Algorithms and Performance of Load Balancing
with Multiple Hash Functions in Massive Content
Distribution

Ye Xia, Shigang Chen, Chunglae Cho and Vivekanand Korgaonkar
Computer and Information Science and Engineering Department
University of Florida
Gainesville, FL 32611-6120
Email: {yx1, sgchen, ccho, vk2}@cise.ufl.edu

Abstract— We consider a two-tier content distribution system
for distributing massive content, consisting of an infrastructure
content distribution network (CDN) and a large number of
ordinary clients. The nodes of the infrastructure network form
a structured, distributed-hash-table-based (DHT) peer-to-peer
(P2P) network. Each file is first placed in the CDN, and possibly,
is replicated among the infrastructure nodes depending on its
popularity. In such a system, it is particularly pressing to
have proper load-balancing mechanisms to relieve server or
network overload. The subject of the paper is on popularity-
based file replication techniques within the CDN using multiple
hash functions. Our strategy is to set aside a large number
of hash functions. When the demand for a file exceeds the
overall capacity of the current servers, a previously unused hash
function is used to obtain a new node ID where the file will be
replicated. The central problems are how to choose an unused
hash function when replicating a file and how to choose a used
hash function when requesting the file. Our solution to the file-
replication problem is to choose the unused hash function with
the smallest index, and our solution to the file-request problem
is to choose a used hash function uniformly at random. Our
main contribution is that we have developed a set of distributed,
robust algorithms to implement the above solutions and we have
evaluated their performance. In particular, we have analyzed a
random binary search algorithm for file request and a random
gap-removal algorithm for failure recovery.

Index Terms— Content Distribution Network, Load Balancing,
Distributed Hash Table, Peer-to-Peer Network, File Sharing

|. INTRODUCTION

One of the distinct trends related to the Internet is that it is
being applied to the transfer of more and more massive con-
tent. This can be packaged DVD movies that Hollywood sells
online, long and high quality streaming content, e.g., recorded
TV programming, long-running video conferencing sessions,
mountains of scientific data and al other automatically col-
lected data such as consumer, market or economic data. By
massive content, we do not necessarily mean each individual
file is massive. A very large collection of moderately-sized
files also congtitutes massive content. There are two basic
approaches to the distribution of such content. The first is by
an overlay, infrastructure content distribution network (CDN),
such as Akamai [1], Coral [10] or CoBlitz [25], where the
servers in the infrastructure network interact with each other
to replicate or cache the file. Requesting clients retrieve the file

from a nearby server. The second approach is by a peer-to-peer
(P2P) file sharing network, such as BitTorrent [4] or Gnutella
[12]. In this approach, there is no distinction between an
infrastructure node or aregular client. Each peer can download
the file or pieces of the file from a number of peersin parallel,
and at the same time, serve the file or its pieces to some other
peers. This is known as collaborative download or swarming.

We believe that both content-distribution approaches will
continue to coexist. In particular, the infrastructure-based
approach is essential for commercialy viable content dis-
tribution, for reasons such as service reliability and quality,
accountability, or security. Hence, we consider a two-tier
content distribution system consisting of an infrastructure
CDN and a large number of ordinary clients. The nodes of
the infrastructure network form peering relationship as in a
structured, distributed-hash-table-based (DHT) P2P network,
such as Chord [35], CAN [30] or Tapestry [38]. Each file is
first placed in the CDN, and possibly, is replicated among
the infrastructure nodes depending on its popularity, i.e., the
number of requests from the clients. A client sends its file
request to the CDN, which routes the request to a node
that contains the file. The client can then retrieve the file
from the CDN node. Advanced P2P distribution techniques,
such as swarming or parallel download, can be used among
the infrastructure nodes when replicating a file in the CDN,
or between the infrastructure nodes and the clients when
downloading a file. However, the clients are not required to
serve downloaded files to other clients or CDN nodes, even
though it is possible to do so.

In alarge CDN for massive content distribution, it is par-
ticularly pressing to have proper load-balancing mechanisms
to relieve server or network overload. The subject of the
paper is on popularity-based file replication techniques using
multiple hash functions on a DHT-based CDN. DHT has
already been introduced into the ad-hoc file-sharing systems
such as BitTorrent. Its introduction into the CDN is similarly
motivated by many desirable characteristics of DHT-based
structured networks, such as alowing fast resource location,
decentralized massive computation or data access, large-scale
resource sharing, simplified routing, ease of management,
and improved service quality and fault-tolerance due to path
redundancy. At a deeper level, DHT gives every node and

every piece of resource (e.g., file) a numeric ID; DHT-based
networks can be viewed as distributed data structures for
managing these IDs. The desirable characteristics of DHT
come from clever data structures.

The envisioned framework of a DHT-based CDN and a
popularity-based file replication strategy is in contrast to
traditional, unstructured CDNs such as Akamai [1], or web
caching systems [34], which replicate the files at essentially
al edge servers where demand exists.! The main motivation
behind our framework is that the traditional CDNs do not scale
well or become inefficient for massive content distribution, as
partially discussed in [25]. We will justify thisin more details
in Section I1-A.

In a DHT-based network, file placement is done by inserting
the file into the distributed hash table. More specifically, a hash
function is first applied to the file (e.g., the file name) and the
returned hash value becomes thefile ID. Thefile is then placed
at a node that owns the the range of hash values containing the
file ID. Searching for afile (or locating a node) is to obtain the
hash value of the file (or the node, respectively) and to route
a query with the hash value as the destination address. Thus,
the combination of hashing and structured routing eliminates
the need of query flooding or establishing file directories.
Compared with the original DHT-based networks for P2P file-
sharing networks, in our design of the DHT-based CDN, the
files themselves instead of the file pointers are placed in the
network according to their IDs.

The idea of file-replication with multiple hash functions is
that, if k replicas of afile are needed, we will hash the original
file with (at least) k& hash functions, obtain & file IDs, and place
the file in & nodes. One of the challenges is that it is not easy
to decide the number of hash functions needed, since it is file
dependent. The strategy assumed by this paper is that a large
number of hash functions are set aside, enough for the most
demanded file (e.g., the number being m = 232). With respect
to a particular file, how many of these functions are actually
used depends on the popularity of the file. We expect that most
of them are not used for the mgjority of the files.

The focus of this paper is not in re-discovering the idea
of using multiple hash functions for file replication, but in
solving the unavoidable technical problems related to the use
and management of the hash functions. Two central problems
addressed are: How does a node choose one of the unused
hash functions when replicating a file, or one of the used
hash functions when requesting a file? Many solutions may be
possible. But, they usually come with different performance-
complexity tradeoffs, which are often difficult to understand.
The contribution of this paper is that we propose simple
and robust solutions, and more importantly, we thoroughly
analyze the solutions and demonstrate they have very good
performance.

Specifically, our solution to the former problem is to choose
the first unused hash function for file replication. Assuming
the IDs of the hash functions are 1, 2, ..., m, thisrule leads to
the following invariance: When £ hash functions are being

IThis is roughly true for web CDNs if we ignore the business dynamics,
such as the service contract.

used, they must have IDs 1, 2, ... k. Our solution to the
latter problem is to choose a used hash function uniformly
at random. We develop distributed algorithms that implement
the above solutions and evaluate their performance. A key
algorithm is a random binary search algorithm. Furthermore,
for robustness in coping with node failures or the dynamics of
node arrival and departure, we invent a random gap-removal
algorithm and evaluate its performance.

The paper is organized as follows. In Section I, we review
related works. In Section Ill, we describe three algorithms
governing the use and management of the hash functions. In
Section 1V, we evaluate the performance of the agorithms.
In Section V, we describe simulation results that compare our
multiple-hash-function-based load-balancing approach to on-
demand caching plus replication at neighbors. The conclusion
is drawn in Section V1.

Il. BACKGROUND
A. Content Distribution Techniques

Traditional CDNs such as Akamai [1] and Coral [10], or
web caching systems [34] mainly aim at distributing smaller
web-related files and are not quite suitable for distributing
massive files (See [25].). They typicaly replicate all files that
are requested by clients, regardless of the request frequencies,
at every edge server to improve the response time perceived
by the clients. For massive content, this approach does not
scale well due to the limitation in the memory or disk cache,
or network bandwidth. At the minimum, it is wasteful. For
instance, a request for a rare file will evict a popular file
from the memory cache, and the rare file will be evicted
shortly when another request for the popular file arrives. This
causes heavy disk traffic if the disk space is sufficient or heavy
network traffic otherwise.

