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In this work, we show how we can design a routing protocol for wireless sensor networks
(WSNs) to support an information-fusion application. Regarding the application, we con-
sider that WSNs apply information fusion techniques to detect events in the sensor field.
Particularly, in event-driven scenarios there might be long intervals of inactivity. However,
at a given instant, multiple sensor nodes might detect one or more events, resulting in high
traffic. To save energy, the network should be able to remain in a latent state until an event
occurs, then the network should organize itself to properly detect and notify the event.
Based on the premise that we have an information-fusion application for event detection,
we propose a role assignment algorithm, called Information-Fusion-based Role Assignment
(InFRA), to organize the network by assigning roles to nodes only when events are
detected. The InFRA algorithm is a distributed heuristic to the minimal Steiner tree, and
it is suitable for networks with severe resource constraints, such as WSNs. Theoretical anal-
ysis shows that, in some cases, our algorithm has a Oð1Þ-approximation ratio. Simulation
results show that the InFRA algorithm can use only 70% of the communication resources
spent by a reactive version of the Centered-at-Nearest-Source algorithm.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Wireless sensor networks (WSNs) are strongly limited
regarding power resources and computational capacity
[2]. In addition, these networks need to autonomously
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adapt themselves to eventual changes resulting from
external interventions, such as topological changes, reac-
tion to a detected event, or requests performed by an
external entity. Commonly, sensor networks are deployed
to monitor the occurrence of specific events, such as fire,
air condition, or presence of military targets. An important
task in event-driven sensor networks is to efficiently deli-
ver event data to the sink. Consequently, data routing is a
fundamental task, which is commonly performed in a mul-
tihop fashion due to radio-range limitations and energy
constraints. Usually, roles are assigned to sensor nodes so
each node knows how to participate in the execution of a
given task.

The role assignment problem occurs in team-based
applications where the involved entities take different
roles that demand different resources to accomplish
different tasks. The main challenge is how to reactively

mailto:eduardo.nakamura@fucapi.br
mailto:efnaka@gmail.com 
mailto:hramos@dcc.ufmg.br 
mailto:leandro@dcc.ufmg.br 
mailto:horacio@ufam.edu.br, &emailxl6;
mailto:horacio@site.uottawa.ca 
mailto:alla@dcc.ufmg.br, &emailxl8;
mailto:alla@iceb.ufop.br 
mailto:loureiro@ 
http://www.nakamura.eti.br/eduardo
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet


E.F. Nakamura et al. / Computer Networks 53 (2009) 1980–1996 1981
change roles in response to the dynamic situations that are
identified. In the context of WSNs, a role assignment may
be triggered by different reasons such as event detections,
failure occurrences, and management tasks. Also, role
assignment may be performed with different objectives
such as density control, energy balancing, and information
fusion.

In this work, we use role assignment to find a minimum
transmission tree that maximizes in-network data aggre-
gation. Current solutions for this problem [3–6] try to opti-
mize the data-gathering task by proactively assigning roles
independent of event occurrences, which leads to energy
waste during periods of inactivity.

Thus, a major contribution of this work is an event-
based role assignment algorithm that tries to reactively
find the shortest routes (connecting source nodes to the
sink) that maximize data aggregation. This algorithm,
called Information-Fusion-based Role Assignment (InFRA),
establishes a hybrid network organization in which source
nodes are organized into clusters and the cluster-to-sink
communication occurs in a multihop fashion. The resulting
topology is a distributed heuristic to the minimal Steiner
tree. Although there are other heuristics for the Steiner tree
for routing in WSN [7–10], the InFRA algorithm is a distrib-
uted heuristic that aims at providing a reasonable approx-
imation ratio with acceptable communication cost.
However, as we show further on in Section 7.8, if the event
duration is not long enough, a simple shortest-path tree
might be a better choice.

Theoretical analysis shows that our algorithm has a
Oð1Þ-approximation ratio when the network diameter
remains constant and, in large-scale networks it has a
k-approximation ratio, where k is the number of simulta-
neous events. Simulation results show that InFRA can save
communication resources compared to a proactive and
other reactive algorithms. In some cases, the InFRA algo-
rithm uses only 70% of the communication resources spent
by a reactive version of the Centered-at-Nearest-Source
algorithm [10].

For the sake of simplification, we consider a lossless
channel model in our theoretical analysis and simula-
tions. Such an assumption allows us to find the theoreti-
cal bounds that define some performance limits. To be
fair, all algorithms were analyzed and evaluated under
the same premise. A lossy channel will affect every aggre-
gation solution. In general, algorithms that aggregate
more data flows are more affected by lossy channels.
When we have lossy channels, we should adopt some
mechanism to overcome packet losses, such as retrans-
missions or data prediction. The application requirements
will determine whether or not it is worth implementing
such mechanisms.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses some role assignment solutions. Section 3
presents the background knowledge supporting this work.
The problem of finding the minimum transmission routing
tree is formalized in Section 4. Our role assignment algo-
rithm (InFRA) is presented in Section 5. Theoretical results
of our heuristic are presented in Section 6, and simulation
results in Section 7. In Section 8, we present our final
remarks.
2. Related work

Bonfils and Bonnet [4] propose an adaptive and decen-
tralized solution that progressively refines the role assign-
ment by evaluating neighbor nodes. Their solution looks
for the role assignment that minimizes the amount of data
transmitted in the network. At regular intervals, a cost func-
tion is evaluated and the role migrates to the node with the
lowest cost. The communication cost introduced by the
solution is not considered by the authors, which is the key
point of our solution in which we try to balance the commu-
nication cost with the quality of the routing tree.

The Sensor Placement and Role Assignment for Energy-
Efficient Information Gathering (SPRING) algorithm [11]
was proposed for mobile sensor networks. The problem
that SPRING tries to solve relies on placing nodes and
assigning roles to them so the system lifetime is maxi-
mized, ensuring that the region of interest is covered by
at least one node. The SPRING algorithm outperforms a
random placement, which is the minimum we could ex-
pect from a placement strategy. The main limitation of this
solution is that it demands mobile sensor nodes, which can
be too expensive and present mobility limitations depend-
ing on the terrain topology. InFRA is designed to regular
WSNs in which we do not have mobile nodes.

