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ABSTRACT

Large-scale radio frequency identifier (RFID) systems are be-
ing increasingly deployed in many applications such as sup-
ply chain automation. An RFID system consists of inexpen-
sive, uniquely-identifiable tags that are mounted on physical
objects, and readers that track these tags (and hence these
physical objects) through RF communication. For many per-
formance measures in large-scale RFID systems, the set of
tags to be monitored needs to be properly balanced among
all readers. In this paper we, therefore, address this load bal-
ancing problem for readers — given a set of tags that are
within range of each reader, which of these tags should each
reader be responsible for such that the cost for monitoring
tags across the different readers is balanced, while guaran-
teeing that each tag is monitored by at least one reader. In
particular, we study different variants of the load balancing
problem. We first present centralized solutions to these vari-
ants. We show that a generalized variant of the load balancing
problem is NP-hard and hence present a 2-approximation al-
gorithm. We next present an optimal centralized solution for
a specialized variant.

Subsequently, we present a localized distributed algorithm
that is probabilistic in nature and closely matches the perfor-
mance of the centralized algorithms. Although probabilistic,
our localized algorithms guarantee that each tag is contin-
uously monitored by some reader at every instant. Finally
we present detailed simulation results that illustrate the per-
formance of the localized distributed approach, how it com-
pares with the centralized optimal and near-optimal solutions,
and how it adapts the solution with changes in tag distribu-
tion and changes in the reader topology. Our results demon-
strate that our schemes achieve very good performance even
in highly dynamic large-scale RFID systems.
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1. INTRODUCTION

Radio frequency identifier (RFID) as a short-range radio
technology for automated data collection is becoming an in-
tegral part of our life. Since its first emergence back in 1960s
[15], advances in VLSI technology have enabled massive man-
ufacture of RFID devices at extremely low costs. Nowadays,
RFID has found hundreds of applications such as inventory
management, supply chain automation, electronic toll collec-
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Figure 1: An example RFID system. Square nodes
represent readers and round nodes represent tags.

tion, anti-theft of automobiles and merchandise, access con-
trol and security, etc.

Usually, RFID systems are composed of two types of de-
vices: simple, inexpensive, and uniquely-identifiable tags and
more powerful readers. Both tags and readers have an antenna
for radio communication with each other. Readers commu-
nicate with the tags to detect them in their physical vicin-
ity. Bach tag has a small amount of memory which stores
its unique identifier as well as some useful data. In typical
RFID applications, tags are attached (embedded) onto (into)
targets of interest so that the host targets can be effectively
monitored by the system using tag readers. For example, the
unique identifier of a tag can serve in place of the UPC bar
code of an item in Walmart stores, and the tag is attached to
that item for monitoring purpose. By reading the tag period-
ically using tag readers, the system is thus able to effectively
monitor and manage all the tagged items. The architecture of
such an RFID system is illustrated in Figure 1, where a cen-
tral repository can gather data from readers through multi-
hop wireless communication. In some RFID applications, tags
may even be equipped with necessary modules to collect dy-
namically changing data about the object or environment into
(onto) which they are embedded (attached).

In increasingly deployed large-scale RFID systems, each
RFID reader is responsible for retrieving data from a large
number of RFID tags within its vicinity. After a reader sends
out a tag poll message, if multiple tags respond simultane-
ously, radio interference at the reader will typically result in
a failed transmission. In order to solve this problem many anti
collision schemes like binary tree-walking protocol [19] and @
protocol [1] have been proposed. Even under such optimiza-
tions, the cost at each reader is proportional to the number
of number of tags it is responsible to read. For various per-
formance measures, it is thus of central importance to design



effective load balancing schemes for distributing tags among
readers as evenly as possible.

For example, consider the case where the readers are battery-
powered. In this case, more the number of tags assigned to
each reader, the greater is its rate of energy depletion. In
particular, as the distribution of tags to readers gets more
skewed, some heavily loaded readers will exhaust all of its
battery-power fairly quickly, leading to loss of coverage. Sim-
ilarly, if each tag in the system is monitored periodically, then
a reader with a higher load of tags will be able to monitor its
tags less frequently. This will lower the average monitoring
frequency of the system.

In this paper, we consider the problem of assigning tags to
readers in order to minimize the maximum total cost required
at any reader to retrieve data from its assigned tags. For dif-
ferent performance measures, the cost metric can model dif-
ferent physical quantities. For example, if energy efficiency is
the performance measure for a battery-powered RFID system,
then the cost models the energy expended by each reader to
monitor all of its tags. Equivalently, this will maximize the
lifetime of the system until the first failure of some reader
due to battery depletion. (An analogous problem was first
proposed for ad-hoc wireless networks by Chang and Tas-
siulas [6].) For simplicity, we refer to this problem as the
min-maz cost assignment (MCA) problem.

Using the energy efficiency analogy further, in many cases,
it may also be the case that readers use a fixed transmission
power for their interactions. Therefore, in this case the objec-
tive of the MCA problem is simply to minimize the maximum
number of tags assigned to any reader. Clearly, this problem
is a special case of the MCA problem, where the energy cost
of sending a message to any tag (in vicinity) is always fixed
to be the same. For simplicity, we refer to this problem as the
min-maz tag count assignment (MTA) problem.

In either case, a load balancing scheme cannot be consid-
ered scalable and hence practical in large-scale systems, if
it involves high complexity and overheads and is centralized
in nature. This is because, in typical deployments, e.g., in
a warehouse, the number of monitored tags to be in mil-
lions. Therefore, designing efficient distributed load balanc-
ing schemes becomes a critical issue in the implementation of
large-scale RFID systems.

In this paper, we address all of these problems by making
the following key contributions.

e We show that even with centralized knowledge about
the system, the general MCA problem is NP-hard and
cannot be approximated within a factor less than % An
efficient 2-approximation algorithm is then presented for
obtaining a solution that typically comes very close to
the optimum and is guaranteed to be within 2 times
the optimum in the worst case. We show that the MTA
problem is polynomially solvable with centralized knowl-
edge, and present a conceptually very simple algorithm
for optimally solving MTA in polynomial time.

o In practice, localized ! algorithms are often preferred
because of their low complexity and overhead. We also
propose a simple and effective localized scheme for the
problems we study. Our localized scheme is probabilistic
and tag driven. By considering the load on the readers,

L A localized algorithm is a distributed algorithm where each
node only needs knowledge about its immediate neighbors.

the tags decide which reader to report to. Topology
changes caused by join/leave of tags/readers can be ef-
ficiently handled as well. QOur results demonstrate that
this low cost scheme can achieve very good performance
even in highly dynamic large-scale RFID systems.

The rest of the paper is organized as follows. Section 2
gives an overview of the RFID technology. System models
and problem definitions are presented in Section 3. In Sec-
tion 4, we present our results for the MCA problem and the
MTA problem. Our localized scheme is presented in Section 5.
In Section 6, we decribe how the proposed schemes can be im-
plemented. In Section 7, we evaluate the performance of our
schemes. After reviewing related work in Section 8, we con-
clude the paper in Section 9.