Instead, one should use popularity-based replication, taking
advantage of the skew in the popularity of different files, as
proposed for other systems [17] [36]. This approach requires
efficient file location service, whereas earlier CDNs only
require the DNS-based server location service. In this paper,
we assume a DHT-based CDN for file placement and location
service, as apposed to an unstructured network that requires
query flooding, a centralized directory or more static DNS-like
lookup service. Many recent distributed file/storage systems,
file-sharing systems and CDNs start to employ the DHT for
file lookup, for instance, Coral [10], CFS [9], PAST [32] and
OceanStore [21], because it allows fast, decentralized |ookup.
Other desirable characteristics of DHT-based networks include
simplified routing, a small network diameter, path redundancy,
fault-tolerance, scalability, and ease of management. A sample
of such networks include Chord [35], Tapestry [38], Pastry
[31], CAN [30], Koorde [16], ODRI [23], Ulysses [20],
and FISSIONE [22].

Since our CDN is a P2P network, file replication among
the CDN nodes can employ many techniques used in P2P
collaborative file distribution. The advantages of collaborative
distribution over a conventional single-server scheme, or even
atree-based multicast scheme, have been well established. For
instance, it avoids server or network overload, achieves higher

throughput or faster distribution speed, and is more resilient
to link failure, frequent node departure, and traffic fluctuation.
A sample of P2P collaborative distribution systems include
BitTorrent [4], SplitStream [5], FastReplica [7], Bullet [19],
Bullet’ [18], Slurpie [33], ChunkCast [8], CoBlitz [25] and
Julia [3]. An abstract problem in many of these works is how
to distribute a file to all nodes as fast as possible. This is
different from our problem, which conerns the distribution of
afile to a subset of the CDN nodes based on its popularity.

B. Existing Load-Balancing Techniques

Relevant file-replication strategies that have been proposed
previously can be summarized into three categories. (i)
caching, (ii) replication at neighbors or nearby nodes, and
(iii) replication with multiple hash functions. A file can be
cached at nodes along the route of the publishing message
when it is first published, or more typically, a nodes along
the routes of query messages when it is requested. In approach
(i) above, when a node is overloaded with the requests to a
file, it replicates the file at its neighbors, or at other nodes
that are close in the ID space such as the successors or
neighbor’s neighbors. CAN and Chord mainly use strategy (ii),
complemented by (i) and (iii).? Tapestry uses strategy (ii) and
(iii). Following the suggestions in Chord, CFS [9] replicates a
file at k successors of the origina server and also caches the
file on the search path. PAST [32], which is a storage network
built on Pastry, replicates a file at k£ numerically closest nodes
of the original server and caches the file on the insertion and
the search paths. In the Plaxton network in [26], the replicas
of a file are placed at directly connected neighbors of the
origina server and it is shown that the time to find the file is
minimized. The replication strategies used in Coral [10] and
Beehive [28] belong to the class of strategy (ii). Both systems
replicate an object at its neighbors along the lookup tree.

Each of these strategies has its advantages and disadvan-
tages, and in rea systems, they can be used in combination
to complement each other. Caching is often simple and can
improve the response time of the queries if done properly.
However, a naive caching algorithm cannot be a complete
solution to the load-balancing problem, because even a good
cache hit ratio, say 80%, still leaves 20% of the requests
going to the original server for the file, which may overload
the server many times beyond its capacity. Replication-at-
neighbors does not have the cache-miss problem, if the file
is replicated at al neighbors of the origina server. However,
in most proposed structured P2P networks, the load to each
of the neighbors is not evenly distributed. In general, it is
difficult to achieve truly balanced load with this approach
because the assignment of requests to nodes depends on many
factors and is not tightly controlled. Furthermore, even after
the nodal hotspot is removed, the routing hotspot may still
remain because all requests are directed to some neighborhood
of the original server.

The main advantage of replication with hash functions
is that, with uniform hash functions, copies of the file are

2File replication in these and other structured networks is also (sometimes
mainly) for the purpose of fault tolerance.

uniformly distributed over the network, and with uniform
use of the hash functions, file requests are aso uniformly
distributed over the set of replication servers for the file. The
disadvantage is that the response time for queries is increased,
aswe will see later. But, response time is not a serious concern
for large download, and can aso be improved by parallel
requests. Genuine uniform hashing is not able to preserve
locality information, which is useful for assigning clients to
nearby servers. However, some form of uniform hashing that
maintains the locality information is possible, but is considered
outside the scope of this paper.

In [17], [6], and [27], file replication is performed through
multiple hash functions, which are organized in a tree. This
results in the replication servers being organized into atree. In
our case, the replication servers have no topological relation-
ship. The Fine Dynamic Replication (FDR) strategy introduced
in [37] is also based on multiple hash functions. FDR is
implemented on dedicated servers called request redirectors,
which maintain information on server availability for each
object and server load. Such information may not be accurate
at al time and may not be consistent among the redirectors,
which may cause unnecessary overload on some servers. On
the other hand, there is no need of dedicated servers with
our agorithm. The only information each client has is the set
of hash functions. Server availability can be found by random
binary search and server load is monitored by the server itself,
which is aways accurate. Overall, our algorithms are highly
decentralized and keep minimum state information without
loss of accuracy of needed information, and therefore, should
be more robust against failures and other contingencies.

Another complementary |oad-balancing technique is to mi-
grate the files in a heavily-loaded server to lightly loaded
servers [9], [29], [13]. There, the nodal overload is caused
by having too many files mapped to the node rather than by
having too many requests for one or a few files. Since those
papers focus on a particular kind of nodal hotspot problem
that is different from our file hotspot problem, their technique
is orthogonal but can be complementary to our agorithms.

I1l. FILE REPLICATION, REQUEST AND FAILURE
RECOVERY ALGORITHMS

Our god is to replicate a popular file into multiple copies
and store them in different nodes, with the help of m uniform
hash functions, denoted by A1, ho, ..., h,,, Where m is alarge
enough number, say 232, so that no file will ever need more
than m copies. It isnot hard to have afamily of such functions.
One way is to use one hash function, , but append a number
1 to the argument of the hash function, where i = 1,2, ..., m.
For instance, if the argument is the file name, foo, then
h(fool),h(f002),...,h(foom) gives m hash values for the
file. The number 7 is called the “salt” value in [38]. For an in-
depth discussion on creating proper hash functions, the readers
are referred to [17].

Since m is avery large number, we do not want to replicate
every file m times. Instead, we will take the popularity-based
replication strategy [17] [36]. The basic ideaisthat, every node
keeps track the popularity of each file and replicates the file

when the number of requests exceeds a threshold. As a result,
the number of replicas produced depends on the popularity
of the file. The focus of the paper is on hash function usage
and management under this file-replication strategy. One must
consider two important questions. First, when requesting afile,
how does the client quickly find a used hash function? Second,
when the current servers cannot handle the requests for thefile,
how does the network replicates the file to other nodes, with
the help of the unused hash functions?

With respect to a fixed file, let us call a CDN node that
already contains a copy of the file a filled node. Otherwise,
it is called an empty node. In the so-called push strategy, file
replication isinitiated by an overloaded filled node: It attempts
to push a copy of the file to an empty node. Alternatively, upon
seeing many requests, an empty node can locate a filled node
and make a copy of thefile. Thisis called the pull strategy. In
practice, both strategies should be combined. We will mainly
explain the algorithms in the push strategy since they are more
complex and also provide the essentia ingredients for the pull
strategy.

A. Replication Algorithm

This sub-section gives an answer to the second question
raised above. The goal of our file-replication agorithm is
that, if & hash functions are used for replication, they must
be hi, ho, ..., h;. The rationale for this will become apparent
when we discuss how to use the hash functions to access
the file in Section I11-B. With this goal, in order to push a
file to an empty node, the overloaded filled node must first
find an unused hash function. Again, assume & hash functions
are currently used, hq, ..., hy. The filled node must discover
the number %k and use the hash function hy;. It can do so
by executing binary search for k& between 1 and m, which
takes O(logm) steps. More specifically, the node runs the
find k (£, 1, m) agorithm, to find the number k&, where
f isthefile. Recall that the binary search algorithm maintains
the current search interval s,s + 1,...,t, where, in the first
search step, s = 1 and ¢ = m. In each step, the algorithm
tries to find out if h; is used, where i = [(s +t)/2] 3. This
is accomplished by routing the query with the h;(f) as the
destination address in the infrastructure CDN. If the result
of the query indicates that h; is not used (l.e., file f is not
present at the node that owns h;(f).), the original node calls
find k(f, s, 1) andt is setto bei. On the other hand,
if the result of the query indicates that h; is used, the original
node calls find k (£, i, t), and s is set to be i.