Kochhal et al. [12] propose a role-based clustering algo-
rithm that organizes the network by recursively finding
connected dominating sets. These sets are used to define
coordinators (cluster-heads) and routing nodes, and the
remainder become sensing collaborators (sources). The
clustering process considers the sensing ability of the
nodes, so the detection capability of the clusters is
enhanced.

The DFuse framework proposed by Kumar et al. [5] ad-
dresses the role assignment problem providing two mod-
ules: a fusion and a placement module. The fusion module
allows the application to be built using a dataflow graph
that specifies the roles of each node. The placement module
maps this graph onto the network and migrates the roles
according to a specified cost function. Frank and Römer
[13] propose a generic role assignment framework that al-
lows the user to specify roles and assignment rules. The
framework defines three core elements. The first is a prop-
erty directory used to access capabilities and parameters
of the nodes. The second is the role specification. The third
is the algorithm that assigns the roles based on the role
specifications and properties of the nodes. From the scien-
tific perspective, these role assignment frameworks could
be used to implement, theoretically, any other role assign-
ment algorithm, such as the solution we propose here.

Cristescu et al. [14] consider the problem of correlated
data gathering by a network in which the goal is to mini-
mize the total transmission in a routing tree. The key point
of this work is that authors investigate two specific coding
strategies: a Slepian–Wolf model and a joint entropy
coding model with explicit communication. For both cod-
ing models the authors provide distributed algorithms.
However, the Slepian–Wolf algorithms are complex and
demand global network knowledge, usually prohibitive
for WSNs. For the explicit communication case, they eval-
uate some heuristics, including the GIT [15], Leaves dele-
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tion, and a balanced SPT/TSP (shortest-path tree/travel-
salesman paths). The criticism for these heuristics is that
they demand the leaf nodes to know the shortest paths
to every other sensor node. As we show in Section 6.2,
although the algorithm cost is fair, the cost to get the nec-
essary information is usually prohibitive in WSNs.

Ciciriello et al. [16] propose a scheme for routing data
efficiently from multiple sources to multiple sinks, which
is a slightly different problem than that addressed herein.
The proposed decentralized scheme is based on a periodic
adaptation of the message routes. To guarantee a high de-
gree of overlapping among source–sink paths, each node
can decide to locally manipulate a source–sink path by
changing its parent. However, the parent switching is man-
aged by using timeouts which introduce additional delays,
not evaluated by authors.

Fan et al. [17] propose a semi-structured approach that
uses a structureless technique locally followed by Dynamic
Forwarding. In the proposed algorithm, the chosen struc-
ture, ToD (Tree on Directed acyclic graph), is composed
of multiple shortest-path trees, and after performing local
aggregation, nodes dynamically decide the forwarding tree
based on the location of the source nodes. This defines a
different type of heuristics that is based on the geographi-
cal location of sensor nodes. However, as Oliveira et al. [18]
show, the errors of current localization algorithms are not
irrelevant and can significantly affect routing solutions
such as the one proposed by Fan et al. [17]. The solution
proposed in this work, the InFRA algorithm, does not de-
pend on location information. In general, algorithms based
on the error-free knowledge of nodes’ location are more
efficient. However, they should be evaluated considering
the errors of current localization algorithms.
3. Background

This section presents the background knowledge and
concepts used in this work.

3.1. Network and event model

We consider a sensor network composed of n nodes of
which one of them is the sink node. For the sake of simpli-
fication, we consider symmetric links, i.e., for any two
nodes u and v;u reaches v if, and only if, v reaches u.

All events are static and described by an influence re-
gion (area). We assume a binary detection model, i.e., every
node within the influence region of an event detects that
event. Thus, we represent the network by the graph
G ¼ ðV ; EÞ with the following properties:

� V ¼ fv1; v2; . . . ; vng is the set of sensor nodes, such that
jV j ¼ n and v1 is the sink node;

� S ¼ fs1; s2; . . . ; smg is the set of sources, i.e., nodes detect-
ing an event, such that jSj ¼ m and S # V;

� hi; ji 2 E iff vi and vj are neighbors.

The closed neighborhood N is composed of the node
itself and its neighbors. Thus, the closed neighborhood of
node vi is given by
Ni ¼ fvig
[ [

hi;ji2E

fvjg
 !

: ð1Þ

In a sensor network, the network state is often used to
guide decision-making processes. Alternatively, in local-
ized algorithms, nodes make decisions based on the state
of the node itself and the state of its neighbors.

Let xi be the state of node vi 2 V . The network can be
described by its state vector (network state), which can
be defined as

X ¼
[
vi2V

xi: ð2Þ

The definition of the node state depends on the applica-
tion. It can be a large set that includes all sorts of informa-
tion about the node, such as residual energy, workload,
bandwidth, noise level, and location; or a simple value,
such as a flag indicating whether or not the node is a
source. From the network state we can derive the neigh-
borhood state of each node, which is a subset of the net-
work state.

For each node vi 2 V, we define its neighborhood state
as

Xi ¼
[

vj2Ni

xj: ð3Þ
3.2. Deployment model

We consider that the node deployment results in a dis-
turbed grid where the location of each node is disturbed by
a random zero-mean Gaussian error. Therefore, nodes will
tend to uniformly occupy the sensor field without forming
a regular grid.

3.3. Role assignment model

In this section, we formalize the concepts of role and
role assignment in the context of this work.

A role specifies the actions and computations executed
by a node in the presence of a specific data stream and an
identified condition. Thus, for a given node a role defines
the expected behavior patterns associated with a particular
data stream. A node may aggregate multiple roles only to
process different data streams, i.e., a single node cannot
have two different roles to process the same data stream.