2. BACKGROUND

An typical RFID system comprises of readers and tags
which communicate with each other using radio waves. Tags
can be classified into various types depending upon their ca-
pabilities. Passive tags(Class-1} do not have any power source
of their own but use the energy of the reader, Semi-Passive
tags have an integral power source so can communicate with
the reader over a larger distance and Active tags can commu-
nicate to each other and have ad-hoc networking capabilities.
In this paper we will be dealing with inexpensive (few cents)
Class 1 passive tags compliant to EPC Generation 2 UHF
RFID specifications [1] which are widely used in supply chain
and inventory management.

[1] defines the physical and logical requirements for a passive-
backscatter, reader-talks-first RFID system operating in the
860 MHz - 960 MHZ frequency range. The reader trans-
mits information to one or more tags by modulating an RF
carrier using double-sideband amplitude shift keying (DSB-
ASK), single-sideband amplitude shift keying (SSB-ASK) or
phase-reversal amplitude shift keying (PR-ASK) using pulse-
interval encoding (PIE) format. The Tag receives all their
operating energy from this same modulated RF carrier. The
reader receives information from the tag by transmitting an
unmodulated continuous-wave RF signal to the tag and listen-
ing for a backscatter reply. The tag responds by backscatter-
modulating the amplitude and/or phase of the RF carrier by
changing the reflection coefficient of its antenna. The encod-
ing format is either FMO or Miller-modulated subcarrier.The
system is reader-talk-first as the tag modulates its antenna
reflection coefficient only after being directed to do so by the
reader. Communication is half-duplex as the reader talks and
tag listens and vice versa.

Fach tag has a unique Electronic Product Code (EPC)
identifier which identifies the product to which the tag is at-
tached, a Tag Identifier (TID) which contains tag and ven-
dor specific data and a read/write User memory which allows
user-specific data storage and the organization of this mem-
ory is user-defined. Readers are capable of performing three
basic operations:

Select The process by which a reader selects a tag popu-
lation for Inventory and Access. The selection can be based
on matching a bit sequence in EPC, TID or User memory.

Inventory The process by which a reader identifies (sin-
gulates) selected Tags and acquire their EPC identifiers. A
slotted random anti-collision @ protocol is used for singulating
tags. The reader chooses a slot-count parameter Q between 0
and 15 and broadcasts it in a query command. Upon receiv-
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Figure 2: Decay in read-rate with increasing tag den-
sity

ing a query command, the tags selected in the Select phase
pick a random value in the range (0,29-1), inclusive and load
this value into their slot counter. Tags that pick a zero reply
immediately. If more than one tag replies there is a collision
and the reader might not interpret the replies. If only one tag
picks a zero, its reply can be understood by the reader result-
ing in singulation of the tag. This tag then moves into a sleep
state and will not participate in this inventory round. Then
the reader issues a command which causes the non-singulated
tags to decrement their slot counter by one. Again, if any tag
has a slot counter which reaches zero, it replies. The reader
can also change the @ value in between and restart the in-
ventory round. This goes on until all the tags have been
singulated and have moved to the sleep state. This can be
detected when the reader uses a @ value of zero and receives
no replies.

Access The process by which a reader reads or writes to
individual tags after singulation.

To study the performance of readers with increasing tag
density we performed experiments using Alien ALR-9800 Gen-
eration 2 reader and ALL-9440 Squiggle tags [2]. The reader
has a maximum read range of about 12 feets when operated at
maximum RF power (1 watt in this case). The reader provides
software-controlled digital attenuation that reduces the emit-
ted power but not the return signal. Thus, the read range of
the reader can be varied by varying the attenuation. The RF
attenuation value ranges from 0 (no attenuation, maximum
power) to 160 (maximum attenuation,minimum power), in
increments of 10, each representing an additional 1db of RF
attenuation. The reader can hold the EPC values of upto
6000 tags in its local memory.

In the experiment the tags were kept at distance of 6 feets
from the reader antenna and the attenuation was 0. Figure 2
shows that the average read rate of tags for a single reader
decreases rapidly as the number of tags increases. Note that
in the read rate shown in the plot is normalized to the case
of a single tag in the system.

In Walmart kind of a scenario where readers are deployed
to monitor the goods on the shelves, there are actually two
kinds of events that a reader is interested in monitoring - new
tags coming in its vicinity and old tags that were previously
there in its vicinity but have now moved out. A simple way
to find out such events is that each reader maintains a list
of tags that it has seen. It polls all the tags in its list and if
any tag does not reply it means it has left its vicinity and its
entry is deleted. Now it can sleep all the tags in its list and
singulate the new tags that have come in its vicinity and add
them to the list. Here, it is possible that there would be tags

that lie in the range of more than one readers. Given that
read-rates reduce drastically with increasing tags, it becomes
crutial that such tags are distributed to readers in a load
balanced way and each tag is read by only one reader. This
means that same tag should not have an entry in more than
one list maintained by the readers for monitoring. In this
paper, we propose load balancing algorithms that would run
periodically and redistribute the tags to the readers. It should
be noted that the new tags that come in the vicinity of more
than one reader will have entry in the tag-list of multiple
readers. But after doing load balancing such tags will have
entry in a single reader’s tag-list.

3. FORMULATION

In this paper, we consider RFID systems where readers
and tags are equipped with omnidirectional antennas, which
is much simpler and hence more cost efficient than direc-
tional ones [17]. For the purpose of assigning tags to read-
ers, we only need to consider links between tags and readers.
Thus, the RFID system can be modeled as a bipartite graph
G = (UUV,E), where U = {u1,u2, - ,un} denotes the set
of m readers and V = {wi,v2, -+ ,v,} denotes the set of n
tags. Moreover, communication between tags and readers are
bi-directional, and thus the bipartite graph is an undirected
graph. There is an (undirected) edge (u:, v;) between reader
u; and tag v; if only if they can communicate with each other.
Each edge (ui,v;) has a non-negative energy cost ci; repre-
senting the energy cost of reader u; to read tag v; once. In
principle, ¢;; can also represent other meaningful metrics. For
each reader u;, let N(u;) denote the set of tags it can read.
Similarly, let N(v;) denote the set of readers that can read
tag vj;.

Now we turn to a key problem in modeling a RFID sys-
tem: How can we decide if a pair of reader and tag can com-
municate with each other or not? In the literature, there
are two most popular models that have been widely used to
model wireless communication systems using omnidirectional
radios. In the disk graph model, each node is assumed to
have a certain transmission range. Because radio signal at-
tenuates as it propagates from the sender to the receiver [18].
In order for the receiver to correctly decode the transmitted
information, the received signal must be strong enough to
pass some threshold signal/noise ratio (SNR). Assuming that
the sender transmits at its maximum transmission power, the
range within which the transmitted signal can be correctly de-
coded is referred to as the transmission range of the sender.
The disk graph model is based on the ideal assumption that
if node v is located within the transmission range of another
node u, then node u must be able to reach node v.

