
Implementing the Locator/ID Separation Protocol: Design
and Experience

Luigi Iannone∗ and Damien Saucez† and Olivier Bonaventure†

∗Deutsche Telekom Laboratories AG, Technische Universität Berlin,
Berlin, Germany

luigi@net.t-labs.tu-berlin.de

†ICTEAM – Université catholique de Louvain (UCL),
Louvain-la-Neuve, Belgium
{first.last}@uclouvain.be

Abstract

During the last few years, the network research community and the industry
have been working on the design of an alternate Internet Routing Archi-
tecture aiming at solving the issues arising in the current architecture. It
is widely accepted that applying a Locator/ID Separation paradigm would
result in a more scalable and flexible architecture. As the name suggests, in
Locator/ID Separation the identification (ID) and the localization (locator)
of end-points is separated, while the link between the ID and the Locator(s)
is ensured by what is called the mapping system.

In this paper, we present OpenLISP, an open source implementation of
LISP (Locator/ID Separation Protocol). LISP is a Locator/Identifier sepa-
ration solution based on the map-and-encap approach, which has the merit
of being incrementally deployable, hence, falling in the category of dirty-slate
approaches. OpenLISP is not a merely implementation of the LISP specifica-
tions; it also defines the mapping sockets, a socket-based abstraction making
the data plane and the control plane implementations independent. The
evaluation provided in this paper shows the limited impact on the protocol
stack performance compared to traditional non-encapsulated traffic.

Key words: Routing, Architecture, FreeBSD, LISP, Future Internet.

1. Introduction

The last few years have witnessed a growing concern on some scalabil-
ity issues the current Internet Routing Architecture is suffering [1]. Even

Preprint submitted to Computer Networks January 14, 2011

if the most representative issue is related to the growth of the BGP rout-
ing table [2], there are also concerns on addressing, mobility, multi-homing,
and inter-domain traffic engineering. This does not mean that the Internet
is approaching a hard scalability limit that, once reached, will cause it to
collapse. Rather, the key point is that the whole Internet is evolving toward
a complex system where the Operational Expenses (“OpEx”) cannot be sus-
tained anymore. In other words the Internet is becoming more and more
expensive to operate.

As a consequence, the research community and the industry have put a
lot of effort on studying what the Internet should be in order to face the new
challenges, leading to two approaches that can be followed: revolutionary
or evolutionary. In the revolutionary approach, the Internet is re-thought
from scratch and no backward compatibility is required. The opposite ap-
proach, the evolutionary approach promotes a smooth transition from the
current Internet to the Future Internet. The evolutionary approach is of-
ten described as the dirty slate approach (in opposition to the clean slate
revolutionary approach), because the Future Internet will use most of the
current technologies. However, even if the two approaches are different, the
research community largely agrees on the fact that introducing a separation
between the end-systems’ addressing space (the identifiers – IDs) and the
routing locators’ space will solve (or at least alleviate) a large part of the
issues the Internet is facing [3, 4, 5]. An implication of the Locator/ID Sep-
aration paradigm is the need for distributing and storing mappings between
the IDs and the locators, including a mechanism to go from one namespace
to the other.

Several evolutionary solutions have already been proposed, but most of
them rely on changes at the end-hosts, introducing important modifications
in the protocol stack [6, 7, 8, 9, 10]. On the contrary, the Locator/ID Sepa-
ration Protocol (LISP), proposed by Farinacci et al. [11], has been designed
having in mind incremental deployability and the lowest possible level of
disruption. Furthermore, it also limits the number of systems in the Inter-
net that will need to be upgraded, since it is meant to be deployed only on
border routers of edge networks.

In this paper, we present OpenLISP, our LISP open source implemen-
tation. The purpose of such a work is to provide an open and flexible
platform for experimentation for both the Data Plane (packets’ encapsula-
tion/decapsulation) and the Control Plane (mapping system). The result of
this effort is presented in this paper. To the best of our knowledge, OpenLISP
is the only publicly available open source implementation of the Locator/ID
Separation Protocol.

2

OpenLISP is more than a LISP implementation. Indeed, while the
LISP [11] draft provides the specifications of the LISP Data and Control
planes, OpenLISP proposes a technical solution to make the Data Plane and
the Control plane implementations independent. This in turn allows the
Data Plane to interact with Control Plane protocols that were not initially
designed for LISP. To this end, OpenLISP relies on a new socket based so-
lution: the mapping sockets. The mapping socket is an API that allows not
only control of the Data Plane, but it also offers a Data Plane monitoring
solution.

By presenting the OpenLISP architecture and its evaluation we aim at
answering the question: “What would a protocol stack look like and how would
it perform if LISP (or similar Loc/ID approaches) would be a fundamental
piece of the Internet Routing and Addressing Architecture? ”.

The remaining of the paper is organized as follows. In Section 2 we
overview the ongoing work related to Locator/ID Separation. In Section 3
we briefly overview the LISP proposal. In Section 4 we describe the archi-
tecture of OpenLISP, some of our design choices, and highlight the different
components of the Control and Data Plane. In Section 5 we describe the
mapping socket API that allows the Control and the Data Plane to com-
municate in an open and flexible manner. Section 6 presents an evaluation
of the performance of our implementation. Finally, Section 7 concludes the
paper.

2. Related Work

The idea of improving the Internet routing and addressing architecture
with some form of separation between the identity of end-systems and their
location in the Internet topology, started back in the mid-90s [12, 13, 6, 14].
More recently, other protocols, based on this separation, have been proposed,
to solve other specific issues. Main examples are the Host Identity Protocol
(HIP [9]) and Shim6 [10]. The purpose of HIP is to introduce a cryptographic
identifier namespace between the IP and the transport layers, while Shim6
targeted the supporting of efficient multi-homing by end-hosts.

