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Abstract

Probabilistic flooding has been frequently considered as a suitable dissemination
information approach for limiting the large message overhead associated with tradi-
tional (full) flooding approaches that are used to disseminate globally information in
unstructured peer-to-peer and other networks. A key challenge in using probabilistic
flooding is the determination of the forwarding probability so that global network
outreach is achieved while keeping the message overhead as low as possible. In
this paper, by showing that a probabilistic flooding network, generated by applying
probabilistic flooding to a connected random graph network, can be (asymptoti-
cally) “bounded” by properly parameterized random graph networks and by invok-
ing random graph theory results, asymptotic values of the forwarding probability
are derived guaranteeing (probabilistically) successful coverage, while significantly
reducing the message overhead with respect to traditional flooding. Asymptotic ex-
pressions with respect to the average number of messages and the average time
required to complete network coverage are also derived, illustrating the benefits of
the properly parameterized probabilistic flooding scheme. Simulation results sup-
port the claims and expectations of the analytical results and reveal certain aspects
of probabilistic flooding not covered by the analysis.
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1 Introduction

A plethora of network protocols requiring information dissemination (such as
routing broadcasting, content discovery etc) are based on traditional flood-
ing since its early introduction, [1]. Traditional flooding is capable of sending
messages (one message for each neighbor node apart from the node that the
message arrived from) and traversing all network links and all network nodes
in any connected network topology in a small number of (time) steps and it is
simple and easy to implement in a distributed fashion. The inherent simplic-
ity of traditional flooding as well as its guaranteed success in disseminating
information everywhere, have been two of the main reasons for its wide-spread
protocol instantiations. However, by traversing all network links, the number
of messages forwarded in the network is (asymptotically) of the order of the
number of the network links (actually, more than the number of network links
and less than twice this number). Therefore, even though termination time
(that is, the time required to outreach all network nodes) is small (equal to
the eccentricity of each node and upper bounded by the network diameter),
the aforementioned increased number of messages is prohibitive in modern net-
work environments that are typically large-scale with respect to the number
of nodes and network links.

Typical examples of a large-scale modern network environment are Peer-to-
Peer (P2P) networks, [2], which, following the Napster legacy, [3], offer to
network users huge amounts of content of, basically, delay tolerant services
(e.g., files). While, the underlying structure present in structured P2P net-
works facilitates reaching the nodes with relatively low delay and message
overhead, [2], [4], [5], [6], the problem of disseminating information is a major
challenge in unstructured P2P networks, (e.g. Gnutella, [7]), as there is no
structure to take advantage of and support the design of an effective scheme.
As a result, a brute-force approach is followed, typically implemented through
resource wasteful approaches such as traditional flooding and some of its mes-
sage reducing variations, [2], [7], [8], [9], [10], [11]. For example, in Gnutella,
[7], controlled flooding is employed for searching purposes restricting message
flooding to a small number of L hops around the node that has initiated the
search. Such an approach – referred to hereafter as L-flooding – is scalable
in terms of the number of messages for small values of L but, at the same
time, it reduces the covered network area; the use of this approach would re-
duce the probability of success for the searching process in [7], particularly in
large-scale networks.

Architecture) (IST-27489), SOCIALNETS (IST-217141) and the PENED 2003 pro-
gram of the General Secretariat for Research and Technology (GSRT) co-financed
by the European Social Funds (75%) and by national sources (25%).
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Message reduction during an information dissemination process is a key goal
in many protocol designs, [12], [13]. The idea of reducing the messages of tra-
ditional flooding by forwarding a message to neighbors probabilistically (with
some forwarding probability) and not deterministically lays behind probabilis-
tic flooding, [14], [15], [16], [17], [18], [19], [20]. There is clearly a trade-off
between the induced total number of messages and the network coverage (i.e.,
the fraction of network nodes reached by such messages): the smaller the for-
warding probability, the smaller the message overhead and the smaller the
network coverage.

The work presented here investigates probabilistic flooding when the underly-
ing network is a random graph, [21], and aims at designing such a scheme in a
way that the aforementioned trade-off is effectively managed. That is, achieve
high network coverage with a relatively small number of messages. Analytical
tools and results, borrowed from random graph theory, [21], [22], [23], [24],
[25], [26], are considered for analyzing probabilistic flooding and comparing
its performance against traditional flooding. Even though it has been shown
that some networks do not follow the random graph model but rather power-
law models, e.g., [23], [24], it is still valid that many useful results may be
extracted after studying random graph topologies, e.g., [17], [27], [28].

One of the main contributions of this work is establishing a connection between
random graphs and the probabilistic flooding network ; the latter is defined to
be the network consisted of the (sub)set of links and nodes of the underlying
random graph network that are traversed by the messages under the proba-
bilistic flooding. This allows for the subsequent study of probabilistic flooding
in random graph topologies based on analytical tools borrowed from random
graph theory.

Another contribution of this work is the derivation of (asymptotic) analytical
expressions on the appropriate value of the forwarding probability, defined to
be the value for which the probabilistic flooding network consists (with high
probability) of a certain number of network nodes (e.g., all network nodes)
using the smallest possible number of messages. The case of reaching all net-
work nodes – which is equivalent to full network coverage or global network
outreach – is extensively studied here.

The (asymptotic) analysis has shown a significant decrease with respect to the
number of messages, reduced from the order of Θ(N2) (i.e., traditional flood-
ing) to the order of Θ(N ln(N)) (i.e., probabilistic flooding) in random graph
topologies of N nodes, for the case of global network outreach. Furthermore,
as it is analytically shown in this paper, the price paid for this reduction is
(a) an increase of the time required to cover a certain network area; (b) any
network coverage (e.g., global node outreach) is achieved with high probability
under probabilistic flooding as opposed to certainty under traditional flooding.
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These analytical findings are supported by simulation results.

The analytical study has been extended to the case of L-coverage, achieved
when no node is away from a reached node by more than L- hops. This notion
of coverage (yielding overhead savings) is applicable to various practical cases
such as when a supplementing L-hop flooding (for small L) allows every node
to obtain the disseminating information, as it is the case under Gnutella men-
tioned before. The cases of L = 0, L = 1 and L = 2 are studied here (the case
of L = 0 is equivalent to global network outreach mentioned before) and it
is analytically shown that there is a significant reduction with respect to the
number of messages when probabilistic flooding is employed and an L- cov-
erage is targeted. Given the small-world phenomenon in random graphs (i.e.,
significantly small diameters even for large network sizes), [22], [26], larger
values of L would have been significantly close to the network diameter for
network sizes of 10000 nodes (as it will be mentioned in Section 6, the sim-
ulation program had memory and performance limitations for network sizes
greater than 10000 nodes). For example, when L is equal to the network di-
ameter, information dissemination is obsolete since all nodes are by definition
less than or equal to L-hops away from any node, and thus from the source
node as well. Such a case is investigated at the simulations section.

