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ABSTRACT
Peer-to-peer (P2P) locality has recently raised a lot of in-
terest in the community. Indeed, whereas P2P content dis-
tribution enables financial savings for the content providers,
it dramatically increases the traffic on inter-ISP links.

To solve this issue, the idea to keep a fraction of the P2P
traffic local to each ISP was introduced a few years ago.
Since then, P2P solutions exploiting locality have been in-
troduced. However, several fundamental issues on locality
still need to be explored. In particular, how far can we push
locality, and what is, at the scale of the Internet, the reduc-
tion of traffic that can be achieved with locality?

In this paper, we perform extensive experiments on a con-
trolled environment with up to 10 000 BitTorrent clients to
evaluate the impact of high locality on inter-ISP links traffic
and peers download completion time.

We introduce two simple mechanisms that make high lo-
cality possible in challenging scenarios and we show that
we save up to several orders of magnitude inter-ISP traf-
fic compared to traditional locality without adversely im-
pacting peers download completion time. In addition, we
crawled 214 443 torrents representing 6 113 224 unique peers
spread among 9 605 ASes. We show that whereas the tor-
rents we crawled generated 11.6 petabytes of inter-ISP traf-
fic, our locality policy implemented for all torrents would
have reduced the global inter-ISP traffic by 40%.

1. INTRODUCTION
Content distribution is today at the core of the services

provided by the Internet. However, distributing content to a
large audience is costly with a classical client-server or CDN
solution. This is the reason why content providers start to
move to P2P content distribution that enables to signifi-
cantly reduce their cost without penalizing the experience
of users. One striking example is iPlayer, a P2P service for
video-on-demand that distributes recent BBC programs.

However, whereas current P2P content distribution solu-
tions like BitTorrent are very efficient, they generate a huge
amount of traffic on inter-ISP links. Indeed, in BitTorrent,
each peer that downloads a given content is connected to a
small subset of peers picked at random among all the peers
that download that content. In fact, even though peers in
the same ISP are downloading the same content they are
not necessarily connected to each other. As a consequence,
peers unnecessarily download most of the content from peers
located outside of their ISP.

Therefore, even if current P2P content replication solu-
tions significantly reduce content provider costs, they can-

not be promoted as a global solution for content replication
as they induce huge costs for ISPs. In particular, the current
trend for ISPs is to block P2P traffic [9].

One solution to this problem is to use P2P locality, that
is to constrain P2P traffic within ISPs’ boundaries in order
to minimize the amount of inter-ISP traffic.

The seminal work of Karagiannis et al. [12] is the first
one to suggest the use of locality in a P2P system in or-
der to reduce the load on inter-ISP links. They show on
real traces the potential for locality (in particular spatial
and temporal correlation in the requests for contents) and,
based on simulation on a BitTorrent tracker log, they eval-
uate the benefit of several architectures and in particular
a P2P architecture exploiting locality. More recently, Xie
et al. [18] proposed P4P, an architecture to enable cooper-
ation between P2P applications and ISPs. They show by
performing large field tests that P4P enables reduction of
external traffic for a monitored ISP and enables a reduction
on the peers download completion time. Choffnes et al. [7]
proposed Ono, a BitTorrent extension that leverages on a
CDN infrastructure to localize peers in order to group peers
that are close to each other. They show the benefit of Ono
in terms of peers download completion time and suggest,
using indirect measurements (IP hops and AS hops among
peers), that Ono can also reduce inter-ISP traffic.

With those works, there is no doubt that P2P locality has
some benefits and that there are several ways to implement
it. However, two fundamental questions are left unanswered
by those previous works.

• How far can we push locality? In all proposed solu-
tions the number of inter-ISP connections is kept high
enough to guarantee a good robustness to partitions,
i.e., a lack of connectivity among set of peers resulting
in a poor download completion time. However, this
robustness is at the expense of a larger inter-ISP traf-
fic. How far can we push locality without impacting
the robustness to partition of the P2P protocol?

• What is, at the scale of the Internet, the reduction of
traffic that can be achieved with locality? It might be
argued that P2P locality will bring little benefits at the
scale of the Internet, in case most ISPs have just a few
peers, thus few potential benefits with peers locality.
Therefore, the question is, what is the distribution of
peers per ISP in the Internet, and what would be the
inter-ISP bandwidth savings achieved with a locality
policy. Previous works looking at inter-ISP bandwidth
savings either consider indirect measurements (like the
distribution of the number of AS between connected
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peers), partial measurements (like the monitoring of
a specific ISP), or simulations (like comparing various
content distribution scenarios based on the location of
peers obtained from a tracker log). For instance, Xie
et al. [18] reported results on inter-ISP savings with
P4P for a single ISP.

The answers to those questions are fundamental if ever
P2P content replication is used by content providers for large
scale distribution. In that case, it is likely that ISPs will
need to know the amount of inter-ISP traffic they can save
with locality, and that they will request content providers
to minimize this traffic due to P2P applications accordingly.
At the same time, the content providers will need a clear
understanding of the impact of this reduction of traffic on
their customers.

Our contribution in this paper is to answer those questions
by running extensive large scale BitTorrent experiments
(with up to 10 000 real BitTorrent clients) in a controlled
environment, and by using real data we crawled in the Inter-
net on 214 443 torrents representing 6 113 224 unique peers
spread among 9 605 ASes. Our work can be summarized
with the two following key contributions.

i) We show that we can push BitTorrent locality much
further than what was previously proposed, which enables
to reduce by several orders of magnitude the inter-ISP traf-
fic and to keep the peers download completion time low.
In particular, we show on experiments including real world
data that the reduction of inter-ISP traffic and the peers
download completion time are not significantly impacted by
the torrent size, the number of peers per ISP, and the churn.
Finally, we propose new strategies to improve the efficiency
and robustness of our locality policy on challenging scenarios
defined from real world torrents.

ii) We show that at the scale of the 214 443 torrents we
crawled, ISPs can largely benefit from locality. In particular,
whereas all the torrents crawled generated 11.6 petabytes of
inter-ISP traffic, high locality would have saved 40%, i.e., 4.6
petabytes, of inter-ISP traffic. This results is significantly
different from the inter-ISP bandwidth savings reported by
Xie et al. [18]. Indeed, they reported a reduction of inter-
ISP traffic with P4P around 60%, but for a single ISP with
a single large torrent. Thus, they did not evaluated the re-
duction of BitTorrent traffic at the scale of the Internet, but
for a single ISP. The result we report is an estimation for
214 443 real torrents spread across 9 605 ASes, thus captur-
ing the variety of torrent sizes and distribution of peers per
AS we can find in the Internet.

The remaining of this paper is organized as follows. We
define the locality policy we use for our evaluation in sec-
tion 2, then we describe our experimental setup, and define
metrics in section 3. We discuss the impact of the number
of inter-ISP connections in section 4 and focus on a small
number of inter-ISP connections in section 5. In section 6,
we present results obtained from a large crawl of torrents
in the Internet. In section 7, we discuss the related work.
Finally, we conclude in section 8.

2. LOCALITY POLICY
In this paper, we make a experimental evaluation of the

two questions discussed in the introduction. To do so, we
introduce in the following a locality policy that we use to
perform our evaluation. We do not claim our locality policy

to be a definitive solution that should be deployed. Instead,
it is a simple implementation that we used for our evalu-
ation. Yet, we identified two important strategies that we
recommend to consider, even in a modified form, for any
implementation of a locality policy.

In the following, we refer to BitTorrent policy when the
tracker does not implement our locality policy, but the reg-
ular random policy.

2.1 Implementation of the Locality Policy
We say that a connection is inter-ISP when two peers

in two different ISPs have established a direct BitTorrent
connection, and that it is intra-ISP when the two peers are
from the same ISP. The goal of our locality policy is to limit
the number of inter-ISP connections, the higher the locality,
the smaller the number of inter-ISP connections.