There are a number of well-known ways for a node to
decide if it is overloaded. We assume a generic method: If
the measured request rate is above a pre-defined threshold,
then the node is overloaded.

B. File Request Algorithm: Random-Binary-Search-Based
Hash Function Usage

We propose the following hash function usage scheme. First,
the file replication algorithm ensures that the hash functions

3| z] isthe floor of the real number z, i.e., the largest integer not exceeding
Z.

are used in increasing order of their indices. With this and
assume that hash functions hq, ..., hj, are used for f, the goal
of thefile request algorithm is to choose one of the & used hash
functions uniformly at random. Assuming each hash function
maps the file f to a distinct node, then each filled node
sees the same number of requests on average. To achieve
this objective, the requesting node calls search_f (f, m),
shown in Algorithm 1, which is a random version of binary
search. The function uniform random (1, u) returns an
integer between [and w, inclusive, uniformly at random. The
function query nd (v) returns the node that contains the
hash value v.

Algorithm 1 search_f(f, u)

u < uniform_random(1, u);

nd < query_nd(h(f));

if f exists at node nd then
return nd

else if u == 1 then
f cannot be found

else
search_f(f, u)

end if

The idea of search_f (£, u) is that we first pick a
random number between 1 and m, say ;. If h;, is not used,
in the next iteration, we pick a number between 1 and i,
randomly, say is. If h,, iS not used, in the next iteration, we
pick a number between 1 and i, randomly. The algorithm goes
on until a used hash function is returned or until it discovers
that none of the hash functions is used.

C. Failure Handling: The Gap Removal Algorithm

The hash function usage scheme presented in Section I11-A
and 111-B is adequate if no node ever leaves the P2P network
unexpectedly. Otherwise, the files of the failed node will
not be moved to appropriate nodes to ensure their continued
availability. From the point of view of the hash functions, node
failure creates gaps in the sequence of used hash functions.
Without proper repair, the gaps will accumulate over time
and will likely cause the binary search algorithm to fail,
undermining the effectiveness of the load-balancing scheme.
For instance, imagine the case where the hash functions h, and
hy areinuse and h; and hg are not. Suppose, when applied to
thefile f, they each correspond to a different node. Then, there
isanon-negligible probability that search_f (£, m) failsto
return a replica server. In another example, suppose h; and hy
areinuse and hy and hg are not. Then, the node corresponding
to hy will take a higher load than the one corresponding to
h4. This discussion suggests we should remove the gaps in
the sequence of used hash functions.

We will consider the following simple gap remova ago-
rithm. Let us focus on a particular file, say, f. For ease
of discussion, we say the algorithm is run independently
by each used hash function, whereas it is run by the node
corresponding to the hash function. If, in practice, a filled
node corresponds to multiple used hash functions, it should

execute the algorithm separately on behalf of each used hash
function. Every once in a while, a used hash function random
selects another hash function with smaller index and checks
if the latter is in use. If not, the latter function will be put
to use and the former hash function is removed from usage.
More specifically, suppose h; is doing the checking. The filled
node corresponding to h;(f), say node A, draws a number I
randomly from 1, 2, ..., —1, then sends a query message for f
to hy(f). If hyisnotin use, indicated by the fact that the node
corresponding to h;(f), say node B, does not contain f, then
areplicaof f is created at node B. The replica at node A is
removed, provided node A does not correspond to other used
hash functions. With the filling of the gap corresponding to
the missing function h; and the removal of the hash function
h; from the used list, it appears thet /; is moved to h;. This
isillustrated in Figure 1, where hg is removed and the gap at
ho is filled.

Before

h1 hz h3 h4 h5 h6 h7 hS

After

h1 hg h3 h4 h5 h6 h7 h8

Fig. 1. Gap removal: remove hg and use ha

It remains to specify the probability distribution that gov-
erns which hash function should be checked by the algo-
rithm. We consider the following class of algorithm, called
compact (p), independently run by each used hash function.
Let us focus on the j* hash function h;. With probability p,
it selects the hash function /;_;, and with probability 1 —p, it
selects a hash function uniformly at random from Ay to h;_;.
If the selected hash function is used, then nothing is done.
Otherwise, the selected hash function will be used and h;
will no longer be used. The specia case of compact (0) is
also known as the uniform jump algorithm. Both the uniform
jump algorithm and compact (0.5) agorithm work well.
But some tradeoffs are involved.

Primarily designed for failure recovery, the gap removal
algorithm can aso simplify the protocol executed when a
node joins or leaves the CDN. No time-consuming file transfer
is needed at the time of node arrival or departure. The gap
removal agorithm will accomplish that at a later time.

D. Discussion

1) Centralized Alternative: The essential assumption in our
hash function management scheme is that the information
about which hash functions are currently being used is not
readily available. In our scheme, such information is accessed
through distributed search. An obvious alternative is to keep

the information at a centralized server. This scheme is not
scalable if the centralized server is responsible for managing
the hash functions of al files. For scalability, one can resort
to a distributed database, either a DNS-like system or a
DHT-based database. Besides the DHT-based system’s lack
of elegance - the DHT stores the hash functions used for
another DHT that stores file content - both systems will
have difficulty in keeping synchrony of the fast-changing hash
function usage information across distributed servers. They
also require non-trivial protocols or configuration procedures
for handling failure or query overload. In contrast, our solution
does not maintain a record (state) of the hash function usage
information, but relies on fully distributed agorithms with
minimum protocol support.

2) Parallel Search Algorithms: We will show later that the
basic file request algorithm, Algorithm 1, takes about In 7
search stepsto find the file. For alarge CDN, this may translate
into delay of seconds. The delay can be reduced by a factor of
s if a batch of s requests are sent out in parallel. In addition,
the parallel agorithm is also useful for parallel download from
the selected CDN servers to the requesting client.

V. PERFORMANCE EVALUATION OF THE ALGORITHMS
A. Analysis on the Random Binary Search Algorithm

1) Hash function selection: Let T'(¢) be the number of steps
taken by Algorithm 1 to return a used hash function, assuming
the first search step takes place on the set {1,...,i}, where
k < i < m. We wish to find the statistics of T'(m). But, first,
by conditioning on T'(m), it is easy to see that the returned
function from the algorithm is chosen uniformly at random
from hy to hy.

The expected number of tries to find a used function and
the variance are both O(log 7). The following theorems give
the precise statements.

Theorem 4.1:
1 if m =k,
ET(m) = L L N €Y
i+t fm>k
Proof: Conditiona on the hash function returned from

the first search step, we have the following iterative relation.

1 if i =k,
ET(i) = -
(@ {’; + Ay (L+ET()) ifk+1<i<m.
@
The proof is by induction with the help of (2). []

By comparing the sum in Theorem 4.1 with integral, we get
the following bounds for ET'(m) for 1 < k < m,

m—1

R ©)

Let Var(X') denote the variance of the random variable X.
We can show
Theorem 4.2: For m > k,

1+1n%§ET(m)§l+ln

1 1 1
Var(T(m)) = ﬁ"r‘ (k+1)2 ++m
PEUE E D
ko k+1 7 m-—1

Proof: Again by conditioning on the hash function
returned from the first search step, we have the following
iterative relation, for i = k + 1, ...,m.

%

ko1
ET°(i) =~ + = > (1+2ET(j) +ET?(j)). (5
! j=k+1
With the help of (2) and (5), we can show inductively,
1 1 1
20\ - 2
ET (2)*(1+k+7k+1+'“+z’—1)
PRERN 6
k2 (k4+1)2 7 (i—1)2 ©)
R
ko k+1 7 i-1
[
For 1 < k < m, reasonable bounds for Var(T'(m)) are
m 1 1 m—1 1 1
S < - .
In k; +k - <Var(T(m)) <lIn - +k—1 m—(17)

For large m and k < m, Var(T'(m)) ~ In 7.

In fact, it can be shown that T'(m) — 1 can be approximated
by a Poisson random variable with mean In 7*.

