the initial portion of the spectrum. For every next
node i, we examine the rightmost node lying to the
left of i, referred to Ri, and assign to i the portion
of its allocated spectrum starting from where the
assignment of Ri finishes. This schedule is always
feasible because the constraint (16) – no node and
its left neighbors can consume all the spectrum.
This conclusion can be proved by induction, but in
the interest of space its proof is omitted. We would
like to note that this schedule in general assigns
a continuous block of spectrum to each bidder,
however, there are cases where a bidder may be al-
located with two separate blocks of spectrum when
the allocated spectrum falls on the boundary of the
total spectrum range.

5. Analytical Performance

In this section, we provide analytical results on
the performance and run-time complexity of both
CAUP and CADP algorithms.

5.1. CAUP Performance and Complexity

Theorem 1 CAUP solves the revenue maximiza-
tion problem with concave piecewise linear demand
curves and uniform clearing price, within an approx-
imation factor of 3, i.e. RCAUP ≥ 1

3ROPT , in time
O(n log n + n log U). U represents the search range
U = bn.
Proof: Suppose the set of optimal spectrum allo-
cations is given by {f∗

i } and the allocations found
by our algorithm is {fi}. The constraint in eqn. 12
ensures that the allocations {f∗

i /3} are always fea-
sible (proof in [10]). Hence
∑

i

Ri(f
∗

i /3) ≤
∑

i

Ri(fi) ≤
∑

i

Ri(f
∗

i ). (25)

We also note Ri(f
∗

i ) > 0 ⇒ Ri(f
∗

i /3) > 0, and

Ri(f
∗

i )

Ri(f∗

i /3)
=

bif
∗

i − aif
∗

i
2

bif∗

i /3 − aif∗

i
2/9

= 3 −
6aif

∗

i
2

3bif∗

i − af∗

i
2

≤ 3. (26)
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Thus

1

3

∑

i

Ri(f
∗

i ) ≤
∑

i

Ri(fi) ≤
∑

i

Ri(f
∗

i ). (27)

Note here that if we use piecewise linear demand
curves instead of linear demand curves, again we end
up with the same guarantees. Any clearing price,
which produces the maximum revenue (in the fea-
sible region), lies uniquely on some segment of the
piecewise linear demand curves, defined by a unique
slope and y-intercept, and those can be substituted
in for the bi and ai used above to get the same result.

Next we turn to the running time of our algo-
rithm. Given a set {ai} and {bi}, we can sort them
in O(n log n) time. Then with some preprocessing
which takes O(n) time, we can evaluate R(p) is O(1)
time for any given p. So if the size of the domain of
the possible values of bi is U , then the region of feasi-
bility, i.e. pf can be found in O(n log U) time by us-
ing binary search over p. Since the number of inter-
vals is O(n), the time required to find the maximum
over all the intervals is O(n). Thus the maximization
problem defined above can be solved in O(n log n)+
O(n log U) + O(n) = O(n log n + n log U) time. All
this analysis was for linear demand curves –for piece-
wise linear curves where each bid has a maximum of
m segments, it is not difficult to see that the time re-
quired for this algorithm is O(nm(log U+log(nm))).

Lemma 3 When the conflict graph is a tree graph,
CAUP produces the optimal solution to the revenue
maximization problem.
The proof can be found in [10].

5.2. CADP Performance and Complexity

Similarly, we show that the performance and com-
plexity of CADP are also bounded.
Theorem 2 CADP solves the revenue maximiza-
tion problem with concave piecewise linear demand
curves and discriminatory clearing price, within an
approximation factor 3(1+1/n), in polynomial time
(depends on time required to solve the linear pro-
gram).

The detailed proof is listed in the Appendix.
Lemma 4 When the conflict graph is a tree graph,
CADP produces the optimal solution to the revenue
maximization problem under discriminatory pricing.
The proof can be found in [10].