In RFID systems, we assume that readers have the same
transmission range IR and tags have the same transmission
range 7, where R > 7. However, communication between
readers and tags are bi-directional. If reader u; can reach
tag v; but the latter cannot reach the former, then u; cannot
retrieve data from wj, then the uni-directional link from wu;
to v; simply cannot be used in data retrieval. Therefore, we
can safely pretend as if all the readers and tags have the same
transmission range r. This eventually leads to the widely used
unit disk graph (UDG) model as defined in [7].

While the disk graph model is conceptually simple and ele-
gant, in real applications its ideal assumptions are often con-
sidered not perfectly accurate. In real world, the transmission
range of an omnidirectional radio can hardly be a perfect disk,



Figure 3: Irregular transmission range of a reader.

due to a variety of reasons such as obstacles, multi-path reflec-
tion, interference, etc. Instead, it is most likely an irregular
region as shown in Figure 3. Therefore, researchers have also
been using another most popular model, the general graph
model. In the general graph model, any pair of nodes in the
system can be connected by a link. Therefore, this model
can accommodate any system. Note that the UDG model is
a special case of the general graph model. In this paper, we
study our problems in both models. In particular, we prove
stronger hardness results for the restricted UDG model and
prove stronger positive results for the general graph model.

Problem definitions: In this paper, we study the min-max
optimization problem where our goal is to find an assignment
@V — U of each tag v; to some reader u; = ¢(v;) such that
the maximum total energy cost

Ci = Z Cig
1<j<n
ui=p(v;)
over all readers is minimized. We refer to this problem as
the min-maoz cost assignment (MCA) problem, Note that
although we use energy cost as an example, in general c;;
can represent any meaningful performance metric (e.g. the
amount of time that it takes reader u; to retrieve data from
tag v;). To facilitate our discussion, we here formally define
the decision version of MCA as follows.

INSTANCE Bipartite graph G = (UUV, E), a
cost ¢;; € Z1 for each edge (us,v;) and a bound
BeZz®*.

QUESTION Is there an assignment ¢ : V — U
such that for each u; € U,

> ey < B?

1<j<n
ui=p(v;)

An interesting special case of the MCA problem is the min-
maz lag count assignment (MTA) problem, where readers
cannot adjust their transmission power and thus each edge
has a fixed unit energy cost, namely ci;; = 1. Intuitively, our
objective in MTA is to minimize the maximum number of
tags assigned to individual readers.

Note that in these problems, energy costs in the UDG model
should not be simply determined by the distance between end-
points, which is frequently used in the literature. For exam-
ple, in indoor applications like inventory management, energy
cost is a highly irregular function of distance because of ob-
stacles and multi-path reflection, etc. In the MTA problem
energy costs are always 1, regardless of the distance between
endpoints. Moreover, we here aim to study a general problem

where link costs may also have physical meanings other than
energy cost. Therefore, the UDG model only determines the
existence of edges between nodes, but not their costs.

4. CENTRALIZED SCHEMES

In this section, we formally analyze the complexity of the
MCA problem and the MTA problem in the centralized set-
ting. In particular, we prove that even in the restricted UDG
model, the MCA problem is NP-hard and that there does
not exist any efficient approximation algorithm for the MCA
problem that can achieve an approximation ratio less than
%n The NP-hardness proof of MCA can be found in Ap-
pendix. These hardness results automatically hold in the
general graph model. Given that, we provide an efficient 2-
approximation algorithm for the general graph model, which
comes very close to the optimal solution and is guaranteed
to be at most 2 times the optimum in the worst case. The
approximability and inapproximability results for MCA are
based on equally simple reductions between MCA and the
minimum multiprocessor scheduling (MMS) problem, which
possesses the same approximability and inapproximability prop-
erties. For the MTA problem, we show that it is polynomially
solvable even in the general graph model, and present a con-
ceptually very simple algorithm based on network flow for
computing the optimal solution.

4.1 Min-max Cost Assignment (MCA)

Given the NP-hardness of MCA, we cannot expect to find
an efficient algorithm for computing the optimal solution, un-
less P = NP. Instead, we should try to design an efficient
approximation algorithm A that can find an assignment ¢
such that the maximum total cost over all readers is at most
o times as large as the optimal solution. « is referred to as
the approzimation ratio of A and gives us some idea of the
approximability of the problem in study. On the other hand,
if we are not able to achieve any better approximation ra-
tio, it will be useful to figure out some lower bound on the
achievable approximation ratio. Such a lower bound can give
us some idea of the inapproximability of the problem in study.

4.1.1 Approximability

It turns out even in the general graph model, we can eas-
ily design a 2-approximation algorithm for MCA by reducing
to the minimum multiprocessor scheduling (MMS) problem,
which is approximable within a factor of 2 [16]. Since the
UDG model is a special case of the general graph model, the
2-approximation algorithm automatically applies in the UDG
model as well.

In MMS, we are given aset T = {t1,t2, - ,in} of tasks and
aset P = {p1,p2, - ,pm} of processors. Each task t; € T
has a positive length l;; € Z7, which represents the amount
of time needed to execute task t; (completely) on processor
pi. A schedule ¢ : T — P is an assignment of each task t; € T
to some processor p; € P. The execution time on processor
p; is thus the total execution time of all the tasks assigned to
it. The finish time of a schedule ¢ is the maximum execution
time over all processors. Our objective in MMS is to find a
schedule ¢ such that the finish time is minimized. In [16],
Lenstra et al. have proposed an approximation algorithm
for MMS that guarantees to find for any instance of MMS a
schedule ¢ such that the finish time is at most two times as
much as the optimal solution. We here demonstrate that the
same approximation ratio of 2 can be achieved for MCA as



well, simply by reducing MCA to MMS.

Given an instance of MCA, we transform it into an instance
of MMS as follows.

(1) For each reader u; € U, create a processor p; € P.

(2) For each tag v; € V, create a task t; € T.

(8) For each pair of reader u; and vy, let lij = cij if (us,v;) €
E and let l;; = oo otherwise.

The transformation is clearly polynomial, and we next prove
that the optimal solution of the input instance of MCA (de-
noted by OPTca is always equal to the optimal solution of
the constructed instance of MMS (denoted by OPTnms).

Proor. (=) Given any assignment ¢ for the MCA in-
stance, we can define a schedule ¢ for the constructed MMS
instance such that for each pair of task ¢; and processor p;

H(t;) = pi == o(v;) = ui.

It is easy to verify that if @ leads to a maximum total cost of
C, then ¢ leads to a finish time of C as well. Therefore, we
have OPTiee 2 OPTms.

(<) Given a schedule ¢ for the constructed MMS instance,
we can define an assignment ¢ for the given MCA instance
such that for each pair of reader u; and tag v;

wlvy) = ui <= @(t;) = pi.

It is easy to verify that if ¢ leads to a finish time of C, ¢
leads to the same maximum total cost of C. Therefore, we
have OPTm,cn S OPT7117r1,5~ D

Without loss of generality, let A denote the best known ap-
proximation algorithm for MMS whose approximation ratio
is &. Our a-approximation algorithm for MCA is composed
of three phases. (1) Transform the input MCA instance into
an MMS instance as described above. (2) Apply A on the
constructed MMS instance to compute a schedule ¢. (3) De-
fine an assignment ¢ for the given MCA instance such that
for each pair of reader u; and tag v;

w(v;) = up <= ¢(t;) = pi.