As an example, we can have a network in which a node
A can use a fusion role to process the data streams from
nodes B and C, and use a relay role to process the data
stream originated by node D. Alternatively, a node A can
use a fusion role to process any temperature data, and a re-
lay role to process humidity data.

The space of roles, or script, defines the set of all possible
roles that can be assigned to a node and is represented by W.

Let D be the set of all data streams produced by these
sensor nodes.

Definition 3.1 (Global Role Assignment – GRA). In a GRA,
roles are assigned based on the entire network state.
Formally, a GRA is a surjective function g : X� V � D! W
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that maps the network state, a node, and a data stream
onto a role in the script.

A global role assignment demands the knowledge of the
entire network state, which is often unfeasible. Typically,
sensor nodes must make decisions based only on local
information (node state) and local interactions (neighbor-
hood state). Thus, a local role assignment is usually prefer-
able to a global one.

Definition 3.2 (Local Role Assignment – LRA). In a LRA,
roles are assigned based on the neighborhood state.
Formally, a LRA is a surjective function l : Xi � V � D! W
that maps a neighborhood state, a node, and a data stream
onto a role in the script.

The InFRA algorithm, herein proposed, is a LRA to find a
minimum transmission tree. Thus, the idea is to have a LRA
that assigns a role to a every node based on their neighbor-
hood state. In the end, this role assignment defines a
routing tree that tries to minimize the overall message ex-
change to notify events detected by the WSN. This problem
and our proposed solution are better described in the fol-
lowing sections.

4. Problem statement

Let us assume that all nodes do not necessarily reach
the sink node in one hop. Once an event is detected, we
want to find a multihop routing structure that maximizes
data aggregation with the minimum number of hops, i.e.,
a minimum transmission tree.

Definition 4.1 (Problem definition). Given a multihop net-
work G = (V,E), we want to reactively find the minimum
transmission tree connecting all u 2 S to the sink node.

The minimum transmission tree is actually a minimum
Steiner tree connecting the nodes that detect the event to
the sink node, i.e., this is a NP-complete problem [19]. In
this work, we provide a reactive solution that dynamically
chooses the next hop minimizing the impact of eventual
link losses. Our solution relies on reactively assigning roles
when an event is detected.

5. InFRA: Information-Fusion-based Role Assignment

In our role assignment algorithm,when multiple nodes de-
tect the same event, they organize themselves into clusters.
Then, cluster-heads aggregate data from all cluster-members
and send event data towards the sink. Since all nodes may not
directly reach the sink node, notification packets are relayed
in a multihop fashion. Our algorithm considers the following
roles to set up a routing infrastructure:

� sink – node interested in a set of events;
� collaborator – node that detects an event (cluster-

member);
� coordinator – node that detects an event and is responsi-

ble for notifying its occurrence (cluster-head);
� relay – node that forwards a data stream received by

another node; every relay node also has an implicit sens-
ing role, so it is still able to detect events.
Thus, our space of roles is W ¼ fsink; collaborator;
coordinator; relayg.

When no event is being detected, all sensor nodes ex-
cept the sink have the relay role. When at least one node
detects an event, the role assignment algorithm executes
the following procedures:

� Clusters are formed by assigning the collaborator and
coordinator roles to nodes detecting events.

� The relay is assigned to the other nodes and routes are
formed connecting clusters to the sink.

� Information is fused to reduce communication costs.

5.1. Cluster formation

The idea is to build clusters in such a way that we have
only one cluster for each event being detected and cluster
members are the detecting nodes. We might have different
strategies to select the node with the coordinator role (clus-
ter-head). For instance, we can choose the node with the
smallest id, greatest degree, largest residual energy, short-
est distance to the sink, or other metrics such as those sug-
gested by Kochhal et al. [6]. Such information, used in the
election process, is included in the node state that com-
poses the network and neighborhood states defined in Sec-
tion 3.1. For the sake of simplicity we choose the node with
the smallest id because this strategy leads to smaller com-
munication cost during the election phase. Thus, our node
state will be xi ¼ fidðviÞg for every vi 2 V. The cluster for-
mation algorithm is presented in Fig. 2.

This phase includes only the nodes that detect an event,
i.e., the sources u 2 S. First, the nodes announce the event
detection (line 3). This announcement does not assume
any fixed MAC contention strategy; we schedule these
nodes by introducing random delays to reduce the collision
probability. Second, nodes assess their neighborhood, and
the one with the smallest id becomes a coordinator (lines
4–8). Current coordinators announce their condition in
an event-scoped flooding1 (line 11). Then, only the coordi-
nator of the smallest id keeps its role and floods its condition
to the entire network, the other ones become collaborators
(lines 14–18).

Fig. 1 depicts the clustering process. Fig. 1a depicts the
communication range of the detecting nodes, and Fig. 1b
the corresponding connectivity graph. Based on the neigh-
borhood state, the nodes with the smallest id in their
neighborhood become coordinators (nodes 1, 2, and 4 in
Fig. 1c). However, only the coordinator of the smallest id
keeps the role (node 1 in Fig. 1d).

The InFRA algorithm does not assume any fixed MAC
contention strategy. In a previous evaluation [1] the algo-
rithm was simulated considering a CSMA/CA MAC, in which
we introduced small random delays to reduce the collision
probability. Results show that this simple measure is
statistically effective for overcoming such a problem, i.e.,
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Fig. 1. Example of the clustering process.
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although we eventually loose some announcements, which
lead to sub-optimal solutions, such losses do not have a
great impact on our solution, since it is already an approx-
imated algorithm.

5.2. Route formation

Routes are formed by choosing the best neighbor at
each hop. The function that defines the best neighbor de-
pends on the application. In this case, we consider the best
node as the one that leads to the shortest path to the sink
and fuses as many clusters as possible, i.e., the resulting
routes form a tree with the minimum number of edges
connecting the coordinators to the sink node (see Section
4). This is done by choosing the neighbor closest to the sink
node, and, in case of a tie, we choose the one that mini-
mizes the distance to the other coordinators. This takes into
account the aggregated coordinators-distance, which is de-
fined as follows.

