
A Routing Protocol Suitable for Backhaul Access in

Wireless Mesh Networks

Miguel Elias M. Campista∗, Lúıs Henrique M. K. Costa, Otto Carlos M. B.
Duarte

Grupo de Teleinformática e Automação
PEE/COPPE - DEL/POLI

Universidade Federal do Rio de Janeiro
P.O. Box 68504 - 21945-970, Rio de Janeiro, RJ, Brazil

Tel.: +55 21 2562-8635 Fax: +55 21 2562-8628

Abstract

This work proposes the Wireless-mesh-network Proactive Routing (WPR)

protocol for wireless mesh networks, which are typically employed to provide

backhaul access. WPR computes routes based on link states and, unlike

current routing protocols, it uses two algorithms to improve communications

in wireless mesh networks taking advantage of traffic concentration on links

close to the network gateways. WPR introduces a controlled-flooding algo-

rithm to reduce routing control overhead by considering the network topology

similar to a tree. The main goal is to improve overall efficiency by saving net-

work resources and avoiding network bottlenecks. In addition, WPR avoids

redundant messages by selecting a subset of one-hop neighbors, the AMPR

∗Corresponding author.
Email addresses: miguel@gta.ufrj.br (Miguel Elias M. Campista),

luish@gta.ufrj.br (Lúıs Henrique M. K. Costa), otto@gta.ufrj.br (Otto Carlos M.
B. Duarte)

Preprint submitted to Computer Networks August 4, 2011

(Adapted MultiPoint Relay), needed to reach all two-hop ones. We first an-

alyze the proposed algorithms compared with the algorithms used by OLSR

for the same tasks in terms of running time, optimality, and number of rout-

ing messages. Results show that the algorithms proposed by WPR are more

efficient than the algorithms used by OLSR in running time and number of

routing messages. In addition, we also perform simulations to evaluate the

performance of WPR. Results reveal that the aggregated throughput of WPR

outperforms OLSR by up to 27% using a combination of web and backbone

internal traffic despite our design assumption of traffic convergence toward

gateways.

Keywords:

Wireless mesh networks, routing protocol, routing algorithm.

1. Introduction

Wireless mesh networks (WMNs) are a cost-effective solution for Internet

access given their low installation cost, ease of deployment, and mobility

support [1]. The main goal of these networks is to improve connectivity and

to provide backhaul access, to nodes not within range of gateways, to the

wired infrastructure [2, 3]. Wireless mesh networks implement a backbone

of stationary wireless routers, which communicate via multiple hops. As a

consequence, routing plays a major role in these networks.

Most wireless networking advantages are related to the broadcast na-

ture of radiofrequency transmissions. Nevertheless, communication protocols

must cope with challenges of radiofrequency transmissions as fast link-quality

changes, high attenuation, and interference [4, 5]. In addition, bandwidth

2

constraints of wireless channels and shared medium impose limits on the max-

imum data rate achievable. Protocols, as a consequence, introduce control

packets to improve communication reliability and also to provide current net-

work conditions to the routing layer. This additional overhead, however, can

interfere in data communications and consume a significant amount of net-

work bandwidth. This side effect is considered by other protocols of wireless

networks. For instance, in ad hoc networks, routing protocols generally adopt

one of the three strategies for route construction: proactive, on-demand, or

hybrid. Proactive protocols require nodes to periodically flood the network

with control messages to maintain a valid route to every other node in the

network [6, 7]. In the reactive strategy, nodes broadcast a route request to a

given destination only when they have data to send [8, 9] to avoid periodic

control overhead. This strategy, however, incurs in route discovery latency

and cannot guarantee that overhead is indeed lower than in the proactive

case. If route failures often happen, then overhead becomes high because

route discovery procedures are repeatedly triggered [8, 9, 10, 11].

Routing protocols for wireless mesh networks are also designed to avoid

overhead [12]. In these networks, the impact of control messages is more

severe than in the ad hoc case because wireless mesh networks are usu-

ally employed to provide backhaul access [1, 2, 3]. Hence, more bandwidth

available is required to forward data traffic to and from users. Despite the

stationary backbone, the wireless medium is unstable and the data traffic

typically converges toward a gateway to the wired network. This results in

network bottlenecks, which increases the importance of saving network re-

sources. Protocols such as Link Quality Source Routing (LQSR) [13] and

3

Srcr [14] use a hybrid strategy to avoid overhead. Although they main-

tain information about link state, they use route discovery procedures to

update the metrics of the most frequently used links. These protocols as-

sume that periodic flooding is inefficient because most communications in-

clude a wired-network gateway. Link-state proactive protocols, on the other

hand, use controlled-flooding techniques to reduce overhead. The Optimized

Link-State Routing (OLSR) protocol is a well-known example. OLSR de-

fines a subset of neighbors in charge of forwarding routing messages. This

subset, called MPR (MultiPoint Relay), is composed of one-hop neighbors

which are enough to reach all two-hop ones. By using the MPR set, OLSR

avoids redundant control messages because it minimizes the probability of

two-hop neighbors receive the same message more than once. The Fisheye

State Routing (FSR) [15] adjusts the time-to-live (TTL) field of routing mes-

sages to concentrate route updates in the vicinity. The authors argue that

it is more important to maintain information of nearby links than of distant

ones. The claim is that a packet finds increasingly accurate routing infor-

mation as it approaches its destination. The Optimized Fisheye Link-State

Routing (OFLSR) [16] protocol combines OLSR and FSR controlled-flooding

techniques to further reduce control overhead.

In this work, we propose a proactive link-state routing protocol called

Wireless-mesh-network Proactive Routing (WPR) protocol1. Using a proac-

tive strategy, we maintain a route to every other node in the network and we

avoid initial latency during route discovery procedures. WPR also introduces

1A preliminary version of this paper appeared in [17].

4

a controlled-flooding algorithm tailored to wireless access networks. Unlike

OLSR and FSR, which reduce routing overhead considering that communi-

cations between any pair of nodes have the same probability, WPR updates

more frequently the route metrics of the most-used links. These are the links

within the shortest paths connecting backbone nodes to the wired-network

gateway and vice-versa [18]. WPR, therefore, considers the network topology

a tree, in which the wired-network gateway is the root. Additionally, WPR

introduces the AMPR (Adapted MultiPoint Relay) set, which aims at re-

ducing redundant control messages received by nodes.The proposed AMPR

set algorithm computes the minimum possible subset of one-hop neighbors

needed to reach all two-hop ones taking as input the resultant tree topol-

ogy used by the controlled-flooding algorithm. We analyze the proposed

algorithms by comparing them with their OLSR counterparts in terms of

running time, optimality, and number of control messages. In addition, we

analyze the performance of WPR also compared with OLSR via simula-

tions. Results show that WPR throughput is up to 80% better than the

throughput achieved by OLSR when all nodes generate traffic only towards

the wired-network gateway. In addition, simulations using traffic between

internal nodes show that the aggregated throughput achieved by WPR is up

to 27% better than OLSR even though WPR algorithms take into account

that most communications involve the wired-network gateway.

This work is organized as follows. Section 2 describes definitions and no-

tations used throughout this work. Section 3 presents the proposed Wireless-

mesh-network routing (WPR) protocol. The algorithms used by WPR are

analyzed in Section 4. Section 5 describes the simulation setup. Simulation

5

results are presented in Section 6. Finally, Section 7 concludes this work and

identifies future directions.

2. Definitions and Notations

In this work, we assume that applications usually require Internet ac-

cess [13, 19]. Therefore, wireless mesh networks provides backhaul access

to users connected to the wireless backbone. Nevertheless, applications in

which the source-destination pair is inside the wireless mesh are also possible

(e.g. peer-to-peer applications where some peers are inside the mesh). We

also assume that the network topology known by different backbone nodes

is similar. This characteristic is required by routing protocols to avoid errors

such as routing loops.