After the Routing Research Group (RRG) had been rechartered, several
proposals based on Locator/ID Separation have been presented. All of these
proposals have the same goal: a new, more scalable, Internet Routing and
Addressing Architecture. The differences among them can be found in the
fact that some proposals use tunneling (e.g., LISP [11], APT [15], TRRP [16],
and IVIP [17]) while others use address rewriting (e.g., GSE [6], Six/One [7],
and ILNP [8]). In the tunneling approach a new header containing the

3

locators of the source and destination IDs of the original packet is added. In
address rewriting the source and destination IDs of the original packet are
substituted with the corresponding locators. In both cases the result is a
packet having locators in the outer header, hence that can be forwarded on
the routing infrastructure.

Despite the relatively large number of proposals, the only two ongoing
implementation activities (other then OpenLISP) concern Six/One [7] (by
Ericsson) and LISP [11] (by Cisco). None of these activities is open source.

In particular, Cisco, in collaboration with several other companies and
research institutes, has already deployed its implementation on a testbed
([18, 19]) scattered worldwide (e.g., in USA, Japan, Germany, Belgium,...).
The testbed is composed of several dozen nodes and supports both IPv4
and IPv6, using LISP+ALT [20] as Mapping Distribution Protocol (cf. Sec-
tion 3.3). Further, and more interestingly, the testbed is inter-operable with
the legacy Internet, thanks to the deployment of middle-boxes acting as
PTRs (Proxy Tunnel Routers [21]).

3. LISP in a Nutshell

In the present section, we first give a simple example of how end-to-end
packet forwarding is performed in the context of LISP. Such an example
allows clarifying how the Locator/ID Separation paradigm works, but also,
and more importantly, provides an overview of the basic mechanisms of the
protocol. Then, we give some details about the LISP’s Data Plane and
Control Plane.

3.1. End-to-end packet delivery in LISP

LISP is based on a simple IP-over-UDP tunneling approach, implemented
typically on border routers whose upstream IP address is used as Routing
LOCator (RLOC) for the end-systems of the local domain.1 End-systems
still communicate, sending and receiving packets, using legacy IP addresses,
which in the LISP terminology are called Endpoint IDentifiers (EIDs). While
EIDs and RLOCs are both IP addresses, on the one hand EIDs have only

1Actually the protocol inserts a LISP-specific header between the outer UDP header
and the inner (original) IP header. For the sake of simplicity, we will omit dealing with
such a header in this paper; however, this just means avoiding describing some further
checks on the encapsulation/decapsulation operations and does not modify the basic LISP
mechanism. For the interested reader, details on the LISP-specific header, its content, and
how to deal with it can be found in the original specifications [11].

4

I n t e r n e t

A S
 t

A S

A S
A S

 w

 x

 y

A S
 s

A S
 d

E I D s

E I D d

R L O C E I D s
1

R L O C E I D d
2

R L O C E I D d
1

R L O C E I D s
2

F o r w a r d i n g u s i n g R L O C s
 (L I S P E n c a p s u l a t i o n)

F o r w a r d i n g u s i n g E I D s
 (N o r m a l I P p a c k e t s)

Figure 1: Overview of packet forwarding using LISP.

a local scope and are not routable in the Default Free Zone (DFZ). On the
other hand, RLOCs are only used for routing and are not used as endpoint
identifiers for host-to-host communications in LISP-enabled domains. Since
a domain can be multi-homed, i.e., having several border routers, EIDs can
be actually associated with a set of RLOCs. An example of such a scenario
is depicted in Fig. 1, where ASs and ASd are both multi-homed.

LISP tunnels packets in the core Internet from one of the RLOCs of the
source EID to one of the RLOCs of the destination EID. In particular, the
Ingress Tunnel Router (ITR) prepends a new LISP header to each packet,
while the Egress Tunnel Router (ETR) strips this header before delivering
the packet to its final destination. This tunneling approach allows avoiding
announcing the EIDs in the core Internet. Only RLOCs are announced in
order to correctly deliver packets. This last point allows reducing the size of
BGP’s routing tables, which is one of the targets of this protocol.2

Let us take a closer look at an end-to-end packet delivery, taking the
scenario in Fig. 1 as a reference. Assuming that EIDs wants to open a

2LISP does not only allow reducing the size of BGP’s routing tables, but it also allows
address independence, multi-homing, and light weight traffic engineering ([3, 22, 23]).

5

connection to EIDd, the first step is to issue a first IP packet using its
ID (EIDs) as source address and the destination ID (EIDd) as destination
address. Note that the destination ID can be obtained by EIDs through a
normal DNS query.

Then the packet is routed inside ASs using legacy IP routing protocols
(e.g., OSPF) in order to be delivered to one of EIDs’s locators. Assuming
the packet reaches RLOC2

EIDs
, this router will act as ITR encapsulating the

original packet in a LISP packet. We will explain later how the ITR knows
the RLOCs to use for encapsulation; for now, let us assume that the best way
to reach EIDd is through RLOC1

EIDd
. Thus, the new header prepended to

the original packet contains RLOC2
EIDs

as source address and RLOC1
EIDd

as destination address. The packet is then routed in the Internet Default
Free Zone (DFZ).

When the destination router acting as an ETR with address RLOC1
EIDd

receives the packet, it strips the outer LISP header and injects the inner
packet in the local domain ASd, where it will be forwarded using legacy IP
routing protocols until it finally reaches its destination EIDd.

3.2. LISP Data Plane

The operations described in the previous section mainly involve the LISP
Data Plane, where packets get encapsulated and decapsulated. In order
to perform such operations, the LISP Data Plane needs to know when to
encapsulate a packet and what to put exactly in the header, as well as when
to decapsulate a packet. To perform these actions, two data structures are
needed: the LISP Database and the LISP Cache.

The LISP Database is present on each xTR and consists of all EID-Prefix
to RLOC mappings that are “owned locally”.3 An xTR owns a mapping if one
(or more) of its upstream interfaces (toward the provider), with a globally
routable IP address, are in the set of RLOCs associated with one (or more)
EID-Prefixes which are used as addressing space downstream (i.e., inside the
local network). For instance, in the example of Fig. 1, the database present
in the two xTRs of ASs contains the entry:

EIDs-Prefix: RLOC1
EIDs

, RLOC2
EIDs

.