Simulation results confirm the analytical findings of this paper and at the same
time explore various aspects not covered by the analysis. In particular, it is
shown that the probabilistic flooding network is (asymptotically) “bounded”
by two random graphs and that savings under probabilistic flooding are sig-
nificant when compared to traditional flooding (or controlled flooding in the
case of L = 1, 2 for fairness issues as it is explained in more detail in the sim-
ulations section). On the other hand, it is shown that termination time does
increase (even though at a smaller rate compared to message savings) as it is
also expected by the analysis. However, due to the “small-world phenomenon”
in random graphs (i.e., small network diameters even for large network sizes),
when L is comparable to the network diameter, simulation results deviate
from the analytical ones. For the simulation scenarios of 104 nodes consid-
ered in this work, L = 2 is comparable to the network diameter. However,
larger network sizes (e.g., 108 network nodes) could not be considered due to
computational and memory limitations. This issue is further explained in the
simulations section.

In the following section, past related works are presented and particularly
those mostly related to this paper. Section 3 summarizes important results
from random graph theory that will be used throughout this work. Section
4 presents the probabilistic flooding scheme and discusses its relevance to
random graphs. Analytical (asymptotic) results are presented in Section 5,
and simulation results in Section 6. The conclusions are drawn in Section 7.
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2 Past Related Work

The effectiveness of most of the works (including the one presented in this
paper) attempting to reduce the number of messages sent in a network, is fre-
quently established through comparison with traditional flooding. Approaches,
like random walkers, e.g., [8], [10], may be seen as an entirely different class
which -while typically achieving low message overhead- results in large net-
work cover times. Hybrid probabilistic schemes (e.g., a local flooding process
initiated after a random walk) have also been proposed and analyzed, [10], as
well as other schemes that adapt the employed values of L for L-flooding in a
probabilistic manner, [11]. Another modification, [9], allows for network nodes
to selectively forward messages to their neighbors, thus significantly reducing
the number of messages in the network. Other approaches for filling the gap
between random walkers and traditional flooding have also been proposed.
For example, in [29] replicated random walker strategies have been studied
for various network topologies. Gossip strategies, under which messages are
forwarded based on local information, e.g., [12], [30], [31], [32], [33], [34], [35],
have also been on the edge of this research area for many years, e.g., for the
design of network protocols.

Probabilistic flooding has attracted considerable attention since its introduc-
tion, basically for providing scalable dissemination information approaches in
modern large-scale environments like P2P networks, e.g., [14], [15], [16]. Even
though – as already mentioned – its main disadvantage with respect to tra-
ditional flooding is its probabilistic nature, it may be employed in cases that
probabilistic guarantees are affordable given the subsequent savings with re-
spect to the number of messages. These trade-offs have been the focus of recent
studies, e.g., [18], [19], [20].

The most relevant works to the work presented here are those in [19] and [20].
In [19], Stauffer and Barbosa compare probabilistic flooding against a proposed
heuristic flooding that instead of employing a fixed forwarding probability for
all network nodes – as it is the case under probabilistic flooding – it adapts
accordingly based on a heuristic rule. In [20], Crisostomo, Schilcher, Bettstet-
ter and Barros, consider random graph topologies and – based on dominating
set properties – provide for suitable values of global network outreach based
on both analytical and simulation results.

Both [19] and [20] mention the relevance between random graphs and prob-
abilistic flooding in random graph topologies. However, none of these ap-
proaches either investigate this further or exploit this in their work, as it
is the case in this paper. Furthermore, the work in this paper focuses in more
general cases than global network outreach with respect to covering (notion
of L-coverage), that allow for further reduction of the messages forwarded in
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the network.

3 The Random Graph Model

A network topology is typically represented by a graph G defined in terms
of a set of nodes V(G) and a set of (bidirectional) links E(G) connecting
pairs of nodes in V(G). Let the number of nodes in the network be denoted
by N (N = |V(G)|, where |X| corresponds to the number of elements of a
certain set X). Random graphs, mainly introduced by the pioneering work of
P. Erdős and A. Rényi, [21], have certain properties that are useful in shedding
light on the particulars of various networks like the Internet, social contact
networks, biological networks, web-page networks etc., [23], [24]. For most
of the cases, random graphs have been considered for studying topological
aspects of these networks (e.g., the average number of neighbors, the diameter
of the network, the emergence of the giant component etc.). In this work,
random graphs and their properties are used for understanding and analyzing
the information dissemination network created after performing probabilistic
flooding in random graph network topologies.

In the random graph literature there are two basic models for representing a
random graph of N nodes: the binomial and the uniform. The first model –
denoted as G(N, p(N)) – assumes a certain probability p(N) for selecting each

link out of the
(

N
2

)
possible links to become part of the particular random

graph G(N, p(N)) (in order to simplify the notation, in the sequel G(N, p)
will be used instead of G(N, p(N))). Under the second model, a graph of N

nodes and M links is uniformly chosen out of the
(
(N

2 )
M

)
possible different

graphs of N nodes and M links and is denoted as G(N, M). Both models

are asymptotically equivalent provided that p(N)
(

N
2

)
is close to M , [26], [22].

For the rest of this paper, the binomial model G(N, p) is considered. For this

model, the expected number of links is equal to p(N)
(

N
2

)
and therefore, in

order to ensure the equivalence of both previous models, it is assumed that
p(N)

(
N
2

)
≈ M . Furthermore, it is also assumed that N is significantly large

(e.g., such that p(N)(N−1) ≈ p(N)N is satisfied), which is a basic assumption
in the literature of random graphs, e.g., [22], [26].

Based on the previously mentioned model description, it is easily derived that
for p(N) = 0, there are no links in the resulting graph (M = 0) and G(N, p)
consists only of N nodes with no links among them (Figure 1.a), whereas

for p(N) = 1, the resulting graph is the complete graph (M =
(

N
2

)
). For

values of p(N) slightly higher than 0 (always under the assumption that N
is fairly large), some links start to be created among some nodes, creating
small components of a few nodes (Figure 1.b). Note that Figure 1 illustrates
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the various stages of a random graph of N nodes – as probability p(N) (or
the number of links M) increases – using 2-dimension drawings for better
visualization. In general, a random graph is not expected to be a 2-dimensional
graph, [22].