Definition 5.1 (Aggregated Coordinators-Distance). For
every node vi 2 V, its aggregated coordinators-distance,
dist � coðviÞ, is the sum of the distances (in hops) between
vi and all coordinator nodes, i.e.,

dist � coðviÞ ¼
X

u2CoordSet

distanceðvi; uÞ; ð4Þ

where distanceðvi;uÞ is the distance in hops between nodes
vi and u, and CoordSet is the set of all coordinator nodes.

To understand how the aggregated coordinators-dis-
tance is computed, let us take a look at Fig. 4b. Once the
clusters are formed, each coordinator floods a control
message, and during this flooding, every node computes
its distance to that coordinator. So, in Fig. 4b, nodes H;X,
and O perform such flooding, randomly scheduled to re-
duce collisions. After this process, every node can compute
the aggregated coordinators-distance. Thus, taking node B
as an example, after the flooding processes, node B knows
it is one hop from coordinator H, 4 hops from coordinator
X, and three hops from coordinator O. Thus, the sum of
all distances is eight hops (aggregated coordinators-
distance).

The routing strategy is depicted in Fig. 3. First, the relay
is assigned to the nodes that are neither coordinators nor
collaborators (line 2). Then, the node chooses as the next
hop a neighbor node closer to the sink and to the current
coordinators (lines 4–11). When the node is ready it sends
the aggregated data to the next hop (lines 12–14).

This routing strategy looks for the shortest path in such
a way that the nodes in the relay process minimize the
distance to the current coordinators. As a result, chances
of route overlapping and, consequently, data aggregation
are enhanced.

To illustrate the benefits of this routing strategy, let us
consider the example of Fig. 4. When a simple shortest
path is used, data aggregation may not occur because the
shortest paths chosen for each cluster may not overlap
(Fig. 4a). However, the routing strategy adopted by InFRA
looks for the shortest path that leads to a minimum trans-
mission tree, increasing the chances of data aggregation
(Fig. 4b). In Fig. 4b, by using the InFRA algorithm, node L
aggregates data streams from nodes H and X, and node F
aggregates data streams from nodes L and O.

5.3. Information fusion

In the proposed network organization, we might have
two different types of information fusion: intra-cluster
and inter-cluster fusion. In the former, only data from col-
laborator nodes are fused, while in the latter, only data
from coordinator nodes are fused or aggregated.

5.3.1. Intra-cluster fusion
Within the cluster, a shortest-path tree is formed so

that each collaborator sends its data to the coordinator (tree
root) using the shortest path composed only of collaborator
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nodes. Then, coordinator nodes fuse data from the cluster
members (collaborator nodes). When a collaborator is dis-
tant for more than one hop from the coordinator, collabora-
tor nodes, which are used as intra-cluster relay, fuse or
aggregate the packets being relayed. By doing this, regard-
ing the number of resulting edges, the tree strategy used to
connect collaborators to coordinators is not important. The
reason is that the tree is composed only of collaborators,
so each of them sends only one packet (multiple packets
are aggregated) at every notification interval.
Fig. 3. Route fo
5.3.2. Inter-cluster fusion
Our algorithm looks for the shortest paths (connecting

the cluster-heads to the sink node) that allow data aggre-
gation of multiple clusters. For instance, consider the
example depicted in Fig. 4. In this example, nodes H, O,
and X are coordinators for three correlated events. The
notation aðb; cÞ used to label the nodes represents the dis-
tance table of each node, which means that node a is b
hops from the sink and c is its aggregated coordinators-dis-
tance in hops.
rmation.
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If the simple shortest path is used, we might have non-
overlapping routes so that cluster data are not fused, as de-
picted in Fig. 4a. However, in our algorithm, we search for a
tree that assures the shortest-path but enables the aggre-
gation of data from multiple clusters, as depicted in
Fig. 4b. In this example, InFRA is able to find a minimum
shortest-path tree connecting all source nodes to the sink,
in such a way that intra-cluster fusion is performed by
nodes H, O, and X, and inter-cluster fusion is performed
by nodes F and L.

5.4. Event detection

Event detection is assumed to be an information-fusion
task [20]. Thus, by applying inference methods on the sen-
sor observations, a sensor node can detect an event with an
associated confidence measure [20]. This detection can be
a collaborative or non-collaborative task depending on
the available data, inference method, available resources
and desired confidence. Since the event detection is not
the focus of this work, to simplify or study, we assume that
sensor nodes apply an inference method to detect events
[20].

We also assume that events are described based on the
events the network is designed to detect. For instance, let
us assume our network detects fire only. Thus, we may
consider the event location (fire sites) and area as the
descriptor. In this case, if we have the same fire site de-
tected by two disjoint clusters then we will have two fire
sites (two neighbor fire sites), which is not really a problem
from the application perspective. From the network per-
spective, in our algorithm, the events will be aggregated
as soon as possible. If a set of nodes are in the same detec-
tion region of two neighbor fire sites, our algorithm will
interpret as a single fire site. Again, this is not a critical is-
sue since we will know where the fire (event) is. Clearly,
there might be some scenarios, when the network detects
multiple types of events, in which this approach may not
lead to a good solution. However, we do not intend to pro-
vide a definitive solution for every case.

5.5. Dynamic topologies

In the proposed solution, dynamic topologies are ad-
dressed naturally. Reactive algorithms have the benefit of
building the routing topology only when necessary, there-
fore, adapting themselves to topological changes that hap-
pen during the inactive periods. As we show latter on, the
InFRA algorithm is of greater cost compared to other heu-
ristics, but this cost is diluted if the duration of the event
lasts long enough. Thus, what happens if a node fails dur-
ing an event notification?