We say that an inter-ISP connection is outgoing (resp. in-
coming) for an ISP if the connection was initiated by a peer
inside (resp. outside) this ISP. However, once a connection
is established it is fully bidirectional.

In order to control the number of inter-ISP connections,
we assume that the tracker can map each peer to its ISP.
How this mapping is performed is orthogonal to our work.
For instance, the tracker can simply map peers to ASes us-
ing precomputed mapping information obtained from BGP
tables [3]. In case the AS level is not appropriate for ISPs,
the tracker can use more sophisticated information as the
one offered by, for instance, the P4P infrastructure [18].

The only one parameter of our locality policy is the max-
imum number of outgoing inter-ISP connections per ISP.
The tracker maintains for each ISP the number of peers
outside this ISP that it returned to peers inside, along with
the identity of the peers inside. This way the tracker main-
tains a reasonable approximation of the number of outgoing
inter-ISP connections for each ISP. When a peer P asks the
tracker for a new list of peers, the tracker will: map this
peer to the ISP Ip it belongs to; return to this peer a list of
peers inside Ip; if the maximum number of outgoing inter-
ISP connections per ISP is not yet reached for Ip, return
one additional peer Po outside Ip and increment by one the
counter of the number of outgoing connections for Ip. We
also add a randomization factor to distribute the outgoing
connections evenly among the peers of each ISP.

Each regular BitTorrent client contacts periodically, typi-
cally every 30 minutes, the tracker to return statistics. Each
time a peer leaves the torrent, it contacts the tracker so that
it can remove this peer from the list of peers in the torrent.
In case the client does not contact the tracker when it leaves
(for instance, due to a crash of the client), the tracker will
automatically remove the peer after a predefined period of
time, typically 45 minutes, after the last connection of the
peer to the tracker. Our locality policy uses this informa-
tion to maintain an up-to-date list of the number of outgoing
inter-ISP connections per ISP.

When the tracker implements our locality policy, it ap-
plies the locality policy to all peers except the initial seed.
Because the goal of the initial seed is to improve diversity,
the tracker selects the neighbors of the initial seed using the
BitTorrent policy. However, we apply the locality policy
to all the other seeds, that is all the leechers that become
seed during the experiments. Note that the traffic generated
by the initial seed is negligible compared to the aggregated
traffic of the torrent.
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2.2 Round Robin Strategy
Our locality policy controls the number of outgoing inter-

ISP connections per ISP. When a peer P from the ISP Ip
opens a new connection to a peer Po from the ISP Ipo , the
connection is outgoing for Ip, but incoming for Ipo . As both
outgoing and incoming connections account for the total
number of inter-ISP connections, it is important to define a
strategy for the selection of peer Po returned by the tracker
to peer P .

We define two strategies to select this peer Po. The first
strategy, the default one, consists in selecting Po at random
among all peers outside Ip. While this strategy is straight-
forward, it has the notable drawback that the largest ISPs
have a higher probability to have a peer selected than other
ones. Therefore, large ISPs will have more incoming con-
nections than small ones. Thus, it is likely that in this case,
as connections are bidirectional, the inter-ISP traffic will
be higher for large ISPs (we confirm this intuition in sec-
tion 6.2). In the second strategy that we call Round Robin
(RR), the tracker selects first the ISP with a round robin
policy and then selects a peer at random in the selected
ISP. This way, the probability to select a peer in a given
ISP is independent of the size of this ISP.

In scenarios with a same number of peers for each ISP,
both strategies are equivalent. Therefore, as all the experi-
ments in section 4 and 5 consider an homogeneous number
of peers for each ISP, we only present the results with the
default strategy. We perform a detailed evaluation of the
RR strategy in section 6.

2.3 Partition Merging Strategy
One issue with a small number of inter-ISP connections

is the higher probability to have partitions in the torrent.
Indeed, if peers who have inter-ISP connections leave the
torrent and no new peer joins the ISP, then this ISP will form
a partition. In order to repair partitions we introduce an
additional strategy called Partition Merging (PM) strategy.
The problem of partition in BitTorrent is not specific to our
locality policy, but any locality policy favors its apparition.

The implementation of the Partition Merging strategy is
the following. On the client side, each leecher monitors the
pieces received by all its neighbors using the regular BitTor-
rent HAVE messages. If during a period of time randomly
selected in [0, T ], with T initialized to T0, the leecher can-
not find any piece it needs among all its neighbors (i.e.,
each neighbor has a subset of the pieces of the leecher), it
recontacts the tracker with a PM flag, which means that
the leecher believes there is a partition and that it needs a
connection to a new peer outside its ISP. In case the tracker
does not return a new peer, or if after receiving this new
peer the leecher does not observe any new piece it needs,
the leecher performs an exponential backoff of T , that is
T ← T ∗ 2. As soon as the leecher sees among its neighbors
a piece it needs, it resets T to T0. This backoff reduces the
load on the tracker but does not prevent an implosion of
requests at the tracker in case of very large torrents. This
issue, known as the feedback implosion problem in the litera-
ture, can be solved using several techniques [14]. However, a
detailed description of a feedback implosion mechanism for
the PM strategy is beyond the scope of this paper.

On the tracker side, the tracker maintains for each ISP
a flag that indicates whether it answered a request from
a peer with the PM flag within the last T1 minutes, i.e.,

the tracker returned to a peer of this ISP a peer outside.
The tracker will return at most one peer outside each ISP
every T1 minutes in order to avoid exploiting this strategy
to bypass the locality policy.

The detailed evaluation of the impact of the initial values
of the timers is beyond the scope of this study. The choice
of the values is a tradeoff between reactivity and erroneous
detection of partitions. In this study, we set T0 and T1 to
one minute, and we show that it efficiently detects partitions
without significantly increasing the inter-ISP traffic.

This strategy might be abused by an attacker. Indeed, as
the PM strategy detects partitions relying on the accuracy
of the HAVE messages sent by neighbors, an attacker might
generate dummy HAVE to prevent peers of an ISP to detect
a partition. However, this is not an issue in the context of
our study, as we work on a controlled environment, without
attackers. In addition, we don’t believe this is a major issue
for the following two reasons. First, an attacker must be a
neighbor of all the peers of an ISP to attack it. However,
with the locality policy, the attacker must be in the ISP it
wants to attack, otherwise it has a very low probability to
become one of the ISP’s peers neighbor. That makes the
attack hard to deploy at the scale of a torrent. Second,
instead of relying on the monitoring of HAVE messages, a
peer can rely on pieces it receives. For instance, a peer
can combine the current PM strategy with the additional
criterion that it also generates a PM request to the tracker
in case it does not receive any new piece within a 5 minutes
interval. It is beyond the scope of this study to perform a
detailed analysis of variations of the PM strategy, which has
to be addressed in future work.

As this strategy has no impact on our experiments when
there is no partition, we present results in section 4 and 5
without the PM strategy unless explicitly specified, that is
when there is a partition and that the PM strategy changes
the result. We perform a detailed analysis of the PM strat-
egy in section 6.

2.4 Granularity of the Notion of Locality
Our locality policy is designed to keep traffic local to ISPs.

However, we are not restricted to ISPs, and our locality
policy can keep traffic local to any network region as long
as the tracker is aware of the regions and has a mean to
map peers to those regions. For instance, a tracker can use
information offered by a dedicated infrastructure like the
P4P infrastructure [18]. In particular, when we focus on
real world scenarios in section 6, we will use ASes instead of
ISPs.

3. METHODOLOGY
In this section, we describe our experimental setup, and

the metrics that we consider to evaluate our experiments.

3.1 Experimental Setup
In this paper, we have run large scale experiments to eval-

uate the impact of our locality policy on inter-ISP traffic and
BitTorrent download completion time. We have run exper-
iments instead of simulations for two main reasons. First,
it is hard to run realistic (packet level discrete) P2P simu-
lations with more than a few thousand of peers due to the
large state generated by each peer and the packets in tran-
sit on the links. Moreover, at that scale, simulations are
often slower than real time. Second, the dynamics of Bit-

3



Torrent is subtle and not yet deeply understood. Running
simulations with a simplified version of BitTorrent may hide
fundamental properties of the system.