For many properties of random graphs (and particularly for those useful for
the subsequent analysis of probabilistic flooding), it has been shown in the
literature that there exists a critical probability pQ(N) – for some property Q
– such that if p(N) grows faster than pQ(N) as N increases, then G(N, p) has
property Q, otherwise it does not. More formally, [23], [25],

lim
N→∞

Pr{G(N, p) has property Q} =

⎧⎪⎨
⎪⎩

0 if p(N)
pQ(N)

→ 0,

1 if p(N)
pQ(N)

→ +∞.
(1)

In the sequel and based on this definition, any argument that a random graph
has property Q is made with high probability (w.h.p.). For the rest of this
paper, the following well-known asymptotic notations will be used:

a. p(N) = O(pQ(N)), if p(N) ≤ CpQ(N) for some constant C > 0 (equiva-

lently, limN→∞
p(N)

pQ(N)
→ 0 ⇔ O(p(N)) < O(pQ(N)), [37]);

b. p(N) = Ω(pQ(N)), if p(N) ≥ cpQ(N) for some constant c > 0 (equiva-

lently, limN→∞
p(N)

pQ(N)
→ +∞ ⇔ O(p(N)) > O(pQ(N)), [37]);

c. p(N) = Θ (pQ(N)), if CpQ(N) ≥ p(N) ≥ cpQ(N) for some constants
C, c > 0.

Note that for some property Q and p(N) such that p(N) = Θ (pQ(N)),

limN→∞
p(N)

pQ(N)
= c′, [37], where c′ is a positive constant (0 < c′ < +∞).

Therefore, the case of p(N) = Θ (pQ(N)) is not covered by the definition
given by Equation (1). The basic reason is that for p(N) = Θ (pQ(N)), the
graph passes a phase transition period, [22], [26], [23], during which it “moves”
from a state in which it does not have property Q to a state in which it does
have property Q and therefore, it is not known for certain (not even with high
probability) whether it has or not property Q. For the rest of this paper, nota-
tion p(N) = Θ (pQ(N)) is used to indicate such a phase transition with respect
to property Q (e.g., the emergence of the giant component that indicates that
the network becomes connected).

In this paper the interest is on three properties (Q0, Q1 and Q2) of random
graphs: (a) Q0: the graph is connected; (b) Q1: the graph consists of a giant
component and some isolated nodes; and (c) Q2: the giant component has

just emerged. The corresponding critical probabilities ( ln(N)
N

, ln(N)
2N

, and 1
N

,
respectively) as a function of N for each property are shown in Table 1, [22],

[26]. Note that, ln(N)
N

> ln(N)
2N

> 1
N

, for large values of N . The analysis of
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probabilistic flooding in random graph topologies presented in the following
sections is based on the emergence of these three properties.

Table 1
Critical Probability Functions for Properties Q0, Q1, and Q2.

Critical Probability
Function

Property Description

pQ2(N) = 1
N Q2: Emergence of giant component. Some components

are also present along with some isolated nodes.

pQ1(N) = ln(N)
2N Q1: Giant component and some isolated nodes.

pQ0(N) = ln(N)
N Q0: Connected network.

Figures 1.c and 1.d depict a 2-dimensional illustration of these properties.
Note that in general random graps are not 2-dimensional as depicted here for
illustration purposes. In Figure 1.c, where O (p(N)) < O(pQ2(N)), the graph
consists of numerous isolated components. These isolated components become
larger as p(N) increases and at some point, the largest components are so large
that it is likely a new link to merge two of them resulting in a new, larger
(merged) component which, in turn, is likely to be further increased by a new
link, etc. Eventually, for p(N) = Θ (pQ2(N)) the giant component emerges,
as depicted in Figure 1.d. As p(N) increases further such that O(p(N)) >
O(pQ2(N)) and O(p(N)) < O(pQ1(N)), the giant component increases further
by connecting to the smaller components (i.e., graph has property Q2 and
not property Q1 w.h.p.). For p(N) = Θ (pQ1(N)), there exist only the giant
component and some isolated nodes, as depicted in Figure 1.e. Further increase
of p(N) such that O(p(N)) > O(pQ1(N)) and O(p(N)) < O(pQ0(N)) connects
the giant component to the isolated nodes (i.e., graph has property Q1 and
not property Q0 w.h.p.). Finally, the network becomes connected w.h.p. for
p(N) = Θ (pQ0(N)), as shown in Figure 1.f, and remains connected thereafter,
for O(p(N)) > O(pQ0(N)).

The diameter (i.e., the maximum shortest path of all pairs of nodes in the
same component) of a random graph G(N, p), denoted as D(G(N, p)), is also
important for the subsequent analysis of probabilistic flooding. For O(p(N)) >
O(pQ0(N)) is known, [23], [36], to be proportional to:

D(G(N, p)) =
ln(N)

ln(p(N)N)
. (2)

For the rest of this paper, it is assumed that D(G(N, p)) = Θ
(

ln(N)
ln(p(N)N)

)
,

when O(p(N)) > O(pQ0(N)). For the case of O(p(N)) < O(pQ0(N)) and
O(p(N)) > O(pQ2(N)), the network diameter is equal to the diameter of
the giant component, (the network is not connected and there exists a giant
component w.h.p.). Since the number of nodes in the giant component are
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a. p(N) = 0. b. p(N) → 0. c. O(p(N)) < O(pQ2(N)).

d. p(N) = Θ
(
pQ2(N)

)
. e. p(N) = Θ

(
pQ1(N)

)
. f. p(N) = Θ

(
pQ0(N)

)
.

Fig. 1. An example of a random graph G(N, p) (depicted in two dimensions).

of the order of O(N), [26], [23], a very rough idea about the diameter of the
giant component is given by O(ln(N)) (for this case the giant component looks
mostly like a tree even though some cycles do exist).

4 Probabilistic Flooding and Random Graphs

4.1 On Probabilistic Flooding

Under traditional flooding, messages arrive to all nodes having traversed all
network links, by sending one message to each neighbor node each time a
node receives the forwarding message for the first time (excluding the par-
ticular neighbor node that the message has arrived from). The total number
of messages under traditional flooding can be greater than the number of
links of the network topology since either one or – at most – two messages
is possible to be forwarded over any link. Therefore, the number of messages
under traditional flooding over a network topology G is of the order of Θ (|E|)
(greater than |E| and less than 2|E|). This number turns out to be fairly
large for large N = |V(G)| resulting in the scalability problems of traditional
flooding. For instance, for a network topology modelled as a random graph,
G(N, p), the number of messages under traditional flooding is of the order

of Θ
(
p(N)

(
N
2

))
= Θ

(
p(N)N N−1

2

)
which becomes very large for large net-

works. This large message overhead leads, on the other hand, to relatively
short termination time (defined as the number of time steps until the message

9



dissemination is completed) bounded by the network diameter D(G(N, p))
(i.e., O(D(G(N, p))).

a. A connected Gp(N). b. A probabilistic flooding network.

Fig. 2. An example of nodes (marked with ellipses) reached by probabilistic flooding
messages and the corresponding links (marked with thick lines) that these messages
have been forwarded over.