The maximum total cost C derived from o satisfies C < o -
OPTTTL“’LH = - OPTTTLCH"

4.1.2  Inapproximability

In [16], Lenstra et al. have also proved that MMS cannot
be approximated within a factor less than %, unless P = NP.
‘We can show that even in the restricted UDG model the same
inapproximability bound holds for MCA, simply by reducing
MMS to MCA. Again, the same inapproximability result au-
tomatically holds for the general graph model as well. Given
an instance of MMS, we transform it into an instance of MCA
in the UDG model as follows.

(1) For each processor p; € P, create a reader u; € U.

(2) For each task t; € T, create a tag v; € V.

(3) Set the transmission range R of the readers to be sufli-
ciently large to cover all the tags, and also set the transmis-
sion range r of the tags to be sufliciently large to cover all the
readers.

(4) For each pair of processor p; and task t;, add an edge
between the corresponding u; and vj, whose cost is ¢i; = li;.

The transformation is clearly polynomial, and we can sim-
ilarly show that the optimal solution of the input instance
of MMS (denoted by OPTrmms is always equal to the opti-
mal solution of the constructed instance of MCA (denoted by
OPTm.ca)-

Proor. (=>) Given any schedule ¢ for the MMS instance,
we can define an assignment ¢ for the constructed MCA in-
stance such that for each pair of reader u; and tag v

QD('Uj) = Ui d)(tj) = Dj.

It is easy to verify that if ¢ leads to a finish time of C, ¢
leads to the same maximum total cost of C. Therefore, we
have OPTmca § OPEanm

(<) Given any assignment ¢ for the constructed MCA in-
stance, we can define a schedule ¢ for the given MMS instance
such that for each pair of task t; and processor p;

B(t;) =pi == o(v;) = us.

Tt is easy to verify that if ¢ leads to a maximum total cost of
C, then ¢ leads to a finish time of C as well. Therefore, we
have OPTyca = OPTmms. [

Assume A is the best known approximation algorithm for
MCA whose approximation ratio is . We can define an a-
approximation algorithm for MMS that is composed of the
following three phases. (1) Transform the input MMS in-
stance into an MCA instance as described above. (2) Apply
A on the constructed MCA instance to compute an assign-
ment . (3) Define a schedule ¢ for the given MMS instance
such that for each pair of processor p; and task ¢;

o(t;) =pi <= o(vj) = ui.

The finish time C of ¢ satisfies C < a-OPTnea = «OPTmms-
Therefore, since MMS cannot be approximated within a factor
of less than % unless P = NP, the same inapproximability

result holds for MCA as well.
4.2 Min-max Tag count Assignment (MTA)

In the previous section, we have proved that the general
MCA problem is NP-hard. In this section, we study the MTA
problem, which is an interesting special case of MCA where
link costs are all the same. Specifically, we show that MTA is
polynomially solvable even in the general graph model, and
present a conceptually simple algorithm based on network
flow for computing the optimal solution, i.e., an assignment
of each tag v; to some reader u; such that the maximum
number of tags (i.e., load) assigned to readers is minimized.

At the high level, our MTA algorithm is essentially an it-
erative binary search process, which may start with some ob-
viously feasible load (e.g. n) Within each iteration, we test
some specific load B to see if there exists some assignment
@ : V — U such that the number of tags assigned to any
reader is no more than B. If it is the case, we decrease the
value of B (according to the standard binary search algo-
rithm). Otherwise, we increase the value of B (according to
the stand binary search algorithm). Eventually, the binary
search process will converge to the minimum feasible load.

Now it only remains to design an algorithm for the feasibil-
ity test of B. Namely, to answer the decision version of the
MTA problem with the bound B, which is basically the same
as the decision version of the MCA problem presented in Sec-
tion 4.1, except that link costs are always 1 in MTA. Here,
we solve this problem by reducing MTA to the mazimum net-
work flow (MNF) problem. Given an instance of the decision
version of the MTA problem, we construct an instance of the
MNTF problem as follows. An example of the transformation is
shown in Pigure 4. (1) Create a virtual source s and a virtual
sink . (2) For each reader u; € U in the given MTA instance,
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Figure 4: Transformation from MTA to MINF.

create a reader node u; in the MNF instance. Connect the
source s with each reader node using an edge of capacity B.
(3) For each tag v; € V in the given MTA instance, create a
tag node v; in the MNF instance as well. Connect the sink ¢
with each tag node using an edge of capacity 1. (4) For each
edge (ui, v;) in the given MTA instance, create its counterpart
in the MNF instance and assign it a capacity of L.

We now prove that there exists an assignment ¢ satisfying
the bound B in the given MTA instance if and only if the max-
imum fow that can be routed from s to ¢t in the constructed
MNF instance is exactly n. Note that it is not possible to
route a flow larger than n from s to ¢ since the sink ¢ is only
incident to n incoming edges each having a capacity of 1.

PROOF. (=) If the given MTA instance has an assignment
¢ : V — U such that each reader receives at most B tags,
in the constructed MNF instance a flow of n can be routed
from s to t as follows. (1) For each edge (ui, v;), if (v;) = us,
assign a flow of 1 from u; to v;; otherwise, edge (u:, v;) should
carry no flow. (2) For each edge (s,u:), assign a flow from
s to u; that is equal to the aggregate outgoing flow from w,
so that flow conservation is satisfied at u;. Since ¢ assigns
at most B tags to each tag, we are guaranteed that (s,u:)
carries a flow of at most B. (3) Assign a flow of 1 to each
edge (vj;,1).

(<) If the constructed MNF instance admits an integral
flow of n from s to ¢ such that each edge carries a non-negative
integral flow, then an assignment ¢ : V — U for the given
MTA instance can be easily defined as such that p(v;) = w
if and only if edge (ui,v;) carries flow. Since each u; has at
most B incoming flow from s, it has at most B outgoing flow
as well, due to flow conservation. Consequently, the ¢ we
have defined assigns at most B tags to each reader. [

Having proven that, we can simply apply a standard maxi-
mum flow algorithm [8] on the constructed MNF instance. If
the maximum achievable flow is equal to the total number of
tags, n, we know that bound B is achievable. If the maxi-
mum achievable flow is less than n, that means bound B is
not achievable.

5. LOCALIZED SCHEME (LPA)

In previous sections, we have studied the complexity of
MCA and MTA. The algorithms we have proposed are all pre-
sented as centralized algorithms. While these algorithms are
shown to possess nice performance properties, in practice it
is often of much interest to deploy a light-weight distributed
scheme that delivers reasonably good performance. In this
section, we meet this challenge by designing such a distributed
scheme.Dynamic updates (i.e., join/leave of tags/readers) can

be efficiently handled as well. Before we proceed to present
the detailed design of our scheme, we first examine some rel-
evant design issues that must be addressed. Our answers to
these issues naturally lead to our design.