6. Experimental results

In this section, we conduct experiments to investi-
gate the performance of the proposed auction frame-
work. We consider the scenario described by Fig-
ure 1, where wireless service providers deploy their
access points to serve their associated users (each
access point is a buyer). To examine the impact of
network topology, we use both randomly generated
topologies and measured AP deployment traces to
validate our results. We consider the following net-
work topologies:
– Random network. We place users randomly in a

unit square (normalized) area.

– Clustered network. We simulate a hotspot scenario
by deploying a set of users densely in a small area
of the random network. We use this topology to
examine the impact of conflict degree on the rule
performance.

– Planned network. We extract a set of actual AP
deployments using data traces collected by Place-
lab. (http://www.placelab.org/).

We include the results using linear demand curves
and maintain that piecewise linear curves lead to
similar conclusions. We use the fixed power model
and assume that every buyer wants to support users
within a fixed radius (0.05 in our simulations). To
produce the conflict graph, we use a simple distance-
based interference model - any two access points con-
flict with each other if they are within 0.1 (twice the
radius) distance of each other. While this assump-
tion is used to produce the conflict graph, it does
not limit the application of our approach to other
general interference conditions. The maximum spec-
trum available at any location in the network is nor-
malized to 1. All results shown are averaged over 5
random seeds. All the simulations are run in C++
on a 3.0 GHz processor with 1 GB of RAM.

We consider three types of bidding curves:

behavior spec. vs. unit price unit price vs. spec.

normal f(p) = −p + 1 p(f) = −f + 1

conservative f(p) = −2p + 1 p(f) = 1/2(−f + 1)

aggressive f(p) = −p/2 + 1 p(f) = 2(−f + 1)

Note that the maximum per unit prices are 1,
1/2 and 2 for normal, conservative, and aggressive
bidders respectively. Unless mentioned, all buyers
are normal bidders for all experiments.

10



We use the following performance metrics:
– Revenue: R =

∑

fi(pi)pi.

– Spectrum utilization: U =
∑

fi(pi).

– Each buyer’s price pi and channel assignment
fi(pi).

– Complexity in terms of algorithm execution time.

Using our experiments, we examine the perfor-
mance of two pricing models, the performance of
the proposed approximation algorithms compared
to the optimal solutions, the impact of bidding be-
havior and node density, and finally the algorithm
execution time.

6.1. Uniform vs. Discriminatory Pricing

We start by examining the performance of the pro-
posed auction-clearing algorithms under two pricing
models. We vary the network size from 0 to 1300,
increasing the average conflict degree from 0 to 10.
Results in Figure 7 show that both revenue R and
spectrum utilization U grow with the network size,
but the growth rate decreases with the network size
since spectrum usages saturate at high node density.

At small network sizes (< 20), the difference be-
tween the revenue produced by the uniform and
discriminatory pricing is small. As network size in-
creases beyond 40, the discriminatory pricing model
generates nearly twice the revenue (and spectrum
utilization) as compared to uniform pricing. Under
the uniform pricing model, the market-clearing price
is determined by the maximum level of conflict in
the network, i.e. the maximum node degree in the
conflict graph. As the network size increases, the
market-clearing price moves towards 1. Using the
discriminatory pricing model, the seller charges buy-
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Fig. 7. Revenue and spectrum utilization for varying network
sizes for both pricing models.

ers based on their local level of conflict, and hence
results in more efficient use of spectrum.

6.2. Optimal vs. Approximation Algorithms

Next, using the discriminatory pricing model, we
compare the performance of the approximation al-
gorithm to the optimal solution. We use the random-
ized algorithm proposed in [21] to generate maximal
independent sets for the linear program. We run the
randomized algorithm for 200000 iterations for net-
work sizes of 20−100 on a random deployment. Fig-
ure 8(a) shows this results for random network, it
can be seen that amount of revenue generated by the
approximation algorithm is within 10% of the opti-
mal, for all network sizes. However, the amount of
time taken for generating the random sets and solv-
ing the linear program for a network of 100 nodes,
is 4 hours, which is more than 20000 times the time
taken by the proposed algorithm.
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Fig. 8. Comparison of the optimal solution and the approxi-
mation algorithm under the discriminatory pricing model.