The LISP Database is used for outgoing packets to select the source RLOC
to use in the outer header (RLOC2

EIDs
in the example of Fig. 1). It is

3By xTR we indicate a system that can be an ITR, an ETR, or both. Like IP addresses,
a power of 2 block of contiguous EIDs can be aggregated in a prefix that in this case is
called EID-Prefix.

6

also used for incoming packets to determine if they need to be decapsulated
(in our example the packet is decapsulated by RLOC1

EIDd
because it is the

destination RLOC).4

The LISP Cache is a data structure containing mappings for EID-Prefixes
that are not owned locally. The purpose of the cache is to provide the
information necessary to select the destination RLOC when encapsulating a
packet. For instance, in the example of Fig. 1, the ITR of ASs encapsulating
the packet, needs the following mapping present in the cache:

EIDd-Prefix: RLOC1
EIDd

, RLOC2
EIDd

.

The actual selection of the RLOC to use in the outer header is done based
on the priority and weight that LISP associates to each RLOC. The exact
selection process can be found in the original LISP proposal [11]. The map-
pings contained in the LISP Cache are short-lived and subject to timeout.
When a mapping is not used for a certain period, the entry is freed. This
means also that the LISP Cache is populated in an on-demand fashion. In
particular, the first packet of a flow will trigger a cache miss, this in turn
will cause the Data Plane asking the Control Plane to retrieve a mapping for
the specific destination EID that triggered the cache miss. This opens the
question of what the Data Plane should do with the packet that generated
the cache miss, while it is waiting for the mapping. There are three possible
options: (i) silently drop the packet; (ii) buffer the packet until the Control
Plane provides the needed mapping; (iii) hand over the packet to the Control
Plane that will forward it piggybacked on the mapping request. The LISP
specifications leave this question open, not enforcing any specific solution.

3.3. LISP Control Plane

As explained in the previous section, the first packet of a new flow may
generate a miss in the LISP Cache, depending on whether or not the destina-
tion EID is part of a larger EID-Prefix whose mapping is already present in
the LISP Cache. Thus the purpose of the LISP Control Plane is to provide
those missing mappings on-demand to the Data Plane. Such an objective is
achieved by running what is usually called a Mapping Distribution Protocol,
which provides a lookup infrastructure for retrieving mappings.

Several Mapping Distribution Protocols have been already proposed for
both LISP and non-LISP solutions (e.g., NERD [24], CONS [26], EMACS [27],

4Actually, in LISP, besides having to have as destination address the RLOC of the
ETR, the packet needs also to have the destination UDP port number set to a specific
reserved value. See [11] for further details.

7

FreeBSD User Space
(Control Plane)

Mapping
Distr ibution

Protocol

FreeBSD Kernel Space
(Data Plane)

(Daemon)

Encap/decap
Routines

MapTable
(Database + Cache)

Mapping Socket API

Figure 2: OpenLISP Architecture.

and LISP-DHT [28]). Every Mapping Distribution Protocol has pros and
cons and different impact on the LISP Cache [25]; however, it is out of the
scope of the present paper to compare and to analyze them. Hereafter we
just provide a short overview on the LISP+ALT proposal since it is the
solution adopted in the LISP working group and currently deployed in the
international testbed ([18, 19]).

The LISP ALternative Topology (or LISP+ALT [20]) builds an over-
lay (the alternative topology), using Generic Routing Encapsulation (GRE)
tunnels, among BGP routers advertising EID-Prefixes. These prefixes are
pushed toward every node of the overlay. The main idea is to build the over-
lay in such a way that an aggregation of EID-Prefixes can be aggressively
performed. In case of a cache miss, a query (which can also piggyback the
packet that triggered the cache miss) is sent on the overlay that will deliver
it to the owner of the needed mapping, which in turn will reply sending the
mapping to the node that issued the request.

4. OpenLISP

OpenLISP is our implementation of LISP in the FreeBSD [29] operating
system. The high-level architecture of OpenLISP is depicted in Fig. 2. In
our work we focused on the LISP Data Plane, implemented directly in the
kernel space. In the OpenLISP Data Plane there are the routines to perform
encapsulation and decapsulation as well as both LISP’s cache and database,
which are merged in a single data structure called MapTable. We describe

8

how we implemented the OpenLISP Data Plane in Section 4.1. Concerning
the Control Plane, we purposely did not implement any specific Mapping
Distribution Protocol because our aim was not to develop production soft-
ware. Rather, our aim was to develop a flexible and extensible platform
providing support for future experimentation of both new and existing Map-
ping Distribution Protocols. Nevertheless, we provided OpenLISP with some
simple tools (described in Section 4.2) in order to have the possibility from
the Control Plane to interact with the Data Plane. Such interaction is pos-
sible thanks to the new socket API that we developed in OpenLISP, namely
the mapping sockets. The mapping socket API offers a flexible and simple
communication interface between Control and Data Plane and is described
in Section 5.

4.1. OpenLISP Data Plane

When designing new encapsulation and decapsulation features in an OS,
the first idea that comes to mind is to define a new virtual interface, like for
instance gif or gre in FreeBSD. Nevertheless, a virtual interface implies an
address associated with it, which is not possible in the LISP context. Using
RLOCs as virtual interface addresses is not an option since RLOCs are not
used only for LISP packets but also for other traffic that could be present in
the DFZ. An alternative solution would be to use a modified firewall or NAT
(Network Address Translation). Nevertheless, it is our opinion that such an
approach would be not sufficiently flexible and dynamic for our purposes.
Furthermore, implementing an API toward the control plane would become
a major issue.