5.1 Design issues

Localized vs Distributed: A distributed scheme is not enough.
In principle, every algorithm can be implemented in a dis-
tributive manner. The most straightforward solution is for
some node to serve as the central control: it collects relevant
information from all other nodes, locally executes a central-
ized algorithm to compute a solution, and then floods the
computed solution back to other nodes. In this paper, we
aim to design a distributed scheme with extremely low mes-
sage complexity. Therefore, we turn our attention to localized
algorithms, which are a special kind of distributed algorithms
where there is no central control needed and each node only
needs knowledge about one-hop neighbors. A lot of state
maintenance as well as communication overheads can thus be
avoided in such a localized scheme.

Randomized vs Deterministic: So far we have been focused
on deterministic solutions, where each tag is bound with a
fixed reader once it is assigned to it. It is not hard to see
that we can do better than this by employing randomized
schemes, where each tag may be assigned to multiple readers
with some probability. When data is being retrieved from
a tag, it flips a coin and decides based on the outcome to
which reader it should report. In the long run, the expected
load on each reader can potentially be decreased. For a simple
example, consider a system consisted of two readers and three
tags. Each tag can be assigned to any reader. In the optimal
deterministic assignment, one reader must receive two tags
while the other reader receives one. If we adopt a randomized
approach, we can assign each tag to each reader with equal
probability. The long term expected load on each reader sums
up to 1.5 only, which is even more load balanced than the
optimal deterministic assignment.

Tag-driven vs Reader-driven:  Before we proceed to de-
sign a randomized scheme as described above, there is an-
other key design problem that we cannot ignore. Specifically,
there are two possible approaches to the design of a random-
ized scheme: tag-driven and reader-driven. In the tag-driven
approach, each tag probabilistically decides to which reader
it should report. In the reader-driven approach, each reader
probabilistically determines if it should read a tag in its vicin-
ity or not. While these two approaches may seem equally
light-weight, we prefer the tag-driven approach. Because in
the tag-driven approach we can easily guarantee that every
tag will be read by some reader, while in the reader-driven
approach some tags may not be read by any reader. Because
there is always a positive probability that every reader decides
to ignore those tags.

5.2 Basic scheme

In light of these observations, we propose the localized prob-
abilistic assignment (LPA) scheme, a very simple localized
scheme for finding such a tag-driven probabilistic assignment
of tags to readers. First of all, note that in a localized scheme
each node only has knowledge about its one-hop neighbors.
From the perspective of load balancing, each tag only knows
which readers are in its vicinity and what is the load on those
readers. Similarly, each reader only knows which tags are in
its vicinity and how much (expected) load is each of these



tags putting on itself. Thus, a localized scheme can only
rely on such local information. Second, in order to achieve a
more load balanced assignment, in a tag-driven scheme each
tag should decide its probability of reporting to some reader
based on the load on the latter. If a reader in vicinity has a
relatively high load (compared with other readers in vicinity),
the tag should report to it with a relatively low probability.
Otherwise, the tag should report to it with a relatively high
probability.

Based on these intuitions, the LPA scheme is designed as
follows. Specifically, each reader u; computes and announces
in its polling message the total cost of its incident edges, de-
noted by

vj €N ()

After collecting this total cost from each reader in its vicinity,
each tag v; computes the probability ps; of reporting to reader
u; by

Z bl -1
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It can be verified that for each tag vy,

Z pij = L.

u; € N{v;)

Therefore, every tag is guaranteed to be read by some neigh-
boring reader in its vicinity, if we ignore communication error
at this point. Suppose N(v;) = {us;, Uiy, -+ , Uiy} Is the set
of readers in the vicinity of tag v;. We can view all the p;, ;'s
of tag v; in the form a vector (pi,j, Pigjs- - »Piys), Which we
refer to as the probabilistic binding vector (PBV) of tag v;. To
facilitate later discussion, we refer to such an interactive pro-
cess between tags and readers as a round of load balancing.
We also assume that each tag v; will record the load I; of each
reader u; in N(v;), and refer to the vector (L, liy, - ,1i,) as
the neighbor load vector (NLV) of tag v;.

In the basic LPA scheme we have described so far, each
tag v; can be assigned to any reader that can cover v; with
maximum transmission range. A possible improvement is the
following greedy assignment approach, where readers increase
their transmission power from a minimum value to the max-
imum transmission power in certain predefined increments.
At each transmission power level, readers probe tags in their
current transmission range. If a tag is now probed but has
never been probed before, it records as its candidate readers
the readers that have probed itself at this transmission power
level. It is clear that the candidate readers of a tag are the
readers that can reach that tag at the minimum transmission
power level among all the transmission power levels that are
tested in the greedy assignment approach. Subsequently, in
the LPA scheme, each tag will only consider reporting to its
candidate readers instead of all readers that can cover it with
maximum transmission range. We evaluate the performance
of this greedy assignment approach with different increments
in our results.

5.3 Self-adaptive mechanism

Qur discussion so far has been conducted on the basis of
a static topology. However, in many real applications a load

balancing scheme should be able to effectively handle frequent
topology changes due to a number of diflerent causes. For
examples, readers may be turned on/off from time to time
according to some power conserving strategy [5], existing tags
may leave (e.g. due to merchandise) and new tags may join
(e.g. when automobiles carrying tags enter the monitoring
zone), etc. To facilitate our discussion, we make the following
assumptions about typical RFID systems.

(1) Readers and tags are stationary or semi-mobile. There-
fore, topology changes are assumed to be caused by join/leave
of readers/tags instead of mobility. Nevertheless, our design
does allow readers and tags to be be moved from time to time.
Such move can be handled as if readers/tags leave and then
join at their new location.

(2) Data retrieval is primarily done in a periodic round-by-
round fashion. During each round of data retrieval, every tag
should be read by at least some reader. In order to enable
effective load balancing and self-adaptive management, read-
ers should announce its presence through polling messages or
announcement messages if necessary.

To be practically useful, a localized assignment scheme should
be able to handle such topology changes in a self-adaptive
manner. Here, we extend our LPA scheme to incorporate
such a self-adaptive mechanism.

Reader join: When a reader u; joins the system and has
been ready for retrieving data from tags, it broadcasts a mes-
sage announcing that its current load is [; = 0. Upon receiv-
ing this announcement, each tag in its vicinity expands its
NLV to include it. Based on the current load of other readers
stored in its NLV, the tag computes a new PBV according
to Equation (1). During the next round of data retrieval,
the tag will probabilistically report to its neighboring readers
including the new reader according to its new PBV. The an-
nouncement message broadcast by the new reader is the only
overhead of handling its join.

Tag join: When a new tag joins a system operating in the
passive mode, it can wait until the following round of data
retrieval, during which it overhears polling messages from all
readers in its vicinity. Based on the load value announced in
the overheard polling messages, the new tag defines its own
NLV and PBV. During the next round of data retrieval, the
tag will be able to participate as usual. No additional message
is needed to handle the tag join.

Reader/Tag leave: After each round of data retrieval, each
reader and tag automatically obtains up-to-date knowledge
about its vicinity. Their load, NLV and PBV are then updated
based on this up-to-date knowledge. If a reader or tag leaves
the system, it will be automatically detected at least after
the next round of data retrieval. Therefore, no additional
processing is needed to handle reader/tag leaves.