Under probabilistic flooding, [14], the initiator node (i.e., the source of the
information to be disseminating) sends a message to each of its neighbor nodes
with an (independent) constant forwarding probability pf(N). Any node re-
ceiving such a message forwards it to its neighbor nodes (apart from the one
the message has arrived from) with probability pf(N). Clearly, for pf(N) = 0,
no messages are sent in the network, while for pf (N) = 1, probabilistic flooding
reduces to traditional flooding. As a result of probabilistic flooding, a network
can be defined that consists: (a) of the set of nodes that have been reached
by the messages plus the initiator node; and (b) of the set of links over which
these messages have been forwarded. This particular network will be referred
to hereafter as the probabilistic flooding network ; an example of such a network
is depicted in Figure 2. It is trivial to show (based on the definition of proba-
bilistic flooding) that a probabilistic flooding network is actually a connected
network each link of which is created as a result of message forwarding over
the corresponding network link. Let P(G(N, p), pf) denote the probabilistic
flooding network generated by applying probabilistic flooding with probabil-
ity pf (N) over network G(N, p).

An observation, that will be utilized later, is that some of the links of G(N, p)
become part of P(G(N, p), pf) with probability pf (N) if only one of the end
nodes receives the message from an other link and take a forwarding decision,
some with probability p̃(N) if both end nodes of the link receive the message
from a different than their common link and, thus, both make an (assumed
independent) decision that each fails with probability 1 − pf(N) and some
with probability 0 if none of end nodes receives the message.
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From the above it can be proved that p̃(N) equals:

p̃(N) = 1 − (1 − pf(N))(1 − pf(N)) = 2pf(N) − p2
f(N). (3)

4.2 L-Coverage of a network

The network coverage is typically defined as the fraction of network nodes
that are forwarded a message, or “covered ” by an information dissemination
process. In this paper (as also in [29]) the notion of coverage is extended
to that of L-Coverage (L an integer and L ≥ 0) referring to the portion of
network nodes which are at most L hops away from a node that has received
the message and denoted by C(L). Clearly, C(0) corresponds to the portion
of nodes that have actually received the message and if C(0) = 1 a global
outreach has been achieved. Notice that C(L) is non-decreasing with L. Notice,
also, that for traditional flooding C(0) = 1 and, thus, C(L) = 1 for any L ≥ 0
as well.

Since random graph networks have small diameters (known as the small-world
phenomenon), [23], [26], the interest is basically for coverage of L = 0, L = 1
and L = 2 and the main focus is to reduce as much as possible the number
of messages required to achieve C(L) = 1, for such values of L. It should be
mentioned that probabilistic flooding employs a probabilistic mechanism and
therefore any claim that “a certain coverage C(L) = 1” is always made with
high probability.

4.3 Probabilistic Flooding in Random Graphs

The objective when constructing a probabilistic flooding network is to keep
the number of its links (i.e., number of forwarded messages) as low as possible,
while striving to achieve a certain coverage C(L) → 1. Clearly (and assuming
always that G(N, p) is connected), for pf(N) = 1 the probabilistic flooding
network contains all network nodes and all network links of G(N, p). That is,
P(G(N, p), 1) = G(N, p). The interest in the sequel of this section is on deter-
mining a value of pf(N) (to keep the number of messages under probabilistic
flooding low) such that C(L) = 1 w.h.p., for L = 0, 1, 2.

Given that each node of a connected network is associated with at least one
link and most likely with several, removing a link from a network does not nec-
essarily disconnect (or “remove”) an associated node as well. In other words,
the decrease in the number of nodes in a network as a result of a decrease in
the number of links is expected to be lower than the decrease in the number
of links. Consequently, it is conceivable that all network nodes continue to be
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included in a network (i.e., be connected) despite the removal of a number of
links w.h.p. This observation suggests that a probabilistic flooding network
with sufficiently high forwarding probability may still keep all the nodes “con-
nected” and in the network, despite a potentially significant removal of links
due to a decision not to forward a message over such links.

In view of the above discussion it is evident that as pf(N) decreases, the
number of links in P(G(N, p), pf) decreases as well, while the number of nodes
in P(G(N, p), pf) decreases at a lower rate. Consequently, for a small reduction
in pf (N) below the value of 1, it is expected that all network nodes still be
included in P(G(N, p), pf), or C(0) = 1 w.h.p. Further reduction in the value
of pf (N) will result in a further decrease in the number of network links, until
a small number of nodes of G(N, p) do not belong in P(G(N, p), pf) (see also
Section 3). It is thus expected that there is a certain value for the forwarding
probability, denoted by pf,0(N), such that: (a) if O(pf(N)) < O(pf,0(N)), then
the probabilistic flooding network does not include all network nodes w.h.p.;
(b) if O(pf(N)) > O(pf,0(N)), then the probabilistic flooding network does
include all network nodes w.h.p.

The goal in the sequel is to derive an asymptotic expression for pf,0(N) by
utilizing properties of random graphs (those already described in Section 3),
taking into consideration that since C(0) = 1 w.h.p all network nodes are
expected to be part of the probabilistic flooding network and, in view of the
latter and as discussed in 4.1, each of the links of G(N, p) will be included
in P(G(N, p), pf) either with probability pf(N) or p̃(N). Thus, it is evident
that P(G(N, p), pf) contains on average more links than G(N, p × pf ). Con-
sequently, when G(N, p × pf) is connected w.h.p., then P(G(N, p), pf) is also
connected w.h.p. and, thus, includes all network nodes w.h.p. Note also that
since pf(N) ≤ 2pf(N) − p2

f(N) = p̃(N) (the equality holds for pf (N) = 1),
G(N, p× p̃) contains (on average) more links than G(N, p× pf) and when the
latter network is connected the former is also connected w.h.p.

Based on the previous two observations, and assuming a certain value for
p(N), as pf(N) increases, it is expected that there will be some probability
value for pf(N) for which G(N, p × p̃) becomes connected w.h.p. As pf(N)
increases further, P(G(N, p), pf) becomes connected (equivalently, C(0) = 1)
w.h.p. For further increment, G(N, p × pf ) also becomes connected. Conse-
quently, the particular value of pf (N) (i.e., pf,0(N) for C(0) = 1) for which
probabilistic flooding disseminates information to all network nodes (global
network outreach) is “between” the values of pf(N) for which G(N, p× p̃) and
G(N, p× pf ) become connected. This is demonstrated later in Section 6 using
simulation results.

From the discussion in Section 3 it follows that random graph G(N, p×pf ) be-
comes connected (or has property Q0) w.h.p. when p(N)pf (N) = Θ (pQ0(N)),
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or pf (N) = Θ
(

pQ0
(N)

p(N)

)
. On the other hand, random graph G(N, p × p̃) be-

comes connected when p(N)p̃(N) = Θ (pQ0(N)), or p̃(N) = Θ
(

pQ0
(N)

p(N)

)
, or

pf(N) = Θ
(
1 −

√
1 − pQ0

(N)

p(N)

)
(since p̃(N) = 2pf(N)−p2

f (N) and O(p(N)) >

O(pQ0(N)) in order to ensure connectivity of G(N, p)), [18], [37].

