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Continuum Equilibria and Global Optimization

for Routing in Dense Static Ad Hoc Networks

Alonso Silva∗‡ , Eitan Altman∗, Pierre Bernhard†, Mérouane Debbah‡

Abstract We consider massively dense ad hoc networks and study their continuum limits as the

node density increases and as the graph providing the available routes becomes a continuous area

with location and congestion dependent costs. We study both the global optimal solution as well

as the non-cooperative routing problem among a large population of users where each user seeks

a path from its origin to its destination so as to minimize its individual cost. Finally, we seek for

a (continuum version of the) Wardrop equilibrium. We first show how to derive meaningful cost

models as a function of the scaling properties of the capacity of the network and of the density of

nodes. We present various solution methodologies for the problem: (1) the viscosity solution of

the Hamilton-Jacobi-Bellman equation, for the global optimization problem, (2) a method based

on Green’s Theorem for the least cost problem of an individual, and (3) a solution of the Wardrop

equilibrium problem using a transformation into an equivalent global optimization problem.

Keywords: Routing, Wireless Ad Hoc Networks, Wireless Sensor Networks, Equilibrium.

1 Introduction

Research on ad hoc networks involves the design of protocols at various network layers
(MAC, transport, etc.), the investigation of physical limits of transfer rates, the optimal
design of end-to-end routing, efficient energy management, connectivity and coverage issues,
performance analysis of delays, loss rates, etc. The study of these issues has required the use
of both engineering methodologies as well as information theoretical ones, control theoretical
tools, queueing theory, and others. One of the most challenging problems in the performance
analysis and in the control of ad hoc networks has been routing in massively dense ad hoc
networks. On one hand, when applying existing tools for optimal routing, the complexity
makes the solution intractable as the number of nodes becomes very large. On the other
hand, it has been observed that as an ad hoc network becomes “more dense” (in a sense that
will be defined precisely later), the optimal routes seem to converge to some limit curves.
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This is illustrated in Fig. 1. We call this regime, the limiting “macroscopic” regime. We
shall show that the solution to the macroscopic behavior (i.e., the limit of the optimal routes
as the system becomes more and more dense) is sometimes much easier to solve than the
original “microscopic model”.

Figure 1: Minimum cost routes in increasingly large networks.

The term “massively dense” ad hoc networks is used to indicate not only that the number of
nodes is large, but also that the network is highly connected. By the term “dense” we further
understand that for every point in the plane there is a node close to it with high probability;
by “close” we mean that its distance is much smaller than the transmission range. In this
paper and in previous works (cited in the next paragraphs) one actually studies the limiting
properties of massively dense ad hoc networks, as the density of nodes tends to infinity.

The empirical discovery of the macroscopic limits motivated a large number of researchers
to investigate continuum-type limits of the routing problem. A very basic problem in doing
so has been to identify the most appropriate scientific context for modelling and solving this
continuum limit routing problem. Our major contribution is to identify completely the main
paradigms (from optimal control as well as from road traffic engineering) for the modelling
and the solution of this problem. We illustrate the use of these methodologies by considering
new types of models that arise in the case of nodes with directional antennas.

Physics-inspired paradigms: The physics-inspired paradigms used for the study of large
ad hoc networks go way beyond those related to statistical-mechanics in which macroscopic
properties are derived from microscopic structure. Starting from the pioneering work by
Jacquet (see [18]) in that area, a number of research groups have worked on massively dense
ad hoc networks using tools from geometrical optics [18]1. Popa et al. in [22] studied
optical paths and actually showed that the optimal solution to a minmax problem of load
balancing can be achieved by using an appropriately chosen optical profile. The forwarding
load appears to correspond to the scalar sum of traffic flows of different classes. This means
that the optimal solution (with respect to this objective) can be achieved by single path

1We note that this approach is restricted to costs that do not depend on the congestion.
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routes, a result obtained also in [15]. Similar problems have been also studied in [8], as well
as in works doing load balancing by analogies to Electrostatics (see e.g. [13, 19, 20, 27, 28],
and the survey [29] and references therein). We shall describe these in the next sections.

The physical paradigms allow the authors to minimize various metrics related to the routing
problem. In contrast, Hyytia and Virtamo proposed in [16] an approach based on load
balancing arguing that if shortest path (or cost minimization) arguments were used, then
some parts of the network would carry more traffic than others and may use more energy
than others. This would result in a shorter lifetime of the network since some parts would
be out of energy earlier than others.

Road-traffic paradigms: The development of the original theory of routing in massively
dense networks among the community of ad hoc networks has emerged in a complete inde-
pendent way of the existing theory of routing in massively dense networks which had been
developed within the community of road traffic engineers. Indeed, this approach had already
been introduced in 1952 by Wardrop [31] and by Beckmann [4] and is still an active research
area among that community, see [6, 7, 14, 17, 33] and references therein.

Our contribution and the paper’s structure: We combine in this paper various ap-
proaches from the area of road traffic engineering as well as from optimal control theory in
order to formulate models for routing in massively dense networks. We further propose a
simple novel approach to that problem using a classical device of 2-D, singular optimal con-
trol [21], based on Green’s formula to obtain a simple characterization of least cost paths of
individual packets. We end the paper by a numerical example for computing an equilibrium.

The paper starts with a background on the research on massively dense ad hoc networks. In
doing so, it is not limited to a specific structure of the cost. However, when introducing our
approach based on road traffic tools, we choose to restrict ourselves to static networks (say
sensor networks) having a special cost structure characterized by communications through
horizontally and vertically oriented directional antennas. The use of directional antennas,
by pointing information in a specific direction, allows one to save energy which may result
in a longer life time of the network. The nodes are assumed to be placed deterministically.
For an application of our approach to omnidirectional antennas, see [1]. We solve various
types of optimization problems: We consider (i) the global optimization problem in which
the objective of routing decisions is to minimize a global cost, (ii) the individual optimization
problem whose solution is the Wardrop equilibrium. It corresponds to the situation where
the number of users is very large, and each user tries to minimize its own cost (in a non-
cooperative way). This is a “population game” or a “non-atomic-game” framework. It is
called “non-atomic” since a single player sends a negligible amount of traffic (with respect
to the total amount of traffic) and as a consequence, its impact on the performance of other
users is negligible.

