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Optimization of sequences in CDMA systems: a

statistical-mechanics approach

Koichiro Kitagawaa, Toshiyuki Tanakaa
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Abstract

Statistical mechanics approach is useful not only in analyzing macroscopic
system performance of wireless communication systems, but also in dis-
cussing design problems of wireless communication systems. In this paper,
we discuss a design problem of spreading sequences in code-division multiple-
access (CDMA) systems, as an example demonstrating the usefulness of sta-
tistical mechanics approach. We analyze, via replica method, the average mu-
tual information between inputs and outputs of a randomly-spread CDMA
channel, and discuss the optimization problem with the average mutual in-
formation as a measure of optimization. It has been shown that the average
mutual information is maximized by orthogonally-invariant random Welch
bound equality (WBE) spreading sequences.

Key words: code-division multiple-access (CDMA), replica method,
average mutual information, large system limit

1. Introduction

In recent years, advances in information and communication technologies
have been demanding high data-rate wireless communications. In order to
realize high data-rate wireless communications, bandwidth of systems should
be as wide as possible, which means that such systems should have a large
degree of freedom. Those systems are also required to be able to operate
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efficiently even in bad and uncertain environments. For example, in urban
areas, there are many obstacles, such as buildings, cars, and people, which
interact with wireless communication systems as reflecting/scattering bod-
ies, thereby making communication environment very complex. In analyzing
wireless communication systems, therefore, one has to regard them as sys-
tems with very high dimensionality and randomness. This is why statistical
mechanics approach is expected to be useful in studying wireless communi-
cation systems.

In this paper, we consider a problem arising from considerations of multiple-
access channels. Typically, a wireless communication system has to accom-
modate multiple users simultaneously. In such a system, signals coming from
different users interfere with each other. How to mitigate such multiple-access
interference (MAI) is one of the most important problems in wireless commu-
nications. Code-division multiple-access (CDMA) [1, 2] provides an effective
scheme to mitigate MAI, and is widely used in various commercial systems.
In CDMA, an information symbol of a user is modulated with a spreading
sequence assigned to the user. Receiver has to estimate information symbols
based on received sequences by utilizing knowledge of spreading sequences of
the users.

A conventional choice to mitigate MAI is to use pseudorandom sequences
as the spreading sequences. Although analysis of such randomly-spread
CDMA systems was thought to be difficult, it has turned out that replica

method, which is an analytical tool developed in the research field of statis-
tical physics of disordered systems (spin glasses), is very useful for the anal-
ysis [3, 4]. More precisely, these studies have revealed that replica method
allows us to evaluate “macroscopic” performance of CDMA systems with
independent and identically-distributed (i.i.d.) random spreading sequences
in the large-system limit, such as mutual information between inputs and
outputs, bit error rate, and so on.

Since theoretical performance of CDMA systems is affected by choices
of spreading sequences, design of spreading sequences is an important prob-
lem in CDMA. There have been several researches in which the problem
of designing spreading sequences is formulated in terms of an optimization
problem. For example, Rupf and Massey [5] discussed optimization of spread-
ing sequences with the channel capacity of CDMA systems as a measure of
optimization. They showed that so-called Welch bound equality (WBE)
spreading sequences, which minimize the total squared correlation (TSC) of
spreading sequences, achieve the channel capacity.
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We restrict ourselves to considering the optimization problem of spreading
sequences of CDMA systems with the mutual information between inputs and
outputs as the measure of optimization. There have been several researches in
which such optimization problems are discussed [5, 6, 7]. They have assumed
inputs of the system to be Gaussian distributed and discussed theoretical up-
per bound (i.e., channel capacity) of mutual information between inputs and
outputs. If one wishes to consider realistic wireless communication systems,
however, it is important to study the optimization problem under the as-
sumption of non-Gaussian inputs. The objective of this paper is therefore to
discuss the optimization problem of spreading sequences of CDMA systems
when one allows non-Gaussian inputs. We would like to emphasize that, un-
like previous statistical-mechanics studies of CDMA systems [3, 4, 8] whose
objectives are basically to analyze macroscopic system performance, we show
in this paper that the statistical-mechanics approach is also useful in dealing
with design problems in wireless communication, with the optimization prob-
lem of spreading sequences of CDMA systems as a demonstrative example.
A digest version of this paper has been presented as a conference paper [9].