An interesting result is that even though G(N, p × p̃) becomes connected for
smaller values of pf(N) when compared to G(N, p×pf ) (as already mentioned
p̃ > pf for 0 < pf < 1), these values have the same asymptotical order

and eventually, or pf,0(N) = Θ
(

pQ0
(N)

p(N)

)
as it is shown in Lemma 1. This

asymptotic result suffices for the analysis purposes in the following section
and the subsequent simulation results.

Lemma 1 Random graph G(N, p× p̃) and random graph G(N, p×pf) become
connected for values of pf (N) of the same asymptotic order, provided that
random graph G(N, p) is connected.

PROOF. Given that random graph G(N, p) is connected, based on Equation

1, this is equivalent to p(N)
pQ0

(N)
→ +∞, or

pQ0
(N)

p(N)
< 1. It is easy to show that

pQ0
(N)

p(N)
≥ 1 −

√
1 − pQ0

(N)

p(N)
is satisfied. For this, it is enough to show that√

1 − pQ0
(N)

p(N)
≥ 1 − pQ0

(N)

p(N)
is satisfied. The latter expression is valid since

√
1 − x ≥ 1 − x for 0 ≤ x ≤ 1, which in this case for x =

pQ0
(N)

p(N)
.

The next step is to show that there exists some constant 0 < c ≤ 1, such

that 1−
√

1 − pQ0
(N)

p(N)
≥ c

pQ0
(N)

p(N)
is satisfied. Let x =

pQ0
(N)

p(N)
. The case of x = 0

and x = 1 is trivial so the focus next is on 0 < x < 1. It is sufficient to
show that there exists a constant 0 < c ≤ 1, such that 1 − √

1 − x ≥ cx, or
1 − cx ≥ √

1 − x, or, c ≤ 1−√
1−x

x
. Let f(x) = 1−√

1−x
x

. The first derivative

f ′(x) = 2−2
√

1−x−x
2
√

1−x
= 0, has no solution in 0 < x < 1. That means that for

0 < x < 1, f(x) either monotonically increases or monotonically decreases.

For x → 1, limx→1 f(x) = limx→1
1−√

1−x
x

= 1. For x → 0, limx→0 f(x) =

limx→0
1−√

1−x
x

= limx→0
(1−√

1−x)′
(x)′ = limx→0

1
2
√

1−x

1
= limx→0

1
2
√

1−x
= 0.5. Since

limx→0 f(x) < limx→1 f(x) -and in view of the monotonicity of f(x) argued
above- it is implied that f(x) monotonically increases and therefore, f(x) ≥
0.5, for 0 < x < 1.

Eventually, for any c ≤ 0.5 it is satisfied that c ≤ f(x) = 1−√
1−x

x
, for

0 < x < 1, or, 1 −
√

1 − pQ0
(N)

p(N)
≥ c

pQ0
(N)

p(N)
is satisfied. Since

pQ0
(N)

p(N)
≥

1 −
√

1 − pQ0
(N)

p(N)
≥ c

pQ0
(N)

p(N)
is satisfied, then 1 −

√
1 − pQ0

(N)

p(N)
= Θ

(
pQ0

(N)

p(N)

)
.
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Consequently, pf,0(N) = Θ
(

pQ0
(N)

p(N)

)
, and the lemma is proved. �

So far, the case of global network outreach (i.e., C(L) = 1 for L = 0) w.h.p. has
been studied. The study for L = 1 and L = 2 follows the previously described
steps with respect to properties Q1 and Q2. For instance, if G(N, p × pf ) has
property Q1 w.h.p., it is expected P(G(N, p), pf) to include the majority of
the network nodes (as it is the case for the giant component of G(N, p × pf )
that consists of the majority of the network nodes) and those nodes that
are not part of P(G(N, p), pf), to be at most 1 hop away from at least one
node of P(G(N, p), pf) (since an increase in pf(N) could result in the creation
of a new link between these nodes and a node of the giant component). To
support this claim, in [26] it is also mentioned that when the property Q1 exists
(w.h.p.), then apart from the giant component there exist isolated nodes in
the network for which any new link will connect them to the giant component
w.h.p. Assuming pf,1(N) to be the particular probability such that C(1) = 1 is

satisfied w.h.p., it is derived that pf,1(N) = Θ
(

pQ1
(N)

p(N)

)
. The same applies for

L = 2 and property Q2. As already mentioned, in [26] when property Q2 exists,
the giant component is present in the network along with small components
of one, two or three nodes (w.h.p.) for which any new link will connect them
to the giant component (thus some of these being at distance 2 hops away
from nodes already within the giant component) w.h.p. Therefore, assuming
pf,2(N) to be the particular probability such that C(2) = 1 is satisfied w.h.p.,

it is derived that pf,2(N) = Θ
(

pQ2
(N)

p(N)

)
. Figure 3 depicts asymptotic numerical

values of pf,L(N) as a function of N for L = 0, 1, 2, using the results depicted in
Table 1. For this particular case, the underlying network topology is considered
fixed, and therefore p(N) is a positive constant.
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Fig. 3. pf,L(N) as a function of N for L = 0, 1, 2.

5 Asymptotic Analysis

The asymptotic expressions derived in the previous section are considered
next to asymptotically analyze probabilistic flooding and compare it against
traditional flooding, with respect to the number of messages required and

14



termination time (upper bounds) until a certain coverage C(L) = 1 is achieved.
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Fig. 4. RM,0(N) as a function of N for various values and asymptotic orders of
p(N).

For the case of global network outreach or C(0) = 1, it is known that the
number of messages under traditional flooding (Mtrad) is of the order of:

Mtrad = Θ
(
p(N)

N − 1

2
N
)

. (4)

Under probabilistic flooding, a probabilistic flooding network P(G(N, p), pf) is
created, and therefore, the number of messages is of the order of the number of
links of this network, or Θ (E(P(G(N, p), pf))). Based on the study presented
in the previous section, the number of messages under probabilistic flooding
(Mprob) for global network outreach are of the order of:

Mprob =Θ

(
pQ0(N)

N(N − 1)

2

)
= Θ

(
N − 1

2
ln(N)

)

=Θ (N ln(N)) . (5)

Assuming p(N) to be constant note that under traditional flooding, the num-
ber of messages is of the order of Θ(N2) while under probabilistic flooding are
of the order of Θ(N ln(N)), which is a significant reduction compared to tra-
ditional flooding that becomes more significant as N increases, as illustrated
in Figure 4.a. Let RM,L(N) denote the (asymptotic) fraction of messages un-
der probabilistic flooding over those under traditional flooding for some L, or,

RM,L(N) =
E(P(G(N,p),pf ))

E(G(N,p))
. For the case of L = 0,

RM,0(N) =
ln(N)

p(N)N
. (6)
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Obviously, RM,0(N) → 0, when N → +∞ (O(p(N)) > O(pQ0(N)) = O( ln(N)
N

)).

Note that in strict terms, RM,0(N) = Θ
(

ln(N)
p(N)N

)
. However, in order to simplify

the notations in the sequel Θ(·) will not appear for both RM,L(N) and RT,L(N)
(to be defined later).