2.1. Network Model

We model a wireless mesh network as a weighted connected graph G =

(V,E) where V is the vertex set and E is the edge set. Vertices represent

network nodes and edges represent links connecting pairs of nodes. Consid-

ering vi and vj in V , if there is a link from vi to vj, then (vi, vj) ∈ E. In

our model, there is a weight w(vi, vj) ∈ <+ associated with each link in the

network, which represents the routing metric of the link in routing context.

The graph is also directed because routing metrics may be different from vi

to vj and vice-versa.

Let N1(vi) denote the set of one-hop neighbors of node vi and N2(vi) the

set of two-hop neighbors of vi, i.e. node vi directly communicates to nodes in

N1(vi), but needs a relay node in N1(vi) to communicate to a node in N2(vi).

Thus,

6

N2(vi) =
⋃

vj∈N1(vi)

(N1(vj)−N1(vi)). (1)

In addition, we denote the MPR set of node vi by M(vi), where M(vi) ⊆

N1(vi). The MPR set is a subset of N1(vi) such that all nodes in N2(vi)

are reachable through a node in M(vi). The problem of finding an MPR

set with the minimum number of nodes is modeled such as the set-covering

problem. Because the optimal solution to this problem is NP-complete [20],

the OLSR protocol uses a greedy algorithm (Appendix A) to compute MPR

sets in polynomial time. Nevertheless, the resultant sets may not represent

the optimal solution.

A path p(.) from the source node v1 to the destination node vl is a se-

quence of distinct nodes in which any consecutive pair is connected by a

link. Therefore, p(v1, vl) = 〈v1, v2, ..., vl−1, vl〉, where {v1, v2, ..., vl−1, vl} ⊆ V ,

{(v1, v2), ..., (vl−1, vl)} ⊆ E and l is the length of the path. The cost of path

p(v1, vl) is defined as a composition function f : w(v1, v2), ..., w(vl−1, vl)→ <+

that maps the weights of the links in the path to a positive real number. In

addition, the shortest path from v1 to vl, denote by p∗(v1, vl), is the path

with the minimum possible cost (δ(v1, vl)). We consider the shortest path

p∗(v1, vl) a subgraph of G. Hence, p∗(v1, vl) = (V ∗, E∗), where V ∗ ⊆ V and

E∗ ⊆ E.

Hop-by-hop routing protocols, such as WPR and OLSR, build tables with

the next hop to each reachable destination. The next hop to vl, for instance,

is the neighbor of v1 within the shortest path p∗(v1, vl). It is worth mentioning

that the shortest path from a source to any destination is prone to changes

according to medium conditions. Therefore, vi always computes its shortest

7

path to each other node upon receiving routing message updates from other

network nodes. We denote these control messages by mc. As WPR is based

on link state, mc is a link-state update. Similarly to OLSR, WPR runs the

Dijkstra algorithm to find shortest paths using additive metrics. Alternative

approaches can be found in Passos et al. [21]. In this work, we use the term

control messages and routing messages interchangeably.

2.2. Ascendent, Descendent, and AMPR Sets

We define the ascendent set of node vi, A(vi), to be the set of nodes in the

shortest path from vi to the wired-network gateway (g), except vi. Therefore,

considering that p∗(vi+1, g) is a subgraph of G and V ∗ is the vertex set of

p∗(vi+1, g), we have that:

A(vi) = {vj ∈ V ∗ |p∗(vi+1, g) ⊆ G, p∗(vi+1, g) = (V ∗, E∗)}. (2)

We also define the descendent set of node vi, D(vi), to be the set of nodes

which have vi in their best path to the gateway. Hence,

D(vi) = {vj ∈ V | vi ∈ A(vj)}. (3)

Figure 1 illustrates the ascendent and descendent sets of vi, whereA(vi) =

{a1, a2, ..., g} and D(vi) = {d1, d2, ...}, respectively. Set T (vi) represents the

set of all nodes in A(vi), D(vi), and {vi}. Hence, T (vi) = A(vi)∪D(vi)∪{vi}.

The resultant topology considering the shortest paths from all nodes in T (vi)

to the gateway is a tree, depicted in Figure 1.

The Adapted MultiPoint Relay (AMPR) set of vi, denoted by R(vi), is

the union of two subsets. The subset of one-hop neighbors of vi in T (vi) able

8

Figure 1: Ascendent and descendent sets of node vi.

to reach all two-hop neighbors also of vi in T (vi) and the subset of one-hop

neighbors of vi in T (vi) able to reach all two-hop neighbors also of vi in T (vi),

where T (vi) = V − T (vi). Therefore, R(vi) ⊆ N1(vi). We can rewrite R(vi)

as following:

R(vi) = R(vi)′ ∪R(vi)′′, (4)

where R(vi)′ ⊆ {N1(vi) ∩ T (vi)} and R(vi)′′ ⊆ {N1(vi) ∩ T (vi)}.

The next section explains how ascendent, descendent, and AMPR sets

are used in WPR to reduce routing overhead.

3. WPR Protocol

We propose a proactive link-state-based protocol called WPR (Wireless-

mesh-network Proactive Routing) that uses two main algorithms to reduce

9

routing overhead in wireless mesh networks: the controlled-flooding algo-

rithm and the AMPR set computation algorithm. The key idea of the

controlled-flooding algorithm is to reduce the overhead in wireless mesh net-

works by taking into account the traffic pattern of backhaul access networks.

These networks typically concentrate traffic on links connecting the backbone

nodes to the wired-network gateway. In addition, WPR avoids redundant

routing messages using the AMPR set. The function of the AMPR set is

similar to the MPR set of OLSR. The AMPR set, however, also considers

the tree topology of WPR controlled-flooding algorithm.

3.1. The Controlled-flooding Algorithm of WPR

Controlled-flooding algorithms aim at reducing the transmission frequency

of link-state updates from seldom used or redundant links [12]. Our controlled-

flooding algorithm assumes that communications converge toward gateways.

Hence, the topology can be modeled as a tree, where the gateway is the

root. Based on the tree topology, the controlled-flooding algorithm of WPR

considers as the most-used links by a node vi, the nodes belonging to two

different sets: the ascendent set (A(vi)) and the descendent set (D(vi)), as

defined in Section 2.2.

WPR reduces routing overhead by restricting the number of nodes that

forward a routing message originated at node vi. Messages originated at

vi are only forwarded by nodes in A(vi) and D(vi). In the first case, mes-

sages are forwarded because vi is a descendent whereas in the second case

messages are forwarded because vi is an ascendent. Forward routing mes-

sages from ascendent nodes allows descendents to compute their path to the

gateway, whereas forward routing messages from descendent nodes allows as-

10

(a) Flooding range of the OLSR protocol. (b) Flooding range of the WPR protocol.

Figure 2: OLSR and WPR controlled-flooding range.

cendents to compute their path in the reverse direction. Figure 2 illustrates

the controlled-flooding algorithms of OLSR and of WPR. Figure 2(a) shows

the maximum range of an OLSR flooding. In OLSR, the MPR set eliminates

redundant messages, but all nodes still receive a routing message from vi.

Figure 2(b) shows the range of a controlled-flooding message sent by node

vi using WPR. Node vi has its routing messages forwarded only by nodes in

T (vi) set.

The A(vi) set is known as soon as node vi computes its path to the

gateway (g). Therefore, a slight modification to typical routing protocols

is needed to maintain complete paths instead of only the tuple composed

of relay and destination nodes. This change requires more information per

destination, but it does not add additional processing to compute routes.