2) Accessto all hash functions: In addition to load balance
the file servers by choosing one of them uniformly for down-
loading, we also wish not to overload any node with excessive
query traffic, even though the request message is much smaller
than typical files. We have just established that each used hash
function is selected with equal probability. However, the access
pattern by the requests to the unused hash functions (i.e., the
node corresponding to the hash function) in the random binary
search algorithm is not uniform. Therefore, our next question
is, by the end of the algorithm, how many times the hash
function i has been accessed, where k < i < m.

To answer this question, we work with a continuous, scaled
version of the algorithm for ease of analysis. In this version,
consider the interval [0,1] on which the interval [0,a] is
marked, where 0 < a < 1. The algorithm works similarly
as Algorithm 1. Given the initia interval [0, 1], it performs
random binary search until the region [0,a] is hit. More
concretely, in the first search step, a number X, is chosen
uniformly on [0, 1]. If X; > q, in the second step, a number
X, is chosen uniformly on [0, X;]. Let the random variable
T be the number of jump (search) steps taken before the
algorithm returns some y € [0,a]. Let X; be the position of
the i** jump in the algorithm, i = 1,2,.... Let us consider
the stopped process, X1, Xs, ..., Xp. Foreach 0 <y < 1, let
N(y) be the number of X;’s less than or equa to y in the
stopped process. That is

T
1=1

where the indicator function 1(x, <, isequal to 1 when X; <
y, and equa to O otherwise. Let n(y) = %y(y), and call
it hit density. It is a kind of “density” in the sense that the
expected number of hits by the requests on [y,y + Ay is
n(y)Ay. It can be shown that

Theorem 4.3:
L foro<y<a
=<9 R 8
n(y) S fora<y<i ®
Proof: The proof is given in Appendix I.]

From the above theorem, we see that the un-marked region
is hit less than the marked region per unit length. Trandating
this observation to the load-balancing application, we conclude
that even though the unused hash functions are not accessed
uniformly, each of them is accessed less than any of the used
hash functions.

Due to the fact that the continuous version of the algorithm
approximates the discrete version, Theorem 4.3 should aso
approximately apply to the discrete case. In Figure 2, we plot
the simulation results of hit counts to each hash function for
the discrete algorithm, that is, the expected number of hits to
each hash function by the time the algorithm finishes. In the
same figure, we aso show the function 1/n, for 1 <n <m
and the constant 1/k. We see that Theorem 4.3 applies very
well here.

0.050

| Simulation
0.045 { [/ J— i
| Uk -
o 0040
I 0035}
[s)
g 0030 r
§ o025t
=z
B 0020 ¢
|53
2 0015
X
4 0.010
0.005
0.000 s s ‘
10 100 1000 10000

Fig. 2. Expected number of hits to each hash function, for m = 10000 and
k = 100.

In a separate note, Theorem 4.3 allows the pull-based
replication strategy to be naturally integrated into our current
framework. Since the query load is non-increasing as a func-
tion of the hash function index, the order of file replication in
the pull strategy must correspond to the increasing order of
the hash function index. This maintains the key invariance of
our framework that the hash functions are used in increasing
order of their indices.

B. Analysis of the Gap Removal Algorithm

Let us represent the status of the hash functions by a binary
vector (or binary array) of length m, = € {0,1}™, with k
1's, where 1 < k£ < m. Each 1 corresponds to a used hash
function, and each 0 corresponds to an unused function. In
accordance with the objective of the algorithm, we wish to
move al 1'sin x to the first & positions. That is, we'd like
to compact x into the form 11...100...0. The question is how
long this takes.

The discrete-time Markov chain embedded in the algorithm
is equivalent to the following description. At each step, select
one of the k£ 1's uniformly at random with probability 1/k.

Suppose the selected 1 is at position i, wherei € {1,2,...,m},
counted from the left to the right. With probability g;(j), we
attempt to move the 1 to the left by j positions, where 1 <
j <iand g;(j) satisfies >-'~} g;(j) = 1 for each i. If the j*"
position to the left of position i isa0, then the 1 is allowed to
move. In other words, the 1 at position i becomes 0 and the
0 at position i — j becomes 1, as if they exchange positions.
Otherwise, the 1 is not moved.

Each state of the Markov chain is a m-digit binary vector,
and a transition occurs every time a 1 attempts a move. Let
us denote the finite-state Markov chain by {X,}> . The
transition probability from state x to state y, denoted by
p(z,y), can be computed from the ¢;(j) functions above.
Given the Markov chain starts at Xy = x, the time it takes to
finish compacting « is denoted by T.,. We write v(z) = ET,..

Starting with X, = 2 and conditional on the first jump, we

have
v(z) = pla,y)o(y) + 1. ©)
Y
Also, for the vector z = 11...100...0, we know that
v(x) =0. (10)

The solution to (9) and (10) exists and is unique (See Lemma
2 in chapter 4 of [11].). The problem can actually be solved
efficiently due to its special structure. The difficulty liesin the
potentially large dimension of the vector v for large value of
m.
We will consider some special vector types as the initial
state under the uniform jump algorithm. The results shed light
on the behavior of the algorithm for general cases.

1) Initial vector type: Isolated-1: An vector of the Isolated-
1 type starts (from the left) with consecutive 1's, followed by
1 consecutive 0's, followed by an isolated 1, then followed by
zero or more 0's. An example is 1111000100 for 7 = 3. Let
us index the vectors of the above form by, 4, the number of
0’'s before the last 1, for i = 0,1, ...,m — k. Clearly, v(0) = 0.
We can show that

Lemma 4.4
: k? i=1
vl = Rk, 1<i<m—k (1)
Proof: First, v(1) satisfies
o(1) = (1 +0(0) + (1 -) +0(1) (1)

The first term on the right hand side corresponds to the case
where the isolated 1 is picked, with probability % and moved
to the only O to its left. The second term corresponds to all
other cases. Rearranging (12), we get v(1) = k2. Now suppose
(12) is true for 1,2,...,4 — 1, and we wish to show it is true
for 4. Conditional on the first jump, v(i) satisfies

o(i) = llck—ki'—l(i; 2(0) + v(1) + . + (i — 1) "
(1= =) 1+ 0)
Or
(i) = k(k +i— 1)+ 0(0) + (1) + . +0(i—1) (14)

Plugging into the above eguation the expressions for v(0),
v(1), ..., v(i — 1), we get

iv(i):k(k+i—1)+(z‘—1)k2+5(i—2)+§(z‘—3)

2
T)
i—lz (3
k. k k
=dik* + k(i 1)+21+3z+‘..+i_11
— k(i —2)
k. k k
1.2 . h. .
=ik +k+22+3l+“'+i712
(15
Dividing both sides by i in the above, we have completed the
proof. []

2) Initial vector type: Isolated-0: An vector of the Isolated-
0 type starts (from the left) with consecutive 1's, followed
by exactly one isolated 0, followed by zero or more 1's, and
then followed by zero or more 0's. In other words, it has the
form 1...101...10...0. Let us re-index the vectors so that the i*"
vector hasthe isolated 0 at position k—i+1, fori = 1,2, ..., k.
For instance, consider the case m = 5 and k& = 3. The vectors
1,2and 3are 11010, 10110 and 01110, respectively. Note that
in the i*" vector, the isolated 0 is followed by i consecutive
1's. For convenience, let us call the vector 1...10...0 the 0"
vector, and let v(0) = 0. We can show that
Lemma 4.5 Fori=1,2,..,k, v(i) = k%
Proof: We have already shown in the proof of Lemma4.4
that v(1) = k2. Suppose the lemma is true for 1,2,...i — 1,
where 1 < 7 < k. We will show that it remains true for 1.
Conditional on the first jump, v(i) satisfies

Ll 1 o
U(Z)Z%;mﬂ*'v(l—l?))
. (16)

- llszlk_i,ﬂ_)a)

: 1 : 1
E () =k E — w(i— 17
jzlk—i—i—jv(Z) +j:1k—z’—|—jv(l j) (17)

Using the induction hypothesis and the fact v(0) = 0, we get

i 1 .
—o(t
;k—ﬂ—j (®)

i—1
|
S
+ ;k—i—t—j

1
= Ky —

Hence, v(i) = k2.]