As we will see during the presentation of our results, we
observe behaviors that can only be pointed out using real
experiments at large scale, with up to 10 000 peers.

We now describe the experimentation platform on which
we run all our experiments, the BitTorrent client that we
use in our experiments, and how we simulate an inter-ISP
topology on top of the platform.

3.1.1 Platform
We obtain all our results by running large scale experi-

ments with a real BitTorrent client.
We run all our experiments on a dedicated experimenta-

tion platform. A typical node in this platform has bi or
quad-core AMD Opteron CPU, 2 to 4GB of memory, and
a gigabit Ethernet connectivity. The platform we used con-
sists of 178 nodes. Once a set of nodes is reserved, no other
experiment can run on parallel on those nodes. In partic-
ular, there is no virtualization on those nodes. Therefore,
experiments are totally controlled and reproducible.

The BitTorrent client used for our experiments is an in-
strumented version of the mainline client [2], which is based
on version 4.0.2 of the official client [1]. This instrumented
client can log specific messages received and sent. Unless
specified otherwise, we use the default parameters of this
client. In particular, each peer uploads at 20kB/s to 4 other
peers, and the maximum peer set size is 80. We will vary
the upload capacity when studying the impact of hetero-
geneous upload capacities in section 4 (see section 4.1 for
a description of our heterogeneous scenario). We also use
the choke algorithm in seed state of the official client in its
version 4.0.2. This algorithm is somewhat different, as it is
fairer and more robust than the one implemented in most
BitTorrent clients today. However, as it only impacts the
seed, we do not believe this algorithm to have a significant
impact on our results.

Our client does not implement a gossiping strategy to dis-
cover peers, like Peer Exchange (PEX) used in the Vuze
client. Whereas it is possible to make PEX locality aware,
it is beyond the scope of this study to make a detailed dis-
cussion of this issue.

We use the following default parameters for our experi-
ments, unless otherwise specified. Peers share a content of
100MB that is split into pieces of 256kB. By default, all peers
including the initial seed start within the first 60 seconds of
the experiments. However, we will also vary this parame-
ter in section 6.2.2 when studying the impact of churn (see
section 6.2.2 for a description of our scenario with churn).
Once a leecher has completed its download, it stays 5 min-
utes as seed and then leaves the torrent. We have chosen
5 minutes in order to give enough time for peers to upload
the last pieces they have download before becoming a seed.
However, it should not impact our results because 5 minutes
is small compared to the optimal download completion time
(83 minutes). The initial seed stays connected for the entire
duration of the experiment.

We run all our experiments with up to 100 BitTorrent
clients per physical node. Therefore, for torrents with 100,
1 000, and 10 000 peers, we use respectively 1, 10, and 100
nodes for the leechers, plus one node for the seed and the
tracker. Each client on a same node uses a different port

to allow communication among those clients. We have per-
formed a benchmarking test to find how many clients we can
run on a single node without a performance penalty that we
identify with a decrease in the client download time for a
reference content of 100MB. We have found that we can run
up to 150 clients uploading at 20KB/s on a single node with-
out performance penalty. To be safe, we run no more than
100 clients uploading at 20kB/s on one node, or 2MB/s of
BitTorrent workload. When we will vary the upload capac-
ity of clients in section 4, we will then adapt the number of
clients per node so that the aggregated upload capacity per
node is never beyond 2MB/s.

3.1.2 Inter-ISPs Topology
We remind that our goal is to evaluate the impact of the

number of inter-ISP connections on inter-ISP traffic and
peers performance. Therefore, we simulated an inter-ISP
topology on top of the experimentation platform we use to
run our experiments. We explain, in the following, how we
simulated this topology and how representative it is of the
real Internet.

For all our experiments, we assume that we have a set
of stub-ISPs that can communicate among each other. On
top of this topology, we consider two scenarios. The first
scenario is when all stub-ISPs have a single peering link to
each other, thus the topology of the network is a full mesh.
We refer to a peering link as a link for which an ISP does not
pay for traffic. However, the peering technology is expensive
to upgrade so ISPs are interested in reducing the load on
those links. The second scenario is when each stub-ISP is
connected with a transit link to a single transit-ISP. All
peers are in stub-ISPs. Therefore, there is no traffic with
a source or a destination in the transit-ISP. We refer to a
transit link as a link on which traffic is billed according to the
95-th percentile. Therefore, ISPs are interested in reducing
the bursts of traffic on those links.

We observe that both scenarios are simply a different in-
terpretation of a same experiment, as all peers are in stub-
ISPs and the traffic flows from one stub-ISP to another one.
In the following, we refer to inter-ISP link when our discus-
sion applies to both peering and transit links.

In our experiments, the notion of ISPs and inter-ISP links
is virtual, as we run all our experiments on an experimenta-
tion platform. To simulate the presence of a peer in a given
ISP, before each experiment, we create a static mapping be-
tween peers and ISPs. We use this mapping to compute
offline the traffic that is uploaded on each inter-ISP link of
the stub-ISPs. For instance, imagine that peer PA is mapped
to the ISP A and peer PB is mapped to the ISP B. All the
traffic sent from PA to PB is considered as traffic uploaded
by the ISP A to the ISP B with a peering link in the first
scenario or with a transit link via the transit ISP in the
second scenario.

Our experiments are equivalent to what we would have
obtained in the Internet with real ISPs and inter-ISP links
except for latency. We argue that latency would not signif-
icantly change our results because: i) we limit the upload
capacity on each BitTorrent client, thus the RTT is not the
limiting factor for the end-to-end throughput; ii) the chok-
ing algorithm is insensitive to latency by design, as BitTor-
rent computes the throughput of neighbors (used to unchoke
them) over a 10 seconds interval, which should alleviate the
impact on BitTorrent of the TCP ramp up [8] due to latency.
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We experiment with and without bottlenecks in the net-
work. By default, there is no bottleneck in the network be-
cause the aggregated traffic generated by our experiments
is always significantly lower than the bottleneck capacity of
the experimentation platform. However, we also create arti-
ficial bottlenecks on inter-ISP links to evaluate their impact
on inter-ISP traffic and performances (see section 5.3 for
the description of how we limit the inter-ISP link capacity).
It is important to experiment the impact of bottlenecks on
inter-ISP links because the choking algorithm selects peers
according to their throughput. Therefore, bottlenecks may
significantly change BitTorrent’s behavior.

Finally, we have not considered a hierarchy of transit-
ISPs. We show in section 6.3 that there is a huge amount
of inter-ISP traffic generated by BitTorrent. Even if the
proposed locality policy already significantly reduces this
traffic, optimizations for the transit-ISPs still makes sense.
We keep the detailed evaluation of the optimization of the
traffic in a hierarchy of transit ISPs for future work.

3.2 Evaluation Metrics
To evaluate our experiments, we consider three metrics:

the content replication overhead, the 95th percentile, and
the peer slowdown.

Overhead For each stub-ISP, we monitor the number of
pieces that are uploaded from this stub-ISP to any
other stub-ISP during the experiment. Then, to ob-
tain the per-ISP content replication overhead, we nor-
malize the amount of data uploaded by the size of the
content for the experiment. Thus, we obtain the over-
head in unit of contents that crosses an inter-ISP link.
We call this metric the content replication overhead,
or overhead for short, because with the client-server
paradigm, ISPs with clients only would not upload any
byte. We use the overhead as a measure of load on
peering links.

95th Percentile To obtain the 95th percentile of the over-
head, we compute the overhead by periods of 5 minutes
and then consider the 5 minutes overhead correspond-
ing to the 95th percentile. The 95th percentile is the
most popular charging model used on the Internet [15].