The D(vi) set is known due to HELLO messages. In these messages, every

node lists its neighbors and indicates each one-hop ascendant chosen. Thus,

node vi knows its one-hop descendents and can forward their messages. To

11

forward routing messages originated at two- or h-hop nodes, for h > 2 in

D(vi), a recursive property holds. Let a descendent of vi be h hops distant.

Thus, (h− 1)-hop nodes certainly forward routing messages originated at h-

hop-node descendents because they receive their HELLO messages. Likewise,

(h − 2)-hop nodes forward routing messages from (h − 1)-hop descendents.

These (h− 2)-hop nodes, however, also forward messages from h-hop nodes

that were forwarded at last by their (h − 1)-hop descendents. Considering

that an (h − 1)-hop ascendent is also in the ascendent set of (h − 1)-hop

descendents, (h − 2)-hop nodes also forward messages from h-hop nodes.

Therefore, according to our definition, these h-hop nodes are also in the

descendent set of the (h− 2)-hop nodes. Generalizing the example, we show

that if a routing message was at last forwarded by an one-hop descendent of

node vi, e.g. d1 in Figure 1, it is assumed that one of the d1’s descendents has

originated the message. As d1’s descendents are also in D(vi), the recursive

property holds.

WPR uses topology control messages to disseminate link states. Never-

theless, a flag is needed on the message header to indicate the dissemination

type. In WPR, in addition to controlled-flooding messages, the network is

periodically flooded. This guarantees that all nodes are aware of the com-

plete network topology. It is needed to flood the entire network because

communications not including gateways are also possible and therefore the

entire topology must be known. WPR uses a period T to send control mes-

sages and a proportional relation between the number of controlled-flooding

messages and flooding messages. This is similar to the Fisheye State Routing

(FSR) protocol [15], where the TTL used is periodically set to 255 in order

12

to reach all nodes in the network. Both WPR controlled-flooding algorithm

and FSR perform spatial flooding concentrating routing updates on a certain

area [12]. WPR concentrates routing messages on the tree topology whereas

FSR concentrated on nearby nodes in an expanding-ring basis.

Algorithm 1 Controlled-flooding algorithm of WPR.

Require: mc, T (vi), and g.

Ensure: Action taken on mc.

1: if vi ∈ R(vi−1) then

2: if mc is a network-wide flooding message then

3: forward(mc);

4: else if mc is a controlled-flooding message then

5: if is ascendent(v1, vi, g)or is descendent(vi−1, vi, g) then

6: forward(mc);

7: else

8: discard(mc);

9: end if

10: end if

11: end if

Algorithm 1 shows the operation of the controlled-flooding algorithm of

WPR, considering the action taken by node vi upon receiving a routing mes-

sage mc. We denote v1 the source node of the control message mc, vi−1

the neighbor of vi which relayed the message mc received by vi, g the ex-

ternal gateway, and R(vi−1) the set of AMPR nodes of vi−1. Considering

that vi knows whether it is in R(vi−1), it only forwards a routing message

from node vi−1 if vi ∈ R(vi−1) set. Thus, node vi examines the type of

message received. If mc is a network-wide flooding message, node vi simply

forwards it. Otherwise, if mc is a controlled-flooding message, node vi uses

13

(a) Node vi closer to the gateway. (b) Node vi farther from the gateway.

Figure 3: Distance to the gateway effect on the controlled-flooding range of WPR nodes.

two functions to verify whether node vi−1 is in its T (vi) set (Eq. 4). Function

is ascendent(v1, vi, g) verifies if the source node v1 is in A(vi) set, consider-

ing gateway g. On the other hand, function is descendent(vi−1, vi, g) veri-

fies if node vi−1 is an one-hop descendent of node vi. Node vi does not forward

mc if neither v1 is in A(vi) nor vi−1 is in D(vi). Hence, v1 /∈ {A(vi)∪D(vi)}.

The proportional relation between the transmission of controlled-flooding

and flooding messages is adjusted according to the distance of each node to

the gateway, given in number of hops. The closer the node to the gateway,

the larger the number of descendents. Nodes closer to g are in a larger num-

ber of Ti sets, and therefore there is no need for them to flood the network as

frequently as farther nodes. Note, however, that the frequency of topology

control messages does not change. Only the number of controlled-flooding

messages sent per network-wide flooding message changes. Figure 3 illus-

trates the key idea. Observe in Figure 3(a) that node vi is closer to the

14

gateway as compared with its position in Figure 3(b). As a consequence, the

number of descendents also increases and a controlled-flooding message has

almost the same effect as a network-wide flooding message. Based on this

rationale, each node adjusts the relation between controlled-flooding mes-

sages and network-wide flooding messages according to the distance to the

gateway, using the expression r(h) = c(n) − h, where r(h) is the number of

controlled-flooding messages per flooding message, h is the number of hops to

reach the gateway, and c(n) is the maximum number of controlled-flooding

messages per network-wide flooding message. Function c(n) is computed

according to the number of nodes n in the network. The value of n is eas-

ily obtained with the knowledge of the network topology. Function c(n)

is equal to Rmin +
√
n, where Rmin is the minimum number of controlled-

flooding messages per flooding message. As the node becomes farther from

the gateway, the proportional relation r(h) decreases. Hence, the number

of controlled-flooding messages per flooding message also decreases. In this

work, Rmin is equal to 13, which is the same relation used by the Fisheye

extension of OLSR [22] to flood the entire network. Using r(h) > Rmin for

nodes closer to the gateway, the amount of control traffic injected in the

network is lower because network-wide flooding messages are sent less often.

It is worth mentioning that each router computes its own r(h) and sends a

sequence of controlled-flooding messages before each network-wide flooding

message. Each forwarding router differentiates a controlled-flooding message

from a network-wide flooding message by checking a flag in the packet header

set at the originating node.

3.2. The AMPR Set Computation Algorithm

15

Algorithm 2 AMPR set computation algorithm.

Require: T (vi), N1(vi), N2(vi).

Ensure: R(vi).
1: R(vi)← ∅
2: if N2(vi) 6= ∅ then
3: if T (vi) 6= ∅ then
4: /* First step: Compute the AMPR set for nodes in T (vi) */
5: if A(vi) 6= ∅ then
6: R(vi)← A(vi) ∩N1(vi)

7: end if

8: if D(vi) 6= ∅ then
9: N ← D(vi) ∩N1(vi)

10: NN ← D(vi) ∩N2(vi)

11: R(vi)← R(vi) ∪ compute mpr(N , NN)

12: end if

13: /* Second step: Compute the AMPR set for nodes in T (vi) */
14: if T (vi) 6= ∅ then
15: N ← (T (vi) ∩N1(vi))

16: NN ← (T (vi) ∩N2(vi))

17: NN ← NN −
⋃

vj∈R(vi)
N1(vj)

18: R(vi)← R(vi) ∪ compute mpr(N , NN)

19: end if

20: else

21: R(vi)← compute mpr(N1(vi), N2(vi))

22: end if

23: end if

The algorithm to compute the AMPR set first finds the subset of one-

hop neighbors in the tree topology to reach all two-hop neighbors also in the

tree. Afterward, the AMPR set computation algorithms repeats a similar

procedure to find all other one-hop neighbors needed to reach all two-hop

16

ones not in the tree. In our case, however, the algorithm to compute MPR

needs to be run twice, as seen in Algorithm 2.