For the above mentioned reasons, we decided to go for a direct implemen-
tation in the kernel protocol stack, also to provide an answer to the question
of how would a protocol stack look like if LISP would be a fundamental piece
of it. Using this direct approach does not mean that important changes have
been introduced in the existing code. We mainly added new code and tried
to maintain the changes to original files as small as possible, basically limited
to some function calls if specific conditions are met.

4.1.1. Encapsulation/Decapsulation Routines
Compared to the original protocol stack implementation of the FreeBSD

operating system ([30, 29]) four main routines have been added to handle en-
capsulation and decapsulation operations: lisp_input(), lisp6_input(),
lisp_output(), and lisp6_output(). As the names suggest, the first two
manage incoming IPv4 and IPv6 LISP packets, while the last two are re-
sponsible for outgoing IPv4 and IPv6 LISP packets. To describe where

9

l i sp_ inpu t () l i sp6_ inpu t ()

i p_ i npu t () i p 6 _ i n p u t ()

D a t a L i n k L a y e r

T r a n s p o r t L a y e r

Figure 3: Protocol Stack Modifications for incoming packets.

these routines are positioned in the protocol stack we use the same repre-
sentation as in [30]. The lisp_input(), lisp6_input() routines are po-
sitioned right above respectively ip_input() and ip6_input() routines,
from which they are called, as depicted in Fig. 3. The lisp_output()
and lisp6_output() routines are positioned right above respectively the
ip_output() and ip6_output() routines, from which they are called, as de-
picted in Fig. 4. We describe hereafter how the packets are processed in the
protocol stack in both encapsulation and decapsulation cases.

Incoming Packets
Let us assume that an IPv4 LISP packet is received by an OpenLISP

system. The packet will first be treated by the ip_input() routine, which
has been patched in order to recognize LISP packets. In the case of a LISP
encapsulated data packet, ip_input() calls lisp_input() function passing
the mbuf containing the incoming packet. lisp_input() strips the outer
header.5 Then, the IP header of the inner packet is checked in order to
decide to which routine to deliver the packet, depending on the protocol
version. In practice this means re-injecting the packet in the IP layer, by
putting it in the input buffer either of ip_input() or ip6_input(). In the
case of an IPv6 LISP packet the overall process is the same.

Once the packet has been re-injected in the protocol stack, it follows
the normal process. In other words, if the system that decapsulated the
packet is not the final destination the packet is delivered to ip_forward()

5lisp_input() also performs some consistency checks on the LISP specific header.

10

l i s p _ o u t p u t () l i s p 6 _ o u t p u t ()

i p _ o u t p u t () i p 6 _ o u t p u t ()

D a t a L i n k L a y e r

T r a n s p o r t L a y e r

Figure 4: Protocol Stack Modifications for outgoing packets.

or ip6_forward(), depending on the IP version number. This will in turn
deliver it to the output routine (ip_output() or ip6_output()) in order to
send it down to the data link layer and transmit it toward its final destination.
These last actions are driven by the content of the normal routing table of
the system.

Outgoing Packets
Like in the previous section, let us assume that an IPv4 packet is received

by the ip_output() routine of an OpenLISP system. This packet is not
LISP encapsulated and can come either from ip_forward() or the transport
layer (i.e., tcp_output() or udp_output()). ip_output() has been patched
in order to recognize if the packet needs to be encapsulated with a LISP
header. The patch consists in calling a function checking if mappings are
available in the LISP Database and the LISP Cache in order to build the
new outer header. The needed mappings are searched and retrieved from
the MapTables structure as detailed in Section 4.1.2.

A first lookup is performed using the source address (source EID) of the
packet for a valid mapping in the LISP Database. If no mapping is found,
OpenLISP assumes that the packet does not need to be encapsulated, i.e., the
system has no RLOCs for the source EID. In this case the packet is normally
processed by ip_output(). If the mapping exists, OpenLISP assumes that
the packet should be encapsulated. Thus, a second lookup is performed
using the destination address (destination EID) of the packet for a valid
mapping in the LISP Cache. If there is no mapping available, the packet
is not encapsulated. Nonetheless, since the packet should be encapsulated,
because a mapping exists in the LISP Database, this means that a cache miss
has occurred and a message is sent through open mapping sockets in order

11

to notify the Control Plane (details are in Section 5). If a mapping for the
destination EID is present, the packet is diverted toward the lisp_output()
routine, which first performs MTUs checks, then encapsulates the packet
selecting the RLOCs to be used conforming to the LISP specifications.

Subsequently the packet is re-injected into the IP layer. This does not
absolutely mean that the packet is delivered to ip_output(). Indeed, the
selected RLOCs can be IPv6 addresses and the final packet can be IPv6
encapsulated, thus, in this case, it is delivered to ip6_output(). In the case
of an outgoing IPv6 packet the overall process is the same. Once the packet
is re-injected in the protocol stack, in both IPv4 and IPv6 cases, the packet
follows the normal process.

OpenLISP does not allow recursive encapsulation, in order to protect
against bad setups generating loops where a packet is recursively encapsu-
lated until it is dropped due to MTU checks.

4.1.2. Map Tables
In Section 3 we described how LISP defines two different EID-Prefixes to

RLOCs mapping storages: the LISP Database and the LISP Cache. Open-
LISP merges the two databases in a single radix tree data structure [30] called
MapTable. Such an approach allows having an efficient indexing structure
for all the EID-Prefixes that need to be stored in the system. EID-Prefixes
that are part of the LISP Database are tagged with a “database” flag, in-
dicating that the mapping is owned locally. Thus, from a logical point of
view the two data structures are still separated. When performing lookups
it is possible to limit the scope of the lookup only to entries that have the
database flag set to a particular value. In this way we obtain a behavior
equivalent to performing a lookup on the LISP Cache or the LISP Database,
as needed by the packet’s handling routines described in Section 4.1.1. Actu-
ally, there are two radix structures in the system, one for IPv4 EID-Prefixes
and another for IPv6 EID-Prefixes.