In the InFRA algorithm, if the chosen relay node fails,
then the next packet is sent to the second best option,
i.e., a new relay node is chosen. A node failure can be de-
tected by the lack of activity, i.e., the packet is not for-
warded, which is possible by taking advantage of the
promiscuous nature of the wireless link. If the failure rate
is so high that it compromises the routing information of
every node (sink distance and aggregated coordinators-
distance), then the InFRA algorithm may not find the best
paths that it could. In fact, depending on the failure rate
a proactive solution may be the best choice. For instance,
when we consider the failure recovery problem, Nakamura
et al. [21] shows that the periodic (proactive) topology
rebuilding and a reactive solution may have the same
behavior.

5.6. Role migration

In some cases, due to the strategy used for the coordina-
tor election, a collaborator node may be chosen to relay its
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coordinator packets, which leads to waste of resources. To
avoid such an undesirable situation, InFRA provides role
migration function. Once a collaborator node identifies that
it has to relay its coordinator packets, it assumes the coor-
dinator role and broadcasts its condition to its neighbors.
Then, all collaborator neighbors and the old coordinator
send their data to the new coordinator. Nodes that are dis-
tant for more than one hop from the new coordinator will
not be aware of the new cluster organization. However,
this scenario does not lead to malfunctioning, because
these nodes will send their data to the old coordinator that
fuses them and forwards the result to the new coordinator.

Fig. 5 depicts the role-migration process. In the initial
role assignment (Fig. 5a), node B becomes the coordinator
and nodes D, E, and F become collaborators. However, after
the intra-cluster fusion, node B sends its data towards the
sink through the route B! D! G! A! Sink. This situa-
tion leads to waste of resources, since node D needs to send
two packets every notification interval (one to node B and
one to node G). When node D detects that it is relaying
packets from its coordinator, it assumes that role and in-
forms its neighbors. After that, all nodes send only one
packet every notification interval (Fig. 5b).

6. Theoretical results

In this section, we present some theoretical results of
the InFRA algorithm referring to the its efficacy in finding
a solution to the minimum routing tree for event-driven
WSNs, and discuss the feasibility of our solution compared
to other heuristics.

For the sake of simplification, the theoretical analysis,
presented in this section, and simulation evaluation, pre-
sented in Section 7, consider a lossless channel model. Such
an assumption allows us to find the theoretical bounds that
define some performance limits. To be fair, all algorithms
were analyzed and evaluated under the same premise. A
lossy channel will affect every aggregation solution. In gen-
eral, algorithms that aggregate more data flows are more
affected by lossy channels. The idea of our evaluation is to
assess the infrastructure performance of the algorithms.
When we have lossy channels, we can adopt some mecha-
nism to overcome packet losses, such as retransmissions or
data prediction (information fusion). The application
requirements will determine whether or not it is worth
implementing such mechanisms.

6.1. Approximation ratio

To derive analytical bounds for the approximation ratio
of the InFRA algorithm, we use the concept of network
diameter defined as follows.

We consider the network diameter D as the number of
hops in the shortest path connecting the farthest node
v 2 V to the sink node.

Let us analyze the scenario in which our algorithm finds
the worst solution compared to the optimal algorithm.
Suppose we have k 6 m groups of connected sources such
that the shortest paths, between each of the groups and the
sink node, have D hops and are disjointed (no route over-
lapping), and these k groups are separated by two hops
from each other, as depicted in Fig. 6a. In this case, an opti-
mal solution consists of a group reaching the sink node at D
hops, the other k� 1 groups reaching a neighbor group at
two hops, as depicted in Fig. 6b. Plus, each of the remaining
m� k source nodes use one transmission link. In such
a scenario, the communication cost of the optimal solution
is

costðoptÞ ¼ 2ðk� 1Þ þ Dþ ðm� kÞ ¼ kþmþ D� 2: ð5Þ

Although the InFRA algorithm tries to increase data
aggregation, it prioritizes the shortest paths (see Section
5.2), which might lead to sub-optimal solutions. In the
InFRA algorithm, each group of connected source nodes be-
comes a cluster. The m� k collaborators use one transmis-
sion link, and the coordinators send their data through the
disjointed shortest-paths. Thus, the communication cost of
the InFRA solution is

costðinfraÞ ¼ kDþ ðm� kÞ ¼ kðD� 1Þ þm: ð6Þ
Eq. (6) represents the cost of the InFRA solution in the
worst scenario – i.e., the worst case of the InFRA algorithm
as a heuristic for the problem defined in Section 4 (a Stei-
ner tree) — and Eq. (5) is the optimal cost in the same sce-
nario. Thus, we can define the general approximation ratio
of the InFRA algorithm as follows.

Theorem 6.1. The approximation ratio of the InFRA algo-
rithm is
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costðinfraÞ 6 kðD� 1Þ þm
kþ Dþm� 2

costðoptÞ: ð7Þ

By exploiting the upper bound (7) in Theorem 6.1, we can
determine the cases in which we surely obtain the optimal
solution, and simpler bounds given certain conditions.

Theorem 6.2. The approximation ratio of the InFRA algo-
rithm decreases as k decreases in such a way that when
k ¼ 1; costðinfraÞ ¼ costðoptÞ.

Proof. Looking at (7), we see that the contribution of k in
the numerator proportional to D� 1, while its contribution
in the denominator is constant. Thus, the smaller the value
of k, the smaller the result of (7). When we replace k ¼ 1 in
(7), we obtain costðinfraÞ ¼ costðoptÞ. h

Theorem 6.3. Compared to the optimal solution, the InFRA
solution uses no more than OðkÞ additional hops.

Proof. By subtracting (5) from (6), we obtain

costðinfraÞ � costðoptÞ ¼ kðD� 1Þ þm� ðkþmþ D� 2Þ
¼ kD� kþm� k�m� Dþ 2

¼ kD� 2k� Dþ 2

¼ ðD� 2Þk� ðD� 2Þ
¼ ðD� 2Þðk� 1Þ:

Since D remains constant for a given network, we have
costðinfraÞ 6 costðoptÞ þ OðkÞ. h

This result means that the number of extra edges in the
InFRA solution is at most OðkÞ, where k is the number of
clusters formed by the InFRA algorithm.