As already mentioned, since G(N, p) is a connected network w.h.p., then

O(p(N)) > O(pQ0(N)) = O( ln(N)
N

). For p(N) = Θ
(

ln(N)
N

)
(which means that

G(N, p) has just become connected), it is interesting to see that RM,0(N) =
Θ(1), which apparently demonstrates the fact that there is no advantage un-
der probabilistic flooding when compared to traditional flooding for this case
(the number of messages is the same under both probabilistic flooding and
traditional flooding). Actually, this particular case is -asymptotically- equiv-
alent to pf(N) = 1, for which probabilistic flooding reduces to traditional
flooding. In order to explain further this observation, note that for the case
of p(N) = Θ

(
ln(N)

N

)
, G(N, p) has just become connected w.h.p. which appar-

ently means that the number or “redundant” links (links over which traditional
flooding forwards messages and probabilistic flooding “saves” by probabilisti-
cally “avoiding” to do so) is significantly reduced. The shape of the network –
even though it contains cycles – looks mostly like a tree, [22], [26], and there-
fore, the ability of probabilistic flooding to “avoid” forwarding messages over
“redundant” links is reduced.

As p(N) increases asymptotically, the potential advantage of probabilistic
flooding increases, as it is shown in Figure 4.b for various functions of p(N)

of different asymptotic order (i.e.,
√

N
N

,
√

N ln(N)
N

,
√

N ln2(N)
N

), [37], in order to
illustrate in more depth how p(N) affects RM,0(N). Note that as p(N) in-

creases (
√

N
N

<
√

N ln(N)
N

<
√

N ln2(N)
N

), RM,0(N) decreases which means that the
savings in messages under probabilistic flooding increase when compared to
traditional flooding. However, assuming large values of N but not that large
such that N → +∞, and p(N) = 1, RM,0(N) → ln(N)

N
> 0, which is the

asymptotic lower bound with respect to N . Still, as N → +∞, RM,0(N) → 0.

It should be mentioned that the tightest lower bound with respect to the
number of messages for global network outreach is N − 1 for any (connected)
network of N nodes, assuming that there is global knowledge available regard-
ing the topology of the network in order to derive the appropriate paths for
the forwarded messages in the network (e.g., creating a spanning tree). Such
global knowledge cannot be assumed for the large-scale and dynamic network
environments considered in this work. What is interesting is that the number
of messages under probabilistic flooding – that assumes no global knowledge
for the network topology G(N, p) – is (asymptotically) close to the optimal
one – that requires global knowledge – in the order of Θ(ln(N)) (Θ(N ln(N)))
and N − 1 messages, respectively).
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Fig. 5. RT,0(N) as a function of N for various values and asymptotic orders of p(N).

The reduced number of messages under probabilistic flooding is achieved at
the expense of larger termination delays. This is shown by comparing the net-
work diameter of G(N, p) and P(G(N, p), pf), for pf(N) = Θ

(
ln(N)

N

)
(the upper

bound of termination time corresponds to the network diameter). Let RT,L(N)
denote the (asymptotic) fraction of the network diameter of the probabilis-
tic flooding network over the network diameter minus L (for fairness issues
as it will be explained in the sequel in Section 6), for some L = 0, 1, 2, or

RT,L(N) =
D(P(G(N,p),pf ))

D(G(N,p))−L
. Given that for L = 0, D(G(N, p)) = Θ

(
ln(N)

ln(p(N)N)

)
,

D(P(G(N, p), pf)) = Θ (D(G(N, p ∗ pf))) = Θ
(

ln(N)
ln(p(N)pf (N)N)

)
according to

Lemma 1, and p(N)pf (N) = Θ
(

ln(N)
N

)
, it follows that,

RT,0(N) =
ln(p(N)N)

ln (ln(N))
. (7)

Figure 5 depicts RT,0(N) for various values and asymptotic orders of p(N).
It is observed that the upper bound of termination time does not increase as
rapidly as the number of messages decreases. For instance, for N = 10000 and
p(N) = 0.8, as it is depicted in Figure 4.a, RM,0(N) ≈ 0.1, and as depicted
in Figure 5.a, RT,0(N) ≈ 4.03. So, in asymptotic terms and the particular
depicted case, probabilistic flooding employs 0.1% of the messages required
under traditional flooding, at the expense of increasing the (average) upper
bound of termination time 4.03 times. Given that diameters in random graph
topologies are basically small (as already mentioned it is known as the “small
world” phenomenon, [22], [23]) a time delay upper bound of the order of
4.03 × D(G(10000, 0.8)) may be viewed as small and thus not be prohibitive
for employing probabilistic flooding.

Apart from the aforementioned increment of the (average) upper bound of
termination time, another drawback of probabilistic flooding is the (unavoid-
able) employment of a probabilistic process instead of a deterministic one as
it is the case under traditional flooding. For example, reduction of the num-
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ber of messages under probabilistic flooding takes place at the cost of being
achieved only with high probability, whereas under traditional flooding it is
guaranteed.

So far in this section the global network outreach case (i.e., L = 0 or C(0) = 1)
has been studied. The cases corresponding to L = 1 and L = 2 are naturally
expected to yield smaller number of messages under probabilistic flooding –
compared to traditional flooding – since the particular values of pf(N) are
expected to be (on average) smaller than those ensuring global network out-
reach (i.e., C(0) = 1) w.h.p. Given that the case of L = 1, corresponds to

property Q1, as it can be seen from Table 1, pQ1(N) = ln(N)
2N

= Θ
(

ln(N)
N

)
. It

is evident that the asymptotic analysis that has been previously followed for
L = 0 applies to this particular case as well. Note, that the resemblance is only
asymptotic and savings with respect to the number of messages are greater
for the case of L = 1 than for the case of L = 0 under probabilistic flooding,
as it will be demonstrated by simulations in the following section.
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Fig. 6. RM,2(N) as a function of N for various values and asymptotic orders of
p(N).

The case of L = 2, is different than the case of L = 1 and L = 0, since
pQ2(N) = 1

N
. Following the same steps as for the case of L = 0, it is concluded

that,

RM,2(N) =
1

p(N)N
. (8)

RM,2(N) for various values of p(N) is depicted in Figure 6. Note that for
N = 10000 and p(N) = 0.8 as depicted in Figure 6.a, the (asymptotic) savings
with respect to the number of messages is about 0.01% as opposed to 0.1%
depicted in Figure 4.a.
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6 Simulation Results and Evaluation

The purpose of the simulation results presented in this section is two-fold: (a)
to support the claims and expectations of the analysis; and (b) to provide
for further insight into various aspects of probabilistic flooding in random
graphs. A simulation program was developed in C programming language and
random graph topologies up to 10000 nodes were created, while traditional
and probabilistic flooding was considered over these topologies. The presented
results are averaged values of 100 independent runs. For each run the initiator
node was randomly selected and different seeds with respect to pseudorandom
sequences (governing the selection of initiator nodes, the creation of topologies
and message forwarding under probabilistic flooding) were used. In many cases
p(N) = 0.0008, that is a value large enough for G(N, p) to be connected and at
the same time small enough in order for the resulting topology to be of reduced
number of links which corresponds to a worst-case scenario under probabilistic
flooding when compared against traditional flooding. Let C̄(L) denote the
averaged (coverage) fraction of nodes that belong to either the probabilistic
flooding network or the giant component of the under consideration random
graph, depending on the case. Let R̄M,L(N) (R̄T,L(N)) denote the averaged
fraction of the number of messages (termination time) under probabilistic
flooding over that under traditional flooding for L = 0, 1, 2.