Each entry of the MapTables, along with the fields necessary to build the
radix tree itself, contain a pointer to a socket address structure that holds
the EID-Prefix to which the entry is related, a flags field, and a chained list
of RLOCs data structures containing the RLOCs addresses as well as their
related metrics. The flags field contains general flags that apply to the whole
mapping. For instance, this field contains the flag that tags a mapping as
part of the LISP Database. In OpenLISP, when a mapping is tagged as
part of the LISP Database, it is mandatory that at least one RLOC is a
local address, i.e., an address of one of the system’s interfaces; otherwise,
an error is returned during insertion. This is because the mapping contains

12

EID-Prefix x RLOC x
 1 RLOC x

 2

EID-Prefix y RLOC y
 1

EID-Prefix z RLOC z
 1 RLOC z

 2 RLOC z
 3

EID-Prefix w RLOC w
 1

Figure 5: Example of MapTable data structure layout.

all the RLOCs of the domain, which can be distributed on several xTRs of
the domain, thus not physically present on the system. Furthermore, when
OpenLISP performs encapsulation, it only selects source RLOCs that are
addresses of the system. The risk of doing otherwise would be to have en-
capsulated packets filtered in upstream routers because they are sent with
a source address that does not belong to the system performing the encap-
sulation operation. An example of the layout of MapTables is presented in
Fig. 5.

The fact that OpenLISP uses a chained list to store the RLOCs, allows
the great flexibility of mixing IPv4 and IPv6 RLOCs, enabling IPv6 encapsu-
lation for IPv4 packets and vice versa, depending on the RLOCs eventually
chosen for the encapsulation. One can think that the use of a chained list is
not an efficient choice. Nonetheless, the list is always maintained ordered fol-
lowing the criteria described in [11], with the most preferable RLOCs at the
head. This means that during the encapsulation operation, when RLOCs are
selected, the list is never scanned. The list is explored only during manage-
ment operations, hence, normal encapsulation operations are not entailed.

To each RLOC in the chained list is also associated an MTU field, used to
check if the size of the LISP-encapsulated packet fits the MTU of the outgoing
interface. OpenLISP automatically fills this field when a local mapping (i.e.,
part of the database) is added. More specifically, OpenLISP checks all the
RLOCs of the local mapping, if it is an address belonging to the system it
copies the MTU of the interface associated with the address.

4.2. OpenLISP Control Plane

As explained in the previous sections, we did not implement any specific
Mapping Distribution Protocol, since our aim is to provide an open platform.
Nevertheless, we developed two simple tools, namely map and mapstat, in
order to have access to the OpenLISP Data Plane from a shell terminal.

The map utility provides a command-line interface to manipulate the
networks’ MapTables. This utility has similar functionalities to the route

13

freebsd% map get -inet 10.0.0.1

Mapping for EID: 10.0.0.1

EID: 10.0.0.0

EID mask: 255.255.0.0

RLOC Addr: inet6 2001::1

RLOC Addr: inet 10.1.0.0

flags: <UP,STATIC,DONE>

Figure 6: Example of map usage.

freebsd% mapstat -X

Mapping tables

Internet:

EID Flags Refs # RLOC(s)

10.0.0.0/16 US 1 1 2001::1

2 10.1.0.0

Figure 7: Example of mapstat usage.

utility, present in UNIX systems, for manipulating routing tables. The map

utility supports several general options and commands, enabling the user to
specify any arbitrary request that could be delivered via the API described
in the next section. The manual of map can be found in the appendix of [31].
Fig. 6 shows an example of usage of the map tool to perform a lookup for the
EID 10.0.0.1.

The mapstat command allows retrieving and displaying various contents
of network-related LISP data structures. It is similar to the existing netstat

command, hence, offering similar features but specific to the OpenLISP Data
Plane. For instance, it is able to show a complete dump of the content of the
MapTables and also a large set of statistics concerning encapsulation and
decapsulation operations. Like for map, the manual of mapstat can be found
in the appendix of [31]. Fig. 7 shows an example of usage of the mapstat

tool to dump the content of the MapTables.

5. Mapping Sockets API

As previously explained, LISP operates in both the Data Plane and the
Control Plane, hence, there is the need to make these two parts communicat-
ing with each other. The original LISP specifications do not define any API
for this purpose. To this end, in line with the UNIX philosophy, we defined
a new type of sockets that we called “mapping sockets”. Mapping sockets are
based on raw sockets in the newly defined AF_MAP domain and are in principle
very similar to the well-known routing sockets ([30, 32]). On the one hand,
mapping sockets allow Mapping Distribution Protocols running in the user
space to send messages to the kernel space in order to perform operations
and modify the kernel’s data structure (e.g., MapTables) and receive confir-
mation messages. On the other hand, mapping sockets offer also signaling
functionality, allowing the kernel to notify daemons running in user space
of specific events related to LISP (e.g., cache miss). Like routing sockets,

14

struct map_msghdr { /* From maptables.h */

u_short map_msglen; /* to skip over non-understood messages */

u_char map_version; /* future binary compatibility */

u_char map_type; /* message type */

int map_flags; /* flags, incl. kern message, e.g. DONE */

int map_addrs; /* bitmask identifying sockaddrs in msg */

int map_rloc_count; /* Number of rlocs appended to the msg */

pid_t map_pid; /* identify sender */

int map_seq; /* for sender to identify action */

int map_errno; /* why failed */

};

Figure 8: Mapping socket message header.

mapping sockets are broadcast, meaning that messages sent from the kernel
to the user space are delivered to all open sockets. This enables all processes
dealing with LISP to be notified on specific events or changes performed by
one of these processes.

The operations that can be performed on the MapTables are the follow-
ing:

add: Used to add a mapping. The process writes the new mapping to the
kernel and reads the result of the operation on the same socket. The
result consists in the same message sent back with a specific flag set to
indicate that the operation has been done.

delete: Used to delete a mapping. It works in the same way as add.

get: Used to retrieve a mapping. The process writes on the socket the
request of a mapping for a specific EID and reads on the same socket
the result of the query. The result is a message containing the requested
mapping (if present).