2. Problem

We consider the following real-valued K-user CDMA channel model,

yµ =
1√
L

K
∑

k=1

sµkxk + σnµ, µ = 1, . . . , L, (1)

where xk is an information symbol of user k. We assume that {xk; k =
1, · · · , K} are i.i.d. random variables, and let p(·) be the prior probability of
xk, whose mean and variance are assumed to be zero and one, respectively.
{sµk; µ = 1, · · · , L} is the spreading sequence of user k in the symbol interval
of interest, and L denotes the spreading factor of the CDMA channel model.
We assume that the power of the spreading sequences is normalized to one,
so that

∑L
µ=1(sµk/

√
L)2 = 1 holds for k = 1, · · · , K. We assume additive

white Gaussian noise (AWGN): nµ ∼ N (0, 1) so that σ2 is the variance of
AWGN. Let us introduce the following notations: y ≡ [y1, · · · , yL]T , n ≡
[n1, · · · , nL]

T , x ≡ [x1, · · · , xK ]
T , and S = (Sµk), Sµk ≡ (1/

√
L)sµk; k =

1, · · · , K; µ = 1, · · · , L. The system model (1) is then rewritten as

y = Sx+ σn. (2)
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One can consider a maximization problem of per user mutual information
between x and y with respect to the spreading sequences S, with the channel
input x drawn from the probability distribution p(x) =

∏

k p(xk),

Cuser =
1

K
I(x;y)|S, (3)

where the notation I(x;y)|S denotes the mutual information between x and
y when S is specified. When K ≤ L, the mutual information Cuser is maxi-
mized by assigning to all users orthogonal L-dimensional vectors as spreading
sequences, regardless of the input distribution p(·). When K > L, on the
other hand, spreading sequences maximizing the mutual information Cuser

are not trivial. When xk, k = 1, · · · , K, are i.i.d. standard Gaussian ran-
dom variables, it is known that the WBE spreading sequences maximize the
mutual information Cuser [5]. WBE spreading sequences are characterized
as [10, 11]

SST = βIL×L, β ≡ K

L
> 1, (4)

where IL×L is an L-dimensional identity matrix.
When one assumes Gaussian inputs, spreading sequences maximizing

Cuser have been identified in more general system models than (2). For exam-
ple, in a system model where one allows the power of inputs to be different,
Viswanath and Anantharam [6] showed that the mutual information is max-
imized by assigning orthogonal spreading sequences to relatively high-power
users and so-called generalized WBE spreading sequences to the remaining
users, where the users are classified according to a certain criterion. Also, in
a system model where the inputs may arrive asynchronously, Luo et al. [7]
showed that the mutual information is maximized by spreading sequences
which can be regarded as an extension of the ones which Viswanath and
Anantharam proposed.

On the other hand, when xk’s are drawn from a non-Gaussian distribu-
tion, to the authors’ knowledge, spreading sequences maximizing the mutual
information (3) have not been known. We analyze, via statistical mechanics,
spreading sequences maximizing the mutual information of the system with
non-Gaussian inputs. Since the case with non-Gaussian inputs is difficult
to analyze analytically, we resort to making several assumptions. First, we
evaluate mutual information in the large-system limit, in which the number
of users K and the spreading factor L are both sent to infinity while main-
taining their ratio β = K/L constant. Second, we assume random spreading.
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More specifically, we assume that the sample correlation matrix R = STS
of random spreading sequences S is asymptotically orthogonally invariant,
that is, the probability law of R and that of an orthogonal transform UTRU
are the same for any orthogonal matrix U in the large-system limit, and
that empirical eigenvalue distribution of R converges to a limiting eigenvalue
distribution ρ(λ) with a finite support included in [λmin, λmax], in the large-
system limit. Under the assumption of random spreading, we consider the
average conditional mutual information in the large-system limit,

C = lim
K→∞

ES{Cuser} = lim
K→∞

1

K
I(x;y|S), (5)

where ES denotes expectation with respect to S, and where I(x;y|S) is
conditional mutual information between x and y given S. We discuss maxi-
mization of C with respect to characteristics of the random matrix S.