Slowdown We define the ideal completion time of a peer
as the time for this peer to download the content at a
speed equivalent to the average of the maximum up-
load capacity of all peers. This is the best completion
time, averaged over all peers, that can be achieved in
a P2P system in which each peer always uploads at its
maximum upload capacity. The slowdown is the exper-
imental peer download completion time normalized by
the ideal completion time. For instance, imagine that
all peers have the same maximum upload capacity of
20kB/s. An average peer slowdown of 1 for 10 000
peers means that there is an optimal utilization of the
peers upload capacity, or that the peers are, on aver-
age, as fast as a client-server scenario in which we have
10 000 servers, one server per client sending at 20kB/s.

4. IMPACT OF THE NUMBER OF INTER-
ISP CONNECTIONS

The goal of this section is to explore the relation between
the number of inter-ISP connections and the overhead and

slowdown. In particular, we will evaluate how far we can
push locality (that is, how much we can reduce the number
of inter-ISP connections) to obtain the smallest overhead
attainable and what is the impact of this reduction on the
slowdown.

4.1 Experimental Parameters
For this series of experiments, we set the torrent size to

1 000 peers, the number of ISPs to 10, and the content size
to 100 MB. Therefore, there are 100 peers per ISP in all
the experiments of the first series. To analyze the impact of
the number of inter-ISP connections on BitTorrent, we then
vary the number of outgoing inter-ISP connections between
4 and 40 by step of 4, and between 400 and 3600 by steps of
400. As we consider, in this section, scenarios with the same
number of peers for each ISP, the total number of inter-ISP
connections per ISP will be on average twice the number
of outgoing inter-ISP connections. We run experiments for
each of the three following scenarios.

Homogeneous scenario with a slow seed In this sce-
nario both the initial seed and the leechers can upload
at a maximum rate of 20kB/s. As we have mentioned
earlier, we run 100 leechers per node, and we run the
initial seed and the tracker on an additional node. Ac-
cording to the definition of locality policy from sec-
tion 2.1, each peer has the same probability to have a
connection to the initial seed, whichever ISP it belongs
to. For instance, as the initial seed has a peer set of
80, with 10 ISPs, each ISP has in average 8 peers with
a connection to this initial seed.

Heterogeneous scenario We experiment with leechers
with heterogeneous upload capacities and a fast initial
seed. In each ISP, one third of the peers uploads at
20kB/s, one third uploads at 50kB/s, and one third up-
loads at 100kB/s. For simplicity, we run all the leech-
ers with the same upload capacity on the same node.
Because we have determined that the hard drives can-
not sustain a workload higher than 2MB/s, we run only
20 clients per node. For BitTorrent to perform opti-
mally, the initial seed uploads at 100kB/s, as fast as
the fastest leechers. Each peer has the same probabil-
ity to have a connection to the initial seed, whichever
ISP it belongs to.

We experiment with heterogeneous upload capacities
for three reasons. The first reason is that non-local
peers may be faster than local ones so the local peers
may unchoke inter-ISP connections more often than
intra-ISP connections, thus making the reduction of
the number of inter-ISP connections inefficient to re-
duce inter-ISP traffic. The second reason is that lo-
cal peers may be faster than non-local ones so inter-
ISP connections may be rarely used to download new
pieces, thus degrading performances. The third reason
is that in case of heterogeneous upload capacities in-
side an ISP, if fast peers are those with the inter-ISP
connections, slower peers may not be given pieces to
trade among themselves, also degrading performances.

Homogeneous scenario with a fast seed We exper-
iment with leechers that upload at 20kB/s and
an initial seed that uploads at 100kB/s. We run
this additional experiment in order to understand
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Figure 1: Overhead with 1 000 peers and 10 ISPs. Each

square, circle and triangle represents the average over-

head on all ISPs in a given scenario. Each dot represents

this overhead for one ISP.

whether the results obtained with the heterogeneous
scenario are due to the fast initial seed or due to the
heterogeneous capacities of leechers.

First, we evaluate the impact of the number of inter-ISP
connections on overhead and 95th percentile. Then, we eval-
uate the impact of the number of inter-ISP connections on
slowdown.

4.2 Impact on Overhead
We observe in Fig. 1 that for the two scenarios with a well

provisioned initial seed, i.e., the homogeneous fast seed and
the heterogeneous scenarios, the overhead increases linearly
with the number of outgoing inter-ISP connections. Indeed,
when there is no congestion in the network and a uniform
repartition of the upload capacity of peers in each ISP, the
probability to unchoke a peer outside his own ISP is linearly
dependent on the number neighbors this peer has outside
his own ISP, thus it is linearly dependent on the number of
outgoing inter-ISP connections. We evaluate the impact of
network bottlenecks in section 5.3.

The BitTorrent arrows in Fig. 1 and 3 represent the value
of respectively overhead and slowdown achieved by BitTor-
rent in the same scenario. Indeed, with 1 000 peers and 10
ISPs of 100 peers, each peer has 10% of connections inside
his own ISP with the BitTorrent policy. Therefore, with
BitTorrent each ISP will have 7 200 inter-ISP connections,
3 600 of those connections being outgoing. Thus BitTorrent
corresponds to the case with 3 600 outgoing inter-ISP con-
nections in our experiments.

For all three scenarios, our locality policy enables to re-
duce by up to two orders of magnitude the traffic on inter-
ISP links. Indeed, we see in Fig. 1 that for 3 600 outgoing
inter-ISP connections, the case of the BitTorrent policy, the
overhead is close to 90, and for 4 outgoing inter-ISP connec-
tions the overhead is close to 1 for all three scenarios.

Surprisingly, we observe in Fig. 1 that between 400 and
2 000 outgoing inter-ISP connections, there is a higher over-
head for the homogeneous scenario with a slow seed than for
the two other scenarios with a fast seed. Indeed, as there
is a lower piece diversity with a slow seed, peers in a given
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ISP will have to use more their inter-ISP connections, thus a
higher overhead, in order to download pieces that are miss-
ing in their own ISP. We do not observe the same issue with
a fast seed because this fast initial seed is fast enough to
guarantee a high piece diversity even for a small number of
outgoing inter-ISP connections.

We also observe a linear relation between the number of
outgoing inter-ISP connections and the 95th percentile as
well as a significant reduction of the 95th percentile for a
small number of outgoing inter-ISP connections in Fig. 2.
However, we observe that the 95th percentile for the hetero-
geneous scenario is much larger than for the two other sce-
narios. This is because in the heterogeneous scenario there
are two third of the peers that are faster than 20 kB/s,
which is the upload capacity of all the peers for the two
other scenarios. Therefore, we see that even if the total
amount of traffic crossing inter-ISP links is not significantly
impacted by the distribution of the upload capacity of peers
(see Fig. 1), this distribution might have a major impact on
the 95th percentile that is used for charging traffic on transit
links.

In summary, we have shown that a small number of out-
going inter-ISP connections leads to a major reduction of
the overhead and 95th percentile up to two order of magni-
tude. In addition, 4 outgoing inter-ISP connections give the
minimum attainable overhead of 1. In the next section, we
explore what is the impact of such a high reduction on the
peers slowdown.

4.3 Impact on Slowdown
The most striking result we observe in Fig. 3 is that,

whereas for 4 outgoing inter-ISP connections the overhead
is optimal (only one copy of content uploaded per ISP) and
reduced by two orders of magnitude compared to the Bit-
Torrent policy, the slowdown remains surprisingly low.

Indeed, Fig. 3 shows that the number of outgoing inter-
ISP connections has no significant impact on peers slowdown
for the two scenarios with a fast seed (heterogeneous and
homogeneous with a fast seed) and a negligible impact for
more than 16 outgoing inter-ISP connections for the homo-
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geneous scenario with a slow seed. This result is remarkable
when one considers the huge saving a small number of outgo-
ing inter-ISP connections enables for the overhead and 95th
percentile.