The structure of this paper is as follows: We begin by presenting models for costs relevant
to optimization models in routing or to node assignment. We then formulate the global
optimization problem and the individual optimization one with a focus on the directional
antennas scenario. We provide several approaches obtaining both a qualitative characteri-
zation as well as quantitative solutions to the problems.
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2 An overview of dense ad hoc networks

We suppose that the network is modeled in the two dimensional plane X1 × X2. The
continuous information density function ρ(x), measured in bps/m2, at locations x where
ρ(x) > 0 corresponds to a distributed data origin such that the rate with which information
is created in an infinitesimal area of size dAε centered at x is ρ(x) dAε. Similarly, at locations
x where ρ(x) < 0 there is a distributed data sink such that the rate with which information
is absorbed by an infinitesimal area of size dAε, centered at point x, is equal to −ρ(x) dAε.

The total rate at which the destination nodes receive the data must be the same as the total
rate at which the data is created at the origin nodes, i.e.,

∫

X1×X2

ρ(x) dS = 0.

In optimizing a routing protocol in ad hoc networks, or in optimizing the placement of nodes,
one of the starting points is the determination of the cost function that captures the cost of
transporting a packet through the network. To determine it, we need a detailed specification
of the network which includes the following:

• A model for the placement of nodes in the network.

• A forwarding rule that nodes will use to select the next hop of a packet.

• A model for the cost incurred in one hop, i.e., for transmitting a packet to an inter-
mediate node.

Below we present several ways of choosing cost functions.

We define the flow of information T(x) (see Fig. 2) to be a vector whose components are the
horizontal and vertical flows at point x. Throughout we assume that each point carries a
single flow (although the methodology can be extended to the multiflow case). The restriction
to a single flow is justified when there is either a single destination, or when there is a set
of destination points and the routing protocol has the freedom to decide to which of the set
the packets will be routed. Under this type of conditions, one may assume a single flow at
each point without loss of optimality (see e.g. [15]).

2.1 Costs derived from capacity scaling

Many models have been proposed in the literature that show how the transport capacity
scales with the number of nodes n or with the density of nodes λ within a certain region.
A typical cost (see e.g. [27]) considered at a neighborhood of a location2 x is the density
of nodes required there to carry a given flow of information T(x). We will work within a
general framework and then investigate deeply some particular cases with different possible
protocols. Assume that we use a protocol that provides a transport capacity of the order

2We denote the vectors by bold fonts.
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Figure 2: Flow of informa-

tion T(x) through incremental
line segment dℓ, decomposed in
its horizontal component T1(x) (in
the direction X1) and its ver-
tical component T2(x) (in the

direction X2).

of f(λ) at some region in which the density of nodes is λ (we will provide examples of the
function f ahead). This means that in order to support a flow of information |T(x)| passing
through a neighborhood of the location x, we will need to place deterministically the nodes
according to the formula f−1(|T(x)|). Then if we assume that a flow of information T(x) is
assigned through a neighborhood of the location the cost will be taken as

c(x,T(x)) = f−1(|T(x)|) (1)

where |·| represents the norm of a vector.

Most work in this area has considered the ℓ2-norm, i.e., for x = (x1, x2), we define |x| =
√

x21 + x22.
We shall consider later also the ℓ1-norm, i.e., |x| = |x1|+ |x2|.
Examples for f :

• Using a network theoretic approach based on multi-hop communication, Gupta and
Kumar proved in [12] that the throughput of the system that can be transported by

the network when the nodes are optimally located is3 Ω(
√
λ), and when the nodes are

randomly located this throughput becomes Ω(
√
λ√

log λ
). Using percolation theory, the

authors of [10] have shown that in the randomly located set the same Ω(
√
λ) can be

achieved.

• Baccelli, Blaszczyszyn and Mühlethaler introduce in [2] an access scheme, MSR (Multi-

hop Spatial Reuse Aloha), reaching the Gupta and Kumar bound Θ(
√
λ) which does

not require prior knowledge of the node density.

We conclude that for the model of Gupta and Kumar with either the optimal location or the
random location approaches, as well as for the MSR protocol with a Poisson distribution of
nodes, we obtain a quadratic cost of the form

c(T(x)) = k|T(x)|2 = k(T1(x)
2 + T2(x)

2). (2)

This follows from the fact that in the previous examples f(x) behaves like
√
x, so the inverse

of the function f must be quadratic. Then from (1) we conclude that the cost function must
be quadratic on |T(x)|.

3 We denote f ∈ Ω(g) if f is bounded below by g (up to a constant factor) asymptotically and we denote
f ∈ Θ(g) if f is bounded both above and below by g (up to a constant factor) asymptotically.
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2.2 Congestion independent routing

A metric often used in the Internet for determining routing costs is the number of hops
from origins to destinations, which routing protocols try to minimize. The number of hops
is proportional to the expected delay along the path in the context of ad hoc networks, in
case the queueing delay is negligible with respect to the transmission delay over each hop.
This criterion is insensitive to interference or congestion. We assume that it depends only
on the transmission range. We describe various cost criteria that can be formulated with
this approach.

• If the range is constant then the cost density c(x) is constant so that the cost of a path
is its length in meters. The routing then follows a shortest path selection.

• Let us assume that the range R(λ;x) is small, and it depends on local radio condi-
tions at position x (for example, if it is influenced by weather conditions) but not on
interference. The latter is justified when dedicated orthogonal channels (e.g. in time
or frequency) can be allocated to traffic flows that would otherwise interfere with each
other. Then determining the optimal routing becomes a path cost minimization prob-
lem. We further assume, as in [12], that the range is scaled to go to 0 as the total
density λ of nodes grows to infinity. More precisely, let us consider a scaling of the
range such that the following limit exists:

r(x) := lim
λ→∞

R(λ;x)

λ

Then in the dense limit, the fraction of nodes that participate in forwarding packets
along a path is 1/r(x) at position x, and the path cost is the integral of this density
along the path.

• The influence of varying radio conditions on the range can be eliminated using power
control that can equalize the hop distance.

2.3 Costs related to energy consumption

In the absence of capacity constraints, the cost can represent energy consumption. In a
general multi-hop ad hoc network, the hop distance can be optimized so as to minimize the
energy consumption. Even within a single cell of 802.11 IEEE wireless LAN one can improve
the energy consumption by using multiple hops, as it has been shown not to be efficient in
terms of energy consumption to use a single hop [23].

