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Abstract

Content Delivery Networks (CDNs) deliver web content to-eisérs from a large dis-
tributed platform of web servers hosted in data centersigithg to thousands of Internet
Service Providers (ISPs) around the world. The bandwiddt wurred by a CDN is
the sum of the amounts it pays each ISP for routing traffic fitsreervers located in that
ISP out to end-users. A large enterprise may also contralbtmultiple ISPs to provide
redundant Internet access for its origin infrastructunegisechnologies such as mul-
tihoming and mirroring, thereby incurring a significant beudth cost across multiple
ISPs. This paper initiates the formalorithmic study of bandwidth cost minimization
in the context of a large enterprise or a CDN, a problem arazdtboth algorithmically
rich and practically very important. First, we model diffat types of contracts that are
used in practice by ISPs to charge for bandwidth usage,dimgjuaverage, maximum,
and95t"-percentile contracts. Then, we devise an optimal offligethm that routes
traffic to achieve the minimum bandwidth cost, when the nétwontracts charge either
on a maximum or on an average basis. Next, we devise a detstiminesp., random-
ized) online algorithm that achieves cost that is within @daof 2 (resp.,%;) of the
optimal offline cost for maximum and average contracts. Whitaah, we prove that our
online algorithms achieve the best possible competititiegan both the deterministic
and the randomized cases. An interesting theoreticalibatitbn of this work is that we
show intriguing connections between the online bandwigitinuzation problem and
the seemingly-unrelated but well-studied ski rental peablvhere similar optimal com-
petitive ratios are known to hold. Finally, we consider esiens for contracts with a
committed amount of spend (known as Committed Informatiatefor CIR) and con-
tracts that charge on®*"-percentile basis.

Key words: Internet content delivery, Content delivery networks, i@j#ation
algorithms, Bandwidth cost minimization, Network algbnits, Traffic management
algorithms, Online algorithms.
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1. Introduction

The Internet has emerged as a business-critical mediummferpgises to commu-
nicate with their vendors and clients. However, the Inteitself was designed as a
best-effort delivery network with no guarantees on avditgbor performance. The In-
ternet is a network of networks, where each network is mahaggependently by an
Internet Service Provider (ISP) who builds and managesdhbters, links, and other
networking infrastructure. As such, there are more thaBU®B]SPs that constitute the
Internet today, ranging from large Tier-1 providers withebgl presence (such as Level
3, and ATT), national providers (such as China Telecom, andT@l in Singapore),
regional providers (such as Earthnet), and local Tier-3B8ISRn enterprise requiring
high-levels of availability for their Internet servicexés a fundamental challenge. Itis
not sufficient for the enterprise to obtain their Internebrectivity from a single ISP,
as any single ISP is prone to failure caused by router breaksiofiber cuts, and con-
figuration errors. Therefore, many enterprises use siestesuch as mutihoming and
mirroring that allow them to access the Internet using mlgtiSPs and data centers.
In addition, many major enterprises use a Content Delivesydrk (CDN) that is a
large fault-tolerant distributed platform of web servecsted in potentially thousands
of ISPs. Examples of such CDNs include Akamai [4] and Lim#ligg]. A significant
fraction of the web traffic today use CDNSs, including mostonapedia, entertainment,
e-commerce, and extranet portals. For a comprehensiveiptast of the rationale for
CDNs and the system architecture of Akamai’'s CDN, the reed@ferred to [11].

1.1. CDN System Architecture

The model and results of this paper apply in several genechhblogical contexts
where cost-efficient inter-ISP traffic management is @iti®dut, perhaps the most im-
portant context is that of a large global CDN. We provide afbaverview of CDN
architecture (see Figure 1). Itis instructive to follow eions of a typical user to see
how the various system components interact to deliver comntethat user.

e When the user types a URL into his/her browser, the domairerafrthe URL is
translated by the mapping system into the IP address of am selyer to serve
the content (arrow 1). To assign the user to a server, the ilmgppstem bases its
answers on large amounts of historical and current datahtna been collected
and processed regarding global network and server congljtand cost. This data
is used to choose an edge server that is located close todhesen
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Figure 1: The system architecture of a CDN.

e Each edge server is part of the edge server platform, a ldopalgleployment of
servers located in thousands of sites around the world. eTéewers are respon-
sible for processing requests from users and serving theested content (arrow
2).

e In order to respond to a request from a user, the edge seryeneaa to request
content from an origin server (arrow 3). The transport systeused to download
the required data in a reliable and efficient manner.

e The communications and control system is used for disséminatatus informa-
tion, control messages, and configuration updates in a-tialeitant and timely
fashion. The data collection and analysis system is redgerfer collecting and
processing data from various sources such as server ldgef tgs, and net-
work and server information. Finally, the management pedeves two functions.
First, it provides a configuration management platform #iltws an enterprise
customer (i.e., Content Provider) to retain fine-grainegtred how their content
and applications are served to the end user. In additionméreagement portal
provides the enterprise with visibility on how their users mteracting with their
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applications and content, including reports on audieneceodgaphics and traffic
metrics.

While a comprehensive description of the CDN architectarelit of the scope of the
current paper (see [11] and [1] instead), we restrict o@ndtin to one specific facet
of the mapping system that optimizes the bandwidth coststiad in routing traffic to
end-users.

1.2. Bandwidth Cost Optimization

A CDN negotiates network contracts to buy Internet bandwidim a large number
of ISPs and co-locates its edge servers in those ISPs. Ansgrdaccessing web content
hosted on the CDN is directed by the CDN'’s mapping system &pgnopriate server at
one of the contracted ISPs, so as to optimize availability gerformance for the end-
user and to minimize bandwidth costs for the CDN. Thus, a GDhNpping system [11]
operates as an “Internet traffic cop” by controlling whichtjmm of the traffic demand
is served from which ISP. The traffic assignments happen iondéine and “real-time”
fashion where assignments are changed periodically afrtteegranularity of minutes
(say, every 5 minutes).

A CDN can be viewed as a reseller of Internet bandwidth, wherays each ISP for
the traffic served from that ISP to end-users. A CDN in turrs ggiid by the enterprises
(i.e., content providers) for the traffic the CDN deliveradtbeir behalf. A significant
portion of the variable costs of operating a CDN is the total bandwidth costs that it
pays the ISPs, and minimizing this cost is the primary foduthis paper. Note that
while bandwidth costs are incurred throughout the CDN systeur focus is the cost
of transmitting content from edge servers to end-usersKggge 1) that constitutes the
lion’s share of the bandwidth costs in the system.