For the homogeneous scenario with a slow seed, the slow-
down increases by at most 43% for 4 outgoing inter-ISP
connections compared to the case with the BitTorrent pol-
icy. This increase is due to a poor piece diversity, which
can be avoided by having a fast initial seed as shown by the
two scenarios with a fast seed in Fig. 3. Moreover, even if a
43% increase is not negligible, it has to be considered as the
worst case. Indeed, as we will show in section 5.3, in case of
congestion on inter-ISP links, the slowdown may even im-
prove with a small number of outgoing inter-ISP connections
compared to the BitTorrent policy, because that will foster
peers to exchange with peers in the same ISP, thus avoiding
congested paths.

In conclusion, we see that the peer slowdown remains sur-
prisingly low even for a small number of outgoing inter-ISP
connections.

5. EVALUATION OF 4 OUTGOING INTER-
ISP CONNECTIONS

We have seen in the previous section that a small num-
ber of outgoing inter-ISP connections dramatically reduces
the overhead and 95th percentile, and that the slowdown
remains low in most cases.

Whereas this result is encouraging, one may wonder if it
is possible to keep a low overhead and slowdown for a small
number of outgoing inter-ISP connections in more complex
scenarios. Therefore, we focus in the following on 4 outgoing
inter-ISP connections, which leads to the lowest attainable
overhead in our experiments in section 4.2, and we evaluate
the overhead and slowdown when we vary the characteristics
of the torrent (torrent size and number of peers per ISP), or
the characteristics of the network (limitation of the capacity
of the inter-ISP links).

Also, as we did not observe a significant impact of the
heterogeneous upload capacity of the peers on our results in
section 4, we consider for the remaining of this paper the
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homogeneous scenario with a slow seed. We discuss further
the impact of the peers upload capacity on our results in
section 8.

In summary, for this second series of experiments, we con-
sider a scenario with 4 outgoing inter-ISP connections, a
content of 100 MB, peers with homogeneous upload capac-
ities, and a slow seed. Then, we vary the torrent size, the
number of peers per ISP, and the inter-ISP link capacity.
We vary only one parameter at a time per experiment. We
consider, in this section, scenarios with the same number
of peers per ISP. Therefore, on average, the number of in-
coming inter-ISP connections will be equal to the number of
outgoing inter-ISP connections.

In the following, we do not present results for the 95th
percentile, as they do not show any significant new insights
compared to the results for the overhead.

5.1 Impact of the Torrent Size
In this section, we make experiments with torrents with

100, 1 000, and 10 000 peers, and 10 ISPs.
In Fig. 4 upper plot, we see that for a small number of

outgoing inter-ISP connections the overhead is close to one
independently of the torrent size, whereas for the BitTorrent
policy it increases linearly with the torrent size.

For the torrent with 100 peers, as there are 10 ISPs, there
are only 10 peers per ISP. This scenario is interesting be-
cause a locality policy only makes sense when there are
enough peers inside each ISP to be able to keep traffic lo-
cal. This scenario shows the gain that can be achieved for a
small number of peers per ISP. With a torrent of 100 peers,
we save 60% of overhead as compared to BitTorrent. With
a torrent of 10 000 peers, we save 99.8% of overhead as com-
pared to BitTorrent.

To see the impact of this dramatic overhead reduction on
slowdown, we focus on Fig. 4 lower plot. We see that the
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slowdown is 8% higher than with the BitTorrent policy for
a torrent with 100 peers. For 1 000 and 10 000 peers, the
slowdown is 32% higher than with the BitTorrent policy.

In summary, we observe that with 4 outgoing inter-ISP
connections, the BitTorrent overhead is optimal and almost
independent of the torrent size, which is at the cost of an
increase by around 30% of the slowdown.

5.2 Impact of the Number of Peers per ISP
In this section, we evaluate 10, 100, 1 000 and 5 000 peers

per ISP. To vary the number of peers per ISP, we vary the
number of ISPs with a constant torrent size of 10 000 peers.
Therefore, to obtain 10, 100, 1 000 and 5 000 peers per ISP,
we consider 1 000, 100, 10, and 2 ISPs.

We observe in Fig. 5 lower plot that there are many out-
liers points for the scenario with 100 peers per ISP. In fact,
this scenario is the only one in section 5 that creates parti-
tions. Therefore, we also present the result of this experi-
ment with the Partition Merging (PM) strategy presented in
section 2.3. Indeed, we see that the PM strategy solves the
issue in Fig. 5. We note that the results for all the other ex-
periments remain unchanged with the PM strategy, as they
do not create partitions. A detailed evaluation of the PM
strategy is performed in section 6.2. In the following, we
only consider the results obtained with the PM strategy for
the scenario with 100 peers per ISP.

Fig. 5 upper plot shows that with 4 outgoing inter-ISP
connections, the overhead remains close to 1 for any num-
ber of peers per ISP, whereas it increases linearly with the
BitTorrent policy. However, this overhead is slightly higher
for the scenarios with 10 and 5 000 peers per ISP.

We also observe on Fig. 5 lower plot that the slowdown
is close to the one of BitTorrent for 10 and 5 000 peers per
ISP and around 30% higher than the one of BitTorrent for
100 and 1 000 peers per ISP. This non-monotonic behavior

is explained by the tradeoff that involves two main factors
impacting the performance of BitTorrent in this scenario.
On the one hand, as the initial seed has a maximum of 80
connections to other peers, at most 80 ISPs can have a di-
rect connection to the initial seed. All ISPs without direct
connection to the initial seed have to get all the pieces of the
content from other ISPs. Therefore, there is a higher uti-
lization of the inter-ISP connections and a higher slowdown
because the few inter-ISP connections available to guaran-
tee a high piece diversity represent a bottleneck. On the
other hand, when the number of peers per ISP decreases,
the number of ISPs increases because the torrent size is
constant, thus the global number of inter-ISP connections
increases. Therefore, the overhead increases too, but the
slowdown decreases because there is a sufficient number of
inter-ISP connections to guarantee a high piece diversity.

In summary, we observe that with 4 outgoing inter-ISP
connections, the BitTorrent overhead is optimal and almost
independent of the number of peers per ISP, which is at the
cost of an increase by at most 30% of the slowdown.

5.3 Impact of the Inter-ISP Link Capacity
To explore the impact of inter-ISP link capacity, we con-

sider torrents with 1 000 peers and 10 ISPs. We vary the
inter-ISP link capacity from 40kB/s to 100kB/s by steps of
20kB/s and from 200kB/s to 2 000kB/s by steps of 200kB/s.
However, local peers can upload to their local neighbors (in
the same ISP) at 20kB/s without crossing a link with limited
capacity. For this experiment, all the BitTorrent clients that
run on the same node are located in the same virtual ISP,
so limiting the upload capacity of the node is equivalent
to limiting that inter-ISP link capacity. For an inter-ISP
link capacity of 2 000kB/s, all the BitTorrent clients that
are located on a same node can upload outside this ISP
at their full capacity without any congestion. Therefore, it
is equivalent to the case with no inter-ISP link bottleneck.
We use the tool traffic controller (tc), that is part of the
iproute2 package, to limit the upload capacity of each node
on which we run experiments. We deploy our own image of
GNU/Linux, on which we have superuser privileges, on all
the nodes we want to limit the upload capacity. Limiting
the upload capacity on each node allows us to reproduce
Internet’s bottlenecks in a controlled environment.

We see in Fig. 6 upper plot that with 4 outgoing inter-ISP
connections the overhead remains close to 1.5 for any inter-
ISP link capacity. For the BitTorrent policy, the overhead
increases with the inter-ISP link capacity. The reason is
that BitTorrent, due to the choke algorithm, will prefer to
exchange data with local peers when there is congestion on
the inter-ISP links, because those local peers are not on a
congested path, thus a larger BitTorrent download speed.
For high inter-ISP link capacity, those links are no more
congested, therefore the capacity does not impact anymore
the overhead achieved by the BitTorrent policy.