Alternatively, the cost can take into account the scaling of the nodes (as we have done
in Section 2.1) that is obtained when there are energy constraints. As an example, assuming
random deployment of nodes, where each node has data to send to another randomly selected
node, the capacity (in bits per Joule) has the form f(λ) = Ω

(

(λ/ log λ)(q−1)/2
)

where q is

the path-loss, see [24]. The cost is then obtained using (1).
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3 Preliminaries

In the work of Toumpis et al. ([13, 26, 27, 28, 29, 30]), the authors addressed the problem
of the optimal deployment of wireless sensor networks by a parallel with Electrostatics. We
shall recall below the representation of the flow conservation constraint, which is well known
in Electrostatics. This derivation appears both in physics-inspired papers ([13, 26, 27, 28,
29, 30]) as well as in the road traffic literature [6].

Consider a grid area network D0 of arbitrary shape on the two-dimensional plane with axis
X1 and axis X2, with smooth boundary. It is necessary that the rate with which information
is created in the area must be equal to the rate with which information is leaving that area,
i.e.,

∫

D0

ρ(x) dx =

∮

∂D0

[T(x) · n(x)] dℓ. (3)

The integral on the left is the surface integral of ρ(x) over D0. The integral on the right is
the path integral of the inner product T ·n over the curve ∂D0. The vector n(x) is the unit
normal vector to ∂D0 at the boundary point x ∈ ∂D0 and pointing outwards. The function
T(x) · n(x), measured in bps/m, is equal to the rate with which information is leaving the
domain D0 per unit length of boundary at the boundary point x.

As this holds for any (smooth) domain D0, it follows that necessarily

∇ ·T(x) :=
∂T1(x)

∂x1
+
∂T2(x)

∂x2
= ρ(x), (4)

where “∇·” is the divergence operator. Notice that equations (3) and (4) are the integral
and differential versions of Gauss’s law, respectively.

Extension to multi-class traffic The work on massively dense ad hoc networks considers
a single class of traffic. In the geometrical optics approach it corresponds to demand from
a location a to a location b. In the Electrostatic case it corresponds to a set of origins and
a set of destinations where traffic from any origin point could go to any destination point.
The analogy to positive and negative charges in Electrostatics may limit the perspectives
of multi-class problems where traffic from distinct origin sets has to be routed to distinct
destination sets.

The model based on geometrical optics can directly be extended to include multiple classes
as there are no elements in the model that suggest coupling between classes. This is due in
particular to the fact that the cost density has been assumed to depend only on the density
of the nodes and not on the density of the flows.

In contrast, the cost in the model based on Electrostatics is assumed to depend both on the
location as well as on the local flow density. It thus models more complex interactions that
would occur if we considered the case of ν traffic classes. Extending the relation (4) to the
multi-class case, we have traffic conservation at each point in space for each traffic class as
expressed in the following:

∇ ·Tj(x) = ρj(x), ∀x ∈ D. (5)

7



The function Tj is the flow distribution of class j and ρj corresponds to the distribution of
the external origin and/or destinations.

Let T(x) be the total flow vector at point x ∈ D. It is a vector of dimension ν, and each
one of the ν-entries is a two dimensionnal flow. A generic multi-class optimization problem
would then be: minimize Z over the flow distributions {Tj}

Z =

∫

D

c(x,T(x)) dx subject to ∇ ·Tj(x) = ρj(x), j = 1, ..., ν ∀x ∈ D. (6)

4 Directional Antennas and Global Optimization

So far we have adopted a general framework under which the flow is conserved. To proceed,
we need more specific assumptions on the cost function. The one we shall introduce here
can be called an ℓ1-norm model, in which the cost to go from a point to another is the
sum of the horizontal and vertical cost components. This is justified in case traffic flows
only horizontally or vertically (so that even a continuous diagonal curve is understood as a
limit of many horizontal and vertical displacements). In road traffic, this corresponds to a
Manhattan-like network, see [6]. In the context of sensor networks this would correspond to
directional antennas (either horizontal or vertical). An alternative approach based on road
traffic tools that is adapted to omni-directional antennas can be found in [1, 25] and we call
it the L2-norm (meaning that the cost at any point depends on the absolute value of the
traffic there and not on its direction). An extensive discussions on methods for numerical
solutions of our problem as well as the problem in [1] can be found in [25] and in references
there in, as well as in [6].

4.1 The model

Nodes are placed (deterministically) in a large number. For energy efficiency, it is assumed
that each node is equipped with one or with two directional antennas, allowing transmission
at each hop to be directed either from North to South or from West to East. The model
we use extends that of [6] to the multi-class framework. We thus consider ν classes of flows

T j
1 ≥ 0, T j

2 ≥ 0, j = 1, ..., ν. To be compatible with Dafermos [6], we use her definitions
of orientation according to which the directions North to South and West to East are taken
positive. In the dense limit, a curved path can be viewed as a limit of a path with many
such hops as the hop distance tends to zero.

Some assumptions on the cost:

• Individual cost: We allow the cost for a horizontal transmission (West-to-East, or
equivalently, in the direction of the axis x1) to be different than the cost for a vertical
transmission (North-to-South, or equivalently, in the direction of the axis x2). It is
assumed that a packet traveling in the direction of the axis x1 incurs a transportation
cost g1, and equivalently, traveling in the direction of the axis x2 incurs a transportation
cost g2. Notice that the transportation costs g1 and g2 depend on the location x and
the traffic flow T(x) that is flowing through that location, i.e., g1 = g1(x,T(x)) and
g2 = g2(x,T(x)).

8



• We consider a vector transportation cost g := (g1, g2). Notice that as each of its
components, such vector transportation cost depends also upon the location x and the
traffic flow T(x) flowing through that location, i.e., g = g(x,T(x)).

• The local transportation cost g for the global optimization problem is given by the
inner product between the vector transportation cost and the flow of information, i.e.,

g(x,T(x)) = g(x,T(x)) ·T(x) = g1T1 + g2T2,

and it corresponds to the sum of the transportation costs multiplied by the quantity
of flow in each direction.

• The global transportation cost is the integral of the local transportation cost over the
domain, i.e.,

∫

D
g(x,T(x)) dx.

• The local cost g(x,T(x)) is assumed to be non-negative, monotone increasing in each
component of T (T1 and T2 in our 2-dimensional case).

The boundary conditions will be determined by the options that travelers have in selecting
their origin and/or destinations. Examples of the boundary conditions are:

• Assignment problem: users of the network have predetermined origin and destinations
and are free to choose their travel paths.