When performing such operations it is possible to specify whether they con-
cern the LISP Cache or the LISP Database by a flag indicating if the mapping
is local or not (cf. Section 4.1.2).

The messages sent across mapping sockets are all composed of a com-
mon header, the map_msghdr{}, whose definition, for the sake of clarity, is
depicted in Fig. 8. The fields map_msglen, map_version, map_pid, map_seq,
and map_errno have the same meaning and are used in the same way as the
rt_msghdr{} structure for routing sockets; details about them and their use
can be found in [30]. The map_type field obviously contains types valid only
for mapping sockets, as defined in [31]. The map_flags field is used to set
some general flags that concern the whole mapping entry of the message.

15

m a p _ m s g h d r { }
m a p _ t y p e = A D D
m a p _ r l o c _ c o u n t = 2

E I D
S o c k e t A d d r e s s S t r u c t u r e

E I D N e t m a s k
S o c k e t A d d r e s s S t r u c t u r e

R L O C
S o c k e t A d d r e s s S t r u c t u r e

R L O C M e t r i c s
1

 1

R L O C
S o c k e t A d d r e s s S t r u c t u r e

R L O C M e t r i c s
2

 2

Figure 9: Example of mapping socket message structure.

The map_addrs field is a bitmask identifying the nature and number of data
structures present in the message right after the header. These can be the
EID, its netmask in case of a prefix, and the list of RLOCs. Nevertheless,
the map_addrs field does not contain all the data structures, in particular for
what concerns RLOCs. Indeed, the map_addrs field just states whether at
least one RLOC is present; the exact number of RLOCs is contained in the
map_rloc_count field. An example of the final structure of a mapping socket
message for adding a mapping is depicted in Fig. 9. As can be seen, the EID
and its mask are simple socket address structures, while an RLOC is com-
posed of a socket address structure followed by a data structure (described
in [31]) containing the metrics of that specific RLOC. An RLOC cannot be
followed by a netmask since RLOCs are full addresses by definition.

Further details on how to open a mapping socket, read and write from
it, the detailed message structure, the possible operations, and the signaled
events can be found in [31].

6. Evaluation

In the previous sections we described the LISP protocol and how it can
be implemented on a common UNIX system, namely our OpenLISP imple-
mentation for the FreeBSD operating system. In the present section, we
provide an evaluation of the OpenLISP Data Plane, in order to measure
the impact that the Locator/ID Separation paradigm has on traffic. Since
LISP is a map-and-encap approach, relying on tunneling, in this study, we
first evaluate the cost in terms of added latency in the forwarding operation
when performing encapsulation and decapsulation (presented in Section 6.1).

16

Figure 10: Testbed topology.

Then, we explore the impact of this increased latency on TCP flows (pre-
sented in Section 6.2). All experiments are performed for both IPv4 and
IPv6 end-to-end traffic.

Fig. 10 presents the topology of the testbed we used in our evaluation.
This testbed is composed of four identical dual processor PCs (Intel Xeon
5500 Quad-core 64-bit), equipped with two Intel PRO/1000 network inter-
face cards. The four machines are connected in a linear topology (cf. Fig. 10)
using Gigabit links. Src and Dst are respectively, the source and the des-
tination of the generated traffic. These two machines run vanilla FreeBSD
7.3 kernel (i.e., not enhanced with OpenLISP) throughout all the experi-
ments. The two machines in the middle perform forwarding operations. In
particular, when enabled, Enc performs encapsulation, hence operating as
an ITR, while Dec performs decapsulation, hence acting as an ETR. Both
machines run FreeBSD version 7.3 as well, and depending on the experiment
performed, the kernel is enhanced with OpenLISP.

6.1. Packet forwarding latency

As a first set of measurements, we evaluate the additional latency that
packets experience during the forwarding operation, due to encapsulation
and decapsulation operations. This can be done by capturing, using tcpdump,
all packets on the input and output interfaces. Then, by matching the pack-
ets in the two traces and subtracting their timestamp, it is possible to cal-
culate the latency for each single packet.

As a baseline for comparison to LISP we first measured the latency ex-
perienced by packets when no encapsulation is used and normal routing is
performed. We measured the latency with and without a LISP enabled stack
on Enc and Dec for both IPv4 and IPv6.

As a second type of test we measured the latency when Generic Rout-
ing Encapsulation (GRE [33]) is used. We performed this measurement in
order to compare LISP encapsulation/decapsulation operations with other
protocols that perform the same kind of operations. We chose GRE because,
like LISP, it introduces a shim header between the outer and the inner IP
header. However, differently from LISP, the addresses in the outer header

17

Figure 11: Packet Forwarding latency on Enc.

are statically configured, thus compared to LISP, which needs to lookup the
LISP Database and the LISP Cache, the operation is simpler. Again, we
performed the measurements with and without a LISP enabled stack on Enc
and Dec for both IPv4 and IPv6. It is important to remark that when using
IPv6 traffic, this is encapsulated in an IPv4 GRE tunnel, since there is a
lack of support for GRE tunnels over IPv6 in FreeBSD.

In a third type of experiment we measured the latency introduced by
LISP on Enc and Dec. To this end we installed one static mapping in the
LISP Cache and LISP Database using the map utility described in Section 4.2.
As for the previous experiments we performed measurements for both IPv4
and IPv6. In order to have a fair comparison with the GRE experiment,
we set up the mappings in a way that when using IPv6, the flow is LISP
encapsulated between Enc and Dec using IPv4 locators. It is important
to notice that, when GRE or LISP encapsulation is used, the reverse path
(between Dec and Enc) also uses the same encapsulation.

Figs. 11 and 12 present the results obtained, respectively, for Enc and
Dec for both IPv4 and IPv6 traffic. These are obtained as an average of
100,000 UDP packets. As can be observed, even when LISP is not used for
encapsulation, a LISP protocol stack has a higher latency, due to additional
checks introduced in the input/output routines of the IP layer, as explained
in Section 4.1. However, the impact in all cases is limited in the order of

18

Figure 12: Packet forwarding latency on Dec.