We observe in Fig. 6 lower plot that with congestion on
inter-ISP links, a small number of outgoing inter-ISP con-
nections improves the peers slowdown. Indeed, for an inter-
ISP link capacity lower than 400 kB/s, the scenario with
the BitTorrent policy becomes slower than the scenario with
4 outgoing inter-ISP connections. The benefit of a small
number of outgoing inter-ISP connections on the slowdown
is significant for highly congested inter-ISP links. For an
inter-ISP link capacity of 40kB/s, the scenario with with
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4 outgoing inter-ISP connections is more than 200% faster
than with the BitTorrent policy.

In summary, the overhead is almost independent of the
inter-ISP link capacity for 4 outgoing inter-ISP connections,
whereas it significantly increases with the inter-ISP link ca-
pacity for the BitTorrent policy. In addition, when inter-ISP
links are congested, we observe a lower slowdown with the
locality policy than with the BitTorrent policy. We discuss
the impact of this result in the next section.

5.4 Discussion
We have focused on 4 outgoing inter-ISP connections and

showed that the overhead is close to 1 in most scenario and
almost independent of the torrent size, the number of peers
per ISP, and the congestion on inter-ISP links.

But, most surprisingly, the slowdown remains close to the
one of the BitTorrent policy in most cases. In some scenar-
ios, the overhead can be around 30% larger than with the
BitTorrent policy. Whereas an increase by 30% cannot be
considered negligible, this is a very positive result for two
main reasons.

First, we remind that our main goal in this section was
to minimize the overhead. We achieved up to three orders
of magnitude reduction in the overhead compared to the
BitTorrent policy (see Fig. 4 for a torrent with 10 000 peers).
There is a price to pay for such a huge reduction, which is
an increase by at most 30% in the slowdown. We deem this
increase to be reasonable considering the savings it enables.
However, we have also run experiments with 40 outgoing
inter-ISP connections that are not shown here due do space
limitations, but that are available in a technical report [6].
We found that with 40 outgoing inter-ISP connections, the
slowdown is always close to the one of BitTorrent at the
price of a small increase in the overhead that is close to 10
in most of the cases. However, even with this increase in the
overhead, the savings compared to the BitTorrent policy are

still huge, up to two orders of magnitude in our experiments.
Second, the increase we report on the slowdown is the

worst one that can be achieved. Indeed, all our experiments
(except the ones presented in section 5.3) are performed
without congestion in the network. However, we have shown
in section 5.3 that in case of congestion, our locality policy
can reduce the slowdown compared to the BitTorrent policy.
Therefore, on a real network, the slowdown with our locality
policy is likely to be equivalent or even better than the one
of the BitTorrent policy.

6. REAL WORLD SCENARIOS
Up to now, we have defined scenarios intended to under-

stand the evolution of the overhead and slowdown with a
small number of outgoing inter-ISP connections when one
varies one parameter at a time. Those scenarios are not
intended to be realistic, but to shed light on some specific
properties achieved with a small number of outgoing inter-
ISP connections.

In this last series of experiments, we use real world data
to build realistic scenarios. In particular, we will experiment
with measured distribution of the number of peers per AS for
real torrents. In the remaining of this section, we focus on
inter-ASes rather than on inter-ISPs traffic for two reasons.
First, the information to perform the mapping between IP
addresses and ASes is publicly available, whereas there is no
standard way to map IP addresses or ASes to ISPs. Second,
ISPs may consist of several ASes. There is no way to find
where an ISP wants to keep traffic local. Indeed, this is
most of the time an administrative decision that depends
on peering and transit relations among its own ASes and
the rest of the Internet. However, making the assumption,
as we do, that ISPs want to keep traffic local to ASes is
reasonable, even if there are some cases in which ISPs want
to define locality at a smaller or larger scale than the AS
level. Therefore, we believe that our assumption is enough
to give a coarse approximation of the potential benefits of a
small number of outgoing inter-AS connections at the scale
of the Internet.

In the following, we present the crawler we designed to get
real world data. Then we present the results of experiments
with real torrent characteristics. Finally, we give a estima-
tion of the savings that would have been achieved using our
locality policy on all the torrents we crawled.

6.1 Description of the BitTorrent Crawler
In order to get real world data, on the 11th of De-

cember 2008, we have collected 790 717 torrent files on
www.mininova.com that is considered one of the largest in-
dex of torrent files in the Internet. All those torrent files were
collected during a period of six hours. Out of these 790 717
torrent files, we have removed duplicate ones (around 1.65%
of the files) and all files for torrents that do not have at least
1 seed and 1 leecher. Our final set of torrent files consists of
214 443 files.

We have implemented an efficient crawler that takes as
input our set of torrent files and that gives as output the
list of the peers in each of the torrents represented by those
files. We identify a peer by the couple (IP,port) where IP is
the IP address of the peer and port is the port number on
which the BitTorrent client of this peer is listening.

Our crawler, which consists of two main tasks, runs on a
single server (Intel Core2 CPU, 4GB of RAM). The first task
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takes each torrent file sequentially. It connects first to the
tracker requesting 1 000 peers in order to receive the largest
number of peers the tracker can return. Indeed, the tracker
returns a number of peers that is the minimum between the
number of peers requested and a predefined number. The
tracker returns a list of N peers, N usually ranging from
50 to 200. The tracker also returns the current number of
peers in the torrent. Then, the task computes how many in-
dependent requests R must be performed in order to retrieve
at least 90% of the peers in the torrent when each request
results is N peers retrieved at random from the tracker.

The second task starts a round of R parallel instances of a
dummy BitTorrent client, each client started on a different
port number, whose only one goal is to get a list of peers
from the tracker. Once a round is completed, the task re-
moves all duplicates (IP,port), makes sure that indeed 90%
of the peers of the torrent were retrieved, and saves the list
of couples (IP,port). In case, less than 90% of the peers were
discovered during the first round, an additional round is per-
formed. The second task can start many parallel instances
of the dummy BitTorrent client for different torrents at the
same time. As the task of the dummy client is simple, we
can run several thousands of those clients at the same time
on a single machine.

At the end of this second task we crawled 214 443 torrents
within 12 hours, the largest torrents being crawled in just a
few seconds, and we identified 6 113 224 unique peers.

Finally, we map each of the unique collected peers to the
AS it belongs to using BGP information collected by the
RouteViews project [3]. We found that the unique peers are
spread among 9 605 ASes. Even if this way to perform the
mapping may suffer from inaccuracy [13] [10], it is appropri-
ate for our purpose. Indeed, we do not need to discover AS
relationship or routing information, we just need to find to
which AS each peer belongs to. Even if some mappings are
inaccurate, they will not significantly impact our results, as
we consider the global distribution of peers among all ASes.

This simple but highly efficient crawler enables to capture
a representative snapshot, at the scale of the Internet, of
the peers using BitTorrent to share contents the day of our
crawl. There are, however, two limitations to our crawler.
First, we only crawled torrents collected on mininova. Even
if mininova is one of the largest repository for torrent files,
it contains few Asian torrents. Therefore, that means that
our results present a lower bound of the benefit that can
be achieved with high locality. Indeed, Asian torrents are
usually large and, due to the geographical locality inherent
to such torrents, spread among fewer ASes than an average
torrent. Therefore, Asian torrents have a larger potential
for locality than other torrents. Second, we are aware that
a fraction of the peers advertised by trackers are fake peers.
Indeed, copyright holders (or representative) join torrents
to monitor peers in order to issue DMCA takedown notices
to downloaders [16]. Also tracker operators may add fake
peers in order pollute the information gathered by copyright
holders. Finally, some peers are identified as deviant, which
means that they do not look like regular peers [17]. However,
even if the amount of fake peers accounts for a few percents
of the overall peers, considering the large amount of torrents
and peers crawled, we do not believe those fake peers to
significantly bias our results.

 0.1

 1

 10

 100

 1000

 1  10  100  1000

O
ve

rh
ea

d

Number of peers per AS (log scale)

Overhead for Torrent 1

BitTorrent
4 connections

PM+4 connections
RR+4 connections

PM+RR+4 connections

Figure 7: Overhead for torrent 1. Each symbol (rectan-

gle, triangle, circle, plus, and cross) represents the aver-

age overhead for all ASes with the same number of peers

for a given scenario. Each dot represents the overhead

for a single AS.