Corollary 6.3.1. If for every u 2 S exists a v 2 S such that
hu; vi 2 E, then the minimum routing tree is not NP-complete,
and costðinfraÞ ¼ costðoptÞ.

Proof. When such a hypothesis holds, i.e., for all u 2 S
exists a v 2 S such that hu; vi 2 E, then the InFRA algorithm
builds only one cluster, i.e., k ¼ 1. Therefore, according to
Theorem 6.2 costðinfraÞ ¼ costðoptÞ. h

Corollary 6.3.1 shows that when the network is detect-
ing only one event, which is reasonable for several applica-
tions, the InFRA algorithm finds the optimal solution.
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Theorem 6.4. The InFRA algorithm always finds the optimal
solution when D 6 2.

Proof. When D ¼ 1, every coordinator node sends its pack-
ets directly to the sink node, i.e., no relay node is used.
When D ¼ 2, by replacing the D value in (7), we obtain
costðinfraÞ ¼ costðoptÞ. h

Theorem 6.5. When D > 2, the approximation ratio of the
InFRA algorithm is limited by D� 1, i.e.,

costðinfraÞ
costðoptÞ 6

kðD� 1Þ þm
kþmþ D� 2

< D� 1: ð8Þ

Proof. If we develop inequality (8), we obtain

kðD� 1Þ þm < ðD� 1Þðkþmþ D� 2Þ
kðD� 1Þ þm < ðD� 1Þkþ ðD� 1Þmþ ðD� 1ÞðD� 2Þ
m < ðD� 1Þmþ ðD� 1ÞðD� 2Þ: ð9Þ
Since D > 2, we have ðD� 1Þ > 1 and ðD� 2Þ > 0. Thus, (9)
is true, which means that (8) is also true, i.e.,
costðinfraÞ < ðD� 1Þ � costðoptÞ. h

Corollary 6.5.1. When the network has a constant diameter,
the approximation ratio of the InFRA algorithm is Oð1Þ.

Proof. When D is constant, according to Theorem 6.5, the
approximation ratio is Oð1Þ. h

This result shows that if a network does not increase its
diameter – which is a reasonable assumption for many
applications – despite the number of event detections m,
the InFRA algorithm has a Oð1Þ-approximation ratio.

Theorem 6.5 shows that costðinfraÞ < ðD� 1Þ�
costðoptÞ, which in some cases means that costðinfraÞ <
Oð1Þ � costðoptÞ (see Corollary 6.5.1). However, in large-
scale networks, D can be too large. Therefore, we must
have a better approximation ratio for such cases.

Theorem 6.6. When D!1, the approximation ratio of the
InFRA algorithm is k.

Proof. When D!1, we have:

costðinfraÞ
costðoptÞ 6 lim

D!1

kðD� 1Þ þm
kþ Dþm� 2

¼ kD
D
¼ k:

Therefore, costðinfraÞ 6 k� costðoptÞ. h
Sink

1

ps

2 hops

group k

Sink

group 1

D hops

D hops
D hops

D hops
group 2

group k-1

group k

...

ithm retrieves the worst solution.
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When m=D! 0, we have the same behavior as D!1.
Thus, in this case, costðinfraÞ < k� costðoptÞ as well.

Corollary 6.6.1. When no source node does not have a source
node as a neighbor, InFRA algorithm has an Oð1Þ-approxima-
tion ratio.

Proof. When no source node does not have a neighbor
source node, InFRA finds k ¼ m

costðinfraÞ
costðoptÞ 6

mðD� 1Þ þm
mþ Dþm� 2

¼ mD
2mþ D� 2

¼ Oð1Þ: �

Corollary 6.6.1 is an interesting result for scenarios in
which the event radius is so small that it is detected by
only one source node. Although these scenarios might
not be frequent, they might occur, especially when density
control is performed.
6.2. A complexity analysis

In this section, we compare the communication com-
plexity of the InFRA algorithm with other heuristics for
the Steiner tree problem.

The best known heuristic for the Steiner Tree has a
1.55-approximation ratio [9]. However, this heuristic is
not suitable for distributed implementation. The best dis-
tributed algorithm that we know of is the Greedy Incre-
mental Tree (GIT) [15] that has a 2-approximation ratio
[7]. In the GIT heuristic, the tree initially consists of the
shortest path between the sink and the nearest source,
and at each step after that the source closest to the current
tree is connected to the tree.

Although the GIT heuristic is able to find good approx-
imations, its distributed version [8] presents severe limita-
tions for WSNs. First, all nodes necessarily have to know
their shortest paths to the other nodes in the network.
The communication cost for obtaining such information
is Oðn2Þ, because every node needs to flood its location.
Second, the memory space to store those paths locally (at
each sensor node) is OðD� nÞ, because the maximum route
can have D hops (the network diameter). Once these short-
est paths are available, the algorithm takes OðmnÞ mes-
sages to build the routing tree [8]. These costs are not
affordable for large-scale networks composed of limited-
memory sensor nodes.

As we demonstrate in Theorem 6.6, the approximation
ratio of the InFRA algorithm can be k� costðoptÞ for
large-scale networks. When k > 2, this is clearly worse
than the GIT’s approximation ratio. However, the InFRA
algorithm takes OðmÞ transmissions to create the clusters
and OðknÞ to flood the clusters’ information. In addition,
each node maintains a routing table with an entry for each
neighbor, and each entry contains only the node id, the
coordinators-aggregated distance, and the sink distance
referring to that neighbor.

As Woo et al. [22] show, static trees are very susceptible
to the lossy nature of wireless links. Thus, another drawback
of the GIT heuristic is that the algorithm needs to be exe-
cuted every time a node in the routing tree fails, which de-
mands OðmnÞ messages per failure. On the other hand, in
the InFRA heuristic, each node chooses its parent only when
a packet is available; if the best node fails, the second best
node is chosen without additional communication cost.