Next, we examine the revenue generated for
planned networks. Figure 8(b) compares the perfor-
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mance of the optimal and the proposed approxima-
tion algorithm. We see that the revenue produced
by the optimal algorithm in the planned deploy-
ment is less than the optimal revenue in the random
network (although they have the same number of
users per area). In the planned network, nodes are
placed in clusters and hence experience much higher
level of interference than those in the random net-
work. Next, we observe that the approximation
algorithm produces roughly 70% of the optimal
revenue, which is worse than that of the random
network. This is because the node conflict degree
is much higher and hence the loss due to Node-L-
Interference approximation becomes more visible.
We will further exaimine the impact of network
topology in Section 6.4.

6.3. Impact of Bidding Behaviors

We now examine the impact of bidding behaviors
on prices and allocations for both pricing models,
using random topologies. We assume users bid inde-
pendently following some predefined behaviors. In
this experiment, buyers randomly choose their bid-
ding curves as conservative, normal or aggressive,
with equal probability. Figure 9 shows the percent-
age of spectrum allocated to different bidding cate-
gories. Under the uniform pricing model, aggressive
buyers take over all the spectrum. Since the market-
clearing price is high p > 1, conservative and normal
buyers are completely cut off. While aggressive buy-
ers also receive a large portion of the spectrum un-
der the discriminatory pricing, they do not manage
to exclude other buyers completely. This is because
at small network sizes (or with low node density),
there are not enough aggressive buyers to consume
all the spectrum. As the network size increases, the
level of contention increases and so does the price. As
the price increases, conservative and normal users
are slowly cut off from the auction while aggressive
users start to dominate.

Figure 10 compares the total revenue generated
by different bidders under both pricing models. Us-
ing the uniform pricing model, we only show the
revenue from aggressive bidders (UNI-AGGR) since
they obtain all the spectrum. We observe that ag-
gressive bidders under the discriminatory pricing
model produce higher revenue than those under uni-
form pricing (reason same as in Section 6.1). Nor-
mal and conservative bidders contribute to a small
portion of the revenue.
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Fig. 9. Percentage of spectrum allocated to different bid-
der categories for uniform and discriminatory pricing
models. UNI-CONS/NORM/AGGR: conservative, normal
and aggressive bidders in uniform pricing model; DIS–
CONS/NORM/AGGR: conservative, normal and aggressive
bidders in discriminatory pricing model.
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6.4. Impact of Network Topology

In practice, wireless service providers might not
position access points randomly over the area. They
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deploy many access points in areas with dense user
populations, known as hotspots. We start from a
simulated hotspot scenario by deploying a clustered
network, illustrated by the leftmost figure in Fig-
ure 13. We initially deploy 200 nodes randomly on
a unit square area, and then deploy the next k (0 ≤
k ≤ 150) nodes in a clustered region.

System Performance To examine the impact of
clustering, we first compare the revenue of random
and clustered deployments assuming normal bid-
ders. Figure 11 shows the revenue under both pric-
ing models for various network sizes. For network
sizes of 200 of less, random and clustered deploy-
ments produce the exactly same topology and their
revenue curves overlap.

An interesting observation is that the uniform and
discriminatory pricing models respond very differ-
ently to clustering. Under the discriminatory pric-
ing model, the revenue converges very fast to a con-
stant value, corresponding to a fully utilization of
spectrum inside the cluster. In contrast, under the

uniform pricing model, the revenue drops with the
clustering. This is because that the market-clearing
price now is being governed by the maximum level
of contention, i.e. the node density in the cluster.
As k increases, the market-clearing price quickly
rises to 0.99 (k = 140, network size = 340)(see Fig-
ure 12). Therefore, spectrum allocations (and rev-
enue) at non-clustered regions drop drastically, and
the degradation overweighs the improvement inside
the cluster. Note that under random deployments,
the market-clearing price under uniform pricing also
increases with the node density. However, the in-
crease is not drastic and is fully compensated for by
the increase in network size.