A CDN buys bandwidth from ISPs using network contracts thkirito one of three
types depending on how the bill for traffic usage is computeédch billing period.
The billing period (typically, a month) is divided into a sepce ofM time buckets
(typically, 5-minute buckets, so that there are abblit= 8640 buckets per month).
Each ISP computes theaffic profile (b1, b2, - ,ba—1,bar), Whereb; represents the
average traffic (in Mbps) sent in time buckefrom the CDN's servers located in that
ISP. Then, depending on the type of the contractbihable traffic for the billing period
is computed as either the average (AVG), the maximum (MAX)he95t" percentile of
the valuesby, ba, - - ,byr—1,bar). The CDN pays the ISP the product of an agreed-upon
unit cost (in dollars per Mbps) and the billable traffic (in p#). The unit costs vary from
ISP to ISP, with some ISPs being cheaper than others, deygeodithe specifics of the
contracts negotiated between the CDN and the ISPs. Notevthikt most real-world
contracts are either AVG a5, MAX is highly important from a practical system

LA CDN also incurs fixed costs such as costs for servers andatido.
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design perspective, since traffic cannot be controlled ireaipe enough fashidto take
advantage of thé% window for free traffic in a95!" percentile contract. Therefore,
real-life bandwidth cost optimizers vie@s* percentile contracts as MAX contracts
for purposes of the optimization, and hence studying the MdKtract model is very
important.

The overall bandwidth cost incurred by a CDN is the sum of thstxincurred
at each individual ISP, where each ISP charges the CDN ffictizsage as specified
in the contract. Because the contract terms with each ISR/agnsignificantly, the
manner in which the CDN splits up the aggregate traffic denbabateen individual ISPs
significantly influences the overall bandwidth cost incdrbyy the CDN. The primary
focus of this paper is optimal algorithms for assigningficaiemand across multiple
ISPs to minimize the overall bandwidth cost. In particulae seek algorithms that
produce solutions that apFovablyoptimal or near-optimal.

1.3. Mirroring and Multihoming

While the model and results presented in this paper use CBB$r®tivating exam-
ple, the results are also applicable to other importantneldgies such as multihoming
[2], where an enterprise contracts with multiple ISPs tovjgle® redundant Internet ac-
cess for its origin infrastructure. The enterprise woulghtinoute traffic to and from its
origin via uplinks that connect to the Internet via differ&dPs, so as to minimize band-
width costs and maximize availability and performance. Atihamed enterprise can
use a number of techniques to manage the traffic on its uplifiks enterprise can man-
age multiple ip address spaces associated with multipls #88 use the Domain Name
System (DNS) to resolve each domain name to an approprisaddpess. The routes
used by traffic to that domain name is governed by the ip addiex is returned by
DNS. Alternately, enterprises may manage a single ip addiesce and use the Border
Gateway Protocol (BGP) to appropriately announce all ofiguag of this address space
on the various uplinks, thereby controlling the traffic esithrough those links [16]. In
addition to multihoming, the enterprise could also creatdtiple replicas (or, mirrors)
of its origin infrastructure in different ISPs and diffetegeographies. Multihoming and
mirroring are used by large enterprises in a complemengatyién to using a CDN. Our
model and results are also applicable to the problem of misgjghe origin traffic to
multiple mirrors and/or multihomed uplinks to minimize lolavidth cost.

1.4. Performance versus Cost

While this paper considers optimizing cost in isolatioral+e&orld technologies such
as CDNs and multihoming aim to first optimize a notion of perfance (such as mini-
mizing web download time by reducing latency and loss) wéiitizing to optimize cost.

2The imprecision comes from several sources. For instanoee $rowsers don’t comply with TTLs in
a precise fashion, and traffic moved away from an ISP by thiengrr will decay slowly over time instead
of falling sharply.
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However, pure cost optimization that we consider in thisgpag an important first step
for the following reasons.

e From an algorithmic standpoint understanding pure cosinigdtion is a major
stepping stone for the more general bi-criteria cost-parémce optimization that
we plan to do in future work. We believe that the algorithndeds generated in
this study will shed light on the more complex bi-criteridiopzation framework.

¢ Different types of traffic have different sensitivities terfprmance and cost. De-
livering a real-time application is extremely performarsamsitive but also less
cost sensitive as customers are willing to pay more for higkeeformance. How-
ever, other types of traffic such as (non-realtime) backguadownloads of large
files is less performance sensitive but also more cost senag customers expect
to pay much less. The latter situation is more closely atignéh the pure cost
optimization regime presented in this paper.

e The pure cost optimization studied in this paper providesweet bound on the
bandwidth cost achievable by any real-world system thaukameously opti-
mizes performance and cost. Comparing the actual incustvath this lower
bound delineates the portion of the actual cost that isisitito the contracts and
traffic from the remaining additional cost premium attrédele to providing per-
formance and other considerations. Understanding thispremium and how it
varies with different types of traffic is critical to undeastling the cost structure
of the content delivery service.

1.5. Prior Work

Considering the practical importance of the problem in mégears, heuristic im-
plementations exist. However, this is the first formal sfudfyalgorithms for bandwidth
cost minimization across multiple ISPs. Recently, theieli®en some interesting work
on cost minimization from a multihoming perspective [14]esa AVG and95t" per-
centile contracts are considered and empirically evatudt@wever, our work is unigque
in considering the typical CDN situation where the optimigenultaneouslyoutes traf-
fic to ISPs withboundedcapacities and a mix of contract types, and formal bounds for
optimality are shown in the competitive ratio framework émline algorithms. There is
extensive literature on online algorithms [12, 13]. Priesearch on online algorithms
for ski-rental and related problems [10, 9] is particularilevant as we show inter-
esting connections between our problem and this class dlgnts. Specifically, our
techniques to solve the bandwidth minimization problemiaspired by those used to
solve variants of the ski-rental problem. In addition, tbenpetitive ratios of our online
algorithms are also reminiscent of those derivable for Kneenital problem.

3A preliminary version of this paper appeared as [15].



CDNs have been the focus of much research in recent yeard $),though there
has not been much prior work in the current context of banthwédst optimization. In
our work, we primarily consider a CDN that owns and operatdsdicated distributed
network of servers that deliver content on behalf of conf@oviders. The dedicated
network approach is the predominant model for CDNs today wibviders such as
Akamai and Limelight utilizing that model. However, thene ather models for con-
tent delivery that have been proposed. For instance, nail@@Ns could cooperate to
serve content [25]. Alternately, content delivery can blei@ed by P2P systems such
as KaZaa [20], or Gnutella [19] that utilize (non-dedicatpders to serve other peers.
High-quality content delivery is harder to achieve with P3B8tems in practice, though
there has been has been much recent research to make P2Rssyste scalable, more
available and better performing, including a number of expental systems such as
Chord [21], Content Addressable Networks [22], TapestB],[and Pastry [24]. Band-
width cost is less of an issue for P2P systems since peer ldihdis typically free
from the perspective of the entity that provides the P2PieenHowever, much of the
enterprise-quality content delivery happens today orittesil CDNSs in the dedicated
network model where our research is directly applicable.

1.6. Our Contributions

The first contribution of the paper is the modeling and foratioh of an area of great
practical importance with a rich potential for future aligfamic investigation. The model
and algorithms presented here are immediately relevardrtorercial technologies of
today, advancing the current state-of-the-art. Our goed eto develop algorithmic
techniques for cost optimization and to derpm@vably optimal algorithms, leaving the
empirical study of these ideas for future work.