6.2 Impact of Locality for a Real Scenario
In section 5, we performed experiments with an homoge-

neous number of peers per AS. However, real torrents have
an heterogeneous number of peers per AS, which may ad-
versely impact the overhead reduction we observed with a
small number of outgoing inter-ISP connections.

In order to evaluate the impact of a real distribution of
peers per AS on our experiments, we selected three different
torrents from our crawl with different characteristics. We
call those three torrents the reference torrents. The first
torrent, that we call torrent 1, is a torrent for a popular
movie in English language. This torrent represents the case
of torrents with a worldwide interest. It has 9 844 peers
spread among 1 043 ASes, the largest AS consisting of 386
peers. The second torrent, called torrent 2, is a torrent for
a movie in Italian language. This torrent has 4 819 peers
spread among 211 ASes, the largest AS consisting of 2, 415
peers. This torrent is typical of torrent with local interest.
In particular, this torrent spans less ASes than torrent 1,
and the largest AS, belonging to the largest Italian ISP,
represents more than half of the peers of the torrent. The
last torrent, called torrent 3, is a torrent for a game. It has
996 peers spread among 354 ASes, the largest AS consisting
of 31 peers. This torrent is used to evaluate middle sized
torrents with few potential savings with a locality policy, as
there are few peers per AS.

6.2.1 Evaluation of ASes with Heterogeneous Num-
ber of Peers

We have run experiments with the same parameters as the
ones of the homogeneous scenario described in section 4.1.
In particular, we have the initial seed and all leechers that
upload at a maximum rate of 20kB/s, and a content of 100
MB. However, we consider scenarios with the same number
of ASes and peers per AS as the three real torrents consid-
ered. In the following, we focus on experiments performed
with the characteristics of torrent 1, as the experiments with
the characteristics of the two other torrents lead to the same
conclusions.
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Fig. 7 shows the overhead per AS, ordered by number of
peers, for torrent 1. As expected, the overhead increases
linearly with the number of peers per AS for the BitTorrent
policy (squares).

We observe that the overhead for the scenario with 4 out-
going inter-AS connections is one order of magnitude lower
than the one of BitTorrent for the largest ASes. However,
the overhead is still large for the largest ASes. In fact, due
to the heterogeneity in the number of peers per AS, as ex-
plained in section 2.2, the largest AS will have more incom-
ing inter-AS connections than small ones. Therefore, large
ASes will have a larger number of inter-AS connections, thus
a larger overhead than small ASes.

The solution to this problem is to use the Round Robin
(RR) strategy introduced in section 2.2. Indeed, Fig. 7
shows that the overhead is significantly reduced with the
RR strategy (cross). However, we see in Fig. 8 that the
slowdown for the largest ASes increases significantly com-
pared to the other scenarios. Indeed, as the RR strategy
spreads uniformly the incoming inter-AS connections on all
ASes, each AS will have on average 8 inter-AS connections
in total (4 outgoing and 4 incoming). Therefore, for the
largest ASes, only few peers will have an inter-AS connec-
tion. Once those peers leave the torrent after their com-
pletion, the largest AS will become partitioned with a large
number of peers waiting for new pieces from the initial seed.
Thus, a larger slowdown.

To solve this issue, we made experiments with the Parti-
tion Merging (PM) strategy that is supposed to repair parti-
tions quickly (see section 2.3). Indeed, we see in Fig. 8 that
the scenario with 4 inter-AS outgoing connections and the
PM+RR strategies (plus) gives the best slowdown over all
the scenario using a locality policy, close to the one of the
BitTorrent policy. This significant improvement is at the
cost of a small increase in the overhead, see Fig. 7 (plus),
but the overhead remains up to two orders of magnitude
lower than with the BitTorrent policy.

To show that the PM strategy does not impact our results
when there is no partition, we consider a scenario with 4 out-
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Figure 9: Overhead (left plot) and slowdown (right plot)

with churn of 60s or 6000s for torrent 1 in two scenarios:

BitTorrent policy, locality policy with 4 outgoing inter-

AS connections. Each square and circle represents the

average overhead (left plot) or average slowdown (right

plot) on all ASes for a specific scenario. The error bars

represent the minimum and maximum overhead on all

ASes (left plot), and the minimum and maximum slow-

down on all peers (right plot).

going inter-AS connections and the PM strategy only. We
see in Fig. 7 that the overhead of this scenario (triangle) is
almost indistinguishable from the scenario without the PM
strategy (circle). We observe in Fig. 8 that the slowdown for
both scenarios is also indistinguishable. Therefore, the PM
strategy does not bias our results by artificially increasing
the number of inter-AS connections.

In summary, the PM+RR strategies solve issues with real
torrents and enable huge overhead reduction and a low slow-
down.

6.2.2 Evaluation of Churn
In this section, we run all our experiments with the char-

acteristics of torrent 1. In particular, we consider scenarios
with the same number of ASes and peers per AS as torrent
1. To evaluate the impact of churn, we start a first set of
9 844 peers uniformly within the first 60 seconds in a first
experiment, and within the first 6 000 seconds in a second
experiment. Then, when each of those peers completes its
download, we start a new peer from a second set of 9 844
peers. Hence, we model the three phases of a real torrent’s
life: flashcrowd, steady phase, and end phase [11]. The first
phase, the flashcrowd, occurs while all peers of the first set
join the torrent. The second phase, the steady phase, occurs
when the number of peers in the torrent remains constant.
This is when peers in the first set start to complete and that
peers in the second set are started to replace those peers in
order to keep the torrent size constant to 9 844 peers. The
last phase, the end phase, occurs at the end of the torrent’s
life, when the last peers complete their download and no
new peer joins the torrent. This is when there is no more
peers in the second set to compensate departure of peers.

Large torrents, like torrent 1, represent the most chal-
lenging scenario in case of churn. Indeed, small torrents will
have just one to a few peers per AS. Therefore, as most con-
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nections among peers will be inter-AS, the locality policy
will not significantly constrain the peers connectivity graph.
Consequently, this graph will be random, unlike with a large
torrent whose graph is clustered per AS, thus a better ro-
bustness to AS isolation in case of churn.

We see in Fig. 9 left plot that the maximum overhead is
reduced by one order of magnitude with 4 outgoing inter-AS
connections compared to the BitTorrent policy. Moreover,
this reduction has no negative impact on the slowdown as
shown by Fig. 9 right plot.

In summary, even with churn the overhead is reduced and
the slowdown remains low independently of the churn pe-
riod with 4 outgoing inter-AS connections. We also run
experiments with a churn of 600 seconds, with 10 to 1 000
homogeneous ASes, and other arrival patterns [6] without
any significant impact on our conclusions.

6.3 Estimation of Locality Benefits at the Scale
of the Internet

In this section, we want to estimate the benefits our local-
ity policy would have had on the torrents we crawled. In our
crawl, 117 677 torrents and 6 643 ASes cannot benefit from
a locality policy, because there is at most one peer per AS
per torrent. However, we want to show that despite most of
the torrents and ASes cannot benefit from a locality policy,
the implementation of a locality policy at the scale of the
Internet would be highly beneficial.

In order to make the estimation of the benefits of our
locality policy, we make several assumptions. First, we es-
timate the inter-AS traffic in all the torrents we crawled by
assuming that all the peers we found start downloading the
content at the same time and stay connected to the tor-
rent for the entire duration of their download. Indeed, we
have not captured temporal information, which means that
we do not know how long each peer stayed in each torrent.
However, it is hard to know if we underestimate or overes-
timate the potential for locality of those peers. Indeed, for
torrents in a flash crowd phase, most peers are leechers and
the population increases with time. For those torrents, we
are likely to underestimate the benefits of our locality pol-
icy. For torrents in an end phase, most peers are seeds and
the population is decreasing, therefore, it is likely that we
overestimate the benefits of our locality policy. We believe
our assumption to be reasonable and to provide, on average,
at least a coarse estimation of the inter-AS traffic generated
by all the peers we crawled.