We shall make some comments on the uniform jump algo-
rithm. First, one should not be alarmed with the &2 number
of jump steps in Lemma 4.4 and 4.5, since the number
of jumps per unit time scales linearly with k. Hence, the
expected time it takes to complete the compacting process
is linear in k. Second, uniform jump is suitable to quickly
remove large gaps (long string of consecutive 0's). This is
evident from the expression in (11), where the second term

Z;ZQ Jl is approximately In(4). It is particularly suitable for
the case where k£ < m and the 1’s in the vector concentrate
at the right side of the vector, such as 000000000000111.
Recall that the purpose of removing the gaps is for the
binary search algorithm to quickly locate a used hash function
(corresponding to a 1 in the vector). The aforementioned
vectors are precisely those that most trouble the binary search
algorithm. The uniform jump algorithm can quickly move the
1’s toward the left side of the vector. Third, for vectors where
the 1’s concentrate at the left side, e.g., 101101111110000, the
uniform jump algorithm is not very efficient in removing the
last few 0's, particularly when £ is reasonably large. This fact
is evident from the &2 term in Lemma 4.4 and 4.5. However,
we are not very concerned with this because the binary search
algorithm nonetheless will have a high chance of finding a 1
quickly for this type of vectors.

3) Smulation Experiments for the Gap Removal Algorithm:
The above observations will be further supported by simulation
experiments. In the simulation results, time is normalized in
the following way. Each bit array (bit vector) entry with value
1, called a marked entry, makes a jump (compacting) attempt
following a Poisson process, independently from other marked
entries. The interval between any two consecutive attempts
by the same marked entry, which is an exponential random
variable, has mean 1 time unit. All durations are measured
with respect to this time unit. Note that the average number
of jump attempts by all marked entries in each time unit is
equal to the number of the marked entries, i.e., the number of
1’s in the array.

In the following, we will mainly consider the simula-
tion results of the uniform jump agorithm, but will men-
tion the performance tradeoffs that can be achieved by the
compact (0.5) algorithm.

The initial array type to be considered is known as Ones-
at-End, which has & consecutive 1's at the end of the array,
following m — k 0’s. An example is 00000111 for m = 8 and
k = 3. In terms of the time required to finish compacting, one
tends to believe that such array type represents the “worst
case” for many compacting agorithms, including uniform
jump. However, we have not proven this claim. Our extensive
experiments have provided some evidence for the conjecture.
For instance, Ones-at-End has slightly worse mean required
time than another initia-array type, Random-Choice, where
the &k marked entries are chosen uniformly at random from
the set of indices {1,2,...,m} without replacement. This is
shown in Figure 3. Note the linear dependence of the mean
completion time on k, the number of marked entries. If this
is deemed as being too slow when £ is large, we can address
it in two different ways. First, it turns out that the compacting
process becomes “nearly” finished much sooner than its com-
pletion. In other words, the array becomes useful, with respect
to performing random binary search, much sooner than the
completion time. Second, the compact (0.5) agorithm can
be used, if desired, to make the dependence on £ sub-linear,
and hence, dramatically improves the mean completion time.
The price to pay is increased delay before the probability of
eventually hitting a marked entry reaches 1.

Recall that our objectives for compacting the binary array

180 T T
mean, Ones-at-End
160 | mean, Random Choice
deviation, Ones-at-End
140 | deviation, Random Choice a

,,,,,,,,,

120
100 |
80 f

Time required

60 -
40 +)
20 F £

0 20 40 60 80 100
Number of ones, k

Fig. 3. Time required to compact the 1's. Comparison of Ones-at-End and
Random-Choice. m = 10000

are to ensure, first, that the random binary search algorithm
will eventually hit a marked entry and, second, that the load
(or hitting probability) to each marked entry is balanced. Both
objectives are fulfilled after the compacting process finishes.
However, the probability of eventually hitting a marked entry
can reach 1 long before the process finishes, as soon as the
value in the first location of the array becomes 1. In Figure
4, we show this probability as a function of time, while
the compacting process is running, for three cases, k£ = 10,
k = 100 and k£ = 1000. Each of these curves represents a
typical sample path of the compacting process. Observe that
the probability increases to 1 exponentially fast, well before
the mean completion time of the compacting process, which is
28.27,177.12 and 1665.62 for k = 10, k = 100 and k£ = 1000,
respectively.

01 ¥

0.01

Probability of hit

0.001

0.0001
0

Fig. 4. Probability of eventualy hitting a marked entry. The initia array is
of the Ones-at-End type. m = 10000.

To examine how well our second objective of the com-
pacting algorithm is fulfilled, in Figure 5, we plot the load
to each of the marked entries as the time progresses for the
same instances as in Figure 4. Thisis the hitting probability to
each of the marked entries conditional on that at least one of
them is hit. We see that, at time 0, the marked entries are hit
uniformly. However, as seen from Figure 4, the probability of
an eventual hit to any marked entry is low. As the compacting
algorithm operates, the uniform load pattern is first destroyed

(however, the eventual hit probability increases), and then
gradually restored. At time 15, the load is amost uniform
except for the last few marked entries. Considering the fact
that the mean completion time of compacting is 177.12 for
this case, we see that the vast mgjority of the compacting time
is dedicated to compacting the last few marked entries, while
the other marked entries are already packed into appropriate
places, as predicted by Lemma 4.4.

time =0
time=1

i time =3
0.1 B time =5

0.01

0.001

Probability of hit

0.0001 -

1le-05

0O 10 20 30 40 50 60 70 80 90 100
Entry

0.1

time =5
time=7
time =9
time =15
time = 30

0.01 fo

Probability of hit

0.001 ¢

0.0001

0O 10 20 30 40 50 60 70 80 90 100

Entry

(b)

Fig. 5. Load to the marked entries over time. The initia array is of the
Ones-at-End type. m = 10000, £ = 100. (&) during time O to 5; (b) during
time 5 to 30

C. Overhead

Since our agorithms are used for massive content distri-
bution where the file sizes are very large, communication
overhead is in general negligible compared to the actua file
transmission. For look up, our agorithm needs about In(m/k)
message transmissions in worst case, where m is the total
number of hash functions and % is the number of hash
functions actually used for the particular file being searched.
Consider the worst-case scenario, where m = 232 and k = 1.
It takes In(m/k) = 22 lookup messages. Assume that the
message size is 100 bytes, which may contain the source IP,
port number, file name, and file ID. Assume also that the file
size is 5 Ghytes. Then, the aggregate size of the transmitted
control messages is 100 x In(23?) = 2.2 Kbytes, which
is nearly negligible compared to the file size. The paralel
search algorithm increases the control message overhead by

the number of parallel search messages, which is typically no
more than 8.

The communication overhead of the gap removal algorithm
is aso small. The reason is that the system still functions well
with a small number of gaps. Even when some of servers
containing a file are down accidentally, clients looking for the
file can still find some other servers by continuing the random
binary search. But, if the gaps keep accumulating without
repair, the system performance will deteriorate. Hence, it is
sufficient to run the gap removal algorithm in the background
in alow-activity mode, for instance, once every 30 seconds or
even every several minutes. This should be frequent enough
for relatively stable CDNs, where node failures are infrequent.

The gap removal algorithm needs to be executed for each
file replica, by the node containing the replica. The overall
message overhead in the whole network is proportiona to
the total number of file replicas in the system. When the file
popularity follows the Zipf distribution, most of the files don’t
need to be replicated, which means they don’t need to execute
the gap removal agorithm. Finally, a node with many replicas
(for different files) can also adjust the running frequency based
on the total number of replicas it contains.

V. EXPERIMENTS
A. Comparison with Other Replication Srategy

In this section, we present the simulation results with
which we compare the replication strategy using multiple hash
functions and random binary search (for brevity, called the
MH strategy) with an on-demand caching strategy augmented
by replication at neighbors. For both cases, the simulation is
conducted on the Tapestry network. On Tapestry, an object
(eq., file) stored at a server is published aong the publish
path to a node known as the object root, which is uniquely
determined by surrogate routing. The nodes along the publish
path each have an object pointer to the server. A query is
routed along the query path which is aso determined by
surrogate routing. Tapestry’s routing guarantees that the query
discovers a proper object pointer at a node on the publish path
of the object, as long as the object exists in the network [38].
Tapestry’s focus is on replication and caching of the object
pointers, instead of the objects themselves. The main objective
is to be able to locate each object pointer quickly. But, there
is also a provision of on-demand caching of object content for
load-balancing purpose.

In the simulation, the name space size is 232, the number
of levels is 8, the size of each level is 16, and the number
of nodes is 4096. This implies that each node ID is an eight-
digit hexadecimal number, and that each node has up to eight
primary neighbors, one at each level. To simulate the distance
and delay between nodes, we assume every node has aphysical
position in a 1000 x 1000 sguare. The distance between a pair
of nodesis the Euclidean distance, which determines the delay.
Note that, for our purpose, it is sufficient to consider such an
abstract distance model instead of a more realistic underlay
network.