We study bothoffline and online algorithms for the bandwidth cost minimization
problem. An offline algorithm knows the traffic that needs &rbuted for the entire
billing period in advance. While an online algorithm makestmg decisions knowing
only the past and current traffic levels and without any kmalgk of the future traffic.
Both kinds of algorithms are useful in practice. Routindfitan an actual system is
necessarily online, while offline algorithms are used fdragpective cost analysis. In
Section 3, we derive an optimal offline algorithm that routeffic to a set of ISPs with
AVG and MAX contracts such that the total cost is minimizedot&that the offline
optimal algorithm produces a lower bound on the cost agahsth any online algo-
rithm can be compared at the end of each billing period. [EartAn optimal offline
algorithm is of independent interest in practice since it ba used retrospectively to
derive the lowest achievable cost of the prior billing pdrié comparison of the offline
optimal cost with the (higher) actual cost incurred durihg billing period provides
valuable information on the cost structure of the CDN, ich portion of the cost is
an inevitable function of the ISP contracts and what is thditachal cost for providing
greater performance in an online setting.
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Next, in Section 4, we turn to online algorithms that knowyottie current and the
past traffic levels, and are unaware of any events in thedutiNpte that any cost opti-
mizer that is implemented as a part of the mapping systencisssarily online. Specif-
ically, in Section 4.1, we devise a deterministic onlinecaiiipm that is at most a factor
of 2 in cost from the optimal offline solution. Further, in Seati.2, we devise a ran-
domized online algorithm that has an expected cost thatastarf of at most=; from
the optimal offline solution. In both cases, we show that tmpetitive ratios are the
best possible. Note that our results fully characterizevdiae of knowing future traf-
fic in bandwidth cost minimization. Another interesting dhetical contribution of this
work is that we show intriguing connections between themenbiandwidth optimization
problem and the seemingly-unrelated but well-studied eskial problem. Specifically,
our work shows that the online decision to route through a Ma&ksus an AVG contract
is a generalized form of the buy-versus-rent decision irskigental problem. This fur-
thers our understanding of the class of online problems evb@mpetitive ratios df and
e/(e — 1) are optimal for deterministic and randomized online akhonis respectively.
Other problems in this class include previously known galieations of ski rental, such
as the Bahncard problem [7] and the TCP Acknowledgment prnoljb, 9] where the
same competitive ratios apply.

In Section 5, we extend the contract framework to includentiten of a committed
information rate (CIR), where the CDN has paid in advanceaf@ertain committed
amount of traffic through an ISP. We extend our results ofiSe&to provide an optimal
offline algorithm for MAX and AVG contracts with CIR.

Finally, we show the intractability of optimizings" percentile contracts. Specifi-
cally, we show that optimizing costs fo5!" percentile contracts is NP-hard, differenti-
ating it from the MAX and AVG contracts.

2. The Bandwidth Cost Minimization Problem

In this section, we model network contracts and formallycdes the bandwidth
cost minimization problem.

2.1. Network Contracts

A first important step in our study is accurately modelingpheameters of a CDN’s
typical network contract with an ISP. While a network coaotria a complex legal docu-
ment, there are three important parameters that provideplesiyet realistic model for
designing applicable optimization algorithms.

1. Type. The contract type dictates how the ISP will bill foe ttraffic that is sent
over its links. As noted earlier in Section 1.2, the threet/pf contracts are AVG,
MAX, and 95th.

2. Unit Cost.Unit costC' is the cost per Mbps that the ISP charges the CDN.
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3. Capacity. The capacity is the maximum bandwidth (in Mbps) that one can
transmit from the CDN'’s servers in that ISP.

The amount that a CDN paysS P; is computed using the first two parameters above as
shown below. The billing period (typically, a month) is dleid into a sequence aéff
time buckets (typically, 5-minute buckets, so that theeeadwout) = 8640 buckets per
month).

1. The traffic profile<y{ eyl y§M> is computed, wherg! represents the av-
erage traffic sent (in Mbps) in time buckefrom the CDN'’s servers located in
ISP;. Next, thesorted traffic profile<x{,x§, = ,x{wfl,x{@ is computed by
sorting the traffic profile in descending order, i#,,> a3 > --- > ) .

2. For an AVG contract the billable traffic is computed tothe= 3, /M. Like-

wise, the billable traffic of a MAX contract i = 2. And, the billable traffic of a
95t" contract ig; =z, sinceé”—é time periods represens$; of the billing period
20

and hencer i is the95™" percentile of the traffic values in the billing period.
20

3. The total amount that the CDN pays th&P; is the unit cosC; (in dollars per
Mbps) multiplied by the billable traffi¢; (in Mbps).

In addition to these three parameters, an additional paearoelled the Committed
Information Rate (CIR) is important to model. CIR represahte committed amount of
billable traffic that must be sent through an ISP. The CIR id fi& in advance, whether
or not it is used. CIRs are considered in the later part of #pepin Section 5.

2.2. Cost Minimization

The optimization problem proposed here models an aspebieahtpping compo-
nent in a CDN that senses the incoming traffic requests angnasthem to servers in
multiple ISPs. Typically, the traffic assignment is perfeadrby resolving domain names
using DNS, and the incoming traffic represents requests fhamsands of nameservers
around the world. For simplicity, we will assume that theatdtaffic demand as well
as the traffic routed through each ISP during each time iatexe integers. Further,
we assume that the traffic can be split and assigned in anyenanrihe ISPs at the
granularity of a single unit of traffic. This is a good firstt@pproximation as most of
the Internet web traffic comes from a large number of namesgnEach nameserver
can be routed independently by responding to the DNS redu@st the nameserver
with an appropriate set of server ips. Since each namesisrvesponsible for only a
small portion of the total traffic, it is possible to contrbktrouting of the traffic at a fine
granularity.

The bandwidth cost minimization problem is modeled as #adloThe billing period
(typically one month) is divided intd/ 5-minute time buckets. We model the incoming
aggregate traffic demand as a sequehee(by, - - - , by, - - - bar), Whereb, is the average

9



traffic (Mbps) in time bucket. Note thatb; represents the total traffic demand from
end-users that must be served by the CDN at time buckétt any timet, atraffic
routing algorithmpartitions the incoming traffié; and assigng; Mbps toSP; such
that y yg = b;. Further, it ensures that capacity constraints are metcit B8F; and

ateachtimd <t < M, i.e.,y{ < P;, whereP; is the capacity of SP;. The total cost
incurred by the traffic routing algorithm for the input trafequencd is simply

) =Y Cy,

where(; is the unit cost off SP; and thet; is the billable traffic computed from the
profile <y{ T ygw> of traffic served from/ S P; taking into consideration the

type of contract.

An offline algorithm knows the entire time-ordered input wece of traffic de-
mands,] = (b), 1 < t < M, for the entire billing period. It makes traffic routing
decisions based on this complete knowledge. An online ilgormakes routing de-
cisions at timet knowing onlyb;, 1 < j < ¢, i.e., knowing only the past and current
values. Note that the incoming traffig, the traffic assignmentgs{ , and capacitieg’;
areintegral values in the units of bits per second.

As mentioned earlier, we study both offline and online altons for traffic manage-
ment that optimize the total cost incurred in the networktiaais for the billing period.
We use the notion of competitive ratio [13] to bound the ¢@gt) of an online algo-
rithm A in terms of the optimal offline cost afopr (7). In particular, a deterministic
online algorithmA is said to bec-competitive if there exists a constamtsuch that for
all input sequences, C4(I) < c¢- Copr(I) + «. A similar competitive notion applies
to randomized online algorithms where thepectedvalue of the cost is used instead.
Note that the competitive ratio guarantees derived for aline algorithms hold in the
worst-case, irrespective of the behavior and (un)prebiiitia of the incoming traffic.