5.4 An iterative optimization

Although this simple one-round localized scheme works well
on average, it can be shown that even in the restricted UDG
model, its load balancing performance can be arbitrarily bad
in the worst case, even for the MTA problem which is just a
special case of the general MCA problem. To see that, con-
sider the example in Figure 5, where each node has a trans-
mission range of 1. The system consists of 2n — 1 tags (rep-
resented by round nodes) and n + 1 readers (represented by
square nodes). The first row of round nodes represent n — 1
tags and the third row of round nodes represent the other
n tags. The second row of square nodes represent n read-
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Figure 5: An analysis of the simple localized scheme.
Square nodes represent readers and round nodes rep-
resent tags. Each node has a transmission range of 1.
Each edge has a cost of 1.

ers. Edges have the same cost of 1. Each tag in the frst
row is adjacent to every reader in the second row, and each
reader thus has a total cost of l; = n. According to the simple
localized scheme described above, each tag in the third row
decides that it should be assigned to the reader at the bottom
with probability % Consequently, the bottom reader receives
an expected load of 5. However, it is not hard to devise an
assignment where any reader is assigned at most two tags.
This gives us a lower bound of Q(n) on the approximation
ratio that can be achieved by the simple one-round localized
scheme.

Proposed optimization: Here, the observation is that
readers in the second row are disadvantaged by the misleading
fact that each of them is adjacent to n tags. This is misleading
because each of the n — 1 tags in the first row is also adjacent
to n readers, not just that reader itself. Therefore, the actual
expected load on each reader in the second row is far less
than the nominal value of n. Based on this observation, if we
run one more round of load balancing where we let [; of each
reader u; be its expected load assigned in the previous round,

denoted by
> pyoci,
v €N ()

we will be able to reach a much more load balanced assign-
ment. For the example in Figure 5, a second round of load
balancing reduces the maximum load on readers to below 3.
This maximum load occurs on the bottom reader. In general,
if necessary this iterative optimization can be executed for
more rounds to achieve even more load balanced assignments.
To enable this iterative LPA (ILPA) scheme, each reader u;
needs to store the pi; of each tag v; in N(u;). We comment
on the performance of this optimization in Section 7.

6. IMPLEMENTATION

In this section we will discuss how the centralized and lo-
calized load balancing schemes can be implemented in RFID
systems compliant to EPC Generation 2 UHF RFID specifi-
cations [1].

6.1 Centralized Scheme

Typical RFID deployment comprise of a network of RFID
readers controlled by one or more Reader Network Controller
(RNC) [12]. The RNCs are connected to the host/servers
running client applications that consume the acquired tag
data. Standards for communication between RFID readers

and backend client application have been developed by var-
jous standards bodies. IETF has proposed a Simple Light-
weight RFID Reader Protocol (SLRRP) [12] to convey con-
figuration, control parameters and transfer tag information to
and from readers having TCP/IP stack. This infrastructure
can be easily used for implementing the proposed centralized
load balancing schemes. Using SLRRP, the readers can trans-
fer the EPC of the tags in their vicinity to the backend server
which can then compute the load balanced assignment and
convey it back to the readers.

6.2 Localized Scheme

For implementing the localized scheme we assume that neigh-
boring readers in the system have unique identifiers(RID) and
the read range and write range of a reader is same. The User
memory of the tag is used to store the RID and tag count
pairs. Here the size of the User memory may become a con-
straint but in practical scenarios it is not expected that a tag
would fall in the range of many readers. Once all the read-
ers have written their RID and tag count, the tag computes
the probabilities as described in section citesec:localized and
chooses one of the RI1Ds by generating a random. It should be
noted that the tags are capable of generating random num-
bers as it is an integral part of @ protocol. This RID is
stored at a predefined location RIDLOC in the User memory.
When performing slelect operation, the readers include their
RID in the select query which is matched against RIDLOC in
the User memory of each tag. In this way tags respond only
to that reader whose RID is written at RIDLOC and ignore
other readers.

7. EVALUATION

Here we present the simulation setup and assess the perfor-
mance of centralized and localized load balancing algorithms
in various RFID topologies. While we may use any general
cost function for MCA, in this evaluation we use energy as a
specific cost metric that our formulation will minimize. En-
ergy costs are only relevant to readers (tags have no power
source of their own). For the MCA version of the problem
the transmission energy used by readers is variable and is
proportional to the square of the distance to the tags. For
the MTA version, we assume the transmission energy used by
readers is a fixed constant as discussed before, this translates
to balancing the number of tags across the readers.

Simulation Environment. All our experiments are performed
by randomly deploying RFID tags and readers in a 1000 X
1000 square feet grid. The maximum transmission range of a
reader is 12 feets as mentioned in Section 2. We analyze the
efficacy of our proposed load balancing algorithms by varying
the following parameters of the topology:

Tag Density Average number of tags in the range of a reader.
By varying tag density, we can evaluate our scheme on increas-
ing loads of tags per reader.

Skew Skew is defined as the variation in the number of tags
in the range of various readers in the system. We evaluate
our scheme on inherently imbalanced topologies, where most
of the tags are clustered in the vicinity of a few readers while
other readers have very few tags in their vicinity. Such imbal-
anced topologies are quite possible in warehouses and super-
markets, where tag mobility over a period of time can lead
to different densities of tags in different parts of the store.
‘We implement this as follows. We assume readers are placed



uniformly at random in the square area. For different val-
ues of a skew parameter, s, the z and y coordinates of tags
are distributed is given by X*, where X is a uniform random
variable between [0, 1]. Greater the value of s, greater is the
imbalance in the topology, i.e., there is a greater variability in
the number of tags that are in range of different readers. By
varying s, we therefore study topologies with different degrees
of imbalance as might occur in practice.

Mobility In most practical RFID systems, the number and
position of the readers remains fixed, while the number of
tags and their positions are highly dynamic and may change
across very small time intervals. Here we analyze such dy-
namic RFID system by using mobility models which define
the pattern of tag movement. Note that in these mobility
models, the position of the RFID readers remain fixed while
the position and number of RFID tags change as tags enter
and leave the system. We use the following mobility models
to capture the dynamics of a RFID topology:

Random Mobility Model: Here some randomly chosen tags
leave the system while new tags enter the system at ran-
dom locations. The position of all the other tags remains
unchanged. Here the number of tags between any two in-
stants of time vary randomly. So the overall number of tags
and their position varies randomly between any periods of in-
terest.

Paitern-based Mobility Model: Using the warehouse example
again, it is quite likely that the number of tags in the system
will change over time. There will be specific periods when new
tags enter the system, e.g., say new truckloads of objects en-
ter the warehouse. There will be other periods when existing
tags depart, e.g., truckloads of objects are carried away We
model such scenarios by varying the number of tags in the
warehouse by increasing and decreasing the number of tags
based on arrivals and departures of trucks. The number of
tags in each truck is chosen uniformly at random.