At the start of a simulation run, only one node has the file.
We use a measurement interval of 10 time units (e.g., seconds,

minutes) for each node to check the file request rate. We also
define a request-rate threshold that triggers a file replication
event, which is 1. The meaning isthat if the number of requests
observed by a node is more than 10 per interval, then the node
initiates a file replication. To prevent unnecessary replication
caused by temporary fluctuation of the request rate, we use the
exponentially weighted moving average of the request rate. We
configure the simulator to generate requests randomly with
a total rate of 40 requests per time unit. Ideally, 40 servers
are needed with perfectly balanced load so that each server
experiences a request rate exactly equal to the threshold.

When the MH strategy is integrated with the Tapestry
network, the file is stored at its root node, which is determined
by the primary file ID, hy(f), i.e., obtained by applying the
first hash function to the unique file name. Therefore, we
can replicate the file to up to m different nodes using m
different hash functions. In our simulation, the MH strategy
uses 128 hash functions for searching or replicating the file. If
a server experiences a higher request rate than the threshold,
it initiates file replication to another node, determined by the
next available hash function.

Object root

query traffic

Heavy-traffic
source

Copy the object Nodes

requesting
the object

Object
server

Fig. 6. On-demand caching in Tapestry. The object server replicates its object
to the heavy-traffic source on query paths.

Tapestry utilizes an on-demand caching strategy for reliev-
ing server overload, which is shown in Figure 6. We name it
the caching-along-query-path (CQP) strategy. With the CQP
strategy, if a node observes a higher request rate passing
through it than the threshold, it requests a copy of the file
to be cached locally, the source of which is some node along
its own query path to the server. After the replication, the node
becomes a new server that can intercept queries and serve the
file from the local copy. CQP is a pull strategy because a
non-server node initiates the replication to itself. The pulling-
only CQP strategy has a problem that if a server experiences
overload, it can only count on other nodes caching the file
and intercepting sufficient queries. There is no guarantee that
the overload can be resolved. Therefore, we extend CQP by
combining it with a push replication strategy. Whenever a
server detects an excessive request rate, it replicates the file to
the neighbor that has sent the most requests during the current
measurement interval. We call this integrated strategy CQP-
push. Note that CQP-push combines caching on demand and
replication at neighbors.

10

We use the following metrics to compare the replication
strategies.

« Distribution of server load We measure the load of each
server by counting the number of requests arriving at each
server during the time intervals of interest. Each interval
is between two consecutive file replication events. Note
that the intervals do not have identical duration.

o Worst case and deviation of server load We measure
the average, maximum, minimum, and standard deviation
of server load across the current servers at the current
interval. We show the change of server load over time.

« Final number of replicas We show the final number of
replicas produced by each strategy. This number guaran-
tees that that none of the servers is overloaded. However,
due to dtatistical fluctuation in the measurement-based
algorithm, this number exceeds the minimum number
required for each strategy. Since the file size is large,
restricting the number of unnecessary replicas is a very
important performance issue. It has implications in the
size of the distribution system required, including the
network bandwidth requirement, the number of servers
and their memory, disk and computational capacity.

1) Uniform Requests throughout Network: In this experi-
ment, we compare the goodness of the replication strategies
when the requests for the file are generated uniformly at
random throughout the network. Figure 7 shows how the server
load decreases and how the number of replicas increases over
time. For the server load, each narrow, vertical box represents
one standard deviation above or below the average of the
request rates seen by the servers on each measurement interval;
the two ends of each vertical line represent the maximum
and minimum request rate across servers. The maximum and
the standard deviation of server load is much lower in MH
than in CQP-push throughout time, indicating that the former
achieves better server load balancing. In the end, CQP-push
needs much more replicas than MH, because its server load is
not as uniform.

Figure 8 shows the distribution of server load at the moment
when the system has 50 replicas. CQP-push shows highly
skewed distribution. This is because the servers encountered
along the query paths but near the root node, which is the final
destination of queries, may not be used frequently when their
upstream nodes along the query paths also contain the file. On
the other hand, MH shows quite even distribution, as theory
predicts.

2) Localized Reguests from a Region: We next compare
the performance of the replication strategies when the regquest
pattern is not uniform throughout the network. In reality, this
can happen for many reasons that are difficult to foretell.
To emulate the non-uniform request pattern, we restrict the
requests to be generated uniformly from aregion of the entire
physical space. No reguests are generated from outside the
designated region. As shown in Figure 9, with MH, the file
replicas are distributed throughout the network at the end of
simulation, whereas in CQP-push, they tend to group together
in the request region. On one hand, having the servers closer to
the request region brings the benefits of shorter round-trip time
(RTT) and more localized data transfer. On the other hand, it

80

— T
Number of requests per server/unit time 1
Average number of requests per server/unit time -

°r Number of replicas

60

50

! wt

30

20

10
o Les & W.Muﬁw‘.m,‘_‘”) ‘
0 200 400 600 800
Time
@
Number of requests per server/unit time —3

Average number of requests per server/unit time
Number of replicas

l=

1000 1200 1400

80

70

60

50

40

30 -}

20 ' ‘H

10 | L
Ty

0 200 400 600 800 1000
Time

(b)

Fig. 7. The change of server load and the number of replicas over time. (a)
MH; (b) CQP-push

LLULL
1200 1400

causes higher network stress if the bandwidth in the region
is not abundant. More importantly, we could expect that with
CQP-push, if the request region moves from one to another,
then most previous replicas may not be used, resulting in an
unnecessarily large number of replicas.

Figure 10 plots the change of server load and the number
of replicas over time when the requests are generated from a
restricted region. Again, MH has much more balanced server
load than CQP-push for al time.

Figure 11 shows the distribution of server load after the
replication process finishes. MH enjoys very well balanced
server load whereas CQP-push has skewed distribution. In
addition, CQP-push requires about four times as many replicas
as MH. In a separate note, it also takes twelve times as long
time as MH before the replication process ends.

B. Smulation with Multiple Files

The main agorithms of this paper have been developed by
focusing on a single file. When there are multiple popular
files, which is usually the case, the default strategy isto run the
single-file algorithms independently for each file. The question
iswhether this strategy leads to well-balanced nodal l1oad given
that the load is now the aggregate of the per-file load over all
the files contained by the node. The simulation results in this
subsection will show that the strategy performs well. Next,
we show that the performance can be further improved with
an easy modification to the basic algorithms by allowing two

11

60

50
40 +
30

20

I b

0 10

Number of requests/10 unit time

50
Servers

@

60

50
40

30

20

10 | h

. |““Hllllllllllllllllllunuuu....
20 30

0 10 40 50

Number of requests/10 unit time

Servers
(b)

Fig. 8. Server load snapshot when the system has 50 file replicas. (@) MH;
(b) CQP-push

random choices for locating a node for replications and for
queries.

In these experiments, we assume that the popularity of the
files follows the Zipf distribution (which is widely assumed in
CDNs). We use 1000 nodes and 10000 files and generate up to
2.7 million queries. The targeted file of the query is determined
by the Zipf distribution with a parameter 0.271, which is
widely used in CDN simulations. At a hode, the replication of
afile is initiated whenever the number of requests to the file
exceeds a threshold, which is set to 100.

We present the simulation results of the multiple-file sce-
nario with two different strategies, which mainly differ in the
way of deciding where a file is replicated: the single-choice
strategy and the multiple-choice strategy. The single-choice
strategy is exactly the same as the one described in section 111
using a single family of hash functions. The multiple-choice
strategy uses two or more different hash function families for
locating a node for replication and requests. Whenever a node
needs to replicate a file, it locates two candidate destination
nodes using two hash function families. Then, it compares the
nodal loads on those nodes and chooses the node with lower
load for replicating the file. Whenever a client requests a file,
it uses both hash function families simultaneously, finds two
nodes and compares the file-specific loads at the two nodes.
The request will be served by the node with lower file-specific
load.