3. Analysis

3.1. Evaluation of average mutual information via replica method

The average mutual information (5) is decomposed into two terms,

C = lim
K→∞

1

K
[Ey,S{log p(y|S)} − Ey,x,S{log p(y|x, S)}] (6)

= F − 1

2β

(

1 + log(2πσ2)
)

, (7)

with

F ≡ − lim
K→∞

1

K
Ey,S{log p(y|S)}, (8)

where Ey,S denotes expectation with respect to y and S. Direct calculation of
the right-hand side of (8) is in general computationally intractable. In order
to evaluate (8), we invoke the replica method. Substituting the identity

lim
n→0

∂

∂n
(p(y|S))n = log p(y|S) (9)

to the right-hand side of (8), we obtain

F = − lim
K→∞

1

K
lim
n→0

∂

∂n
logEy,S{(p(y|S))n}. (10)
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We assume that the limit with respect to K and the limit and the differenti-
ation with respect to n are interchangeable without altering the final result,
obtaining

F = − lim
n→0

∂

∂n
lim

K→∞

1

K
logEy,S{(p(y|S))n}. (11)

The limit K → ∞ allows us to apply the saddle-point method to evaluate a
relevant quantity. We apply replica trick in order to evaluate (11), in which
we first evaluate Ey,S{(p(y|S))n} assuming that n is a non-negative integer,
and then perform the limit and the differentiation with respect to n, assuming
that n is real.

Evaluation of (11) basically goes in a similar manner as [8]. Detailed
analysis is described in the appendix. Here, we only show the result. The
average mutual information in the large-system limit is given by

C = −1

2
θE − 1

2
G

(

− E
σ2

)

− 1

2
log

2π

θ
− 1

2
−
∫

p(u; θ) log p(u; θ) du, (12)

where {E , θ} are parameters whose values are to be determined later, and
where p(u; θ) is a probability density function of output u of a scalar AWGN
channel with 1/θ the noise variance, when the channel input x is generated
from the distribution p(x). The function G(t) is defined as

G(t) =

∫ t

0

R(z) dz (13)

where R(z) is the R-transform [12] of the limiting eigenvalue distribution
ρ(λ) of the correlation matrix R, which is defined on the basis of the Hilbert
transform2 of ρ(λ),

C(γ) =
∫

ρ(λ)

γ − λ
dλ, γ < λmin, (14)

as

C
(

R(z) +
1

z

)

= z. (15)

2It should be noted that the so-called Cauchy transform is defined by the same formula
as the Hilbert transform (14), but with γ in the upper half of complex plane.
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The parameters {E , θ} are to be determined from the following saddle-point
equations:

E = E{(x− 〈x〉)2; θ} (16)

θ =
1

σ2
R

(

− E
σ2

)

(17)

where 〈x〉 denotes posterior mean estimate of the channel input x of the
scalar AWGN channel introduced above, defined as

〈x〉 =

∫

x
√

θ
2π
e−θ(u−x)2/2 p(x) dx

∫

√

θ
2π
e−θ(u−x)2/2 p(x) dx

, (18)

and where E in (16) denotes expectation with respect to the channel input
x and output u of the scalar AWGN channel.
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Figure 1: Eigenvalue distributions ρMP(left figure) and ρWBE(right figure) with β = 1.5.
Both distributions have probability weight 1− 1/β at λ = 0.

The average mutual information (12) depends on the limiting eigenvalue
distribution ρ(λ) of R as well as the prior distribution p(xk). When we
assume that sµk are i.i.d. random variables whose mean and variance are
zero and one, respectively, our result is reduced to that obtained by Guo and
Verdú [4]. In this case, the limiting eigenvalue distribution ρ(λ) is given by
the so-called Marc̆enko-Pastur law [13],

ρMP(λ) =

(

1− 1

β

)+

δ(λ) +

√

(λ− a)+(b− λ)+

2πβλ
, (19)
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where (x)+ = max(0, x), and a = (1 − √
β)2, b = (1 +

√
β)2 (see figure 1),

whose R-transform is given by

RMP(z) =
1

1− βz
. (20)

Substituting (20) to (13), one can confirm the above-mentioned fact. Our
analysis also includes the case of the system with WBE spreading sequences.
Since the characteristic of WBE spreading sequences is expressed as (4), the
correlation matrix of WBE spreading sequences has trivial zero eigenvalue
and the eigenvalue λ = β, with multiplicities (K − L) and L, respectively
(see figure 1), and therefore

ρWBE(λ) =

(

1− 1

β

)

δ(λ) +
1

β
δ(λ− β), (21)

whose R-transform is given by

RWBE(z) =
2

1− βz +
√

(βz − 1)2 + 4z
. (22)

One can evaluate, via RWBE(z), the mutual information when orthogonally-
invariant random WBE spreading sequences are employed. In figure 2, we
show a comparison of the mutual information when the above two spreading
sequences are employed, and when probability distribution of {xk} is given by
p(xk) = (δ(xk−1)+ δ(xk +1))/2, k = 1, · · · , K. One can confirm that WBE
spreading sequences achieve higher mutual information than i.i.d. random
spreading sequences do.