Performance Metrics. To evaluate the efficacy of our pro-
posed schemes we use the following metrics:

Load : Load Vectors provide the entire distribution of cost
for various readers in the system. Each element 4 in the load
vector represents the number of readers whose cost exceeds
i units. For the MCA problem, cost corresponds to energy
consumption (we call it the Energy Load Vector or ELV),
while for the MTA problem it corresponds to number of tags
(we call it the Tag Load Vector or TLV).

Fairness: We use Jain's fairness Index [13} to evaluate the
fairness provided by individual schemes. The Jain’s Fairness
Index for a load vector L = (I1,12, ..... , 1) is given by

(Tie, 1)

ne i

Intuitively, a load vector's Jain’s Fairness Index is 1 if it is
perfectly fair (i.e., all readers receive equal load), and is ;1; if
it is completely unfair(i.e., only one reader is assigned all the
tags and all other readers are idle).

Maximum load: It is defined as the maximum load on
any reader in the RFID system after MTA, MCA or LPA al-
gorithms have performed load balancing.. We use maximum
load on any reader in the system as an indication of the ef-
ficacy of MCA and MTA algorithms. We also compare LPA
algorithm with centralized algorithms on this metric to eval-
uate the ability of probabilistic assignment in minimizing the
maximum load on the system.

Summary of results: Our results reported next can be sum-

marized as follows: The proposed localized heuristic (LPA)

performs nearly as well as the various optimal and near-optimal
centralized algorithms (MTA and MCA) across a wide-range

of scenarios. LPA, with its low overheads, and limited need

for interactions, is therefore a technique for efficient load bal-

ancing in RFID systems.

Results

The results are structured as follows: We first compare the ef-
ficiency of LPA with MTA for balancing number of tags in the
RFID system. Next we compare the performance of LPA with
MCA for balancing the energy consumption for the readers.
Finally, we evaluate the stability of the localized algorithm
in dynamic RFID systems where readers are fixed and tags
appear and disappear at random locations in the system. We
plot TLV and ELV to compare the performance of various
load balancing schemes. The plots have been generated tak-
ing an average over 200 runs of random topologies with the
same skew and same number of readers and tags. We have
also reported the 90% confidence interval of these runs, and
since the bounds are tight, they are not clearly visible in the
figures. For the sake of clarity, in all the figures presented in
this section, the legends are in the same order (from top to
bottom) as the curves in the figure.

LPA vs MCA. Here we present the performance compar-
ison of LPA and MCA for balancing energy consumption of
readers in RFID system. Figures 6 and 7 compare the per-
formance of MCA and LPA for energy assignment. Figures
6(a) to 6(c) show the ELV plots for increasing skews. Each
plot shows the ELV’s for LPA with increments of 2, 5 and 20
and ELV for MCA. For energy assignment, the LPA uses a
greedy approach to acquire tags resulting in lower total load
on the readers but fails to limit the upper bound load on any
reader which is reflected in Figure 6(a) .However, if the incre-
ments are large the readers will have a better understanding
of the topology and will do better load balancing. Therefore,
the ELV's of LPA for increments of 2 and 5 fall drastically
whereas that of increment 20 fall gradually. Note that in this
case 20 is the maximum range of the reader and hence results
in only one iteration of the algorithm, which is similar to the
normal LPA with variable cost. By increasing the skew to
1.5 (Figures 6(b)) and then to 2.0 (Figure 6(c)) the ELV’s
for both LPA and MCA fall sharply. This is because as the
skew in the system increases, few readers have large number
of tags in their vicinity while others have few tags. So most of
the tags cannot be distributed in a balanced manner between
the readers leading to a sharp fall in the load vector. The
performance only worsens with a higher skew of 2. In Figures
7 (a) to (c), plotted for increasing tag density and a skew of
3, again as expected the behavior of the ELV for both LPA
and MCA do not change for different tag densities and also
the vectors are very close to each other owing to the reason
mentioned above. Note that the rate of fall in ELV increases
with increasing tag density. This is because the effect of skew
is enlarged with increasing tag densities.

LPA vs MTA. We first examine the effect of changing skew
on LPA and MTA algorithms in figure 8. As can be seen from
figure 8(a) , for a low skew value of 1, the TLV for LPA re-
mains significantly higher than the TLV for MTA up to a load
of 20. This implies that for LPA more readers have at least
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a threshold number of tags leading to better load balancing.
For the latter part of the graph, the TLV for LPA remains
below the TLV for MTA which is also advantageous as we
would also want to minimize the number of readers having
large number of tags. This can be attributed to the fact that
MTA only aims at minimizing the maximum load but LPA
is targeted towards load balancing and hence assigns most of
the readers at least 10 tags as shown by the initial flatness
in the curve. LPA is also able to achieve the same upper
bound of 49 as that for MTA. However, with increasing skews
(Figures 8(b) and 8(c)) the system reaches extremes where
some readers have very high load whereas some other have
very low load. For this reason, LPA performance degenerates
for higher skew but still closely resembles that of MTA. This
eflect is only exacerbated in figure 8(c) where the skew is
much higher. However, the upper bound for LPA is still the
same as compared to MTA in both Figures 8(b) and 8(c).

We performed a second set of simulations varying the den-
sity of tags in the system keeping a constant skew of 2, as
shown in Figure 9. As expected the behavior of LPA still
remains the same and closely follows the behavior of MTA.
The upper bound on the number of tags in the vicinity of any
reader again remains equal to that for MTA.

Fairness. Figure 11 illustrates the fairness comparisons be-
tween the algorithms for increasing skews using Jain’s fairness
index as the metric of comparison. From figure 11(a),which
is plotted for the energy assignment, the fairness index values
for LPA with iteration step of 20 remains the highest followed
by MCA and then LPA with iteration step of 5 and 2. This
trend is seen because the objective of LPA is to balance load
thereby leading to higher fairness. On the other hand, MCA
only tries to minimize the maximum load on any reader and
therefore might fail to take care of fairness. However, the
fairness index values for LPA with small iteration steps of 2
and 5 is lower than that of MCA because increased greediness
leads to readers getting assigned many tags with low energy
resulting in higher cost on the reader and also that the readers
which have acquired tags from previous lower ranges now have
to accept tags in higher ranges which are covered by no other
readers resulting in an unbalanced assignment of loads. Fig-
ure 10(a) and 11(c) compare the fairness of LPA and MTA
over time for pattern based and random mobility models re-
spectively. Again, the fairness index of LPA always remains
above that of MTA. The variation of the fairness index over
time is very small for each algorithm.

Maximum-minimum bounds. Since MCA gives only twice
as bad an upper bound from the optimal solution it outper-
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forms LPA on keeping the upper bound on the energy costs
low as seen in Figure 12(a). Again, due to the greedy na-
ture of LPA for iteration steps of 2, the upper bound for it
is the worst. As shown in Figure 12(b), for the tag assign-
ment costs, MTA performs better than LPA as MTA provides
an optimal solution for the minimum upper bound. However,
the upper bounds for LPA are still quite close to that of MTA
providing a reasonable upper bound. Figure 12(c) and 10(b)
show the maximum bounds random and pattern-based mo-
bility models respectively. We observe that over time, the
maximum bounds for LPA in both the models remains quite
close to MTA. Hence, it clearly shows the efficacy of LPA for
providing near-optimal bounds in both the models.