• Combined distribution and assignment problem: users of the network have predeter-
mined origins and are free to choose their destinations (within a certain destination
region) as well as their paths.

• Combined generation, distributions and assignment problem: users are free to choose
their origins, their destinations, as well as their travel paths.

The problem formulation is again to minimize Z as defined in (6). The natural choice
of functional spaces to make that problem precise, and to take advantage of the available
theory developped in the PDE (Partial Differential Equations) community, is to work in the
Sobolev space H1. We define L2(D) as the space of functions that are square-integrable,
i.e., L2(D) = {f such that

∫

D
|f(x)|2 dx < +∞}. We define H1(D) as the space of functions

that are square integrable, and with weak gradient square-integrable. Take f to be a scalar
function, define its weak gradient as a vector function g such that, for any smooth vector

function φ with compact support in D,
∫

D
f ∇ · φ = −

∫

D
< g, φ >. Then, we seek T j

i in

H1(D), such that ρ is in L2(D).

4.2 Karush-Kuhn-Tucker conditions

The Karush-Kuhn-Tucker conditions (also known as KKT conditions) which we introduce
below are necessary conditions for a solution in nonlinear programming to be optimal. It is a
generalization of the method of Lagrange multipliers. We recall that the method of Lagrange
multipliers provides a strategy for finding the minimum of a function subject to constraints
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and it is based on introducing new variables called Lagrange multipliers and study a function
called Lagrange function. If a traffic flow T is optimal for our global optimization problem
then there exist Lagrange multipliers that satisfy some complementarity conditions such that
the corresponding Lagrangian is maximized by T.

In the problem considered here the traffic flow in each direction Ti is a functional (a map
from the vector space to the scalar space). Then we will consider variational inequalities,
i.e., inequalities involving a functional which have to be solved for all the values of the vector
space.

A key application of these KKT conditions will be introduced in Section 6. We study
there the individual (non-cooperative) optimization problem for each packet sent through
the network and show that the solution must satisfy some variational inequalities. We
then show that these inequalities can be interpreted as the Karush-Kuhn-Tucker conditions
that we introduce in this chapter, applied to some transformed cost (called “potential”
and introduced by Beckmann [5]). This will allow us to propose a method for solving the
individual (non-cooperative) optimization problem.

We begin by recalling Green’s Theorem which has proved to be useful for many physical
phenomena. We will make extensive use of this theorem in this section as well as in Section 6.

Theorem 4.1 (Green’s Theorem) Let D be a region of the space, and let ∂D be its
piecewise-smooth boundary. Consider the scalar function u and a continuously differentiable
vector function v, then

∫

D

u∇ · vdx =

∫

∂D

u < v,n > dℓ−
∫

D

< v,∇u > dx.

By making use of this theorem and the Karush-Kuhn-Tucker conditions we are able to prove
a result that provides a characterization of the optimal solution for some special cases as we
will see in the following.

Theorem 4.2 Define the Lagrangian as

Lζ(T) :=

∫

D

ℓζ(x,T) dx with ℓζ(x,T) := g(x,T)−
ν

∑

j=1

ζj(x)
[

∇·Tj(x)− ρj(x)
]

where ζj(x) ∈ L2(D) are called Lagrange multipliers.

For a vector field T(·) with positive components satisfying (5), a necessary and sufficient
condition for minimizing the cost (6) is that the Lagrangian be minimized over all vector
fields with positive components, or equivalently, that equations

∂g(x,T)

∂T j
i

+
∂ζj(x)

∂xi
= 0 if T j

i (x) > 0, (7a)

∂g(x,T)

∂T j
i

+
∂ζj(x)

∂xi
≥ 0 if T j

i (x) = 0. (7b)

be satisfied.
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Proof.- The criterion is convex, and the constraint (5) affine. Therefore the Karush-Kuhn-
Tucker theorem holds, stating that the Lagrangian is minimum at the optimum. A variation
δT(·) will be admissible if T(x) + δT(x) ≥ 0 for all x, hence in particular, for all x such

that T j
i (x) = 0 and δT j

i (x) ≥ 0.

As we are working with functionals, we need a generalisation of the concept of directional
derivative used in differential calculus. The Gâteaux differential DF (u, d) of functional F
at u in the direction d is defined as

DF (u, d) = lim
t→0

F (u+ td)− F (u)

t
=

d

dt
F (u+ td)

∣

∣

∣

t=0
.

if the limit exists. If the limit exists for all d, one says that F is Gâteaux differentiable at u.

Let DLζ denote the Gâteaux derivative of functional Lζ with respect to T(·). First order
condition for local minimum reads

For all δT admissible ,DLζ · δT ≥ 0 ,

therefore here
∫

D

∑

j

〈∇Tjg(x,T(x)), δTj(x)〉 dx−
∫

D

∑

j

ζj(x)∇·δTj(x) dx ≥ 0.

Integrating by parts using Green’s Theorem, this is equivalent to

∫

D

∑

j

[

〈∇Tjg, δTj〉+ 〈∇xζ
j, δTj〉

]

dx−
∫

∂D

∑

j

ζj〈δTj,n〉 dℓ ≥ 0 .

We may choose all the components δTk = 0 except δTj , and choose δTj in (H1
0 (D))2, i.e.,

functions in H1(D) such that their boundary integral be zero. This is always feasible and
admissible. Then the last term above vanishes, and it is a classical fact that the inequality
implies (7a)-(7b) for i = 1, 2.

Placing this back in Euler’s inequality, and using a δTj non zero on the boundary, it follows
that necessarily4 ζj(x) = 0 at any x of the boundary ∂D where T (x) > 0. As we shall see
this conditions provides the boundary condition to recover the Lagrange multipliers ζj from
equation (5).

Equation (7a)-(7b) is already stated in [6] for the single class case. However, as Dafermos
states explicitly, its rigorous derivation is not available there. �

Consider the following special cases that we shall need later. We assume a single traffic class,
but this could easily be extended to several. Let

g(x,T(x)) =
∑

i=1,2

gi(x,T(x))Ti(x).