3. The Offline Algorithm

In this section, we derive an optimal offline algorithm thatites traffic with mini-
mum total bandwidth cost to ISPs with AVG or MAX contracts. thidiut loss of gen-
erality, we assume that no two AVG ISPs (resp., MAX ISPs) htheesame unit cost,
since two such ISPs can be considered to be one ISP with theokthmir individual
capacities.

3.1. MAXISPs

To start with, assume that we are given contracts that afd/AaX ISPs and there
are no AVG ISPs. Let there be MAX ISPs Max;, 1 < i < m, such thatCy.,, <
ChMazy < -+ < CMagz,,- Define the thresholth .., of an ISPM az; to be the maximum

traffic routed during the billing period through that ISP€Tollowing lemmas hold.
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Lemma 1. In any optimal solution, thresholtha., > 0 only if tyraz; = Phras;, for all
J < i, wherePyy,,; is the capacity of the ISR/ az;.

Proof: Assume that there exists an optimal solution contrary ®léhhma. LetV/ax;,

J <, be an ISP such thé;..; < Prraz;- We can now move traffic of up t8ya.; —
taraz,; IN €very time bucket from ISR/ ax; to the cheaper ISR/ax;. This results in a
reduction of the threshold af/ax;, and hence a reduction in total cost. Contradiction.
O

Lemma 2. There exists an optimal solution in whidliazx; is not used in a time interval
unless each ISR/ax;, j < i, has been used to its full capacity Bf;.., -

Proof: Suppose that the lemma does not hold for an optimal soluticsoime time
buckett. We show how to reroute the traffic in that time bucket to @eahew optimal
solution with same cost that obeys the lemma in that time dtucket: be the largest
value such thad/ ax; is used in time bucket Using Lemma 1 and the fact thag,,, >

0, it follows thattpsa.; = Puaa,, for all j < . Therefore, one can reroute the traffic
in time buckett by filling the ISPs to capacity in sequential order startiragf M ax; .
This does not increase any of the thresholds and hence doeffext the overall cost.
Thus, the new solution after the rerouting is also optiraal.

Thus the greedy algorithm of using a cheaper MAX ISPs to tschpacity before
using a costlier MAX ISPs routes traffic throughMAX ISPs with the least cost. As the
cost is determined by the bucket with most traffic to be rotitedime taken to calculate
the cost of the optimal routing ©(m logm + M), since sorting the contracts by cost
takesO(m log m) time and finding the bucket with maximum traffic tak@s)/) time.

3.2. AVG ISPs

Now we give a similar greedy algorithm for routing traffic whee have only AVG
ISPs. Assume that we are given contracts frodvVG ISPs Avg;, 1 < i < n, such that
Cavgr < Cang, < -+ < Cayg,. The following Lemma holds.

Lemma 3. In any optimal solution, ISRPivg; is not used in a time interval unless each
ISP Avg;, j < i, is used to its full capacity.

Proof: Assume there is an optimal solution contrary to this lemmavill traffic from
Awg; to a cheaper ISPlvg; that has residual capacity left reduces the cost. Contradic
tion. O

Thus the greedy algorithm where in each interval a cheap& SPs is used to its
full capacity before using costlier AVG ISPs routes trafficoughn AVG ISPs with the
least cost. We can find the most expensive AVG ISP that neelds tsed in a bucket
in O(logn) time by using binary search to search for the bucket capatign array
of sizen, whosek!" element iszfz1 Cang; for 1 < k < n. As the ISPs need to be
sorted by their cost, the total time taken to calculate thet 0bthe optimal solution is
O((n + M)logn).
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Figure 2: The structure of an optimal offline solution

3.3. MAX ISPs and AVG ISPs

Now we consider the general case when we Hasth MAX ISPs and AVG ISPs.
Assume that we are given contracts fremMAX ISPs Max;, 1 < ¢ < m, such that
Crazy < CrMazy < -+ < Cpag,- Further, assume that we are also given contracts
fromn AVG ISPsAvg;, 1 < i < n, such thally,g, < Cuvg, < -+ < Cayg,-

Letx; > 29 > --- > a7 be the average traffic within each of thé time buckets
during the billing period, sorted and placed in descendirdgio The assignment of
traffic to ISPs over a billing period can be represented Vigwes in Figure 2. The
vertical bars represent thg, 1 < i < M. Each vertical bar is subdivided horizontally
to represent the assignment of that traffic to multiple IS®snow show that there exists
an optimal solution that is of the form shown in Figure 2.

Lemma 4. There exists an optimal solution such that in any time irgkean AVG ISP is
used only if all MAX ISPs are used to their respective thrishfor the billing period.

Proof: Start with any optimal solution where IS®vg; receivest > 0 units of traffic in
a time interval, but some ISP/az; is used less than its threshold py> 0 units. By
moving min{x, y} > 0 units of traffic fromAvg; to Maz;, the total cost of ISPAvg;
does not increase while the cost/dfax; remains the same. Thus, the overall cost does

not increase and we have an optimal solution which satidfiegitzen property]
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Thus there exists a dividing line at some heigh{Figure 2) such that all traffic
below this line is routed through MAX ISPs and all traffic abas routed through AVG
ISPs? Thus the problem can be broken into three parts - finding thienap height#
of the dividing line, routing traffic below the heightthrough MAX ISPs and routing
traffic above the height through AVG ISPs. The problem of routing traffic below
(resp., above) the dividing line at heightthrough only MAX ISPs (resp., AVG ISPs)
can be solved by greedy algorithms given in Section 3.1 (r€sggtion 3.2). The Max-
Thresholdh, defined to be the sum of the thresholds of the MAX ISPs, cammbed by
binary search using the following lemma.

DefineChrq.(h) (resp.,Cavg(h)) to be the total cost of routing traffic below (resp.,
above) the dividing line at height through the MAX ISPs (resp., AVG ISPs) using
the greedy algorithms given above. SinCg,,(h) (resp.,Cawg(h)) is right differ-
entiable, we define”),, (™) (resp.,C’, (k™)) to be its right derivative ab i.e.,
limgy, o+ (Chaz(h + 6h) — Chrraz(h))/0h. Let C(h) = Curaz(h) + Cang(h) and
thusC’'(h*) = Cyo, (BT) + Cl, (7). Further, recall that; the largest traffic that is
to be routed within any time bucket.

Lemma 5. For all hy,hs if C'(h) andC’(h] ) are well-defined andy —> 7| Payg, <
hi < ha < 37501 Phrax;s thenC’(h) < C'(h3).

Proof: C,,.(h") is the cost of the cheapest MAX ISP that has not been usedftdlits
capacity when the Max-Thresholdfis ThusC',,. (k") is defined whereve€q, (h)

is defined, except whelis the sum of the capacities of the MAX ISPs. From Lemma 2,
it follows thatC},,.. (k") is a non-decreasing function.