The multiple-choice strategy can balance the load more

700
600
o 500
T
£ N
e}
5 400 .
<} .
o
> 300 r
200 f
100 W g e T T e e
100 200 300 400 500 600 700
x coordinate
Nodes File servers
Requesting nodes x
700
600
: x 8 % o
o 500 | EM wzi;*‘? o g
.E . X; E““lgm
k<] L
5 400 r. .;'gﬁgggﬁ&
3 . o e X Hag
> 300 e * Bl g ;
Lk wg&xx% %“‘*W‘*’%“
200 :
100 L—

100 200 300 400 500 600 700
x coordinate

Nodes File servers &

Requesting nodes x
(b)

Fig. 9. Distribution of file servers at the end of simulation with localized
requests. (a) MH; (b) CQP-push

effectively than the single-choice strategy. The reason can be
explained by examining arelated balls-in-bins (BNB) problem
[15], [14], [2], [24], which is an abstract model for load
balancing. The single-choice BNB problem is to place n balls
into & bins by selecting one destination bin uniformly at
random and independently across different balls. It is well
known that, with & = n, the number of bals in the bin with
the most balls, which corresponds to the maximum load, is
(14 o(1)) 152 with high probability. Note that the average
number of balls per bin, which corresponds to the average
load, is 1 in this case. In the multiple-choice BNB problem, for
each new ball, d bins are independently and randomly selected
and their contents are examined. The new ball is placed into
the bin with the fewest balls. Rather surprisingly, for d > 1,
the maximum becomes (1 + o(1))®2122 with high probability,
an exponentia reduction in the maX| mum load.

In Figure 12 (a), we compare the nodal load distributions
of the two strategies when the average nodal load is 1500 or
2700. # It shows that the single-choice strategy balances the
load reasonably well, but the multiple-choice strategy does
much better. For example, when the average load is 2700,
25.4% of the nodes each handles more than 3000 requests with
the single-choice strategy, while the percentage drops down to

4The nodal load is measured in terms of the number of file requests served.
This measure makes sense if the file sizes are nearly identical. Here, we make
this assumption for ease of presentation. The real system can in fact enforce
this assumption by splitting a large file into multiple smaller files.

12

80

Number of requests per server/unit tin
Average number of requests per server/unit tin
Number of replic;

70 |

60

50

40 I,

30

20

10

it s .*.u.o...,m
0 200 400 600 800
Time

@

Number of requests
Average number of requests

1000 1200 1400

80 = —

er/unit tin
er/unit tin
Number of replic;

70

60

50

40

30

20

“MLUMLMMM Lolldobouo L

0 200 400 600 800 1000
Time

(b)

Fig. 10. The change of server load and the number of replicas over time
with localized requests. (a) MH; (b) CQP-push

Ll Loty
1200 1400

0.3% with the multiple-choice strategy. Figure 12 (b) shows
the distributions of the number of files at each node under the
two strategies. The multiple-choice strategy is also better in
balancing the number of files over all nodes.

Figure 12 (c) shows the ratio of the maximum to average
nodal load for both strategies over a wider range of average
load. For both strategies, the ratio decreases fast initialy
as the average nodal load increases, but the decrease slows
down eventually. The ratio in the multiple-choice strategy is
consistently lower than that in the single-choice strategy and
can get very close to 1.

In the above simulation, we use per-file load for determining
replication and assigning a request to a node. Nevertheless, the
resulting nodal load is very well balanced. To further prevent
unexpected nodal overload in rare contingency situations, our
file-load-based replication strategy may be combined with a
node-load-based strategy. In the latter strategy, if the aggre-
gate requests for all its files exceed a threshold, the server
replicates some of its files elsawhere, for instance, its most
loaded files. We may also introduce admission control by
which the overloaded server can reject additional file requests.
Admission control is also a complementary solution to some
other potential problems that have not been emphasized so
far, such as many-to-one mapping from the hash functions to
the servers and heterogeneous server capacities. It has been
implemented in most P2P file sharing applications. Finally,
we may also adapt some other 1oad-balancing techniques for

10

[}
£
.‘é‘
=]
3
Z 6 1
@
[
=]
o
o 4 H |
S
9]
Q
E 2f |
z
0
0 10 20 30 40 50 60
Servers
@
10
[}
£ s
.‘é‘
=)
3
2 6
7]
[
=]
o
2 4
: H
5]
Qo
E 2
z
0
0 50 100 150 200 250
Servers
(b)

Fig. 11. Server load snapshot when the number of replicas becomes stable.
(8 MH (66 replicas); (b) CQP-push (277 replicas)

resolving nodal hotspot, as introduced in [9], [29], [13].
V1. CONCLUSION

This paper deals with algorithmic issues in file replication
with multiple hash functions on DHT-based content distribu-
tion networks. The central issue here is, out of a potentialy
large number of hash functions, which one to use for down-
loading and which one to use for replicating a file so that
the server load, and to some extent, the network load are
balanced. Our main contributions are as follows. First, we have
devised a complete set of agorithms for hash function usage
and management. These include the random binary search
algorithm for file request, the file replication algorithm and
the hash function compacting algorithm for failure recovery.
Second, we have thoroughly explored the performance of these
algorithms by analysis and simulation. Third, we compare
the proposed file replication scheme based on multiple hash
functions with the combined scheme of on-demand caching
and replication at neighbors.

Our agorithms for hash function usage and management are
efficient, simple, and are compatible with the characteristics of
the CDN we envision. These include the large network size,
the massive content carried by the network, high infrastructure
node dynamic, and a fast-changing file request pattern. In
particular, the latter two characteristics make it difficult to
run complicated protocols or to maintain consistency of state
information kept at different nodes. Our solution to the file
replication problem relies on fully distributed algorithms with

13

5000 - — v
single choice, 2700 ——
multiple choice, 2700 ----------
single choice, 1500 :
4000 multiple choice, 1500 -
§2}
0
Q
3 3000
o
S i
3 2000 |
1S
>
z
1000
0
0 200 400 600 800 1000
Nodes
@)
60 T — " I
single choice, 2700 ——
multiple choice, 2700 -
50 single choice, 1500
multiple choice, 1500
1%
2
S
9]
Qo
[S
>
z

0 200 400 600 800 1000
Nodes
(b)
2.8 T T T
single choice 3
26 X multiple choice [-]
2 24 \
[
Q 2.2
j=2
©
o 2 | H
> =,
s \3‘\
° \
R 1.8 3
£))K\)K\
g 16 oy
£ “, SN N
3 S8
s 1.4
12 TEemL
: [e I Sy
1
0 500 1000 1500 2000 2500 3000
Average nodal load
(c)
Fig. 12. Load and file distributions with multiple files: (a) Noda load

distribution; (b) Number of files at each node; (c) Maximum to average load
ratio.

minimum protocol support and without keeping any state
information.

APPENDIX |
PROOF OF THEOREM 4.3

From N(y) = 31, 1(x,<y), We have

T
EN(y) = > P{X; <y}.
i=1
When 0 <y < a, EN(y) = P{Xr <y} = £, and hence,

n(y) = ;-

(18)

We will next focus on the case a < y < 1. In this case,
N(y) = 327" 1(x,<y). Conditional on the number of jumps

by the algorithm, the hit density can be written as,

e} j—1
)=> P{T=3}) n(X
j=2 i=1

where p(X; = y|T = j) denotes the conditional density of
X; given T' = j. To compute this conditional density, we start
with the joint density. For a < z;_1 <z < ... <3 <1,

i :y|T:j)7 (19

p(T=j4X1=21,..,X;1 =x1)

=p(T = j|X; 1 =25 1)p(X;1 = 21| Xj 2 = 25-2)...
p(Xo = 22| Xy = 21)p(X1 = 1)
1 1
_— s (20)
Tj-1Tj—2 T1
Hence,
p(Xl = L1y eeey Xj 1 = l‘j 1|T:])
a 1
= — /P{T = 21
P zl/ {1 =j}. (21)
Lemma 1.1: For 1 <i < j— 1, the margina density
p(Xi =T = j)
a 1 1 Ti. s : 1 1.
_ - 1 FiNj—1—d __ ~ In — i—1
PT—jmG-1-aa) ooy
(22)
Proof:
p(Xi = [T = j)
- a
P{T :J} a<zj 1<..<zip1<z;<z; 1<...<z1<1
1 1 1 1 1
. — .—dasj 1.dziprde;_q...dzy
CCj,1 x1+1 T; Ti—1
/ d:vl /JL1 d:):g /“ 2 dxi_q
P{T—j}xz x4 - Tj—1
/ dzijy / T dwis / AT 23)
Ja xl-‘rl a xl+2 a xj—l
By simple induction, it is easy to show
/-'L"i dl‘iJrl /’MH dxi+2 /%‘—2 dl‘j,1
a ZTitl Ja Tive Ja Tj-1
1 T s)
S — O 24
(T (24)
and
z; L1 Jg T2 2 Ti—1
1 1.
=———(n—)"L 25
i—ing) (29

14

For a < y <1, combining the result of the lemma 1.1 with
(19), we have

(4
(2

(3]

(4
(9]

(6]

(8]

(9

(10]

(11]

(12]
[13]

(14]
(19]

(16]

[17]

(18]

%) J—1

REFERENCES

Akamai Website. http://www.akamai .com.