UserPerformance To further examine the impact
of clustering on buyer performance, in Figure 13 we
plot the allocation and price for each buyer under
the discriminatory pricing model for the clustered,
planned and random networks. In the planned net-
work, nodes are even more clustered. We see that
buyers in the cluster have significantly lower allo-
cations and higher prices both in the planned and
clustered networks. In the random network though,
the price and allocations are nearly uniform. This
shows that, to maximize revenue and spectrum uti-
lization, pricing should depend on the conflict con-
dition – price should be high at places with high de-
mand and scare resources. Note that there are sev-
eral allocation spikes, which correspond to the nodes
at sparse area with minimal conflicting neighbors –
price should be low at places with low demand.

Impact of Bidding Behaviors The above obser-
vation triggers an interesting question: how can a
node in a clustered area obtain more spectrum?. In
order to answer this question, we investigate the im-
pact of bidding behavior on individual buyer’s per-
formance using the discriminatory pricing model.

We monitor a particular buyer’s spectrum allo-
cation while varying his bidding behavior. We con-
sider the same clustering scenario, and pick a par-
ticular buyer i from the clustering area when k =
0. Next, we randomly add k nodes to the cluster.
As k increases, the level of conflicts/competition
around i increases. We model i’s bidding behavior
using fi(pi) = −pi/ci + 1, or equivalently, pi(fi) =
−cifi+ci where ci represents the bidding aggressive-
ness. The rest of the network nodes are normal bid-
ders c = 1. Figure 14 shows i’s allocation fi for var-
ious aggressiveness levels, for k = 0 (no clustering),
k = 50 (mild clustering) and k = 100 (heavy clus-
tering). We see that bidding aggressively (ci > 1) as
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Fig. 13. The impact of network topology on per-user spectrum allocation and price, for clustered network (left column), planned
network (middle column) and random network (right column), assuming discriminatory pricing and normal bidding.

compared to neighboring nodes does bring in extra
allocations (at higher prices). However, the benefit
drops with the level of aggressiveness - the alloca-
tion curves flatten out. In order to have monopoly
of the spectrum, the buyer has to pay significantly
more per unit (depending on the density of the clus-
ter) to obtain that last fraction of the spectrum.

6.5. Algorithm Complexity

In Figure 15 we compare the algorithm run times
for varying network sizes. We see that the approxi-
mation algorithm under the uniform pricing model
runs extremely fast (0.05 seconds for 3500 nodes),
while the discriminatory pricing approximation al-
gorithm requires less than 80 seconds for up to 3500
nodes. Earlier we had mentioned that the optimal
solution runs 20000 slower (for a much smaller net-
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work size 20 − 100).
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7. Practical Considerations

In this section, we discuss the practical issues
when implementing the proposed auction system.

7.1. Identifying interference constraints

The proposed auction system requires informa-
tion on the interference constraints among buyers.
There are multiple mechanisms to obtain this infor-
mation. Using the scenario of access points based
buyers, we list three complementary mechanisms.

(i) The auctioneer (seller) perform network inter-
ference measurements to collect interference
constraints. A similar mechanism is used in
cellular networks to examine interference con-
ditions among base stations.

(ii) Individual access points scan radio signals to
find interfering access points and report their
findings to the auctioneer.

(iii) Clients associated with access points sense ra-
dio signals and provide feedback on findings of
interfering access points [25]. This mechanism
has been shown to help refine the interference
map.

To minimize the overhead in building conflict
graphs, auctioneers can collect conflict information
on all the candidate access points. In each round,
the auctioneer constructs a conflict graph on the
current buyers.

7.2. Decentralized auction systems

CAUP and CADP require a centralized server,
which in practice might not always be available. In
such a case, buyers send bids to local service points

who coordinate among themselves to derive alloca-
tions and prices. Decentralized systems have the ad-
vantage of allowing simple and scalable deployment
and providing resilience against point failures.

To build a decentralized auction system, we ap-
ply the same bidding language and pricing models,
and design coordination [11] based approximation
algorithms. The basic concept is to let service points
coordinate to apply local adjustments of allocations
and prices to their associated buyers, and perform
them recursively to improve the total revenue. The
complexity of this approach depends on the algo-
rithm complexity and the cost/delay of communica-
tions between local service points. We plan to study
this system in a future paper.