3.2. Optimizing spreading sequences

Choices of spreading sequences affect the average mutual information C
through the limiting eigenvalue distribution ρ(λ) of the correlation matrix
R. Then, we regard the average mutual information C as a functional of
ρ(λ), and seek the eigenvalue distribution ρ∗(λ) which maximizes the average
mutual information C. Hereafter, we consider the case of β > 1 since optimal
spreading sequences in the case of β ≤ 1 are obviously orthogonal spreading
sequences. In optimizing C with respect to ρ(λ), the following two constraints
should be imposed on ρ(λ): First, since β > 1, theK×K matrix R has trivial
zero eigenvalues with multiplicity (K−L). Second, since we have normalized
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the power of spreading sequences as
∑L

µ=1(sµk/
√
L)2 = 1, k = 1, · · · , K, the

matrix S should satisfy

TrSTS =
K
∑

k=1

λk = K, (23)

where {λk} are the eigenvalues of K ×K matrix STS. In terms of ρ(λ), the
constraint (23) is expressed as

∫

λ ρ(λ) dλ = 1. (24)

We rewrite ρ(λ) in view of these constraints as

ρ(λ) =

(

1− 1

β

)

δ(λ) +
1

β
π(λ), (25)

where π(λ) satisfies
∫

π(λ) dλ = 1, (26)

as the normalization as a probability distribution, and
∫

λ π(λ) dλ = β, (27)
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which corresponds to the normalization of the power of spreading sequences (24).
In order to discuss the extremum of C with respect to ρ(λ), we consider

first-order perturbations of C. Since the parameters affected by the pertur-
bation of ρ(λ) are {G(t), E , θ}, the functional derivative of C with respect
to ρ is expressed as

δC

δρ
=

δC

δG
· δG
δρ

+
∂C

∂E · δE
δρ

+
∂C

∂θ
· δθ
δρ

. (28)

Since {E , θ} should satisfy the saddle-point equations (16) and (17), the
derivatives of C with respect to the parameters {E , θ} should be zero at the
saddle point. Therefore, one can safely ignore the effects of perturbations via
E and θ.

Our next observation is that, if one can find an eigenvalue distribution
which maximizes −(1/2)G(−E/σ2), which is the only term having the first-
order effect in (12), it also maximizes the average mutual information (12).
We rewrite −G(−E/σ2) as

−G

(

− E
σ2

)

= −
∫ −E/σ2

0

R(z)dz =

∫ 0

−E/σ2

R(z)dz. (29)

Since −E/σ2 < 0 and R(z) > 0, one can make the following statement: If
there is a distribution ρ∗(λ) whose R-transform R∗(z) satisfies

R∗(z) ≥ R(z), for ∀z ∈ (−E/σ2, 0), (30)

for any R-transform R(z) of the distribution ρ(λ) which satisfies the con-
straints (25)–(27), ρ∗(λ) also maximizes −G(−E/σ2). We summarize the
above arguments in the next proposition.

Proposition 1 If one can find an eigenvalue distribution ρ∗(λ) which max-

imizes R-transform for ∀z ∈ (−E/σ2, 0), ρ∗(λ) also maximizes the average

mutual information C.

It should be noted that the existence of ρ∗(λ) is not guaranteed at this stage.
However, in the following, we show that there is a distribution which satisfies
the condition of Proposition 1.

As a next step, we convert the optimization problem in terms of R-
transform into the one in terms of Hilbert transform. Since Hilbert transform
C(γ) is a monotonically decreasing function of γ, and since Hilbert transform
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has the relation (15) with R-transform, it follows that R(z) + 1/z also de-
creases monotonically with respect to z. This fact leads us to the following
statement: If one can find an eigenvalue distribution ρ∗(λ) which maximizes
C(γ) for ∀γ < λmin, and which satisfies (25)–(27), ρ∗(λ) also maximizes R(z)
for ∀z ∈ (zmin, 0), with

zmin = lim
γ→λmin−0

C(γ). (31)

Summarizing the arguments so far, we can state the next proposition.