1 µsec in both IPv4 and IPv6 cases.6 Only in the case of LISP encapsulation
for IPv6 packets, the increase is around 3 µsec (3.11 µsec, equivalent to
∼33%) for Dec, when comparing Routing without LISP stack and LISP.
This is most probably due to the fact that the larger IPv6 header takes more
time to be handled.

In general, the fact that the forwarding latency has increased was ex-
pected, since we are performing additional computation. Nevertheless, in
comparison to the benefits offered by LISP, we consider the latency increase
as acceptable. If very high forwarding speed has to be sustained, we would
recommend hardware-accelerated solutions.

6.2. TCP throughput

In the previous section we proposed measurements concerning the for-
warding latency internal to routers. Here we try to understand what is the
impact of the increased latency on an end-to-end TCP connection. We chose
TCP since it automatically adapts to the Round Trip Time (RTT) of the
path.

We used the same experiment setup as for the latency measurements, thus
with and without LISP protocol stack, with and without GRE tunneling, and

6The higher average latency observed for IPv6 is probably due to the fact that the
header is much bigger compared to IPv4.

19

Figure 13: Average throughput for TCP flow.

for both IPv4 and IPv6. A single TCP flow was generated each time, ending
after having successfully transferred 100 GB of data. For each experiment
we measured the average throughput in Mbit/sec, and the total time needed
to complete the transfer.

The results concerning the average throughput are summarized in Fig. 13.
Obviously, the throughput at transport layer is on average lower for IPv6
since there is a larger overhead due to the bigger IP header. Also, when using
LISP protocol stack the throughput lowers, and it becomes even lower when
using LISP encapsulation. While, on the one hand, this was expected from
the latency measurements, on the other hand, it can be observed that the
reduction in throughput is equivalent to less than 5% (less than 45 Mbit/sec).

The exact values are also presented in Table 1 for IPv4 and Table 2 for
IPv6. In the same tables there is the total transfer time needed for the
100 GB. As can be observed the transfer takes at least 900 seconds (i.e.,
15 min). IPv4 represents the worst case, where the use of LISP (compared
to routing without LISP protocol stack) increases the transfer time by 58
seconds, representing an increase of 6.2%.

The presented results are promising, since they prove that introducing
LISP has a limited impact. Further, what must be also taken into account
is the fact that average flows in the Internet are much shorter and expe-
rience much higher delays, thus reducing the impact of LISP being almost
negligible.

20

Table 1: TCP performances for IPv4 traffic (100GB transferred)

Forwarding Method Transfer Time (sec) Avg Throughput (Mbit/sec)

Routing (no LISP stack) 935.0 918.574
Routing (LISP stack) 934.7 918.967
GRE (no LISP stack) 966.3 888.925
GRE (LISP stack) 963.6 891.449
LISP 993.2 864.850

Table 2: TCP performances for IPv6 traffic (100GB transferred)

Forwarding Method Transfer Time (sec) Avag Throughput (Mbit/sec)

Routing (no LISP stack) 936.9 916.856
Routing (LISP stack) 936.9 916.830
GRE (no LISP stack) 967.5 887.892
GRE (LISP stack) 973.0 882.822
LISP 982.7 874.158

7. Conclusion

The present paper describes the overall architecture and the development
work of OpenLISP, an open source implementation of the LISP proposal in
the FreeBSD OS. OpenLISP provides complete Data Plane support for both
encapsulation and decapsulation operations, both IPv4 and IPv6, as well as
EID-to-RLOC mapping storage and efficient lookup.

The performance evaluation shows that the cost of running LISP in terms
of forwarding latency is acceptable. Further, the impact on end-to-end flows
is minimal. Indeed, the TCP measurements presented in this paper show less
than 6.2% transfer time increase for 100 GB. Such a difference is exacerbated
by the high bandwidth, low latency setup of our testbed. In more common
scenarios the impact of LISP will be much lower. Nevertheless, we plan
to perform kernel profiling in order to point out exactly which operation
introduces the highest latency and possibly understand how performance
can be further improved.

Since OpenLISP runs on FreeBSD, it is able to work on both routers and
end-hosts, providing a wide range of test and deployment scenarios. We hope
that OpenLISP will provide the research community with the right tool for
exploring the Locator/ID Separation paradigm, gaining knowledge through
experimentation. We designed OpenLISP to provide a flexible support for
developing new Control Planes (i.e., Mapping Distribution Protocols), which
are the critical issue for any Future Internet Routing and Addressing Archi-
tecture based on the Locator/ID Separation paradigm. The mapping sockets

21

introduced by OpenLISP, allow storing only the essential information for the
Data Plane in the MapTables, while any other information and procedures
are maintained in the user space with a specific daemon. This approach is
similar to what can be found in current routers where the Control Plane
maintains an extended routing table, namely the RIB – Routing Informa-
tion Base, while the Data Plane contains a reduced routing table with the
minimal information needed to correctly perform packet forwarding, namely
the FIB – Forwarding Information Base.
OpenLISP can be freely downloaded from: http://www.openlisp.org

Acknowledgement

This work is partially funded by Trilogy, a research project (ICT-216372)
supported by the European Community under its Seventh Framework Pro-
gram and a CISCO URP grant. The views expressed here are those of the
authors only.

References

[1] D. Meyer, L. Zhang, K. Fall, Report from the IAB Workshop on Routing and
Addressing, RFC 4984, IETF Network Working Group, September 2007.

[2] BGP Routing Table Analysis Report, Available Online at:
http://bgp.potaroo.net/.

[3] B. Quoitin, L. Iannone, C. de Launois, O. Bonaventure, Evaluating the Ben-
efits of the Locator/Identifier Separation, Proceedings 2nd ACM SIGCOMM
Workshop on Mobility in the Evolving Internet Architecture (MobiArch), Au-
gust 2007.