Clhpy(PT) = = S°M (cost of the most expensive AVG ISP used in iffeinterval
when the Max-Threshold i8). ThusC 4., (h) is right differentiable wherever it is de-
fined. From Lemma 3, it follows thact?;wg(th) is a non-decreasing function. The
lemma follows ag™’(h*) = C,, (h*) + C'y, ,(h*).0

Givenm MAX ISPs,n AVG ISPs, and the traffic values for the entire billing period
the offline optimal algorithm (which we refer to &5PT") works as follows:

1. Using binary search, compute the optimal Max-Threshad the value that min-
imizes the cost functiod’(h).

2. Route all traffic at or belovik greedily through the MAX contracts.

3. Route all traffic abové greedily through AVG contracts as shown in Figure 2.

Theorem 6. The offline optimal solution and its cost can be compute@ (i (log m +
Mlogn) + nlogn + mlogm) time, wherem is the number of MAX ISPs; is the

“Note that the algorithm could produce a solution that uség thie AVG contracts, if that is optimal,
by computing the height to be zero. In fact, that would be the case if the unit cost efA¥%G contracts
are significantly lower than the unit cost of the MAX contsact
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number of AVG ISPs)/ is the total number of intervals in the billing period arid
is the number of bits required to represent the maximum amoltraffic sent in an
interval.

Proof: C(h) is a continuous function as botf;.,(h) and C4,4(h) are continuous
functions. From Lemma 5 and the fact th@th) is continuous it follows that’ (k)
reaches its minimum whenevét(ht) changes from being non-positive to being posi-
tive. As a preprocessing step, we sort the MAX ISPs and AVGsIBRhe ascending
order of their unit cost in timé& (n log n + mlog m). Then, we use binary search over
all values off to find theh such thatC (™) changes sign. There are at mastpos-
sible values forh. So there are at mostg(2”) = L steps. At each step of the binary
search we need to calculaté(h™) by computingC(h) values. This can be done in
O(log m+ M logn) time, using binary search to find the most expensive AVG 1S us
in each bucket and the most expensive MAX ISP used. The mpsteive MAX ISP to
be used can be found in(log m) time by using binary search to search fian an array
of sizem, whosekt" element ist:1 CMaaz, for 1 <k < m. Thus we can calculate the
optimal solution and its cost i@(L(log m + M logn) + nlogn + mlogm) time

4. Online Algorithms

We provide both deterministic and randomized optimal @nlaigorithms for the
problem of routing traffic through AVG and MAX ISPs with minirm cost with com-
petitive ratios of2 and _%; respectively. Note that an online algorithm at timkenows
the current and past traffic valués, bo, - - - , b, but does not know future traffic values

bt+1>bt+2a e >bM-

4.1. Optimal Deterministic Online Algorithm

In this Section, we present a 2-competitive deterministitne algorithm A that
routes traffic through AVG and MAX ISPs. Assume the time-oedesequence of traffic
demands id = (by,bs,--- ,bar—1,bar). Ata given time intervat, the online algorithm
A does the following:

1. Runs the offline algorithr® PT of Section 3 on the inpuby, ba, - - - ,b;,0,0,--- ,0).
That is, run the optimal offline algorithm on a prefix of theuhpssuming all fu-
ture time intervals have zero traffic.

2. Routes the current traffig in the same manner a3P7T'.

Note that runningD PT in step 1 at timé results in an optimal Max-Threshold
being computed. First, we show that the Max-Threshaéldsan only increase with time
t as we progress through the billing period.

Lemma 7. Let h; be the Max-Threshold of OPT on inpUi, bo, -+ ,b,0,0,---0).

Then, foralll <t < M —1, hy < hyy1.
14



Proof: Assumeh; > hy1. The cost of routing the traffi¢h,, b, - -+ ,b:,0,0,---0)
with a Max-Threshold ofh; is less than or equal to cost of routing the same traf-
fic with a Max-Threshold ofi; 1. ASbi1 — hy < bey1 — heyq the contribution in
the total cost of routing the + 1** interval traffic above the Max-Threshold through
the AVG ISPs with a Max-Threshold df; is less than or equal to the same with a
Max-Threshold ofh; ;. Thus with a Max-Threshold of; we can route the traffic
(b1,bg, -+ ,bt,b41,0,0,---0) with the same or lower cost than with a Max-Threshold
of hy11. This contradicts the fact that for no Max-Thresholdho® h;,; can we route
the traffic(by, bo, - -+ , by, bry1, 0,0, - - - 0) with the same or lower cost. Hence proved by
contradiction]

Theorem 8. The competitive ratio of the deterministic online alganmitid is 2.

Proof: The total costC4 of algorithm A equals the sum of the coéty 4., incurred
in the AVG contracts and the coéty iz, incurred in the MAX contracts. Note that
the final threshold:,; of A equals the thresholllp p- computed by the offline optimal
algorithmOPT. Also, by Lemma 7hy; > hy, for all t < M. Therefore,

Ca,Maz = Copr,Maz < Copr 1)

Let CZ,Avg be the cost incurred in AVG ISPs by algoriths during the firstt time
intervals. LetC},,, be the total cost incurred by the optimal offline algoritidd T’
when provided an input of;, b2, - -+ ,b:,0,0,--- ,0). We prove by induction ohthat
Cf&AUg < C})PT'
Base CaseWhent = 1, algorithm A runsO PT on the first input and behaves identical
to it. Therefore,
Ci,Avg - C(l)PT,AUg < CéPT

Inductive Case: Assume that the hypothesis is true unfil.e.,C% 4, < Copr. As
Ch pr is the cost of the optimal offline solution for inpt;, bs, - - - , b, 0,0, ,0),
we have thanPT < (', where(C’ is the cost of the solution for the same input
(b1,bg, -+ ,b,0,0,---,0) but using a Max-Threshold df;;, . Therefore, it follows
that

Clhoavg <C. )

The contribution in the cost o@ﬁjj}wg and C}p of sending part of the data in the

t + 1" interval through the AVG ISPs is the same. This is becaus®th tases only
the data more thah,; is sent through the AVG ISPs. Adding this cost to both sides of
Equation 2, we ge€';"},,, < C5/pp. This completes the induction. Therefore,

Ca,Avg = C%Avg < C¥pr = Copr (3)
Thus, combining Equations 1 and 3,

CA = CA,Ma:): + CA,Avg < 2(/YOPT-
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Theorem 9. The competitive ratio of 2 achieved by Algorithm A is the pesstible for
any deterministic online algorithm.

Proof: We first prove that the Ski Rental problem [9] is a special cddbe bandwidth
cost minimization problem. Given a ski rental problem whitwe cost of renting a pair
of skis is1 and the cost of buying them js the optimal strategy when you skitimes
is to buy skis in the beginning # > p, and rent otherwise. Given an instance of the
ski rental problem, we create an instance of the traffic ngugroblem with one MAX
ISP with unit costp and one AVG ISP with unit cost/, whereM > k is the number
of intervals in the billing period. The input traffig = 1 unit, if 1 < ¢ < k, and zero
for k < t < M. The capacity of each ISP is 1 unit. Thus in an interval oneardn
send either 0 or 1 unit of traffic through an ISP, since traféities are integral. By our
transformation, buying skis is the optimal strategy fogural ski rental problem if and
only if the optimal solution for traffic routing problem is tese only the MAX ISP for
routing the entire traffic. Similarly, renting skis is opahif and only if AVG ISP is used
to route the entire traffic in the optimal solution. Also threue of the optimal cost in
both problems is the same.