4This is a complementary slackness condition on the boundary.
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1. Monomial cost per packet:

gi(x,T(x)) = ki(x)
(

Ti(x)
)β

(8)

for some β > 1. Then (7a)-(7b) simplify to

(β + 1)ki(x) (Ti(x))
β +

∂ζ(x)

∂xi
= 0 if Ti(x) > 0, (9a)

(β + 1)ki(x) (Ti(x))
β +

∂ζ(x)

∂xi
≥ 0 if Ti(x) = 0. (9b)

In that case, recovery of ζ to complete the process is difficult, at best. Things are
simpler in the next case.

2. Affine cost per packet:

gi(x,T(x)) =
1

2
ki(x)Ti(x) + hi(x). (10)

Then (7a)-(7b) simplify to

ki(x)Ti(x) + hi(x) +
∂ζ(x)

∂xi
= 0 if Ti(x) > 0,

ki(x)Ti(x) + hi(x) +
∂ζ(x)

∂xi
≥ 0 if Ti(x) = 0.

Assume that the ki(·) are everywhere positive and bounded away from 0. For simplicity,
let ai = 1/ki, and b be the vector with coordinates bi = hi/ki, all assumed to be square
integrable. Assume that there exists a solution where T (x) > 0 for all x. Then

Ti(x) = −
(

ai(x)
∂ζ(x)

∂xi
+ bi(x)

)

.

As a consequence, from (5) and the above remark, we get that ζ(·) is to be found as
the solution in H1

0 (D) of the elliptic equation (an equality in H−1(D))

∑

i

∂

∂xi

(

ai(x)
∂ζ(x)

∂xi

)

+∇·b(x) + ρ(x) = 0 .

This is a well behaved Dirichlet problem, known to have a unique solution in H1
0 (D),

furthermore easy to compute numerically.

5 User optimization and congestion independent costs

In this section, we extend the shortest path approach for optimization that has already
appeared using geometrical optics tools [18]. We present a general optimization framework
for handling shortest path problems and more generally, minimum cost paths.
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We consider the model of Section 4. We assume that the local cost depends on the direction
of the flow but not on its size. The cost is c1(x) for a flow that is locally horizontal and
is c2(x) for a flow that is locally vertical. We assume in this section that c1 and c2 do not
depend on T. The cost incurred by a packet transmitted along a path p is given by the line
integral

cp =

∫

p

c · dx. (12)

Let V j(x) be the minimum cost to go from a point x to a set Bj, j = 1, ..., ν. Then

V j(x) = min
(

c1(x) dx1 + V j(x1 + dx1, x2), c2(x) dx2 + V j(x1, x2 + dx2)
)

. (13)

This can be written as the Hamilton Jacobi Bellman (HJB) equation:

0 = min

(

c1(x) +
∂V j(x)

∂x1
, c2(x) +

∂V j(x)

∂x2

)

, ∀x ∈ Bj , V j(x) = 0 . (14)

If V j is differentiable then, under suitable conditions, it is the unique solution of (14). In
the case that V j is not everywhere differentiable then, under suitable conditions, it is the
unique viscosity solution of (14) (see [3, 9]).

There are many numerical approaches for solving the Hamilton-Jacobi-Bellman (HJB) equa-
tion. One can discretize the HJB equation and obtain a discrete dynamic programming for
which efficient solution methods exist. If one repeats this for various discretization steps,
then we know that the solution of the discrete problem converges to the viscosity solution
of the original problem (under suitable conditions) as the step size converges to zero [3].

5.1 Geometry of minimum cost paths

We consider now our directional antenna model in a given rectangular area R, defined by
the simple closed curve Γ1∪Γ2∪Γ3∪Γ4 (see Fig. 3). We study the case where transmissions
can go from North to South or from West to East.

We obtain below optimal paths defined as paths that achieve the minimum packet trans-
mission cost defined by (12). We shall study two problems:

• Point to point optimal path: we seek the minimum cost path between two points.

• Point to boundary optimal path: we seek the minimum cost path on a given region
that starts at a given point and is allowed to end at any point on the boundaries.

Another formulation of Green’s Theorem stated previously as Theorem 4.1 give us a char-
acterization of the optimal paths for those two problems.

Theorem 5.1 (Green’s Theorem: alternative version) Let D be a region of the space,
and let ∂D be its piecewise-smooth boundary. Suppose that P and Q are continuously differ-
entiable functions in D. Then

∮

∂D

Pdx+Qdy =

∫

D

(

∂Q

∂x
− ∂P

∂y

)

dxdy.
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Recall that the cost is composed of a horizontal and a vertical component (these are c1(x)
and c2(x) respectively), which are constant (do not depend on the flow size).

Consider the function

U(x) =
∂c2
∂x1

(x)− ∂c1
∂x2

(x).

It will turn out that the structure of the minimum cost path depends on the costs through
the sign of the function U . Now, if the function c is continuously differentiable then U
is a continuous function. This motivates us to study cases in which U has the same sign
everywhere (see Fig. 3), or in which there are two regions in the rectangle R, one with U > 0
and one with U < 0, separated by a curve ℓ on which U = 0 (e.g. Fig. 4).

(0, 0) (a, 0)

(a, b)(0, b)

Γ1

Γ2

Γ3

Γ4 U > 0

Figure 3: The rectangle R defined by
the boundaries Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4. The
case where U > 0.

ℓ

(0, 0) (a, 0)

(a, b)(0, b)

Γ1

Γ2

Γ3

Γ4

U < 0

U > 0

Figure 4: The case of two regions sep-
arated by a curve. Case 1.

We shall assume throughout that the function c is continuously differentiable, and that, if
non-empty, the set of points inside the domain where the function U is zero, i.e., ℓ = {x : U(x) = 0},
is a smooth line. (This is true, e.g., if c is a smooth function and ∇U 6= 0 on ℓ.)

5.2 The function U has the same sign over the whole region

Theorem 5.2 (Point to point optimal path) Suppose that an origin point xo = (xo1, x
o
2) wants

to send a packet to a destination point xd = (xd1, x
d
2) and both points are in the interior of

rectangle R.

i. If the function U is positive almost everywhere in the interior rectangle Rod defined by
both points (see Fig. 5(a)), then the optimal path γopt is given by a horizontal straight
line γH and then a vertical straight line γV (see Fig. 5(a)).

More precisely, γopt = γH ∪ γV where

γH = {(x1, x2) such that xo1 ≤ x1 ≤ xd1, x2 = xo2},
γV = {(x1, x2) such that x1 = xd1, x

o
2 ≤ x2 ≤ xd2}.
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ii. If the function U is negative almost everywhere in the interior rectangle Rod then there
is an optimal path γopt given by a vertical straight line γV and then a horizontal straight
line γH (see Fig. 5(b)).