7. Simulation results

The simulation experiments of the InFRA algorithm use
the Sinalgo simulator [23]. In all graphs, the curves repre-
sent the average values, while the error bars represent the
confidence intervals for 95% confidence for 100 different
instances (seeds). The simulation parameters are based
on the MicaZ sensor node [24], which uses the 802.15.4
standard. The default parameters for the experiments are
presented in Table 1.

7.1. Methodology

The experiments compare InFRA with one proactive
solution and two reactive solutions. For the sake of sim-
plicity, to represent the proactive role assignment we use
the a periodic shortest-path tree (PSPT) [10]., i.e., a SPT that
is periodically built. This is a simple and popular solution
for delivering data to the sink node. In this strategy, the
sink node periodically broadcasts a building packet. Each
node chooses the candidate closer to the sink as its parent
node and forwards the building packet.

For the reactive candidate we choose a reactive variant
of the PSPT algorithm, or simply SPT, and the reactive Cen-
tered-at-Nearest-Source tree (CNS) [10]. In the SPT algo-
rithm, when an event is detected, the source nodes flood
a notification packet to the sink node. When the sink re-
ceives that packet it triggers the building process used by
the SPT strategy. In the CNS aggregation scheme, all
sources send their data to the source nearest to the sink.
Then, this source sends the aggregated information to the
sink through the shortest path. However, once an event
is detected a flooding is performed to announce the event
detection and another is performed to build the tree.

We evaluate the algorithms using the metrics:

� Data packets – total number of data packet transmis-
sions in the network. It shows how well the algorithms
are relaying the data packets.

� Packet overhead – total number of control packet trans-
missions in the network. It shows the cost to assign roles
for event notification.

� Routing efficiency – total number of packet transmis-
sions used to process and deliver all data packets gener-
ated by source nodes. It is measured in packets per data
processed.

In all experiments, the delivery ratio was greater than
95% for all algorithms, therefore, we decided not to show
the graphs for the success ratio. The reason for such a high
delivery ratio is that we did not introduce any failures in
our simulations.

Because of the difficulty to compute the optimal solu-
tion we define the lower bound cost of a routing tree in
the same way as Krishanamachari et al. [10], which is com-
posed of the shortest path between the source closest to
the sink plus one hop for each remaining sources:



Table 1
Default scenario configuration.

Parameter Value

Sensor field 700 � 700 m2

Sink nodes 1 (bottom left)
Size 529 nodes (disturbed grid)
Communication range 50 m
Bandwidth 250 kbps
Simultaneous events 1 (top right)
Event radius 80 m
Event duration 3 h
Inactivity time 2000 s
Notification rate 60 s
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costðlowerboundÞ ¼ shortest� pathðu; v1Þ þ ðm� 1Þ;
ð10Þ

where u 2 S is the source closest to the sink v1 and m ¼ jSj
is the number of source nodes.

In the simulation scenarios with only one event, (10)
represents the optimal solution, and in scenarios with mul-
tiple events we have costðoptÞP costðlowerboundÞ. In the
following sections, data packets graphics show the theoret-
ical lower bound.

7.2. Reactive vs. proactive role assignment

In a proactive approach, roles are assigned even when
no event is being detected. Thus, such a role assignment
should be executed periodically to recover from topologi-
cal changes (e.g., node failures). In reactive strategies, roles
are assigned only when an event is detected avoiding the
need for periodical executions. Thus, it is not fair to com-
pare a proactive role assignment with a reactive one be-
cause in the reactive case the algorithm will easily
outperform proactive strategies if the network is inactive
for a long time. To illustrate our viewpoint, we simulated
a 529-node network in a 700 � 700 m2 field. We placed
the sink node in the bottom left corner of the sensor field
and generated one event with a 80 m radius in the opposite
corner. This event starts at 1000 s and lasts 10,800 s. For
the proactive role assignment, we choose the PSPT with
opportunistic data aggregation. In the PSPT strategy, roles
are reassigned every 200 s to build the routing (shortest-
path) tree.

Fig. 7 depicts the behavior for the first 900 s of simu-
lation. In this graph, the vertical axis represents the total
amount of packets sent by all nodes in the network.
Clearly, the proactive strategy sends more packets be-
cause it rebuilds the tree periodically. However, when
we compare InFRA with SPT, we can see that although
in the InFRA strategy more packets are used in the role
assignment phase, data aggregation is enhanced in such
a way that if the event remains active long enough, the
initial overhead is compensated by the savings due to
data aggregation.

In the next experiments, we compare the InFRA algo-
rithm only to the reactive algorithms, since we could easily
find a scenario in which the reactive solutions outperform
the proactive PSPT.
7.3. Communication range

Here, we evaluate the impact of the communication
range in the algorithms by changing the communication
range from 50 m to 100 m (maximum range for the micaZ
sensor node). The results are shown in Fig. 8.

As a result, we the communication range increases, the
node degree increases accordingly (Fig. 8d), which means
that routes are smaller because the number of nodes and
the area of the sensor field remain constant (density is con-
stant). Consequently, the three algorithms send less data
packets when the communication range increases
(Fig. 8a). However, InFRA sends less packets due to better
data aggregation. Particularly, when the communication
range is 50 m, SPT and CNS algorithms use nearly 45%
more packets to deliver the sensed data.

Fig. 8b shows that, independent of the communication
range, SPT and CNS always have the same overhead to as-
sign the relay/aggregation roles. However, the InFRA over-
head decreases as the communication range increases. The
reason is that a communication range smaller than the
event radius (80 m) increases the probability of multihop
communication within the clusters. As a result, the proba-
bility of multiple coordinator candidates is greater, and
occasionally one coordinator candidate may not receive
the notification of another candidate. Consequently, we
may have two or more coordinators (per event) flooding
their condition. This experiment shows how packet losses
can affect a Steiner-tree heuristic algorithm. When the
relation communication range is large enough (100 m),
the InFRA algorithm finds the optimal solution, but this sit-
uation changes as the communication range gets smaller
(Fig. 8a). Despite this fact, because InFRA aggregates more
packets, it still uses the communication resources more
efficiently than SPT and CNS (Fig. 8c).