Second, we assume that peers have the same probability
to exchange data with any peer in its peer set. Therefore, we
assume that peers have the same upload capacity and that
there is no network bottleneck that bias the peer selection
with the choke algorithm. Here again, it is hard to assess
the exact impact of this assumption on the accuracy of our
results, but we believe that, considering the large number of
torrents we crawled, our estimation of the inter-AS traffic is
reasonable.

In order to estimate the benefits of our locality policy, we
first estimate the inter-AS traffic generated with the BitTor-
rent policy, then we estimate the overhead savings enabled
by our locality policy.

To estimate the inter-AS traffic generated by the torrents
we assume that the probability that a peer in a given AS will
upload data to a peer in another AS is only a function of the
number of inter-AS connections of the ASes. In particular,
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Figure 10: Overhead for the three reference torrents

with the BitTorrent policy fitted with the estimation of

this overhead using a simple model (upper plot), and

overhead savings with 4 outgoing inter-AS connections

with PM+RR compared to BitTorrent policy for the

three reference torrents (lower plot).

for a torrent of size ST , an AS A of size SA, and a content
of size C, the inter-AS traffic uploaded from A is (1− SA

ST
) ·

SA · C. While this model is simple, we see in Fig. 10 upper
plot that it matches well the inter-AS traffic uploaded from
each AS that we measured for the three reference torrents.
Then, for each AS and each torrent, we compute using the
simple model the inter-AS traffic.

To estimate the inter-AS traffic generated by the torrents
we crawled with the locality policy with PM+RR, we use
the overhead savings we obtained with experiments with
the three reference torrents. Indeed, we see in Fig. 10 lower
plot, that the overhead savings of our locality policy with
PM+RR compared to the BitTorrent policy depends on the
number of peers per AS, but not on the torrent size. There-
fore, we use the average overhead savings computed on the
three reference torrents for each AS size to compute the
reduction of inter-AS traffic. We also made the same exper-
iments without the PM+RR strategy to estimate the inter-
AS traffic with our locality policy without those strategies,
and we observed that the savings depend on the number of
peers per AS, as well.

Fig. 10 lower plot shows that even with a small number
of peers per AS, the overhead savings are already high. For
instance, with 5 peers per AS, the overhead with our locality
policy is 40% lower than the one with the BitTorrent policy.

Now, we focus on the impact of those savings at the scale
of all the torrents we crawled. We see in Fig. 11 upper plot
the cumulative inter-AS traffic for each torrent we crawled.
The 100 (resp. 10 000) largest torrents generate 26% (resp.
82%) of the inter-AS traffic. The ideal policy corresponds
to the inter-AS traffic generated when only one copy of the
content is uploaded per AS and per torrent. We see that
the cumulative inter-AS traffic with the BitTorrent policy is
11.6 petabytes, and that with 4 outgoing inter-AS connec-
tions it is 7.3 petabytes (and 7 petabytes with the PM+RR
strategies), which is only 41% larger (35% with PM+RR)
than what the ideal policy achieves. Therefore, our locality
policy enables a significant reduction of the inter-AS traffic
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at the scale of the Internet.
The 50 (resp. 300) largest ASes represent 45% (resp. 84%)

of the total inter-AS traffic. Interestingly, we see in Fig. 11
lower plot, that the ASes with the largest inter-AS traffic are
also the ones that benefit from the most significant inter-
AS traffic reduction with our locality policy. We checked
manually the 50 largest ASes to make sure that they do not
belong to copyright holders (or piracy tracking companies)
to be sure that most of the peers in those ASes are real peers
[17].

In summary, a high locality policy can reduce by up to
40% the inter-AS traffic for the 214 443 real torrents we
crawled spread across 9 605 ASes.

7. RELATED WORK
Karagiannis et al. [12] first introduced the notion of lo-

cality in the context of P2P content replication. They show
monitoring the access link of an edge network and running
simulations using a log collected from a BitTorrent tracker
for a single torrent [11] that peer-assisted locality distribu-
tion is an efficient solution for both the ISPs and the end-
users.

P4P [18] is a project whose aim is to provide a light-weight
infrastructure to allow cooperation between P2P applica-
tions and ISPs. Xie et al. presented small scale experiments
(with between 53 and 160 PlanetLab nodes) on two specific
scenarios. They also reported on a field test experiment
around 60% of inter-ISP traffic savings with P4P for a sin-
gle ISP and a single large torrent.

Aggarwal et al. [4] present an architecture that is similar
by some aspects to P4P. The authors define the notion of
oracle that are supplied by ISPs in order to propose a list
of neighbors to peers. They perform their evaluation on
Gnutella using simulations and small scale experiments with
45 Gnutella nodes.

Another approach that requires no dedicated infrastruc-
ture is Ono [7]. Ono clusters users based on the assumption
that clients redirected to a same CDN server are close. The
authors have developed an Ono plugin for the Vuze client.
The authors reported measurement results collected from
120 000 users of the Ono plugin over a 10 month period.

They reported up to 207% performance increase in average
peer download completion time. However, the authors did
not give an explicit inter-ISP traffic reduction, but showed
a reduction of the path length between peers in terms of IP
and AS hops.

Bindal et al. [5] present the impact of a deterministic lo-
cality policy on ISPs’ peering links load and on end-users
experience. The authors considered simulations on a sce-
nario with 14 ISPs with 50 peers each, thus a torrent of 700
peers.

Our work significantly differs from those previous ones,
by being the first one to extensively evaluate the impact of
key parameters like the number of inter-ISP connections, the
torrent size, the distribution of peers per ISP, the inter-ISP
bottlenecks, the churn rate, and the peers upload capacity
using large scale experiments and real world data. In partic-
ular, we considered 214 443 real torrents spread across 9 605
ASes (it was a single large torrent and a single AS for the
P4P field test [18]) and showed that using only four inter-
ISP connections (it was 20% of inter-ISP connections for
the P4P field tests) we can reduce the inter-ISP traffic at
the scale of the Internet by 40%.

8. DISCUSSION
Our work is intended to be complimentary to previous

works [7,12,18] by answering the two fundamental questions:
How far can we push BitTorrent locality? What is at the
scale of the Internet the reduction of inter-ISP traffic that
can be achieve with locality?

In this paper, we have performed an extensive evaluation
of the impact of a small number of inter-ISP connections
on overhead and slowdown. We have run experiments with
up to 10 000 real BitTorrent clients in a variety of scenarios,
including scenarios based on real data crawled from 214 443
torrents representing 6 113 224 unique peers spread among
9 605 ASes.

Our main findings are that a small number of inter-ISP
connections will dramatically reduce the overhead and keep
the slowdown low independently of the torrent size, the num-
ber of peers per ISP, the upload capacity of peers, or the
churn. We have introduced two new strategies called Round
Robin and Partition Merging that make the use of a small
number of inter-ISP connections feasible for real torrents of
the Internet.

However, we do not advocate for such small number of
inter-ISP connections in real deployments. Instead, we in-
tend to increase confidence in BitTorrent locality by showing
that even in case of high locality BitTorrent still performs ex-
tremely well, and that with high locality the inter-ISP traf-
fic reduction can be up to 40% on the torrents we crawled,
which is 4.6 petabytes of data.

Finally, we have explored, in section 4, a scenario with
three classes of upload capacity spread uniformly over all
peers. We have shown that the results obtained for this sce-
nario do not significantly differ from an homogeneous sce-
nario. However, we did not explored scenarios with realistic
peers upload capacity distribution. In fact, it is hard, if not
impossible, to obtain this information at the scale of the
Internet. Moreover, we believe that the impact of the real
heterogeneity of peers will be better explored with a real
deployment. Our work shows that a real deployment makes
sense, and we are currently working with BitTorrent inc. to
implement, evaluate, and possibly deploy a locality policy
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in the uTorrent client, the most popular BitTorrent client
with more than 40 millions users.
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