6.1 Bounded Probabilistic Flooding
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Fig. 7. C̄(0) as a function of pf (N) for N = 10000 and p(N) = 0.0008.

Figure 7.a depicts simulation results with respect to coverage for L = 0. It
is observed that probabilistic flooding’s performance lays between the perfor-
mance of G(N, p × p̃) and G(N, p × pf), as was expected from the analysis.
In particular, as pf(N) increases, P(G(N, p), pf) includes all network nodes
after G(N, p × p̃) has achieved global network outreach (pf(N) ≈ 0.4 in Fig-
ure 7) and slightly before G(N, p × pf) (pf(N) ≈ 0.5 in Figure 7). Global
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network outreach within the simulation section is considered to be achieved
when network coverage is equal to 98%.

It is also interesting to note that C̄(0) for the probabilistic flooding network
is closer to the particular value of C̄(0) for G(N, p × pf) than to C̄(0) for
G(N, p× p̃). This is more clearly depicted in Figure 7.b that is a zoom version
of Figure 7.a in the range of values pf(N) ∈ [0.25, 0.5]. However, by the time
G(N, p× pf) achieves global network outreach (i.e., pf(N) = 0.5 according to
the simulation results) all three curves are close (C̄(0) = 99.8%, 98.2% and
98.14%, for G(N, p × p̃), P(G(N, p), pf) and G(N, p × pf), respectively).

The analysis presented in Section 4.3 have shown the asymptotic “equivalence”
among the previously discussed graphs with respect to L = 0 (i.e., Lemma
1). As it is depicted in Figure 8, this is also the case for L = 1 and L = 2
as well (cases not covered by the analysis in Section 4.3). Obviously, coverage
under probabilistic flooding is between coverage of both (i.e., G(N, p× p̃) and
G(N, p× pf)) random graphs for L = 1, 2 as well. The sudden increase in the
performance of the probabilistic flooding is due to the “phase transition phe-
nomenon” that takes place. As it was mentioned in Section 3, there is a critical
probability for larger values of which a property of the graph exists while for
lower values it does not. Therefore, coverage C(L) increasing suddenly by the
time property QL is satisfied.
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Fig. 8. C̄(1) and C̄(2) as a function of pf (N) for N = 10000 and p(N) = 0.0008.

Figure 9 depicts the particular values of pf,L(N) for which C̄(L) = 0.98, for
p(N) = 0.0008 and different values of L. C̄(L) = 0.98 is considered instead of
C̄(L) = 1 due to the probabilistic nature of both random graphs and proba-
bilistic flooding (e.g., sometimes for networks of 10000 nodes it is unreasonably
time consuming for C̄(L) = 1 to be satisfied). As L increases, the particular
value of pf,L(N) decreases as expected, since smaller fractions of the network
nodes are needed in order for probabilistic flooding to cover the network for
the particular value of L. At the same time, the particular value of pf,L(N)
significantly decreases, as the network size N increases. This is due to the fact
that as N increases and given that p(N) is fixed, the number of redundant
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Fig. 9. pf,L(N) for which C̄(L) = 0.98 as a function of N for L = 0, 1, 2 in a
G(10000, 0.0008) network topology.

links significantly increases (for example, if 10000 nodes are already present
in the network, the addition of a new node for p(N) = 0.0008 – a comparably
small value of p(N) – corresponds to on average 8 new links), thus allowing
for the coverage of the network under probabilistic flooding for small values
of pf,L(N). It should be also noted that the shape of the curves in Figure 9 is
similar (in asymptotic terms) to the curves depicted in Figure 3 corresponding
to the asymptotic values of pf,L(N) as derived by the analysis.

6.2 Links and Messages
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Fig. 10. Number of links and messages for N = 10000 and p(N) = 0.0008.

Figure 10 depicts simulation results for the number of links of the probabilis-
tic flooding network and the number of messages under probabilistic flood-
ing that reveal some interesting aspects of the probabilistic flooding process
not captured by the analysis. In particular, in Figure 10.a, the number of
links is depicted for the previously mentioned random graphs and the prob-
abilistic flooding network. It is interesting to observe that for small values of
pf(N) (e.g., smaller than 0.18), the number of links of the probabilistic net-
work E(P(G(N, p), pf)) is smaller than the number of links for either random
graph. This is not a contradiction to the analytical results, since the analysis
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was based on the existence of the giant component. For such small values of
pf(N) < 0.18 (and given the small value of p(N) = 0.0008), the giant com-
ponent is not present. This can also be observed by looking at the value of
the C̄(0) in Figure 7.a, where the larger existing component that contains –
at least 50% of the network nodes – is created for pf ≥ 0.18 (when 50% of
the nodes belong to a certain component, it is safe to assume that a giant
component starts to emerge, [26]). As soon as the giant component emerges
(for pf(N) > 0.18), the number of links of the probabilistic flooding network
lays between the number of links of the other two random graph topologies,
as it is observer from Figure 10.a and expected from the analysis.

Figure 10.b presents a comparison between the number of the links of the
probabilistic flooding network and the number of messages sent under proba-
bilistic flooding considering a G(N, p) network topology. The vertical dotted
lines correspond to the particular values of pf(N) for which C̄(L) = 0.98, for
L = 0, 1, 2 (e.g., as also observed from Figure 7 and Figure 8). It is interesting
to note that for small values of pf (N) the number of links and the number of
messages is about the same, particularly for those values of pf(N) for which
C̄(2) = 0.98 and C̄(1) = 0.98. However, after the particular value of pf(N)
for which C̄(1) = 0.98 and as pf(N) increases – and before C̄(0) = 0.98 – the
number of messages gradually deviates (increases) from the number of links.
The maximum difference takes place for pf(N) = 1, (around 20000 more mes-
sages than links in a network of 10000 network nodes) which is the case when
probabilistic flooding reduces to traditional flooding. Even for pf (N) = 0.7
(i.e., C̄(0) = 0.98) the difference is about 10000 more messages than links.
This means that for a certain link of the probabilistic flooding network, in
many cases two messages were forwarded over it (instead) of one, resulting
in a significant number of redundant links particularly for C̄(0) = 0.98 (i.e.,
global network outreach). Such redundancy is not observed for L = 1 and
L = 2 as it is also demonstrated in Figure 10.b. The main reason is that both
C̄(1) = 0.98 and C̄(2) = 0.98 are achieved for small values of pf(N) (thus,
redundancy is limited).