7.4. Network scalability

To evaluate the network scalability we increase the net-
work size from 121 to 1024 nodes, and re-size the sensor
field to keep a constant network density of 8.48. We con-
sider the network density as the relation npr2=A, where n
is the number of nodes, r is the communication range,
and A is the area of the sensor field. The objective of keep-
ing a constant network density is to isolate the scale influ-
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ence by keeping a constant node degree and a constant
number of sources (Fig. 9d).

Fig. 9 shows that the InFRA is more scalable than the
other algorithms. The reason is that the InFRA reduces
the data transmissions by increasing data aggregation
(Fig. 9a). However, during the role assignment phase, the
InFRA sends more packets than the SPT and the CNS be-
cause the source nodes perform a coordinator election
(Fig. 9b). The most important result is that, as the network
size increases, the InFRA uses less packets to process and
deliver the data packets generated by source nodes
(Fig. 9c). Particularly, when the network size is 1024, even
though InFRA has greater overhead, it uses nearly 70% of
the communication resources used by SPT.

7.5. Event scalability

To evaluate how the algorithms behave when the
number of simultaneous events increases, we simulate
529-node networks, increasing the number of simulta-
neous events from 2 to 6. In this particular case, the
lower bound is not necessarily the optimal solution, as
we mentioned before, for multiple events costðoptÞP
costðlowerboundÞ.

Obliviously, the number of data packet transmissions
(Fig. 10a) and the assignment overhead (Fig. 10b) increase
with the number of simultaneous events, because the
amount of source nodes increases as well (Fig. 10d). How-
ever, as Fig. 10c shows, the routing efficiency improves
since more data is aggregated. As the number of events in-
creases, the difference in the routing efficiency of InFRA
and SPT tends to decrease slightly. The reason is that the
probability of route overlapping increases. Particularly,
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the CNS strategy performs poorly with simultaneous
events, because all source nodes send their data to the
source closest to the sink, reducing the data aggregation
ratio. In addition, the CNS strategy eventually uses longer
routes than SPT and InFRA, which aggravates its poor per-
formance. Particularly, Fig. 10c shows that even though In-
FRA has greater overhead, it spends up to 70% of the
communication resources used by CNS in all simulated
scenarios.

7.6. Event size

We also evaluated the impact of the event size, i.e., the
influence region in which a sensor node can detect an
event. This is accomplished by increasing the event radius
from 50 m to 100 m and keeping the communication range
fixed at 80 m. The results are shown in Fig. 11.

As a general result, InFRA outperforms SPT and CNS by
reducing the number of data packet transmissions
(Fig. 11a) and, consequently, using the communication re-
sources more efficiently (Fig. 11c). However, in this evalu-
ation we stress that, when the relation between the event
radius and communication range increases, the overhead
introduced by InFRA also increases (Fig. 11b). The reason
is that eventually we have multiple coordinator candidates
per event, which occasionally results in multiple coordina-
tors per event, especially when the number of source nodes
per event increases (Fig. 11d).

7.7. Density

Although network and source density where isolatedly
evaluated in Section 7.3 and Section 7.6, respectively, in
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this section we evaluate the density impact by keeping the
sensor field constant and vary the number of sensor nodes
from 529 to 4096. By doing this, both the number of nodes
and the number of sources increase (Fig. 12d), therefore,
increasing network and source densities (since the sensor
field has a constant area). In this case, InFRA outperforms
SPT and CNS, as Fig. 12a–c show. Again, as the network
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density increases, SPT and CNS present the same behavior,
but the InFRA algorithm remains more efficient (Fig. 12c).

7.8. Event duration

To determine the conditions when InFRA is worth
adopting, and when a simpler solution, such as SPT, should
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be chosen, we varied the event duration from 0.5 h to 4 h,
and kept the other default parameters. In this case, we can
state that when the events last for less than 2 h, the sim-
pler SPT outperforms InFRA and CNS. The reason is that
although InFRA aggregates more packets (Fig. 13a) it pre-
sents a greater overhead (Fig. 13b), and if the event is too
short (smaller then 2h) the gains with additional data
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aggregation does not pay for the overhead required to
build the routing tree (Fig. 13c).

8. Final remarks

In this paper, we formalize a role assignment model and
propose a reactive algorithm, called InFRA, that starts the
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assignment process only when an event is detected, there-
fore, saving energy during periods of inactivity. The objec-
tive of this algorithm is to build a routing infrastructure for
delivering data to the sink and increase the data aggrega-
tion probability. The proposed scheme is a distributed heu-
ristic to find a minimum Steiner tree connecting source
nodes to the sink.

Our theoretical results show that this heuristic has
Oð1Þ-approximation ratio when the network diameter re-
mains constant and, in large-scale networks, it has a k-
approximation ratio.

Our simulation evaluation compares the InFRA algo-
rithm with reactive versions of the shortest-path tree
(SPT) and the centered-at-nearest-source tree (CNS). This
evaluation covers the assessment of different factors: net-
work scalability, event scalability, communication range,
and event size. The results show that although the InFRA
algorithm presents a higher overhead, it outperforms SPT
and CNS by finding routes of higher data aggregation ra-
tios. In some cases, the InFRA algorithm uses only 70% of
the communication resources required by SPT, and for
multiple events it uses only 70% of the communication re-
sources required by CNS.

We also show that the InFRA strategy is worth using
when we expect the events to last for some hours ð> 2hÞ,
which is very reasonable for events such as fire that usually
take a few hours to be controlled. However, for applica-
tions with events that last a few minutes or seconds, a sim-
pler solution such as SPT is a better option.

The presented evaluation comprehends static events of
fixed radius. We plan to work on the assessment of InFRA
when events present dynamic sizes (events of increasing
and decreasing sizes) and can move across the sensor field.
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