Proposition 2 If one can find an eigenvalue distribution ρ∗(λ) whose Hilbert
transform C∗(γ) satisfies

C∗(γ) ≥ C(γ), ∀γ < λmin, (32)

for any eigenvalue distribution ρ(λ) with Hilbert transform C(γ), which sat-

isfies (25)–(27), ρ∗(λ) also maximizes the average mutual information C.

Following the above proposition, we consider the maximization problem
of the Hilbert transform for γ < λmin. Substituting (25) to (14), the Hilbert
transform C(γ) is rewritten as

C(γ) =
(

1− 1

β

)

1

γ
+

1

β

∫

π(λ)

γ − λ
dλ. (33)

Since the first term, which is derived from the trivial zero eigenvalues, has
no room for optimization, we maximize the second term under the con-
straints (26) and (27). Let us consider the following integral:

∫

π(λ)

(

1

γ − λ
− f(λ)

)

dλ, (34)

where f(λ) is a linear function tangential to 1/(γ − λ) at λ = β. Since the
function f(λ) is a linear function, the expectation of f(λ) with respect to π(λ)
is constant under the constraints (26) and (27). Thus, the quantities (34)
and (33) are maximized by the same eigenvalue distribution. We here con-
sider a maximization problem of the objective function (34) for γ < λmin

with the constraint (26), but without the constraint (27). Since we have only
to consider λ ∈ [λmin, λmax], we can assume λ > γ. Since 1/(γ − λ) is convex
upward in λ for λ > γ, one has

1

γ − λ
− f(λ) ≤ 0, λ > γ, (35)
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where the equality holds if and only if λ = β. Then, the objective func-
tion (34) is maximized for γ < λmin by the probability distribution

π(λ) = δ(λ− β). (36)

Since the distribution (36) incidentally satisfies the power constraint (27),
the distribution (36) is also a maximizer of the objective function (34) with
both of the constraints (26) and (27). Since the two functions (33) and (34)
are maximized by the same probability distribution, the distribution (36) is
also the optimal solution of the maximization problem of the Hilbert trans-
form. Thus, we obtain the maximizer of the average mutual information (12).
Substituting (36) to (25), one can confirm that the optimal eigenvalue distri-
bution is the one of WBE spreading sequences ρWBE, which is given by (21).

We have so far shown that WBE spreading sequences are also asymptot-
ically optimal in CDMA systems with a non-Gaussian input distribution in
the large-system limit. This finding is an extension of the optimality result
of WBE spreading sequences for Gaussian-input CDMA systems.

4. Conclusion

We have demonstrated that the statistical-mechanics approach is useful
not only in analyzing theoretical performance of wireless communication sys-
tems but also in providing clues to how to design them, via the problem of
optimizing spreading sequences in CDMA systems. We have evaluated, via
replica method, average mutual information between input and output of the
system in the large-system limit, and discussed the optimization problem of
the average mutual information in terms of characteristics of random spread-
ing sequences. It has been shown that the average mutual information is
maximized in the large-system limit by orthogonally-invariant random WBE
spreading sequences even when the inputs are non-Gaussian. Although in
this paper we have only studied a fully-synchronous CDMA model with per-
fect power control, one can consider the same problem in more general CDMA
systems, such as the one with unequal-power users, and that is deferred to
our future work.

A. Details of replica analysis

In this appendix, we explain how to evaluate F given by (11). First, we
calculate the expectation Ey,S{p(y|S)n} assuming that n is a non-negative
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integer. Introducing replicated random vectors xa = [xa1, · · · , xaK ]
T ∈

R
K , a = 0, · · · , n, which are drawn from the same probability distribution

as x, we rewrite Ey,S{p(y|S)n} as

ES

{

∫ ∫ n
∏

a=0

p(y|xa, S)p(xa)dxady

}

. (37)

Performing the integral with respect to y, we obtain

Ey,S{(p(y|S))n}

= Exa,S

{

exp

[

K

2
TrRV − L

2
log(n + 1)− nL

2
log(2πσ2)

]}

. (38)

where K ×K matrix V is given by

V =
1

(n+ 1)Kσ2

(

n
∑

a=0

xa

)(

n
∑

a=0

xa

)T

− 1

Kσ2

n
∑

a=0

xax
T
a . (39)

The expectation with respect to S can be performed via the so-called Itzykson-
Zuber integral [14, 12] (see also [8, 15]), since R = STS is assumed orthogo-
nally invariant and rank of V is at most (n+ 1), as

lim
K→∞

1

K
logES

{

exp

[

K

2
TrRV

]}

=
1

2
TrG(V ), (40)

where G(x) is the function defined in (13). Thus, we obtain the following
equation, ignoring vanishing terms in the large-system limit,