6.3 Global Network Outreach (L = 0)

Figure 11 depicts simulation results with respect to R̄M,0(N) and R̄T,0(N) for
three different values of p(N) (0.004, 0.005 and 0.01). As it can be observed
from Figure 11.a, the savings on the number of messages increase with the
number of network nodes N , for the same value of p(N), as it is expected
by the analysis and particularly Equation (6). There is a clear resemblance
between the simulation results presented in Figure 11.a and the (asymptotic)
analytical results presented in Figure 4. The savings on the number of messages
increase as p(N) increases. This is due to the fact that large values for p(N)
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Fig. 11. R̄M,0(N) and R̄T,0(N) as a function of N for various values of p(N)

provide for an increase on the number of network links and, therefore, an
increase on the number of redundant links that are used under traditional
flooding to forward messages.

Figure 11.b depicts simulation results with respect to termination time ratio
R̄T,0(N). R̄T,0(N) increases by the increase on the network’s size, as it is
already mentioned in the analysis (Section 5). It is observed that the larger
the value for p(N), the larger the increase of R̄T,0(N) as it is also expected
given Equation (7). Note that an increase on p(N) corresponds to networks of
more redundant links, smaller diameters and smaller termination times under
traditional flooding, which leads to an increase in R̄T,0(N). As before there is
a clear resemblance between the simulation results presented in Figure 11.b
and the (asymptotic) analytical results presented in Figure 5.a.

6.4 The case of L = 1 and L = 2

Note that the comparison between probabilistic flooding and traditional flood-
ing with respect to coverage, number of messages and termination time, for
L = 1 and L = 2 is not a fair one since traditional flooding deterministi-
cally achieves C̄(L) = 1 for L = 0, 1, 2, having “spent” as many/much mes-
sages/time as required for C̄(0) = 0.98 ≈ 1 (global network outreach). A fairer
comparison – as it is the case in the sequel – would be one under which con-
trolled flooding is used for flooding information

(
r(u) − L

)
hops away from

any initiator node u, where r(u) is the maximum number of hops between any
node in the network and node u over a shortest path (r(u) is usually referred
to as the radius or eccentricity of node u and is upper bounded by the network
diameter).

Figure 12 depicts simulation results for R̄M,1(N) and R̄T,1(N). The curve
corresponding to R̄M,1(N) (Figure 12.a) is similar to the one expected from the
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Fig. 12. R̄M,1(N) and R̄T,1(N) as a function of N for various values of p(N)
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Fig. 13. R̄M,2(N) and R̄T,2(N) as a function of N for various values of p(N)

analysis (i.e., asymptotically similar to R̄M,0(N) as also observed from Figure
11.a). In fact, R̄M,1(N) is slightly better than R̄M,0(N) (R̄M,1(N) < R̄M,0(N))
because of the smaller values for pf (N) required for coverage to become equal
to 0.98 for either case (L = 0 and L = 1). R̄T,1(N) is depicted in Figure 12.b
and – as it is the case for R̄M,1(N) – the corresponding graph is similar to
R̄T,0(N).

Figure 13 depicts simulation results for both R̄M,2(N) and R̄T,2(N). It can
be observed from Figure 13.a that R̄M,2(N) is slightly smaller than R̄M,1(N),
as expected (as already mentioned smaller values of pf(N) are capable of
achieving C̄(2) = 0.98 rather than C̄(1) = 0.98).

The depicted simulation results with respect to R̄T,2(N) in Figure 13.b allow
for an interesting observation. Apart from an increase at the beginning for
small values of N , as N increases it is clear that R̄T,2(N) decreases, in contrast
to both the R̄T,0(N) and R̄T,1(N) or RT,0(N) and RT,1(N). In order to explain
this observation it is important to get into more details regarding the case
of L = 2. For a certain (fixed) value of p(N) as N increases, the number
of links among nodes increases and eventually the diameter of the network
decreases, [26]. For the conducted simulations of network sizes between 1000
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and 10000 nodes (the simulator had performance and memory limitations
running for topologies larger than 10000 nodes), the considered values of p(N)
(selected large enough such that all networks to be connected w.h.p.), were
large enough to result in small network diameters (for G(10000, 0.0005) the
diameter is 4) and therefore, comparable to 2. For such case, it is evident
that the performance under the probabilistic flooding is comparable to that
under controlled flooding (r(u) − L hops away for the initiator node u). As
N increases further, the network diameter becomes smaller, thus allowing for
probabilistic flooding to faster cover the network. Note, however, that this
is a limited case since for a network diameter comparable to L, information
dissemination is becoming obsolete (e.g., for L equal to the network diameter
all nodes are at most L hops away from any network node by definition).

7 Conclusions

The problem of limited information dissemination in large, unstructured net-
works employing probabilistic flooding is studied and analyzed here. Global
network outreach is available in a network if the employed information dissem-
ination scheme is capable of taking a message from any originating node to
any other network node. Such network outreach is needed in order to support
routing protocols, advertise a new service, search for some information, etc.
Traditional flooding schemes achieve global network outreach in unstructured
networks with certainty (deterministically, for a connected network) at a large
message overhead cost. In this paper, probabilistic flooding schemes have been
considered in order to reduce their associated large overhead, at the price of
providing probabilistic global network outreach guarantees. It is shown here
that the network created by probabilistic flooding over a random graph net-
work asymptotically lays between two random graph networks – which are
determined - facilitating this way the derivation of asymptotic analytical ex-
pressions on the value of the forwarding probability that results in a fairly
decreased (compared to the traditional flooding) number of messages, while
covering the network with high probability (w.h.p.). Apart from global net-
work outreach (i.e., L = 0 case), the cases of L = 1 and L = 2 have also been
analytically studied.

A comparison of probabilistic flooding under the derived forwarding probabil-
ity with the traditional flooding is carried out. For the case of global network
outreach it is shown that the number of messages under probabilistic flooding
asymptotically increases as N ln(N) as opposed to N2 under traditional flood-
ing, for any fixed value of the forwarding probability. Thus, significant message
overhead reduction can be achieved, especially for large networks (large N).
The relative message overhead (compared to that under traditional flooding) is
also derived and shown to yield substantial message overhead savings even for
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low to medium values of N . However, as it was mentioned, the global network
outreach achieved under traditional flooding with certainty is now achieved
only with high probability. Termination time is also studied and as expected,
it is slightly higher under probabilistic flooding (compared to message reduc-
tion) but this is practically insignificant if one considers typical time scales
of flooding and usage of network information. Extensive simulation results
support the analytical claims and expectation and in addition reveal certain
interesting aspects with respect to probabilistic flooding.
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