Yossi Azar, Andrel Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced
Allocations. SIAM Journal on Computing, 29(1):180-200, February
2000.

D. Bickson, D. Malkhi, and D. Rabinowitz. Efficient large scale content
distribution. In Proceedings of the 6th Workshop on Distributed Data
and Structures (WDAS 2004), Lausanne, Switzerland, July 2004.
BitTorrent Website. http://www.bittorrent.com/.

M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh. Splitstream: High-bandwidth multicast in cooperative envi-
ronments. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP '03), October 2003.

Anawat Chankhunthod, Peter Danzig, Chuck Neerdaels, Michael
Schwartz, and Kurt Worrell. A Hierarchical Internet Object Cache. In
Proceedings of USENIX Annual Technical Conference (USENIX '96),
San Diego, CA, January 1996.

L. Cherkasova and J. Lee. Fastreplica: Efficient large file distribution
within content delivery networks. In Proceedings of the 4th USITS
Seattle, WA, March 2003.

ByungGon Chun, Peter Wu, Hakim Weatherspoon, and John Kubia-
towicz. Chunkcast: An anycast service for large content distribution.
In Proceedings of the Internaltional Workshop on Peer-to-Peer Systems
(IPTPS), February 2006.

Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and
lon Stoica. Wide-area Cooperative Storage with CFS. In Proceedings
of the 18th ACM symposium on Operating systems principles (SOSP
'01), pages 202-215, Banff, Alberta, Canada, October 2001.

M. J. Freedman, E. Freudenthal, and D. Maziéres. Democratizing
content publication with coral. In Proceedings of the 1st USENIX/ACM
Symposium on Networked Systems Design and Implementation (NSDI
04), 2004.

Robert G. Gallager. Discrete Stochastic Processes. Kluwer Academic
Publishers, 1996.

Gnutella Forums Website. http://www.gnutellaforums.com.
Brighten Godfrey, Karthik Lakshminarayanan, Sonesh Surana, Richard
Karp, and lon Stoica. Load Balancing in Dynamic Structured P2P
Systems. In Proceedings of IEEE Infocom 2004, Hong Kong, March
2004.

Gaston H. Gonnet. Expected length of the longest probe sequence in
hash code searching. Journal of the ACM, 28(2):289-304, April 1981.
N. L. Johnson and S. Kotz. Urn Models and Their Application. John
Wiley & Sons, 1977.

F. Kaashoek and D. R. Karger. Koorde: A simple degree-optima hash
table. In Proceedings of the Second International Workshop on Peer-to-
Peer Systems (IPTPS'03), Berkeley, CA, Feb. 2003.

David Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel
Lewin, and Rina Panigrahy. Consistent Hashing and Random Trees:
Distributed Caching Protocols for Relieving Hot Spots on the World
Wide Web. In Proceedings of the Twenty-Ninth Annual ACM Symposium
on Theory of Computing (STOC ' 97), El Paso, TX, May 1997.

D. Kosti¢, R. Braud, C. Killian, E. Vandekieft, J. W. Anderson, A. C.
Snoeren, and A. Vahdat. Maintaining high bandwidth under dynamic
network conditions. In Proceedings of USENIX Annual Technical
Conference, 2005.

[19]

[20]

[21]

[22]

(23]

[24]

[29]

[26]

[27]

(28]

[29]

[30]

(31]

(32

(33

[34]
[39]

[36]

(37

[38]

D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: high
bandwidth data dissemination using an overlay mesh. In Proceedings
of 19th ACM Symposium on Operating Systems Principles (SOSP ’'03),
October 2003.

A. Kumar, S. Merugu, J. Xu, and X. Yu. Ulysses: A robust, low-
diameter, low-latency peer-to-peer network. In Proceedings of the
11th IEEE International Conference on Network Protocols (ICNPO3),
Atlanta, Georgia, USA, Nov. 2003.

J. Kuviatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
Ramakrishna Gummeadi, Sean Rhea, H. Weatherspoon, W. Weimer, and
B. Zhao. Oceanstore: An architecture for global-scale persistent storage.
In Proceedings of the Ninth international Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
2000), November 2000.

Dongsheng Li, Xicheng Lu, and Jie Wu. Fissione: A scalable constant
degree and low congestion dht scheme based on kautz graphs. In
Proceedings of IEEE Infocom, Miami, FL, March 2005.

D. Loguinov, A. Kumar, V. Rai, and S. Ganesh. Graph-theoretic
analysis of structured peer-to-peer systems: Routing distances and fault
resilience. In Proceedings of ACM SSGCOMM, Karlsruhe, Germany,
August 2003.

M. Mitzenmacher. The Power of Two Choices in Randomized Load
Balancing. PhD thesis, University of California, Berkeley, 1996.
KyoungSoo Park and Vivek S. Pai. Scale and performance in the coblitz
large-file distribution service. In Proceedings of the 3rd USENIX/ACM
Symposium on Networked Systems Design and Implementation (NSDI
06), San Jose, CA, May 2006.

C. Plaxton, R. Rajaraman, and A. Richa. Accessing nearby copies of
replicated objects in a distributed environment. In Proceedings of the
9th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA ' 97), pages 311-320, Newport, Rhod Island, June 1997.

C. Greg Plaxton and Rgjmohan Rajaraman. Fast Fault-Tolerant Con-
current Access to Shared Objects. In Proceedings of the twenth-
eighth Annual ACM Symposium on Theory of Computing (STOC ’96),
Philadelphia, PA, May 1996.

Venugopalan Ramasubramanian and Emin Gun Sirer. Beehive: O(1)
lookup performance for power-law query distributions in peer-to-peer
overlays. In Proceedings of the 1st conference on Symposium on
Networked Systems Design and Implementation, San Francisco, March
2004.

Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana, Richard Karp,
and lon Stoica. Load Baancing in Structured P2P Systems. In 2nd
International Workshop on Peer-to-Peer Systems (IPTPS '03), pages
311-320, Berkeley, CA, Feb. 2003.

Sylvia Ratnasamy, Paul Francis, Mark Hanley, Richard Karp, and Scott
Shenker. A Scalable Content-Addressable Network. In Proc. ACM
SIGCOMM '2001, pages 161-172, San Diego, CA, August 2001.
Antony Rowstron and Peter Druschel. Pastry: Scalable, Distributed
Object Location and Routing for Large-Scale Peer-to-Peer Systems.
In Proceedings of the 18th IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware *01), Heidelberg, Germany,
November 2001.

Antony Rowstron and Peter Druschel. Storage Management and Caching
in PAST, a Large-scale, Persistent Peer-to-Peer Storage Utility. In Pro-
ceedings of the 18th ACM Symposium on Operating Systems Principles
(SOSP '01), pages 188-201, Banff, Alberta, Canada, Oct 2001.

R. Sherwood, R. Braud, and B. Bhattacharjee. Slurpie: A cooperative
bulk data transfer protocol. In Proceedings of IEEE Infocom, Hong
Kong, March 2004.

Squid Web Site. http://www.squid-cache.org/.

lon Stoica, Robert Morris, David Karger, M. Fran Kaashoek, and Hari
Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup Service for
Internet Applications. In Proc. ACM SSGCOMM ' 2001, pages 149-160,
San Diego, CA, August 2001.

Marvin Theimer and Michael B. Jones. Overlook: Scalable Name
Service on an Overlay Network. In Proceedings of the 22nd ICDCS,
Vienna, Austria, July 2002.

Limin Wang, Vivek Pai, and Larry Peterson. The Effectiveness of
Request Redirection on CDN Robustness. In Proceedings of the 5th
OSDI Symposium, pages 345-360, Boston, December 2002.

Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph. Tapestry: An
Infrastructure for Fault-tolerant Wide-area Location and Routing. Tech-
nica Report UCB/CSD-01-1141, University of Cadlifornia University,
Berkeley, Computer Science Division (EECS), April 2001.

15