Ey,S{(p(y|S))n}

= E{xa}

{

exp

[

K

2
TrG(V )− L

2
log(n + 1)− nL

2
log(2πσ2)

]}

. (41)

We next take expectation of (41) with respect to {xa}. Since eigenvalues
of the matrix V are functions of {xa} only through their inner products
xa ·xb, a, b = 0, · · · , n, we rewrite the expectation with respect to {xa} into
the one with respect to the (n+ 1)× (n+ 1) matrix

Q = (Qab), Qab =
1

K

K
∑

k=1

xakxbk, (42)
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as
∫

exp[KG(Q)]µK(Q)dQ, (43)

where KG(Q) is the exponent of (41),

G(Q) =

[

1

2
TrG(V )

]

(Q)− 1

2β
log(n+ 1)− n

2β
log(2πσ2), (44)

and where µK is the following measure

µK(Q) = E{xa}

{

n
∏

0≤a≤b

δ

(

K
∑

k=1

xakxbk −KQab

)}

. (45)

Utilizing the saddle-point method [3, 4], we evaluate (43) in the limit K → ∞
as

lim
K→∞

1

K
logE{(p(y|S))n} = sup

Q
{G(Q)− I(Q)}, (46)

where I(Q) is the rate function of the empirical means (42), defined via a
Legendre transform as

I(Q) = sup
Q̃

[

∑

0≤a≤b

QabQ̃ab − logM(Q̃)

]

, (47)

where Q̃ = (Q̃ab) is an (n + 1) × (n + 1) symmetric matrix. The cumulant
generating function logM(Q̃) of {xa} is defined as

logM(Q̃) = logE{xa}

{

exp

[

∑

0≤a≤b

Q̃abxaxb

]}

. (48)

In order to proceed further, we assume the so-called replica symmetry:
We assume that the extremum of (46) is invariant under exchanges of the
replica indexes. Under the assumption of replica symmetry, we introduce
new parameters,

Qaa = p, Qab = q, a 6= b. (49)

Using these parameters, the eigenvalues of V are expressed as

λ1 = −p− q

σ2
, (50)
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λ2 = 0, (51)

whose multiplicities are n and (K−n), respectively. Since G(x) is an analytic
function and G(0) = 0, we can express G(Q) as

G(Q) =
n

2
G

(

−p− q

σ2

)

− 1

2β
log(n+ 1)− n

2β
log(2πσ2). (52)

We also apply the assumption of replica symmetry to Q̃ as

Q̃aa = c, Q̃ab = θ, a 6= b, (53)

and rewrite the rate function I(Q) as

I(Q) = sup
Q̃

[

(n+ 1)cp+
n(n+ 1)

2
θq

− logE{xa}

{

exp

[

c

n
∑

a=0

xa + θ
∑

0≤a<b

xaxb

]

}]

. (54)

Deriving the extremum condition of (46) with respect to p and q in the limit
n → 0, we obtain the following saddle-point equations,

c = 0, (55)

θ =
1

σ2
R(−p− q

σ2
). (56)

Similarly, as the extremum condition of (46), we obtain the following saddle-
point equation,

p− q = E{(x− 〈x〉)2; θ}, (57)

where x follows the probability distribution p(x), and where 〈x〉 is the poste-
rior mean estimate of channel input x given output u in a single-user AWGN
channel whose variance is 1/θ and whose input and output are x and u,
respectively. Introducing the posterior variance E ≡ p − q, we obtain the
saddle-point equations (16) and (17). In order to obtain F , we differentiate
logE{(p(y|S))n}, which is obtained by substituting (52) and (54) to (46),
with respect to n, and then take the limit n → 0. Finally, we obtain the
representation of F as

F = −1

2
θE − 1

2
G

(

− E
σ2

)

− 1

2
log

2π

θ

− 1

2
−
∫

p(u; θ) log p(u; θ) du+
1

2β
(1 + log(2πσ2)). (58)
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Substituting (58) to (7), we obtain the average mutual information (12).

Acknowledgment

Support from the Grant-in-Aid for Scientific Research on Priority Areas,
the Ministry of Education, Culture, Sports, Science and Technology, Japan
(no. 18079010) is acknowledged.

References

[1] A. J. Viterbi, CDMA: Principles of spread spectrum communication,
Addison-Wesley, 1995.
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