If for any ¢ > 0 if there exists a deterministic online algorithm with cortifbee
ratio of 2 — e we can use it to get a— ¢ competitive deterministic online algorithm for
the ski rental problem using the construction given abovds Tontradicts the fact that
ski rental problem has a lower bound [9, 10] on the competitatio of a deterministic
online algorithm ofl + % which — 2 asp — oo. I

4.2. Optimal Randomized Online Algorithm

In this Section, we describe aii(e — 1) competitive randomized online algorithm
ARand which

z

1. Picksz between 0 and 1 according to the probability density fumgtic:) = _%.
2. Routes the traffic using the deterministic online aldnit4 .

If the time-ordered sequence of traffic demandg is (b1, b2, -+ ,bys) then at a given
time intervalt, the deterministic online algorithm, does the following:

1. Runsthe offline algorithr® PT'(z) of Section 3 oninputby, by, - -+ ,b:,0,0,--- ,0)
but with the costs of all MAX ISPs multiplied by.
2. Routes the current traffig in same manner a9 PT(z).

Note thatA; is the deterministic online algorithm given in Section 4.1. Define
Copr(z) to be the cost of the optimal offline solution with the sameuinput with
the costs of all MAX ISPs multiplied by. Let Copr, avg(2)(resp.,Copr, maz(2))
be the contribution irlCopr(2) due to the AVG (resp., MAX) ISPs. Similarly define
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Ca, Avg(resp.,Ca, ) to be the contribution i 4_, the total cost due to algorithm
A, due to the AVG (resp., MAX) ISPs. Note th@ty, andC'4_ rrq. are charged by the
actual cost of the MAX ISPs buto pr(2) andCopr,max(2) have a discounting factor
of z for the costs of the MAX ISPs. The proofs of the following tvemrimas are similar
to the analogous proofs of Equations 1 and 3 in Theorem 8.

Lemma 10. 2Ca, rax = Corr Maz(2)

Proof. Thisis proved in the same fashion as Equation 1 in TheoremeBewlhie showed
thatCa araz = Copr, Mmaz- The only difference is that i@ p7(2) the costs of the MAX
ISPs are multiplied by and inA, they are not. The lemma follows.

Lemma 11. Cu, avy < Copr(z)

Proof: This proof is similar to the inductive proof given for Equati3 in Theorem 8
where we showed thdty 4.,y < Copr. O

Lemma 12. For 0 < z < 1, Copr(1) — Copr(2) > [ Cay razdw
Proof: For anyv such that < z < v <1,

Coprr(v) = Coprr,Maz(V) + CopT,Avg(V)
= vCa, Maz + COPT, Avg(V)
(using Lemma 10)
d(Copr(v)) = dv-Ca, Maz +v-d(Ca, Maz)
+d(Copr,av9(V)) (4)

Defineh(w) to be the Max-Threshold in the optimal offline solution witsstCo p7(w)
when the cost of all MAX ISPs are multiplied hy. h(w) is a non-increasing function
of w. Also letC)yq.,, be the original cost of the most expensive MAX ISP that wasl use
in optimal offline solution with cos€o pr(w) (or in algorithm A,, with costC4,,). As
the actual cost of any MAX ISP used in the gap betwkern+ dv) andh(v) would be at
mostChyqz, , the increase in cost of MAX ISPs when Max-Threshold is iasel from
h(v + dv) to h(v) is at mostChyaz, - (h(v) — h(v + dv)). Thus,

_d(CAU,MaJ:) = CAUJWGQU - CAv+dva‘w
C]Maxv : (h(v) - h(v + dT)))
= _CMaJ:U : d(h(’l))) (5)

IN

The actual cost of any MAX ISP used in the gap betwé&én) and h(v + dv) is at
leastChqz,. 4,- Thus in the optimal solution when the cost of the MAX ISPsenbeen
multiplied byv decreasing the Max-Threshold froiw) to h(v+ dv) decreases the cost



due to the MAX ISPs by at leasCyqz, ., ,, * (R(v) — h(v + dv)). The corresponding
increase in the cost due to the AVG ISPs is at least the deciea®st due to the MAX
ISPs, since&”opr(v) is the optimal cost. Thus,

d(Copr,avg(v)) = Copr,avg(v+ dv)
_COPT7AUQ(U)

v

UCMa$v+dv
(h(v) = h(v + dv))
= _UCMaxv+dvd(h(v)) (6)

Substituting Equations 5, and 6 in Equation 4, we obtain

d(Copr(v)) > dv-Ca, Maz —
U(CMaJ:UerU — Caz, )d(h(v))
= dv- CAU,MaJ:

—U - d(CMamv) : d(h(v))

Integratingv from z to 1 and using the fact th&tp pr(v) is a continuous function and
that the integral of the product of two differentials is 0, 9&tCopr (1) — Copr(z) >
le CAU,Maa:dU- O

Corollary 13. Copr(1) > fol Cay Mazdw
Proof: Follows from Lemma 12 by setting = 0.0J

Theorem 14. The competitive ratio of the randomized online algoritdm, .4 ise/(e—
1).
Proof: DefineP(z) = [ p(w)dw. Then

Ca, = Ca,Maz+Ca, Avg

< CAZ,Max + COPT(z)
(by Lemma 11)

Ca, Maz + Copr(1)

1
_/ CAU,,Maxdw
(by Lemma 12)

IN
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1
ElCan.] = /0 Capl2)dz

IN

1
Copr(1) + / Cia vrawp(2)dz
0
1 1
- / p(2)( / Coto Magdo)dz
0 z
1
= CbPT+:/ Ca, MaxP(2)dz

0
1 w
- [ Caitaal [ w121
0 0
= Copr+

1
/0 (0(2) = P(2))Cartand

E [CARand] < 1 +
Copr  —

Ji(p(2) = P(2))Ca. ptaxd>

fol CAZ,MaJ:dz
(by Corollary 13)

Competitve Ratio =

Settingp(z) = -£; and P(z) = 2=, the RHS of the above equation is equals-
1/(e—1)=¢/(e—1).0

Theorem 15. The competitive ratio of /(e — 1) achieved by Algorithmi z,,,4 is the
best possible for any randomized online algorithm.

Proof: As in Theorem 9, we use the fact that this problem is a geretain of the
ski rental problem. The ski rental problem has lower boundhencompetitive ratio of
a randomized online algorithm ef /(e;, — 1) wheree;, = (1 + Iﬁ)? whenp, the ratio
of the cost of buying to the cost of selling, is an integer.Higorithm which achieves
the bound for the ski rental problem similar to the randowhiaeline algorithm for the
snoopy caching problem [10].) Alsg /(e;, — 1) < e/(e — 1) but tends tee/(e — 1) as
p tends toco.