At the beginning, Algorithm 2 resets the current AMPR set. Afterward,

if there are two-hop neighbors, the algorithm checks if T (vi) set is empty. If

T (vi) is not empty, the algorithm computes the subset of one-hop neighbors

in T (vi) able to reach all two-hop ones also in T (vi). First, the algorithm

inserts into R(vi) the one-hop ascendent of vi. Note that the one-hop ascen-

dent of vi must be in R(vi). Otherwise, a routing message from node vi will

never be forwarded to all ascendent nodes, according to Algorithm 1. Then,

the algorithm finds the AMPR set needed to reach all two-hop descendents.

To accomplish this, the algorithm performs some initialization procedures.

It uses two temporary sets, N and NN , to represent D(vi) ∩ N1(vi) and

D(vi) ∩ N2(vi), respectively. It is worth mentioning that because each node

lists its neighbors in HELLO messages, the node can identify its N2(vi) set

according to Eq. 1. The algorithm finds the subset of one-hop descendents

in N needed to reach all two-hop descendents in NN . If the T (vi) is empty,

the tree topology was not established, which makes the parameters passed

to function compute MPR to be the complete sets N1(vi) and N2(vi).

After the first step of Algorithm 2, all nodes in T (vi) can be reached in

a controlled flooding of WPR. Nevertheless, as mentioned earlier, we also

perform network-wide flooding. Therefore, the algorithm has also to find

the subset of one-hop neighbors not in T (vi) (nodes not in T (vi) are in

T (vi)) needed to reach all two-hop neighbors also in T (vi). In this second

step, the algorithm resets the two temporary sets N and NN and initializes

them to T (vi) ∩ N1(vi) and T (vi) ∩ N2(vi), respectively. After that, the

17

algorithm excludes from NN possible two-hop neighbors already reached by

some node in the AMPR set as computed in the first step. The algorithm

then finally runs again function compute MPR to complementRi with the one-

hop neighbors needed to reach all nodes in T (vi). The second time function

compute MPR is run guarantees that all two-hop nodes are reached during a

network-wide flooding from vi. The final AMPR set is, therefore, the union

of the nodes found in the first and in the second time function compute MPR

is executed.

For comparison, we present the algorithm used by OLSR to compute the

MPR set in Appendix A.

3.3. Discussion

WPR protocol requires the complete knowledge of the network topology

map to identify nodes in the ascendent set. This requirement is achieved

by using a proactive link-state-based protocol. Note that the main feature

of the OLSR protocol is the MPR set, which also relies on the knowledge

of one- and two-hop neighbors. This information is straightforward using

link-state-based protocols. Distance-vector-based protocols do not meet this

requirement and, therefore, need more investigation. Additionally, in WPR

we do not consider user mobility [23]. Thus, if a user is willing to connect to

the Internet, he must use a backbone node playing the role of access point.

This is indeed the case in the upcoming standard for wireless mesh networks,

IEEE 802.11s [24]. WPR neither considers network partitions [25, 26] nor

unauthorized backbone nodes [27]. Because backbone nodes are static, we

assume that network partitions do not occur very often. Security issues, on

the other hand, are left aside since this is not the focus of WPR.

18

WPR nodes need to know the IP address of the wired-network gateway

to compute the ascendent set. This is important for our controlled-flooding

algorithm, but requires prior knowledge of the gateway IP address or route

announcement. In WPR, the IP address of a gateway is obtained using the

latter option. This feature is quite usual. Many protocols have messages to

announce default routes to other networks. In OLSR, for instance, the HNA

(Host and Network Association) messages are used with this goal [6].

Although in this paper we do not consider multiple gateways, it is pos-

sible to extend WPR to cope with this issue. For instance, if there were a

set of gateways, denoted by G, the ascendent set of node vi would be the

union of all ascendent sets to each gateway. Thus, A(vi) =
⋃

g∈G A(vi, g),

where A(vi, g) is the path toward gateway g, as seen in Eq. 2. Likewise,

the descendent set would be the union of all descendent sets with regard to

each gateway. Hence, D(vi) =
⋃

g∈G D(vi, g). This strategy incurs in higher

overhead because more nodes would forward routing messages. In practice,

however, even though there are multiple gateways, most routing protocols

use only one gateway to communicate with the wired network. The simulta-

neous use of multiple gateways to send packets from the same data flow, i.e.

for traffic balancing, is not usual because most routing protocols use single-

path forwarding algorithms [28]. In this case, WPR algorithms also represent

an efficient approach to deal with multiple gateways because each backbone

router selects locally the best gateway according to the Dijkstra algorithm.

If after another run of the Dijkstra algorithm a new gateway is selected, then

a new tree is computed. Therefore, the use of the multiple trees would not

be needed and WPR algorithms can be used without changes.

19

Another important issue in WPR is that there are no guarantees that

a packet from a node will indeed be forwarded by only ascendent nodes,

as discussed in Section 2.1. Nevertheless, the broadcast transmissions in

the wireless environment allow nodes in the vicinity of the forwarding path

to overhear routing messages. Therefore, considering that the differences be-

tween the path taken by the packet and the path computed by the originating

node are not too large, routing messages can still be received by ascendent

and descendent nodes.

4. Analysis of the Proposed Algorithms

In this section, we analyze the AMPR and MPR set computation algo-

rithms in terms of running time and optimality. In addition, the controlled-

flooding algorithms of WPR and OLSR are analyzed in terms of number of

routing messages sent.

Lemma 1 Let |N1(vi)| and |N2(vi)| denote respectively the number of one-

and two-hop neighbors of node vi, and v = |N1(vi)| = |N2(vi)|. In the least

efficient case of MPR employment, i.e. M(vi) = N1(vi), the running time

to an OLSR node to compute its MPR set is O(v2).

Proof In OLSR, each node vi needs to be aware of its one- and two-hop

neighbors to compute the MPR set. Basically, adding a node to the MPR

set requires node vi to find its one-hop neighbor with the highest adjacency

degree, considering only two-hop neighbors. The algorithm running on node

vi then counts the number of adjacencies each one-hop neighbor has. This

operation is O(v), where each step is an adjacency test. Computing the num-

ber of adjacencies of all v one-hop neighbors makes the complete operation

20

takes O(v2) steps. In the least efficient case, all one-hop neighbors are in the

MPR set of node vi. Therefore, the algorithm does not enter into the while

loop seen in Appendix A and terminates in O(v2) steps.

Lemma 2 The running time of the MPR set computation algorithm is O(v3),

if we do not consider the least efficient case, i.e. M(vi) ⊂ N1(vi).

Proof If we do not consider the least efficient case, thusM(vi) ⊂ N1(vi),

the MPR set computation algorithm enters into the while loop as seen in Ap-

pendix A. The number of iterations of the loop is upper bounded by

O(min(|N2(vi)|, |N1(vi)|)), which is equal to O(v) according to our notation.

In addition, finding the node with the maximum adjacency degree, which is

executed inside the while loop, is O(v2). Therefore, the total running time

of the MPR set computation algorithm is O(v3).

Lemma 3 Let |N1(vi)∩T (vi)| and |N2(vi)∩T (vi)| denote, respectively, the

number of one- and two-hop neighbors in T (vi), and vin the number of nodes

from N1(vi) ∩ T (vi) which we assume is equal to the number of nodes from

N2(vi)∩T (vi) used in the first step of Algorithm 2 to compute the AMPR set.

In addition, let |N1(vi)∩T (vi)| and |N2(vi)∩T (vi)| denote, respectively, the

number of one- and two-hop neighbors in T (vi), and vout the number of nodes

from N1(vi) ∩ T (vi) which we assume is equal to the number of nodes from

N2(vi) ∩ T (vi) used in the second step of Algorithm 2. Thus, the running

time needed to a WPR node to compute its AMPR set considering the least

efficient case, i.e. R(vi) ⊂ N1(vi), is O(v2in + v2out).