Impact of tag storage capacity. RFID tags have very lim-
ited storage capacity so in LPA all the readers in the vicinity
of a tag may not be able to append their cost values on the tag.
We vary the tag storage capacity and assess the impact of lim-
ited storage on the performance of LPA on random topologies
with varying skew. Figure 13 contrast the impact of limited
storage on random topologies with skew of 1 and 3 respec-
tively. As evident from these figures, the effect of limiting the

storage is more profound in more evenly balanced topologies
(skew 1) and has minimum effect on imbalanced topologies
(skew 3). This can be attributed to the fact that imbalanced
topologies are inherently difficult to balance and limiting the
storage does not effect the performance of LPA. Also Figure
13(c) shows the level of fairness achieved by varying storage
capacities for the same skew of 3. It is evident from Figure
13(c) that the impact on fairness is maximum in the case of
low skews and becomes negligible as skew increases.

8. RELATED WORK

In this paper, we address the tag assignment problem in
RFID system, which results from the tag collision problem as
introduced in Section 1. In the literature, Carbunar et al. [5]
have studied the redundant reader elimination problem caused
by reader collision, where tags covered by multiple readers suf-
fer from interference caused by simultaneous transmissions by
these readers. Their objective is to turn ofl as many readers as
possible (without sacrificing tag coverage), so that reader col-
lision is minimized and energy consumption is reduced as well.
Our tag assignment problems can be viewed as orthogonal to
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Figure 13: Effects of storage limit on tags on various metrics. The impact of tag storage limit is maximum

for skew =1 and mitigates for skew = 3.

the redundant reader elimination problem: after redundant
readers are powered off, our schemes can be applied to assign
tags to active readers in a load balanced manner.

Another related work comes from the well researched maxi-
mum lifetime broadcast problem [14]. The authors adopt the
same definition of lifetime as the time until first node fail-
ure, which is previously proposed by Chang and Tassiulas [6].
Therefore, their objective is also to minimize the maximum
energy cost at any node. The key difference between their
problem and our problem lies in the definition of nodal en-
ergy cost. In our problem, the energy cost of a reader is
the aggregate energy cost of reading individual tags. In their
problem, because nodes are broadcasting instead of collecting
information, one single broadcast transmission suffices to dis-
tribute the information to all neighbors in transmission range.
Therefore, their definition of the energy cost of a node is the
minimum energy cost required to reach all of its children in
the broadcast tree. This definition clearly leads to an opti-
mization problem that is quite different from ours.

In the context of WLAN, Bejerano et al. have recently
studied a closely related load balancing problem [4] where the
objective is to assign WLAN clients to access points (APs)
in a load balanced manner. The edge between an AP and

a client also has a cost, which is inversely proportional to its
effective bit rate. Their objective is also to find an assignment
of clients to APs. However, the performance measure of an
assignment is not the maximum cost of any AP. Instead, they
try to optimize the max-min fairness among APs. Although
their problem is seemingly more general, it is actually not the
case for the general MCA problem and their approximation
algorithm does not automatically yield the same result for our
MCA problem. We refer interested readers to the literature [4]
for further details. In the special case where edge costs are
fixed to be the same, they gave an optimal solution to the
max-min fairness problem, which can be directly used to solve
our MTA problem. Nonetheless, our solution to the MTA
problem is conceptually much simpler than their solution, as
their solution is targeted on an essentially different problem.

As has been demonstrated in our analysis, our load balanc-
ing problems are also closely related to the classical minimum
multiprocessor scheduling problem. We refer interested read-
ers to the literature [11, 10, 16, 20, 3] for detailed results
about the problem and a number of its variants.

9. CONCLUSIONS

In this paper, we study load balancing in large-scale RFID
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systems. Our objective is assigning tags to readers in such a
way that the maximum total cost required at any reader to
retrieve data from its assigned tags is minimized. The cost
metric is general in nature and can be used to model various
performance measures, e.g., energy costs, time taken to read
tags, etc. For the purpose of illustration, in this paper we use
energy costs as an example performance measure. We show
that even with centralized knowledge about the system, this
general cost problem is NP-hard and cannot be approximated
within a factor less than —32- An efficient 2-approximation al-
gorithm is then presented. We also consider an interesting
special case where readers use a fixed transmission power,
and thus our objective is simply to minimize the maximum
number of tags assigned to any reader. We show this prob-
lem is polynomially solvable with centralized knowledge, and
present a conceptually very simple polynomial time algorithm
for optimally solving it. We also propose a simple and ef-
fective localized scheme for the problems we study. Our re-
sults demonstrate that this extremely low cost scheme can
achieve very good performance even in highly dynamic large-
scale RFID systems.
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Appendix: MCA is NP-hard in the UDG model

PrROOF. Our NP-hardness proof of MCA in the UDG model
is based on an easy reduction from the PARTITION problem,
which is well known to be NP-hard [9]. The decision version
of the PARTITION problem is as follows: given a set of el-

(12]



Figure 14: Transformation from PARTITION to
MCA in the UDG model.

ements each having a positive size, can we partition this set
into two subsets of equal total size? A formal definition of the
PARTITION problem is given below.

INSTANCE Set A = {a1,a2, - ,an} and a size
s(ai) € Z* for each a; € A.
QUESTION Is there a subset A" C A such that
ZGEA’ S((l) = ZG.EA-—A' S(CL)?
Given an instance of PARTITION, we transform it into an
UDG instance of MCA as follows. For simplicity, let D and
d denote the maximum size and minimum size of elements in
the given PARTITION instance, respectively.

(1) Create two reader nodes uj and uz, which are at a dis-
tance of 2d from each other as shown in Figure 14. Moreover,
both of them have a transmission range of D.

(2) For each element a; € A, create a tag node v; and
connect it with both u1 and uz using an edge of cost s(as).
Note that if necessary, we can also place v; at one of the points
whose distance to u; and us are both s(a;).

(3) Define B = 157" | s(a:).

This transformation is clearly polynomial, and it only re-
mains to prove that there is a subset A’ C A such that
Yowca 8(@) = X ca_a 8(a) if and only if there is an as-
signment  : V — {ui,us} such that

Z s(a;) < B and Z s(a;) < B,
1<j<n 1<j<n
uy=p(u;) uz=p(v;)
(=) If there is a subset A’ C A such that ZaeA,‘s(a) =
_ 4 8(a) = B, the assignment ¢ we are looking for sim-
aEA~A g
ply assigns elements in A’ to u; and the other elements in
A—- A to Uus.
(<) If there is an assignment ¢ : V — {u1, uz} such that

E s{aj) £ B and E s{aj) < B,
1<jsn 1<jsn
uy=p(v;) ug=p(v;)

it follows the definition of B = £ "% | s(a:) that

=

Z s(a;) =B and Z s(az) = B.

1Sjisn 1<isn
ur=p(v;) ug=p(vy)

Therefore, we can simply define the subset A’ to be either
A" = {ailp(ai) = ur} or A’ = {ailp(ai) =u2}. O