More precisely, γopt = γV ∪ γH where

γV = {(x1, x2) such that x1 = xo1, x
o
2 ≤ x2 ≤ xd2},

γH = {(x1, x2) such that xo1 ≤ x1 ≤ xd1, x2 = xd2}.

iii. In both cases, γopt is unique almost surely (i.e., the area between γopt and any other
optimal path is zero).

Proof.- Consider an arbitrary path5 γC joining xo to xd, and assume that the Lebesgue
measure of the area between γopt and γC is nonzero. We call γC the comparison path (see
Fig. 5(a) for the case U > 0 and Fig. 5(b) for the case U < 0).

γopt

γC

x
o

x
d

Γ1

Γ2

Γ3

Γ4

U > 0

Rod

(a) Case U > 0.

γopt

γC

x
o

x
d

Γ1

Γ2

Γ3

Γ4

U < 0

(b) Case U < 0.

Figure 5: Optimal paths when U > 0 5(a) and when U < 0 5(b) in the interior rectangle
defined by the origin point and the destination point.

(i) Showing that the cost over path γopt is optimal is equivalent to showing that the integral
of the cost over the closed path P is negative. Hereby P is given by following γopt from the
origin xo to the destination xd, and then returning from the destination xd to the origin xo

by moving along the comparison path γC in the reverse direction. This closed path is written
as P = γopt ∪ γ−C and A denotes the bounded area described by P. Using Green’s Theorem
we obtain

∮

P
c · dx = −

∫

A

U(x)dS

5Respecting that each subpath can be decomposed in sums of paths either from North to South or from
West to East (or is a limit of such paths).
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which is strictly negative since U > 0 almost everywhere on the interior rectangle Rod.
Decomposing the left integral, this concludes the proof of (i), and establishes at the same
time the corresponding statement on uniqueness in (iii).
(ii) is obtained similarly. �

Theorem 5.3 (Point to boundary optimal path)
Consider the problem of finding an optimal path from a point xo in the rectangle R to the
boundary Γ1 ∪ Γ2.

i. If the function U is almost everywhere negative inside the rectangle R and the cost on
the boundary Γ1 is non-negative and on boundary Γ2 is non-positive, then the optimal
path is the straight vertical line (See Fig. 6).

ii. If the function U(x) is almost everywhere positive inside the rectangle R and the cost on
the boundary Γ1 is non-positive and on boundary Γ2 is non-negative. Then the optimal
path is the straight horizontal line (See Fig. 7).

Proof.-

(i) Denote by γopt the straight vertical path joining xo to the boundary Γ1. Consider another
arbitrary valid path γC joining xo to any point x∗ on the boundary Γ1∪Γ2, and assume that
the Lebesgue measure of the area between γopt and γC is nonzero. We call γC the comparison
path.

Assume first that x∗ is on the boundary Γ2. Denote xD the South-East corner of the
rectangle R, i.e., xD := Γ1 ∩ Γ2. Then by Theorem 5.2(ii), the cost to go from xo to xd

is smaller when using γopt and then continuing eastwards (along Γ1) than when using the
comparison path γC and then southwards (along Γ2). Due to our assumptions on the costs
over the boundaries, this implies that the cost along the straight vertical path γopt is smaller
than along the comparison path γC.

Next consider the case where x∗ is on the boundary Γ1. Denote by η the section of the
boundary Γ1 that joins γopt ∩ Γ1 with x∗ (see Figure 6). Then again, by Theorem 5.2 (ii),
the cost to go from xo to x∗ is smaller when using γopt and then continuing eastwards (along
Γ1) than when using the comparison path γC . Due to our assumptions that the cost on Γ1

is non-negative, this implies that the cost along γV is smaller than along γC .

(ii) is obtained similarly. �

5.3 The function U changes sign within the region R

Consider the region on the space ℓ := {x ∈ R such that U(x) = 0} . Let us consider the
case when ℓ is a valid path in the rectangular area, such that it starts at the North-West
corner (the intersection of the boundaries Γ3∩Γ4) and finishes at the South-East corner (the
intersection of the boundaries Γ1 ∩ Γ2). Then the space is divided in two areas, and as the
function U is continuous we have the following cases:

1. U(x) is negative in the upper area and positive in the lower area (see Fig. 4).
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η Γ1

Γ2

Γ3

Γ4

U ≤ 0
x

o

γopt γC

Figure 6: Theorem 5.3 (i)

Γ1

η

Γ2

Γ3

Γ4

U ≥ 0

x
o

γopt

γC

Figure 7: Theorem 5.3 (ii)

2. U(x) is positive in the upper area and negative in the lower area.

The two other cases where the sign of U is the same over R are contained in what we solved
in the previous subsection 5.2.

Case 1: The function U(x) is negative in the upper area and positive in the lower area.

We shall show that in this case, ℓ is an attractor, in the sense that the optimal path reaches
the line ℓ with the minimal possible distance and then continues along this line until it
reaches the destination.

Proposition 5.1 Assume that the origin point xo and the destination point xd are both
on ℓ. Then the path pℓ that follows ℓ from the origin point xo to the destination point xd is
optimal.

Proof.- Consider a comparison path γC that coincides with ℓ only in the origin xo and
destination xd points. First assume that the comparison path γC is entirely in the upper
(i.e., northern) part and call A the area between γC and pℓ. Define P to be the closed path
that follows pℓ from xo to xd and then returns along γC .

The integral
∫

A
U(x) dx is negative by assumption. By Green’s Theorem, it is equal to

∮

P c · dx.
This implies that the cost along pℓ is strictly smaller than along γC .

A similar argument holds for the case that γC is below pℓ.

A path between xo and xd may have several intersections with ℓ. Between each pair of
consecutive intersections of ℓ, the subpath has a cost larger than that obtained by following
ℓ between these points (this follows from the previous steps of the proof). We conclude that
pℓ is indeed optimal. �

Proposition 5.2 Let an origin point xo send packets to a destination point xD.
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i. Assume both points are in the upper region. Denote by γ1 the two segments path given
by Theorem 5.2 (ii). Then the optimal curve γopt is obtained as the maximum between
ℓ and γ1

6.

ii. Let both points be in the lower region. Denote by γ2 the two segments path given in
Theorem 5.2 (i). Then the optimal curve γopt is obtained as the minimum between ℓ
and γ2.