Proof In WPR, the AMPR set computation is similar to computing the

MPR set twice. Nevertheless, the set of one-hop and two-hop neighbors used

21

in both runs are subsets of the one-hop and two-hop neighbor sets used by

OLSR. In the least efficient case, computing the nodes in the AMPR set

in charge of forwarding controlled-flooding messages requires O(v2in) steps.

Similarly, computing AMPR nodes to reach nodes not in Ti is O(v2out). Note

that in the least efficient case, Algorithm 2 does not enter into the while loop

in function compute mpr. Hence, the complexity to compute the complete

AMPR set is O(v2in + v2out). It is worth mentioning that vin + vout can be less

or equal to v because nodes not in T (vi) can be already reached by nodes in

the AMPR set before the second step of Algorithm 2. Therefore, vout can be

less than or equal to |N1(vi) ∩ T (vi)| = |N2(vi) ∩ T (vi)|. Additionally, the

one- and two-hop ascendents may not be considered in vin because the one-

hop ascendent is required in the AMPR set whenever it exists. Therefore,

vin can be less than or equal to |N1(vi) ∩ T (vi)| = |N2(vi) ∩ T (vi)|.

Computing ascendent and descendent sets do not represent additional

computation. The ascendent set is obtained with routing computation and

the descendent set with HELLO messages.

Lemma 4 The running time of the proposed AMPR set computation algo-

rithm is O(v3in + v3out), if we do not consider the least efficient case, i.e.

R(vi) ⊂ N1(vi).

Proof Similarly to Lemma 2, we have that the higher-order procedures are

the two while loops and their respective bodies. Computing the AMPR set

to reach all nodes in T (vi) is O(v3in) and computing the AMPR set to reach

nodes in T (vi) is v3out. Therefore, the total running time is O(v3in + v3out).

22

Theorem 1 The number of steps needed to compute the AMPR set is less

than or equal to the number of steps needed to compute the MPR set.

Proof As defined in Lemma 1, the number of one- and two-hop neighbors

of vi is the same and equal to v. On the other hand, as defined in Lemma 3,

vin + vout ≤ v. Therefore, the number of steps taken to compute the MPR

set by an OLSR node is greater than or equal to the number of steps a WPR

node requires to compute the AMPR set. In the least efficient case, because

vin + vout ≤ v, then v2in + v2out < v2, for vin, vout > 0. Likewise, in the general

case seen in Lemmas 2 and 4, v3in + v3out < v3, also for vin, vout > 0.

Lemma 5 Let |M(vi)
∗| denote the minimum number of nodes in the MPR

set and v the number of two-hop neighbors of vi. The solution found using the

MPR set computation algorithm is O(ln v) worse than the optimal solution

in terms of number of nodes.

Proof We overview the proof of [20]. Considering the first set picked by the

MPR set computation algorithm in the while loop has at least v/|M(vi)
∗|

nodes, which is the average size, the number of nodes left for the second

iteration is

v1 ≤ v − v

|M(vi)∗|
= v

(
1− 1

|M(vi)∗|

)
. (5)

Similarly,

v2 ≤ v1

(
1− 1

|M(vi)∗ − 1|

)
. (6)

23

Note that the optimal number of nodes in the MPR set is decremented be-

cause the first node was already used in the first iteration of the while loop.

Nevertheless, Eq. 6 can be upper bounded by

v2 ≤ v1

(
1− 1

|M(vi)∗|

)
.

Combining Eqs. 5 and 6 we have that

v2 ≤ v

(
1− 1

|M(vi)∗|

)2

. (7)

Generalizing Eq. 7 for k iterations, we have the following expression:

vk ≤ v

(
1− 1

|M(vi)∗|

)k

.

Therefore, considering that the number of iterations to compute the MPR

set is equal to the number of nodes selected, we have that |M(vi)| = k. The

algorithm terminates when v(1 − 1/|M(vi)
∗|)k < 1 because it cannot insert

another one-hop node intoM(vi) set. Performing some algebraic manipula-

tion, we have that

v
(
1− 1

|M(vi)∗|

)k

< 1

⇒
(
1− 1

|M(vi)∗|

)|M(vi)
∗| k

|M(vi)
∗|

<
1

v

⇒ e
− k

|M(vi)
∗| <

1

v

⇒ k < |M(vi)
∗| ln v.

This proves that the number of nodes inM(vi) isO(ln v) worse than |M(vi)
∗|.

24

Lemma 6 In WPR, the number of nodes found by the AMPR set compu-

tation algorithm, |R(vi)|, is O(ln(vinvout)) worse than the optimal solution

|M(vi)
∗| in terms of number of nodes, if vin, vout > 0.

Proof Let |R(vi)′∗| and |R(vi)′′∗| denote the optimal number of nodes in the

AMPR set in the first and in the second steps of Algorithm 2, respectively.

The proof is similar to Lemma 5. In this case, however, we divide each set

N1(vi) and N2(vi) in two.

Considering first the one- and two-hop sets in T (vi), we have that

vin,k′ ≤ vin

(
1− 1

|R(vi)′∗|

)k′

, (8)

where vin,k′ is the number of remaining two-hop nodes in set T (vi) after k′

iterations. Because |M(vi)
∗| ≥ |R(vi)′∗| (Proof in Appendix B), we can

upper bound Eq. 8 by

vin,k′ ≤ vin

(
1− 1

|M(vi)∗|

)k′

. (9)

Similarly to Lemma 5, k′ ≤ |M(vi)
∗| ln vin. Besides vin,k′ , we can also com-

pute vout,k′′ , where vout,k′′ is the number of remaining two-hop nodes in set

T (vi) after k′′ iterations. Equivalently to Eqs. 8 and 9, we have

vout,k′′ ≤ vout

(
1− 1

|R(vi)′′∗|

)k′′

≤ vout

(
1− 1

|M(vi)∗|

)k′′

. (10)

In this case, k′′ ≤ |M(vi)
∗| ln vout. Therefore, the total number of nodes

in the AMPR set, |R(vi)|, is upper bounded by

R(vi) = k′ + k′′ ≤ |M(vi)
∗| ln(vinvout).

25

As observed, the number of nodes in R(vi) is O(ln(vinvout)) worse than

the optimal value.

Theorem 2 The AMPR set computation algorithm has a higher upper bound

than the MPR set computation algorithm for v < vinvout taking into account

the number of nodes chosen by each one compared with the optimal solution.

Proof Lemma 5 proves that the number of nodes in the MPR set is O(ln v)

worse than the optimal case whereas Lemma 6 proves that the number of

nodes in the AMPR set is O(ln(vinvout)) worse than the optimal case. Al-

though vin + vout ≤ v (Lemma 3), the upper bound found for the AMPR set

computation algorithm is higher. This happens because vinvout can be higher

than v even if vin + vout ≤ v. This difference becomes more relevant as vin

and vout increase. In practice, the higher upper bound obtained is a conse-

quence of using different sets in the first step of the AMPR set computation

algorithm and in the MPR set computation algorithm. The former considers

a subset of the one- and two-hop neighbors whereas the latter considers the

complete sets.

Lemma 7 Let n denote the number of nodes in the network. Therefore, the

number of controlled-flooding messages sent using OLSR is O(n2).

Proof Considering again that the MPR set of a node vi is equal to its

one-hop neighbor set, the number of times a routing message from vi is

transmitted in the network is n. First the message is sent from its originating

node, after it is forwarded by all its one-hop neighbors, and then by all its

two-hop neighbors, and so forth, until the message is forwarded by all network

26

nodes. Each routing message is then forwarded n times. Because all n nodes

periodically flood the network and each message is forwarded n times, the

number of controlled-flooding messages is O(n2) if considering one round of

routing updates per node.