If for any € > 0 if there exists &/(e — 1) — e competitive randomized algorithm for
this problem then by the construction in Theorem 9 we get(a — 1) — e competitive
randomized algorithm for the ski rental problem. A contcéidn. [

5. Extensions

In this section, we consider two different extensions to @sults. In Section 5.1
we consider the notion of Committed Information Rate (CIRY an Section 5.2 we

consider95" percentile contracts.
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5.1. Committed Information Rate (CIR)

Committed Information Rate (CIR) represents the commatadunt of billable traf-
fic that must be sent through an ISP. The CIR is paid for in aclvawhether or not it is
used. Traffic sent over and above the CIR is called the buesaral is charged for in pro-
portion to usage at a specified unit cost. Since the cost oCIR is prepaid regardless
of usage, it can be assumed that traffic up to the CIR can bedauth an incremental
cost of0. Letxy > z9 > - - - > x)s be the average traffic within each of thé 5-minute
intervals during the billing period, placed in descendingden. For an AVG contract, the
bill for the month isCav¢g * (>, zi/M — CIRavg) if Y, x;/M > CIR v, other-
wise it is0 , whereC 4y ¢ is the unit cost and’I R 4v; is the CIR of the AVG ISP. For
a MAX contract, the bill for the month i€y, 4x * (x1 — CIRpax) if 21 > CIRy A,
otherwise it i9), whereC; 4 x is the unit cost and’'I R s 4 x is the CIR of the MAX ISP.
Similar we can postulate the cost function far#&" percentile contract that incorporates
CIR.

5.1.1. Offline algorithm

We derive an offline algorithm for routing through AVG and MAZPs with CIR.
First, in Section 5.1.2, we consider routing through MAX $3R isolation. Then, in
Section 5.1.3, we consider routing in AVG ISPs in isolatiéiinally, in Section 5.1.4,
we combine the two approaches to produce an offline optingakithm when we have
both MAX and AVG ISPs.

5.1.2. MAX ISPs with CIR

Assume that we are given contracts fremMAX ISPs Max;, 1 < ¢ < m, with
unit costCyqz,, capacityPirq,; and CIRCIR v qz, (< Phaz,), Such that for all < 4,
CMaz; < Cuag,- Further, assume that there are no AVG ISPs.

Lemma 16. In any optimal solution, thresholtha.;, > CIRpaz; ONlY if tarer, =
Pyrag; forall j < i, wherePyyq.; is the capacity of the ISR/ ax;.

Proof: The proof is similar to the proof of Lemma

Lemma 17. There exists an optimal solution in whiddax; is not used more than its
CIR in a time interval unless each ISHaz;, j < ¢, has been used to its full capacity
of Prrar; and all MAX ISPs have been used at least to their CIR.

Proof: The proof is similar to the proof of Lemma 2]

Lemma 17 above gives us an optimal greedy algorithm for mgutiaffic through
MAX ISPs alone. First use the CIRs of all the MAX ISPs and theme the remaining
greedily by using cheaper ISPs to their full capacity befasing costlier ISPs. This
greedy algorithm also takes at ma@stm log m + M) time to calculate the minimum

cost of routing throughn MAX ISPs.
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5.1.3. AVG ISPs with CIR

Suppose we had only AVG ISPs and no MAX ISPs. We propose thewfiolg
greedy algorithm for routing traffic through AVG ISPs. Assume that we are given
contracts fromn AVG ISPs Avg; with CIR CIR 4,4, and capacityP4,g,, 1 < i < n,
such thailC'yyg, < Cayg, < -+ < Cang, . Start with the costliest AVG ISP (i.e4vg,)
and iterate through the following steps in the decreasingroof cost, i.e., in the order
Avgp, Avgn—_1,. .., Avgy, till all the traffic is routed.

Step l.Letz;, 1 < i < M, be the traffic that remains to be routed in time bucket
i. Let Avg, be the current ISP under consideration, i.e., traffic hasadly been
routed through ISPslvg;,k < j < n. In each time bucket, all the traffic
(z; — Zf;ll Payg,) that cannot be routed through cheaper ISPs due to capacity
constraints is routed through ISR gy.

Step 2. If ISP Avg, has not been utilized to its CIR after Step 1 above, then stiec
time intervali with the maximum remaining traffic (i.e., maximum traffic tha
yet to be routed). If there is capacity left at time intervad ISP Avgy, then route
an additional unit of traffic through ISRvg, at that time interval. Repeatedly
perform this operation until either the CIR dfvg;, is exhausted or there is no
more traffic to route.

Theorem 18. The greedy algorithm given above routes traffic throughvG ISPs with
minimum cost.

Proof: Given any other solutioty, we prove that the cost &f is at least the cost of
G, whered is the solution produced by our greedy algorithm. This waadigly that
our greedy solution is optimal. To this end, we transfornusoh S to solutionG using

a series of steps where traffic is rerouted in each wf#put increasing the total cost.
Start with the costliest ISRwvg;, where traffic is routed differently in the two solutiofs
andG. All the costlier ISPsAvg;, such that > k, are not considered as traffic is routed
through these ISP’s in an identical fashiondrandG. There are 3 cases to consider.

1. If the total amount of traffic routed through IS®vg; in the billing period is
more in solution than inS then one can conclude that the CIR has not yet been
reached foAvg, in solutionS. Hence, we can route more traffic throughgy in
solution S till the solutionsS andG route the same amount of total traffic through
Avgy. Since the additional traffic is covered by the CIR, therevigdditional cost
incurred inAvg;. Thus, this traffic rerouting cannot increase the cost aftsmi
S.

2. If the total amount of traffic routed through ISR g, is less in solutiorG than in
S, one can conclude that the additional trafficdns above and beyond the CIR
for Avg. SolutionS can be modified to route this additional traffic that is being

paid for at the higher cost oflvg, through other ISPslvg;, i < k, that have
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lower costs. This traffic rerouting to modify cannot increase the cost of solution
S.

. If the total amount of traffic routed through 1SRvg, is the same in solutions
G and .S but the manner in which the traffic is distributed over thetimtervals

is different, we can redistribute the traffic such that tledfic routed in all time
intervals through the ISRPlvg, is the same in both solutions without increasing
the total cost as follows. Note that there exists a time viaet; (resp.,ts) in
which more (resp., less) traffic is routed through L&®y; in solution G than in

S. This implies that less (resp. more) traffic is routed in timervalt; (resp.,t2)

in aggregate across ISB%¢g;, Avgs, . .., Avgr_1 in solution G than inS. Letk;
(resp.,k;) denote the traffic routed through ISfat timet; in solutionG (resp.,
S), wherei = 1,2. Likewise, leth; (resp.,h;) denote the total traffic routed in
aggregate across ISP&gy, Avgs, . .., Avgi_1 attimet; in solutionG (resp.S),
wherei = 1, 2. From our discussion abovk, > k| andky < kf, which implies
thath; < b} andhy > h),. Note that the greedy algorithm iteratively allots traffic
to ISP in the time interval with the most remaining (i.e., unrogtedffic, unless
the capacity constraints of ISPare reached in that time interval. Note that there
is capacity remaining in ISR at timet, in G, sinceky < ki, < Pi. Therefore,
he cannot be larger thah; + 1, as otherwise the greedy algorithm would have
allotted additional traffic to ISR at timet, to reduce the larger remaining traffic
in that time slot . Sincé» > A/, and all values are integers, it follows that

Ry >hy >hy—1>hlh+1—1=h.