7.3. Iterative bidding and heterogeneous channels

In iterative auctions, buyers submit bids in mul-
tiple rounds, and adjust bids based on market feed-
backs. Auctioneers use clearing algorithms to derive
prices and allocations and provide feedbacks. The
challenge lies in simulating feedback and adjusting
the bids accordingly. Also, in case of heterogeneous
channels with different propagation properties and
power limitations, the key issue is to define a stan-
dard price-quantity relationship. “Good” spectrum
bands should cost more.

Both issues are important for practical spectrum
auctions, and can be addressed by combining com-
putational and non-computational (social behavior
based) approaches. These are interesting problems
in themselves, but we limit ourselves to homoge-
neous channels and single round bidding to investi-
gate the absolute performance of the auction algo-
rithms.

8. Conclusion and Future Work

We propose a spectrum auction framework to
provide fast and efficient allocations of spectrum
to wireless users. We propose a compact and ex-
pressive bidding language using piecewise linear
price-quantity curves, two pricing models to address
revenue and fairness, and low-complexity market-
clearing algorithms to derive prices and allocations
in real-time. We perform extensive experiments to
verify the performance of the proposed system, and
to explore the impact of bidding behaviors, pricing
models and node clustering. We conclude that to
maximize revenue and spectrum utilization, pricing
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must be determined based on local demand and
availability of resources. We summarize some prac-
tical issues and open problems in Section 7. We are
currently working on extending our framework to
address these issues.
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9. Appendix: Proof of Theorem 2

In this section we show that the separable pro-
gramming algorithm allows us to achieve a constant
factor approximation to the revenue optimization
problem with non-uniform pricing. We first prove
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our claim only for simple linear demand curves –
the extension to piecewise linear demand curves is
straightforward.

First we make the observation that the separa-
ble programming algorithm introduces a two-step
approximation to the optimal revenue determina-
tion problem. The first approximation is due to the
fact that in eqn. 12 we have introduced Node-L-

Interference constraints. The next approxima-
tion we make is to replace the quadratic revenue
function by a piecewise linear revenue as shown in
Fig. 6. By an argument identical to the one that
we made in the proof of Theorem 1, the Node-L-

Interference constraints introduces an approxi-
mation factor of 3. In the rest of this section, we fo-
cus on bounding the error introduced by the piece-
wise linear approximation.

Before we prove the desired theorem, we shall
prove a simple lemma. Recall that the range of val-
ues of fi is [0, bi/ai] ∩ [0, 1]. We divide this range to
k equal segments, i.e. we set uα = bi/(kai). We now
state a lemma which bounds relative error in Ri.
Lemma 5 Given a function R(x) = −ax2 + bx and
a piecewise linear approximation R̂(x) to it by seg-
ments each of which span a range δ along the x-axis,
the maximum relative error in the approximation is
δa/b.
Proof: Consider a function R(x) = −ax2 + bx
and a piecewise linear approximation to it R̂(x) with
piecewise linear segments, each segment spanning
a range δ � b/a along the x-axis. In other words,
the segments span ranges [0, δ], [δ, 2δ], . . .. Consider
the range [x, x + δ] and a point inside the range
x + λδ, 0 ≤ λ ≤ 1. Then the relative error at this
point is

e(x, λ) =
R(x + λδ) − R̂(x + λδ)

R(x + λδ)
. (28)

We wish to find the maximum of this error. Since
R is a quadratic function, we can expand it using
Taylor series as follows:

R(x + λδ) = R(x) + λδR′(x) + λ2δ2R′′(x)/2 (29)

R̂(x + λδ) = R(x) + λ(R(x + δ) − R(x)) (30)

= R(x) + λ(δR′(x) + δ2R′′(x)/2). (31)

This immediately gives us

e(x, λ) =
λδ2(λ − 1)R′′/2

R + λδR′ + λ2δ2R′′/2
. (32)

The numerator is independent of x, to find the
maximum of e(x, λ), we have to minimize the de-

nominator. The denominator is R(x + λδ), which is
nothing but the all the revenue values varying with
x and λ. We know that the revenue function for
every node is quadratic and that its value is mini-
mum around x=0 and x=b/a. Thus the two inter-
vals in which we need to check for minimum value
of R(x+λδ) are [0, δ] and [b/a− δ, b/a] (it is easy to
verify that in any other interval, the revenue value is
more than the revenue values in these two intervals).