Lemma 8 The number of controlled-flooding messages sent using the WPR

is O(
∑n

i=1(|A(vi)|+ |D(vi)|+ 1)).

Proof The number of times a controlled-flooding message from a node vi is

forwarded is equal to |A(vi)|+ |D(vi)|+1, where the last term 1 corresponds

to the transmission of node vi itself. This is the worst case of WPR because

all nodes within A(vi) and D(vi) sets must forward the message. Considering

that there are n nodes in the network, the average number of ascendents and

descendents in the network is
∑n

i=1 |A(vi)|/n and
∑n

i=1 |D(vi)|/n, respec-

tively. Therefore, the total number of controlled-flooding messages sent in

average per node is
∑n

i=1(|A(vi)|+ |D(vi)|+1)/n. Considering that we have

n nodes in the network, then the number of controlled-flooding messages is

O(
∑n

i=1(|A(vi)|+ |D(vi)|+ 1)).

We do not consider the overhead reduction because of gateway proximity

as we are dealing with upper bounds.

Theorem 3 The WPR protocol introduces less overhead than OLSR.

Proof To prove that WPR introduces less overhead than OLSR, we must

show that

n∑
i=1

(|A(vi)|+ |D(vi)|+ 1) < n2, (11)

27

according to Lemma 7 and 8. Considering that
∑n

i=1 |A(vi)| =
∑n

i=1 |D(vi)|

(Proof in Appendix C.) and after some algebraic manipulation, Eq. 11

becomes
∑n

i=1 |A(vi)| <
n(n−1)

2
. The right-side term of the inequality is

equivalent to an arithmetic progression of n terms with common difference

equal to 1 and initial term equal to zero. This topology is only obtained in

a forwarding chain where the number of ascendents in the network is max-

imum. Therefore, in all possible topologies WPR introduces less overhead

than OLSR except for the forwarding-chain topology.

4.1. Analysis Summary

Table 1 summarizes all results obtained in this section. An interesting

observation is the opposite behavior of the AMPR set computation algorithm

and the controlled-flooding algorithm compared with their counterparts of

OLSR. The AMPR set introduces more redundant messages whereas the con-

trolled flooding reduces the amount of control messages forwarded through-

out the network. Our results show that despite this effect, WPR significantly

reduces the total number of routing messages sent in wireless mesh networks.

Protocols

Parameters OLSR WPR

Running time O(v2) O(v2in + v2out)

Optimality O(|M(vi)
∗| ln v) O(|M(vi)

∗| ln(vinvout))
Number of

O(n2) O(
∑n

i=1(|A(vi)|+ |D(vi)|+ 1))
controlled-flooding messages

Table 1: Comparison summary.

28

5. Simulation Setup

We analyze the performance of WPR with Network Simulator 2 ver-

sion 31 [29]. In this section, we improve the available PHY-layer and the

IEEE 802.11 MAC-layer modules. We also present WPR implementation

issues as well as we describe the scenario and the traffic pattern used in our

simulations.

5.1. Physical and MAC Layers

The original PHY-layer module of ns-2.31 does not consider bit error rate

(BER) and computes the maximum interference and reception ranges accord-

ing to pre-determined values of transmission and reception power. We adapt

to ns-2.31 the PHY-layer module developed by Xiuchao and Ananda [30] and

then the BER is computed as a function of the channel signal-to-noise-ratio

(SNR) and the physical transmission rates defined by IEEE 802.11b. The

packet loss probability associated depends on the BER computed per frame.

Therefore, we simulate an error prone wireless channel. The module is based

on experimental results, thus it considers possible variations on medium con-

ditions. We use the shadowing model to compute transmission ranges and

set parameters according to the experimental results suggested in [31] and

summarized in Table 2.

The IEEE 802.11 standard does not define a rate-control algorithm to

handle the multiple physical rates. We implement the AutoRate Fallback

(ARF) algorithm [32] in the MAC-layer module of ns-2.31. The operation

of the algorithm is based on two counters and a timer. Basically, each node

decreases its PHY-rate to the next value when it performs two consecutive

29

Parameters Values

Transmission power 3.162×10−2W

Operation frequency 2.472GHz

Carrier sense threshold 3.162×10−14W

Reception threshold 3.162×10−13W

Shadowing path-loss exponent 4.000

Table 2: PHY-layer parameters.

retransmissions. On the other hand, each node increases its PHY-rate to the

next value when ten consecutive frames are delivered or when a 60ms timer

expires. Whenever a frame is lost, both timer and successful transmission

counter are reset. The ARF algorithm and the PHY-layer module are com-

plementary. It is worth mentioning that without a rate-control algorithm,

the BER of a channel is only a function of the signal-to-noise-ratio because

the transmission rate is constant.

5.2. Routing Layer

We add the ETX metric to the OLSR module [33] according to one of

its daemon implementation [22]. In such implementation, HELLO messages

are used as probes to estimate the quality of each adjacent link. The HELLO

message header includes two fields: Link Quality (LQ) and Neighbor Link

Quality (NLQ). LQ indicates the fraction of HELLOmessages received by node

vi from each neighbor in the last 20s time window, whereas NLQ indicates the

fraction of HELLO messages sent by node vi that each neighbor received. The

first value is obtained by counting the number of received HELLO messages

in the last 20s interval, and the second is obtained from the LQ field of the

received HELLO messages. Each node computes ETX = 1/(LQ ×NLQ) for

each adjacent link.

30

In our simulations, both OLSR and WPR protocols use the ETX metric.

WPR uses the proposed controlled-flooding algorithm and the algorithm to

compute the AMPR set. In our simulations, both WPR and OLSR peri-

odically send route updates at intervals of 5 s, as suggested in RFC 3626 of

OLSR [34]. The minimum relation used by WPR between controlled-flooding

and network-wide flooding messages (Rmin) is 13. This relation is also used

by the Fisheye extension of OLSR and, in WPR, is adjusted according to the

number of hops needed to reach the gateway (Section 3).

5.3. Traffic Pattern and Simulation Scenario

We use two different traffic patterns in our simulations: web and com-

bined traffic. The web traffic models requests for Internet web pages, which

generate multiple responses containing one object each. The size of the re-

quest is constant and equal to 1 kbyte. In addition, the interval of time

between different pages and between the transmission of consecutive objects

is represented by a random variable exponentially distributed with average

equal to 10 s. The size of each object is modeled according to a random

variable with Paretto II distribution with shape 1.2 and average of 12kbytes.

The web traffic uses TCP and is bidirectional, where the request for a web

page is always initiated by a backbone node to a wired node. We assume

that the bandwidth bottleneck is the wireless part. Therefore, we do not

simulate the influence of the wired network. The combined traffic is a mix of

internal and web traffic. The internal traffic models communications between

nodes within the wireless mesh. The traffic is modeled using constant bit rate

(CBR) sources over UDP transmitting data at 56kb/s. The duration of each

flow is computed according to a random variable exponentially distributed

31

with average of 48s. CBR as well as web traffic sources are randomly chosen

among all backbone routers but the gateway. Although the backbone routers

are not the traffic sources, they are in charge of injecting traffic from users

into the network. Therefore, for our simulation purposes the effect is the

same. The duration of each simulation run is 90s. These parameters model

the typical traffic in wireless mesh networks [35].

Nodes are positioned in a grid with the gateway at one vertex. Hence, we

do not consider any algorithm to improve gateway positioning [36]. The size

of the network ranges from 9 to 49 nodes separated by 20 m between each

other. Thus, each node has at most 20 neighbors at 1Mb/s and 8 at 11Mb/s

according to our PHY-layer parameters (Table 2). We use only one gateway

and all backbone nodes are equivalent. Therefore, we neither have different

configurations nor different hardware in the network.