From the inequality above we know thef > k). Thus, there exists some ISP
Avg;, I < k, such that more traffic is routed through 13Rg; in time ¢; than in
timety. Thus, for some: > 0, one can route: more units of traffic through ISP
Avgg, and z less units of traffic througlvg; in time intervalt;. And, in time
intervalt, one can route less units of traffic through ISRvg, and2 more units

of traffic throughAvg;. This transformation does not change the total cost. But, it
increases (resp., reduces) the traffic in L$#y, at timet; (resp.,t2) in solution

S, bringing the traffic pattern that is routed through 18Pg, in S closer to the
corresponding traffic pattern i¥. By repeating this process, we can make the
traffic routed throughvg, in solution.S equal to the traffic routed throughv gy

in solutionG for all time intervals.

Following the three steps outlined above inductively,tstgrfrom the costliest ISP

and ending with the cheapest ISP, we can transform any eoltitio the greedy solution
G without increasing the cost. Hence, the greedy solutida optimal.[J

The time taken for the above greedy algorithm to compute ¢héien can be de-

termined as follows. First, the ISP’s are sorted in desegndrder of their unit cost,
and the time intervals are sorted in the descending orddreofraffic. The total time
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Figure 3: The structure of an optimal offline solution whea I8Ps have a CIR

for the two sorts i) (M log M + nlogn). Once the time intervals and the AVG ISPs
are sorted, the traffic that has to be sent through the mosthekge remaining ISR v g;,
due to capacity constraints can be calculated in step 1 ddl@ithm inO(M) time.
Routing more traffic to fully utilize the CIR of the most exs@re remaining ISPAv gy,

in step 2 can also be computedd M + T}) time, whereT}, is the total amount of
traffic that is routed throughlvg,. Thus routing traffic through AVG ISPs with CIR
can be done i (nM + T + M log M + nlogn) time, whereT" is the total amount of
traffic routed in the billing period.

5.1.4. MAX ISPs and AVG ISPs with CIR

The offline algorithm for routing traffic optimally through MAX ISPs andn AVG
ISPs, with both types of ISPs having CIR, can be visualizétgusigure 3. First, a Max-
Thresholdh is derived. Next, traffic below thresholdis routed through the MAX ISPs
using the greedy algorithm of Section 5.1.2 and the traffavatthat threshold is routed
through the AVG ISPs using the greedy algorithm of Sectidn3.The main difference
between the offline algorithm for ISPs with CIR and the offlaigorithm in Section 3
for ISPs without CIR is the greedy algorithm for routing fl@through AVG ISPs that is
described in Section 5.1.3, since the proofs of Lemmas 4 atitl Bold when ISPs have
CIR. Similar to the proof of Theorem 6 we can prove that the obthe optimal offline
solution can be calculated (L (log m +nM) + T + nlogn + mlogm + M log M)
time.
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Theorem 19. The offline optimal solution (and its cost) for routing trafin ISPs with
CIR can be computed i@ (L(logm + nM) + T + nlogn + mlogm + M log M)
time, wherem is the number of MAX ISP#, is the number of AVG ISP3/ is the total
number of intervals in the billing period] is the total traffic routed during the billing
period, andL is the number of bits required to represent the maximum atmfuraffic
sent in a time interval.

As in Section 4, it would be of interest to convert the offlingtimal algorithm in
this section to an online algorithm for routing in AVG and MA%Ps with CIR. But,
devising online algorithms in this context is complicatgdie presence of the CIR and
is a subject for future research.

5.2. 95" Percentile Contracts

Unlike AVG and MAX ISPs, we now show that including networknt@cts that
charge based on th@'" percentile of the traffic renders finding the optimal offline
solution NP-hard. In fact, the problem of determining wieeth given input can be
routed using only the free traffic (i.e., using orily of the intervals for each ISP) of a
set of95'" percentile ISPs is already NP-Hard.

Theorem 20. Finding whether one can route the entire traffic with zerot@os system
consisting ofx 95" percentile ISPs is NP-Complete in the strong sense.

Proof: The proof involves a straight forward reduction from the Biovering Problem
[5], which is known to be NP-complete in the strong sense. sitlam an arbitrary Bin
Covering problem: We are giveN positive integers as the item sizes ao, ..., an,
a bin capacityC', and B number of bins. We are asked whether th&seaumbers can
be partitioned intaB subsets each of which has sum at le@st The above problem
instance for Bin Covering can be easily reduced to the faligwinstance of the traffic
routing problem. GiverlV 95" percentile ISPs with capacities equaldg as, . .., an
can we route the following traffic pattern with zero cost. fra firstA//20 — 1 intervals
the traffic to be routed i§ " ; a; and for the nextB intervalsC' amount of additional
traffic is to be routed. X/ is chosen such that/ > M /20 — 1 + B. ) Note that}/ /20
intervals constituté% of the time intervals in the billing period. Each ISP is filkedthe
capacity for the firsfi/ /20 — 1 steps, and so each have only one additional time interval
to route for free. Allocating the additional traffic into tHfeee time interval for each ISP
amounts to a solution for the original Bin Covering problarmstance ]

Due to the fact that finding whether traffic can be routed wétozcost is NP-hard,
unlessP = N P, there cannot exist an approximation algorithm for the badth cost
minimization problem witl95t" percentile ISPs that produces a solution that is within a
constant additive term of optimal.
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6. Conclusions

An important contribution of this paper is that it opens up #igorithmically rich
and practically important area of bandwidth cost optimarator CDNs and multihomed
enterprises using realistic contract models. More spediificwe provided an optimal
offline algorithm that routes traffic to minimize the totaholavidth cost incurred in ISPs
with AVG and MAX contracts. Also, we provided determinisdad randomized on-
line algorithms that have optimal competitive ratios. Hinave established interesting
theoretical connections between bandwidth cost minintirand the well-studied buy-
versus-rent paradigm of the ski rental problem.

This paper is but a first step into this area of research, antymmpen questions
for future research remain. Our current algorithmic worlkesloot incorporate CIRs in
an online setting. Devising near-optimal online algorithomder the right adversarial
model for AVG and MAX contracts with CIR is a problem of greatgdortance for fu-
ture work. Further, devising a suitable definition of appmmation and finding good
approximation algorithms fdd5*" percentile contracts is another interesting avenue for
future investigation.

Finally, a critical avenue for future research is to introglthe notion of performance
and extend our model and algorithms to simultaneously aptifioth cost and perfor-
mance. We believe that the current work provides a first steprds reaching this final
objective. In addition, it is important to study the behavid our algorithms empiri-
cally by simulating them on realistic traffic traces and ratncontracts. Specifically, it
would be of interest to collect traffic traces from a largarthsited CDN and empirically
study the bandwidth cost reduction that is possible by usurgalgorithmic ideas. Any
such study must also incorporate the performance optiroizariteria to ensure that
cost minimization does not adversely impact the perforrmariend-users.
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