We consider the first of these two intervals, by
replacing x=0 in eqn. 32 we get

e(0, λ) =
λδ2a(1 − λ)

λδb − λ2δ2a
=

1 − λ

b/aδ − λ
. (33)

In the range λ ∈ [0, 1], with δ � b/a, the function
e(0, λ) is monotonically decreasing. Hence the max-
imum value of the error δa/b and occurs as λ → 0.

We now look at the value of error in eqn. 32 with
x in the interval [b/a − δ, b/a], Simplifying the ex-
pression using x=b/a − δ, we get ,

e(b/a − δ, λ) =
λδ2a(1 − λ)

(1 − λ)(bδ − aδ2(1 − λ))
(34)

Simplifying further, we get

e(b/a− δ, λ) =
λ

b/aδ − (1 − λ)
(35)

Again the maximum value of this error is δa/b and
occurs as λ → 1.

Using Lemma 5, we obtain

max
fi

(

Ri(fi) − R̂i(fi)

Ri(fi)

)

=
bi

kai

ai

bi

=
1

k
. (36)

Thus

R̂ =
∑

i

R̂i ≥
∑

i

Ri

(

1 −
1

k

)

= R(1 −
1

k
). (37)

Combining this with the fact that Node-L-

interference constraints induces a 3-approximation,
we arrive at the result we seek by setting k = n:

ROPT

RLP
≤ 3

(

1 +
1

n

)

. (38)

This result was derived for linear curves. For
piecewise linear demand curves, the separable pro-
gramming approach will still work as long as the
individual revenue function is concave. For an or-
dinary linear demand curve, the revenue function
is an inverted parabola and hence is concave. For
piecewise linear demand curves, let us consider a
m-segment piecewise linear demand curve specified
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by the line segments −a1x + b1, a2x + b2, a3x +
b3, . . . , amx + bm. Here we have ordered the line
segments starting from left to right. The concavity
condition for the corresponding revenue is given by
the following lemma.
Lemma 6 Given a piecewise linear demand curve
with monotonically decreasing slope, the revenue
curve corresponding to the demand curve is always
concave.
Proof: Consider two adjacent segments −akx+ bk

and −ak+1x + bk+1 on the piecewise linear demand
curve. The revenue curve corresponding to each of
these segments is an inverted parabola and hence
concave. The only point at which we need to estab-
lish concavity is the intersection point of these two
segments, i.e. the point at which the demand curve
switches from slope −ak to −ak+1. The intersection
point is given by

x =
bk+1 − bk

ak+1 − ak

. (39)

Since x > 0 by construction and ak+1 > ak (mono-
tonically decreasing slope), we arrive at the condi-
tion that bk+1 > bk. If the revenue curves for each
of these segments are Rk(x) and Rk+1(x), then the
concavity condition is given by

R′

k+1(x) − R′

k(x) ≤ 0. (40)

To show this, we evaluate the LHS of the above equa-
tion using the fact that

R′

k(x) = −2akx + bk. (41)

Then

R′

k+1(x) − R′

k(x) = −2x(ak+1 − ak) + bk+1 − bk

= −2(bk+1 − bk) + (bk+1 − bk)

= −(bk+1 − bk) < 0.

The second line above follows from eqn. 39.
With the concavity condition established, we next

turn to the error bound. With a maximum of m seg-
ments in each demand curve, Lemma. 5 will hold for
piecewise linear demand curves by using O(nm) ap-
proximation segments for each demand curve. Thus
Theorem 2 holds for linear demand curves as well
as piecewise linear demand curves with monotoni-
cally decreasing slope.
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