[4] T. Li, Design Goals for Scalable Internet Routing, Internet Draft draft-irtf-
rrg-design-goals-03.txt, IRTF Internet Research Task Force, October 2010.

[5] T. Li, Recommendation for a Routing Architecture, Internet Draft draft-
irtf-rrg-recommendation-14.txt, IRTF Internet Research Task Force, Septem-
ber 2010.

[6] M. O’Dell, GSE - An Alternate Addressing Architecture for IPv6, Internet
Draft draft-ietf-ipngwg-gseaddr-00.txt, IETF Network Working Group, Febru-
ary 1997.

[7] C. Vogt, Six/One: A Solution for Routing and Addressing in IPv6, Inter-
net Draft draft-vogt-rrg-six-one-01.txt, IETF Network Working Group, Novem-
ber 2007.

22

[8] R. Atkinson, ILNP - Identifier/Locator Network Protocol, Internet Draft draft-
rja-ilnp-intro-06.txt, IRTF Internet Research Task Force, August 2010.

[9] R. Moskowitz, P. Nikander, Host Identity Protocol (HIP) Architecture, RFC
4423, IETF Network Working Group, May 2006.

[10] E. Nordmark, M. Bagnulo, Shim6: Level 3 Multihoming Shim Protocol for
IPv6, Standards Track RFC 5533, IETF Network Working Group, June 2009.

[11] D. Farinacci, V. Fuller, D. Meyer, D. Lewis, Locator/ID separation protocol
(LISP), Internet Draft draft-ietf-lisp-09.txt, IETF Network Working Group,
October 2010.

[12] J. Saltzer, On the Naming and Binding of Network Destinations, RFC 1498,
IETF Network Working Group, August 1993.

[13] R. Hiden, New Scheme for Internet Routing and Addressing (ENCAPS) for
IPNG, RFC 1955, IETF Network Working Group, June 1996.

[14] N. Chiappa, Endpoints and Endpoint Names: A Proposed En-
hancement to the Internet Architecture, Available Online at:
http://ana.lcs.mit.edu/ jnc/tech/endpoints.txt, 1999.

[15] D. Jen, M. Meisel, D. Massey, L. Wang, B. Zhang, L. Zhang, APT: A Practical
Transit Mapping Service, Internet Draft draft-jen-apt-01.txt, IETF Network
Working Group, November 2007.

[16] W. Herrin, Tunneling Route Reduction Protocol (TRRP), Available Online at:
http://bill.herrin.us/network/trrp-rrg.html, 2008.

[17] R. Whittle, Ivip - a new scalable routing and addressing architecture for the
Internet, Available Online at: http://www.firstpr.com.au/ip/ivip/, 2008.

[18] Cisco - LISP Testbed for IPv4, Available Online at: http://www.lisp4.net/.

[19] Cisco - LISP Testbed for IPv6, Available Online at: http://www.lisp6.net/.

[20] D. Farinacci, V. Fuller, D. Meyer, D. Lewis, LISP Alternative Topology
(LISP+ALT), Internet Draft draft-ietf-lisp-alt-05.txt, IETF Network Working
Group, October 2010.

[21] D. Lewis, D. Meyer, D. Farinacci, V. Fuller, Interworking LISP with IPv4 and
IPv6, Internet Draft draft-ietf-lisp-interworking-01.txt, IETF Network Work-
ing Group, August 2010.

[22] D. Saucez, B. Donnet, L. Iannone, O. Bonaventure, Interdomain Traffic En-
gineering in a Locator/Identifier Separation Context, Proceedings of IEEE
Internet Network Management Workshop (INM’08), October 2008.

23

[23] M. Menth, D. Klein, M. Hartmann, Improvements to LISP Mobile Node,
Prooceedings of 22nd International Teletraffic Congress (ITC), Septem-
ber 2010.

[24] E. Lear, NERD: A Not-so-novel EID to RLOC Database, Internet Draft draft-
lear-lisp-nerd-08.txt, IETF Network Working Group, March 2010.

[25] L. Iannone, O. Bonaventure, On the Cost of Caching Locator/ID Mappings,
in: Proceedings of the 3rd International Conference on Emerging networking
EXperiments and Technologies (CoNEXT’07), ACM, USA, December 2007.

[26] S. Brim, D. Farinacci, V. Fuller, D. Lewis, D. Meyer, LISP-CONS: A Content
distribution Overlay Network Service for LISP, Internet Draft draft-meyer-
lisp-cons-04.txt, IETF Network Working Group, April 2008.

[27] S. Brim, D. Farinacci, D. Meyer, J. Curran, EID Mappings Multicast Across
Cooperating Systems for LISP, Internet Draft draft-curran-lisp-emacs-00.txt,
IETF Network Working Group, November 2007.

[28] L. Mathy, L. Iannone, LISP-DHT: Towards a DHT to map identifiers onto
locators, in: Proceedings of ReArch’08 - Re-Architecting the Internet., De-
cember 2008.

[29] The FreeBSD Project, "FreeBSD: the power to serve", Available Online at:
http://www.freebsd.org/.

[30] G. Wright, W. Stevens, TCP/IP Illustrated Volume 2, The Implementation,
Professional Computing Series, Addison-Wesley, 1995.

[31] L. Iannone, D. Saucez, O. Bonaventure, OpenLISP Implementation Report,
Internet Draft draft-iannone-openlisp-implementation-01.txt, IETF Network
Working Group, July 2008.

[32] W. Stevens, B. Fenner, A. Rudoff, UNIX Network Programming, Volume 2
The Sockets Networking API, 3rd Edition, Professional Computing Series,
Addison-Wesley, 2004.

[33] D. Farinacci, T. Li, S. Hanks, D. Meyer, P. Traina, Generic Routing Encapsu-
lation (GRE), RFC 2784, IETF Network Working Group, March 2000.

24