Proof.-

(i) A straightforward adaptation of the proof of the previous proposition implies that the path
in the statement of the proposition is optimal among all those restricted to the upper region.
Consider now a path γC that is not restricted to the upper region. Then ℓ ∩ γC contains
two distinct points such that γC is strictly lower than ℓ between these points. Applying
Proposition 5.1, we then see that the cost of γC can be strictly improved by following ℓ
between these points instead of following γC there. This concludes (i).

(ii) Proved similarly. �

Proposition 5.3 Let a point xo send packets to a point xd.

i. Assume the origin is in the upper region and the destination in the lower one. Then the
optimal path has three segments;

1. It goes straight vertically from xo to ℓ,

2. Continues as long as possible along ℓ, i.e., until it reaches the first coordinate of the
destination,

3. At that point it goes straight vertically from ℓ to xd.

ii. Assume the origin is in the lower region and the destination in the upper one. Then the
optimal path has three segments;

1. It goes straight horizontally from xo to ℓ,

2. Continues as long as possible along ℓ, i.e., until it reaches the second coordinate of
the destination,

3. At that point it goes straight horizontally from ℓ to xd.

Proof.- The proofs of (i) and of (ii) are the same. Consider an alternative route γC . Let
x̃ be some point in γC ∩ ℓ. The proof now follows by applying the previous proposition to
obtain first the optimal path between the origin and x̃ and second, the optimal path between
x̃ and the destination. �

Case 2: The function U is positive in the upper area and negative in the lower area.

6By the maximum we mean the following: If γ1 does not intersect ℓ, then γopt = γ1. If it intersects ℓ,
then γopt agrees with γ1 over the path segments where γ1 is in the upper region and otherwize agrees with ℓ.
The minimum is defined similarly.
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This case turns out to be more complex than the previous one. The curve M has some
obvious repelling properties which we state next, but they are not as general as the attractor
properties that we had in the previous case.

Proposition 5.4 Assume that both origin and destination are in the same region. Then the
paths that were optimal in Theorem 5.2 are optimal here as well, if we restrict ourselves to
paths that remain in the same region.

Proof.- Given that the origin and destination are in a region we may change the cost over
the other region so that it has the same sign over all the region R. This does not influence the
cost of path restricted to the region of the origin-destination pair. With this transformation
we are in the scenario of Theorem 5.2 which we can then apply. �

Discussion.- Note that the (sub)optimal policies obtained in Proposition 5.4 indeed look
like being repelled from ℓ; their two segments trajectory guarantees to go from the origin to
the destination as far as possible from ℓ.

We note that unlike the attracting structure that we obtained in Case 1, one cannot extend
the repelling structure to the case where the paths are allowed to traverse from one region
to another.

6 User optimization and congestion dependent cost

We now go beyond the approach of the previous section by allowing the cost to depend on
congestion. Shortest path costs can be a system objective as we shall motivate below. But
it can also be the result of decentralized decision making by many “infinitesimally small”
players where a player may represent a single packet (or a single session) in a context where
there is a huge population of packets (or of sessions). The result of such a decentralized
decision making can be expected to satisfy the following properties which define the so
called, user (or Wardrop) equilibrium:

“Under equilibrium conditions traffic arranges itself in congested networks such that all used
routes between an OD pair (origin-destination pair) have equal and minimum costs while all
unused routes have greater or equal costs” [31].

Motivation.- One popular objective in some routing protocols in ad hoc networks is to
assign routes for packets in a way that each packet follows a minimal cost path (given the
others’ paths choices) [11]. This has the advantage of equalizing origin-destination delays of
packets that belong to the same class, which allows one to minimize the amount of packets
that come out of sequence (this is desirable since in data transfers, out of order packets
are misinterpreted to be lost which results not only in retransmissions but also in drop of
systems throughput).

Related work.- Both the framework of global optimization as well as the one of minimum
cost path have been studied extensively in the context of road traffic engineering. The use
of a continuum network approach was already introduced on 1952 by Wardrop [31] and by
Beckmann [4]. For more recent papers in this area, see e.g. [6, 7, 14, 17, 33] and references
therein. We formulate it below and obtain some of its properties.
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Congestion dependent cost.- We allow the individual transmission cost c1 for a horizontal
transmission (in the direction of the axis x1) to be different than the individual transmission
cost c2 for a vertical transmission (in the direction of the axis x2). We add to the individual
transmission cost c1 the dependence on the traffic flow T1 (in the direction of the axis x1) and
to the individual transmission cost c2 the dependence on the traffic flow T2 (in the direction
of the axis x2), as we did in Section 4 to the transportation cost for the global optimization
problem.

Let V j(x) be the minimum cost to go from a point x to Bj at equilibrium. Equation (13)

still holds but this time with ci that depends on T
j
1 , T

j
2 , and on the total flows T1, T2. Thus

(14) becomes, for all j ∈ {1, . . . , ν},

0 = min
i=1,2

(

ci(x, Ti) +
∂V j(x)

∂xi

)

, ∀x ∈ Bj , V j(x) = 0 . (15)

Notice that this method can be viewed as a generalization of the optimization method known
as dynamic programming, in particular, last equation would be a generalization of Bellman
equation also known as dynamic programming equation.

We note that if T j
i (x) > 0 then by the definition of the equilibrium, i attains the minimum

at (15). Hence (15) implies the following relations for each traffic class j, and for i = 1, 2:

ci(x, Ti) +
∂V j

∂xi
= 0 if T j

i > 0, (16a)

ci(x, Ti) +
∂V j

∂xi
≥ 0 if T j

i = 0. (16b)

This is a set of coupled PDE’s (Partial Differential Equations), actually difficult to analyse
further.

Beckmann transformation
As Beckmann et al. did in [5] for discrete networks, we transform the minimum cost problem
into an equivalent global minimization one. We shall restrict our analysis to the single class
case. To that end, we note that equations (16a)-(16b) have exactly the same form as the
Karush-Kuhn-Tucker conditions (7a)-(7b), except that ci(x, Ti) in the former are replaced
by ∂g(x,T)/∂Ti(x) in the latter. We therefore introduce a potential function ψ defined by

ψ(x,T) =
∑

i=1,2

∫ Ti

0

ci(x, s)ds

so that for both i = 1, 2:

ci(x, Ti) =
∂ψ(x,T)

∂Ti
.