6. Simulation Results

The performance of WPR is compared with OLSR using five metrics:

routing control traffic overhead, network aggregated throughput, delivery

rate at the application level, average number of multipoint relays, and average

hop distance to the gateway. We compute the control traffic overhead as

the aggregated traffic generated by routing messages in the network. The

aggregated throughput is the sum of all individual throughputs obtained

from data communications in the network. The delivery rate is computed as

the total amount of data received by destination nodes over the total amount

of data sent by source nodes. Whenever a node runs its multipoint relay set

computation algorithm (i.e. the MPR set computation algorithm for an

32

OLSR node and the AMPR set computation algorithm for a WPR node), we

log the size of the set found. Then, we compute offline the average size over

the multiple algorithm executions. Finally, we also log the distance in hops

from every backbone router to the gateway, whenever it runs the Dijkstra

algorithm. The average hop distance is then the sum of all distances found

divided by the number of times the Dijkstra algorithm is run. All results are

obtained using a confidence level of 95% represented by vertical bars in our

plots.

6.1. Web Traffic

We consider web traffic to perform a favorable analysis. Considering all

traffic sent toward the gateway, we benefit our controlled-flooding algorithm

because we only use those links connecting backbone nodes to the gateway

and vice-versa. In these simulations, we aim at analyzing the performance

of WPR as the number of nodes increases.

In a first set of simulations, we consider that 75% of the backbone nodes

produce traffic with the number of sessions equal to 20. We avoid network

saturation by limiting the number of sources in the network. Each session

is a sequence of web-page requests and responses of the respective objects.

Figure 4(a) plots the control traffic overhead introduced by OLSR and WPR.

Observe that WPR reduces the routing overhead up to 36%. Therefore, the

behavior of both curves agrees with Theorem 3, which corroborates the al-

gorithm analysis derived in Section 4. Moreover, we show that the benefits

of the controlled-flooding algorithm overcome the additional redundant mes-

sages the AMPR set may introduce compared with the MPR set. The total

overhead reduction is more significant as the number of nodes grows because

33

the ratio between the nodes within the ascendent and descendent sets of a

given node and the total number of nodes in the network decreases. Thus,

the routing overhead of WPR shows a slower increase when compared with

OLSR. This shows that WPR scales better than OLSR. Figure 4(b) plots the

aggregated throughput obtained by WPR and OLSR. Note that reducing the

routing overhead has a direct impact on the network aggregated throughput.

As mentioned earlier, especially in wireless mesh networks, reducing overhead

results in throughput gains because it likely reduces traffic on network bottle-

necks. The aggregated throughput of WPR almost doubles the throughput

obtained with OLSR. On the other hand, a better throughput does not im-

ply in better delivery rate. For instance, one could obtain a better delivery

rate by simply reducing the amount of data traffic injected in the network.

Figure 4(c) shows that this is not the case. Reducing the amount of control

overhead, we improve throughput and also the delivery rate by selecting bet-

ter end-to-end quality paths. Figure 4(c) shows that delivery rate of WPR

is up to 20% better than OLSR.

Figure 4(d) shows the number of nodes within MPR and AMPR sets.

Note that the MPR set has, in average, fewer nodes than the AMPR set. This

result is expected from our mathematical analysis as proved by Theorem 2

that shows that the AMPR set computation algorithm is less efficient than

its counterpart in OLSR because it has a higher upper bound in the number

of nodes. Although WPR has a larger number of multipoint relay nodes,

the amount of overhead reduced because of the controlled-flooding algorithm

overweighs this additional overhead and makes the overall performance of

WPR better than OLSR. Figure 4(e) shows that OLSR uses longer paths

34

than WPR because the higher overhead leads to network bottlenecks. Hence,

OLSR tries to circumvent such bottlenecks using longer paths.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 15 20 25 30 35 40 45 50

C
on

tr
ol

 tr
af

fi
c

ov
er

he
ad

 (
M

b/
s)

Number of nodes

WPR

OLSR

(a) Overhead.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
b/

s)

Number of nodes

WPR

OLSR

(b) Throughput.

 30

 40

 50

 60

 70

 80

 90

 100

 10 15 20 25 30 35 40 45 50

D
el

iv
er

y
ra

te
 (

%
)

Number of nodes

WPR

OLSR

(c) Delivery rate.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 n
um

be
r

of
 r

el
ay

s
pe

r
no

de

Number of nodes

WPR

OLSR

(d) Number of multipoint relays.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 n
um

be
r

ho
ps

Number of nodes

WPR

OLSR

(e) Hop distance to the gateway.

Figure 4: Performance results obtained for traffic composed of web-page requests and

responses.

35

We have also run a variant of WPR which does not use the proposed c(n)

function. The goal is to check the impact of this function on the amount of

control overhead. Figure 5 plots the average number of TC messages sent

per second by all network nodes. In our scenario, we have noted only a slight

difference between using or not the c(n) function. We give a zoom in the plot

to show that c(n) function indeed introduces less overhead, especially when

there are more nodes in the network. Therefore, the impact would become

more relevant in denser scenarios as well as scenarios with longer paths to

the gateway. Because it does not yield additional findings, we do not include

this test in the other scenarios. Nevertheless, a deeper investigation using

different c(n) function would be interesting.

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 T

C
 m

es
sa

ge
s/

s

Number of nodes

WPR

WPR without c(n)

 48
 50
 52
 54
 56

 45 47 49

Figure 5: Impact of c(n) function.

We have also changed the node density by increasing the distance between

consecutive nodes from 20 m to 30 m. In this different scenario, we note

that the throughput falls in both cases, i.e. in OLSR and in WPR. This

is expected because the more distant the nodes, the higher the number of

hops to reach the gateway. It is worth mentioning that the throughput of

WPR is still better than the throughput of OLSR. The difference between

36

them, however, decreases because the controlled-flooding algorithm is more

efficient in denser scenarios, as well as the MPR and AMPR set computation

algorithms. We do not add those plots because they are very similar to the

previous ones.

Figure 6 shows the results obtained increasing the web traffic injected

in the network. We multiply by two the amount of traffic sent per node

toward the gateway. The goal is to verify the performance of WPR with

higher traffic load. We can observe in Figure 6(a) that the traffic control

overhead remains the same compared with Figure 4(a). Because routing

messages are periodically sent, the only way the overhead could increase

would be by sending more triggered updates as a consequence of link break-

ages. Nevertheless, since we do not verify an overhead increase in our results,

we infer that link breakages do not occur very often. This is because using

a rate-control algorithm, IEEE 802.11 reduces its PHY-rate to avoid link

breakages. Figure 6(b) shows that the network aggregated throughput grows

compared with the same throughput obtained in Figure 4(b) for the same

number of nodes. This demonstrates that the network can transmit more

traffic and that WPR achieves better performance than OLSR. The aggre-

gated throughput of WPR is up to 50% better than the throughput obtained

with OLSR. The delivery rate shown in Figure 6(c) is similar to the previous

scenario. This occurs because the amount of traffic added was not enough to

impact the packet delivery rate. Figure 6(d) shows a result similar to that

of Figure 4(d). Again, the average size of the AMPR set is higher than the

size of the MPR set. Figure 6(e), similarly to Figure 4(e), shows also that

OLSR uses longer paths, showing a slight increase in both cases because of

37

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 15 20 25 30 35 40 45 50

C
on

tr
ol

 tr
af

fi
c

ov
er

he
ad

 (
M

b/
s)

Number of nodes

WPR

OLSR

(a) Overhead.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
b/

s)

Number of nodes

WPR

OLSR

(b) Throughput.