Then the user equilibrium flow is the one obtained from the global optimization problem
where we use ψ(x,T) as local cost. We conclude the following.

Theorem 6.1 Let x∗ be a solution to the following global optimization problem.

min
T (·)

∫

D

ψ(x,T) dx subject to ∇ ·T(x) = ρ(x), ∀x ∈ D.
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Then it is the Wardrop equilibrium.

Remark 6.1 In the special case where costs are given as a power of the flow as defined in
eq. (8), we observe that equations (16a)-(16b) coincide with equations (9a)-(9b) (up-to a
multiplicative constant of the cost). We conclude that for such costs, the user equilibrium
and the global optimization solution coincide.

7 Example

The following example is an adaptation of the road traffic problem solved by Dafermos in [6]
to our ad hoc setting. We therefore use the notation of [6] for the orientation, as we did in
Section 4. Thus the direction from North to South will be our positive x1 axis, and from
West to East will be the positive x2 axis. The framework we study is the user optimization
problem with congestion dependent cost. For each point on the West and/or North boundary
we consider the point to boundary problem. We thus seek a Wardrop equilibrium where
each user can choose its destination among a given set. A flow configuration is a Wardrop
equilibrium if under this configuration, each origin chooses a destination and a path to that
destination that minimize that user’s cost among all its possible choices.

Consider the rectangular area R on the bounded domain D defined by the simple closed
curve ∂R+ = Γ+

1 ∪ Γ+
2 ∪ Γ−

3 ∪ Γ−
4 where

Γ1 = {0 ≤ x1 ≤ a, x2 = 0} , Γ2 = {x1 = a, 0 ≤ x2 ≤ b} ,
Γ3 = {0 ≤ x1 ≤ a, x2 = b} , Γ4 = {x1 = 0, 0 ≤ x2 ≤ b} .

Assume throughout that ρ = 0 for all x in the interior of D, and that the costs of the routes
are linear, i.e.,

c1 = k1T1 + h1 and c2 = k2T2 + h2, (17)

with k1 > 0, k2 > 0, h1, and h2 constant over D. Linear costs can be viewed as a Taylor
approximation of an arbitrary cost in the light traffic regime.

We are precisely in the framework of Section 4 and Section 6 with affine costs per packet.
As a matter of fact, the potential function associated with these costs is

ψ(T) =

2
∑

i=1

∫ Ti

0

(kis+ hi) ds =

2
∑

i=1

(
1

2
kiTi + hi)Ti .

Now, we want to handle a condensation of origins or destinations along the boundary. While
this is feasible with the framework of section 4, it is rather technical. We rather use a more
direct path below.

Notice that in the interior of D, we have

∂T1
∂x1

+
∂T2
∂x2

= 0.
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Take any closed path γ surrounding a region ω. Then by Green formula,

∮

γ

T1dP2 − T2dP1 =

∫

ω

∂T1
∂x1

+
∂T2
∂x2

= 0

Therefore we can define

φ(x) :=

∫

x

xo

T1dP2 − T2dP1

the integral will not depend on the path between xo and x and φ is thus well defined, and
we have

∂φ(x)

∂x2
= T1(x)

∂φ(x)

∂x1
= −T2(x) . (18)

We now make the assumption that there is sufficient demand and that the congestion cost
is not too high so that at equilibrium the traffic T1 and T2 are strictly positive over all D [6].
It turns out that all paths to the destination are used. Thus, from Wardrop’s principle, the
cost

∫

c dx is equalized between any two paths. And therefore,

∂c1
∂x2

=
∂c2
∂x1

.

Using the equations in (17) then

k1
∂T1
∂x2

= k2
∂T2
∂x1

,

and from equations in (18) we have

k1
∂2φ

∂x22
+ k2

∂2φ

∂x21
= 0.

Let ki = K2
i . Divide the above equation by k1k2. One obtains

1

K2
1

∂2φ

∂x21
+

1

K2
2

∂2φ

∂x22
= 0.

Following the classical way of analyzing the Laplace equation, (see[32]) we attempt a sepa-
ration of variables according to

φ(x1, x2) = F1(K1x1)F2(K2x2) .

We then get that
F ′′
1 (K1x1)

F1(K1x1)
= −F

′′
2 (K2x2)

F2(K2x2)
= s2 .

In that formula, since the first term is independent on x2 and the second on x1, then both
must be constant. We call s2 that constant, but we do not know its sign. Therefore, s may
be imaginary or real. All solutions of this system for a given s are of the form

F1(x) = A cos(isx) +B sin(isx) , F2 = C cos(sx) +D sin(sx) .
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As a matter of fact, φ may be the sum of an arbitrary number of such multiplicative decom-
positions with different s. We therefore arrive at the general formula

φ(x1, x2) =

∫

[A(s) cos(isK1x1) +B(s) sin(isK1x1)][C(s) cos(sK2x2) +D(s) sin(sK2x2)] ds.

From this formula, we can write T1 and T2 as integrals also. The flow T at the boundaries
should be orthogonal to the boundary, and have the local origin density for inward modulus
(it is outward at a sink). It remains to expand these boundary conditions in Fourier integrals
to identify the functions A, B, C, and D, which is tedious but straightforward (it is advisable
to represent the integrals of the boundary densities as Fourier integrals, since then the
boundary conditions themselves will be of the form s

∫

R(s) ds, closely matching the formulas
we obtain for the Ti’s).

8 Conclusions

Routing in ad hoc networks has received much attention in the massively dense limit. The
main tools to describe the limits had been Electrostatics and geometric optics. We exploited
another approach for the problem that has its roots in road traffic theory, and presented both
quantitative as well as qualitative results for various optimization frameworks. The links to
road traffic theory allow us to benefit of the results of more than fifty years of research in
that area that not only provide mature theoretical tools but have also advanced in numerical
solution methods.

The continuum topology that we used in this paper is to be viewed as an approximation
for dense networks. However, we believe that it may arise in other applications as well. As
an example, consider a standard routing problem, in which instead of having a fixed rate of
packets arrivals, we only have a constraint on the total amount of arrivals of packets, and
then one has to choose both the instantaneous routes as well as at what (time-dependent)
rate to transmit the packets. This type of problem (also much studied in road traffic context)
can be viewed as routing over a continuum topology where time replaces space.
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