 30

 40

 50

 60

 70

 80

 90

 100

 10 15 20 25 30 35 40 45 50

D
el

iv
er

y
ra

te
 (

%
)

Number of nodes

WPR

OLSR

(c) Delivery rate.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 n
um

be
r

of
 r

el
ay

s
pe

r
no

de

Number of nodes

WPR

OLSR

(d) Number of multipoint relays.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Number of nodes

WPR

OLSR

(e) Hop distance to the gateway.

Figure 6: Performance results obtained for high-load traffic composed of web-page requests

and responses.

the higher network load.

38

6.2. Combined Traffic

In the second simulation set, we combine web and internal traffic, i.e.

traffic to and from nodes inside the mesh, to evaluate WPR performance in

a non-favorable scenario. As we concentrate route updates on links toward

the gateway, the topology maps known by the different nodes may become

different from times to times. This may affect communications between nodes

not within the ascendent or descendent set of each other. In this experiment,

25% of the backbone nodes produce web traffic using 20 sessions and other

25% of the backbone nodes are Constant Bit Rate (CBR) sources.

Figure 7(a) plots the control traffic overhead introduced by OLSR and

WPR. We observe that WPR reduces the routing overhead by up to 60%.

Note that the overhead of WPR remains the same, compared with Fig-

ures 4(a) and 6(a), whereas the overhead of OLSR grows. This indicates

that OLSR is more susceptible to the increase on the network load, because

the triggered routing messages result in larger number of forwarded control

traffic. Figure 7(b) shows the aggregated throughput obtained by WPR and

OLSR. Again, the aggregated throughput of WPR is better than OLSR. The

difference can be as high as 27%. We observe, however, a different behavior

in the aggregated throughput as compared with our web traffic experiments.

In the previous experiment there is a congestion control algorithm in action

as packets are lost. In this experiment, on the other hand, we use CBR over

UDP traffic combined to the web traffic over TCP. In this case, the UDP does

not react to congestion and the throughput increases from 9 to 16 nodes as

the offered CBR load grows, until the network saturates. We plot the control

overhead divided by the number of nodes to check the amount of overhead

39

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 15 20 25 30 35 40 45 50

C
on

tr
ol

 tr
af

fi
c

ov
er

he
ad

 (
M

b/
s)

Number of nodes

WPR

OLSR

(a) Overhead.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
b/

s)

Number of nodes

WPR

OLSR

(b) Throughput.

 0

 1

 2

 3

 4

 5

 10 15 20 25 30 35 40 45 50

C
on

tr
ol

 tr
af

fi
c

ov
er

he
ad

/n
od

e
(k

b/
s/

no
de

)

Number of nodes

WPR

OLSR

(c) Overhead.

 30

 40

 50

 60

 70

 80

 90

 100

 10 15 20 25 30 35 40 45 50

D
el

iv
er

y
ra

te
 (

%
)

Number of nodes

WPR

OLSR

(d) Delivery rate.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 n
um

be
r

of
 r

el
ay

s
pe

r
no

de

Number of nodes

WPR

OLSR

(e) Number of multipoint relays.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Number of nodes

WPR

OLSR

(f) Hop distance to the gateway.

Figure 7: Performance results obtained for combined web and internal traffic.

introduced per node. Figure 7(c) shows that WPR indeed scales better than

OLSR in our scenario since the amount of control traffic introduced per node

using WPR increases in a log-scale basis whereas it increases exponentially

40

using OLSR.

Presenting a better throughput, however, does not imply in better de-

livery rate. This also depends on the end-to-end quality of the chosen path

as discussed in our results for web traffic. The controlled-flooding algorithm

deployed by WPR concentrates route updates on some nodes. Figure 7(d)

shows that despite our assumption on traffic convergence toward gateways,

WPR shows a delivery rate at the application layer up to 22% better than

OLSR even in presence of internal traffic. Nevertheless, the tradeoff of using

CBR traffic is observed on this evaluation metric. Note that because the

offered load continues to grow, the delivery rate decreases faster than in the

web traffic experiment. Figure 7(e) shows that the average size of the MPR

set increases compared with the same result for web traffic. This result also

confirms that OLSR is more affected by the increase on the network load

because the protocol selects more MPR nodes to guarantee routing messages

reception by all two-hop neighbors. Following the same tendency, the average

hop distance to the gateway also increases as shown in Figure 7(f).

7. Conclusion

This work proposed WPR, a link-state routing protocol for wireless mesh

networks. WPR is characterized by the controlled-flooding and by the AMPR

(Adapted MultiPoint Relay) set computation algorithms. The former reduces

the flooding procedure overhead whereas the latter avoids redundant routing

messages. Both algorithms are tailored to the typical traffic pattern of wire-

less access networks. Our analysis shows that the AMPR set computation

algorithm has a lower running time than the computation of the MPR (Multi-

41

Point Relay) set used by the Optimized Link-State Routing (OLSR) protocol.

Nevertheless, the AMPR set computation algorithm provides a higher upper

bound on the number of relay nodes than the algorithm to compute the

MPR set. Concerning the performance of the controlled-flooding algorithm,

we demonstrate that WPR introduces less controlled-flooding messages than

OLSR. The performance of WPR is also investigated via simulation analy-

sis. Our results corroborate our complexity analysis, and confirm the better

performance of WPR compared with OLSR in terms of amount of overhead,

aggregated throughput, and delivery rate. These results are obtained for fa-

vorable scenarios in which all traffic flows toward the gateway, and also for

non-favorable scenarios in which there is a combination of traffic toward the

gateway and internal traffic. Therefore, even reducing the amount of routing

information used to maintain routers’ forwarding tables updated, WPR out-

performs OLSR because its algorithms yield a more appropriate use of the

wireless resources considering particular characteristics of the wireless mesh

networks. Even though we do not consider mobility and network partitions,

using more efficient routing algorithms is important because the network is

prone to frequent changes. Currently, we are implementing WPR in olsrd

to evaluate the performance of WPR in a prototype.

Appendix A. MPR Set Computation Algorithm

Algorithm 3 shows the greedy heuristic used by OLSR to compute the

MPR set [6]. This algorithm is executed by a node vi in the network. Lines 1

and 2 show variables initialization. In Line 3, the algorithm inserts into the

MPR set,M(vi), all one-hop neighbors, N1(vi), that are the only relay node

42

Algorithm 3 MPR set computation algorithm.

Require: N1(vi) and N2(vi)

Ensure: M(vi)

1: M(vi)← ∅
2: NN ← N2(vi)

3: M(vi)← {vk ∈ NN | |N1(vi) ∩N1(vk)| = 1}
4: NN ← NN −

⋃
vj∈M(vi)

N1(vj)

5: while NN 6= ∅ do
6: compute vj ∈ N1(vi) that maximizes |N1(vj) ∩NN|
7: M(vi)←M(vi) ∪ {vj} * Add vj toM(vi) *\
8: NN ← NN −N1(vj)

9: end while

to a two-hop neighbor in the two-hop neighbor set denoted by NN . The al-

gorithm then removes from NN the two-hop descendents already covered by

these firstM(vi) nodes. The while loop executes until all two-hop neighbors

are covered by at least one node inM(vi). At each iteration, the algorithm

inserts into M(vi) the one-hop neighbor that covers the maximum number

of remaining two-hop neighbors in NN .

Appendix B. Proof of Claim in Lemma 6

In Lemma 6, we claim that the optimal number of nodes in the MPR set

is less than or equal to the optimal number of nodes in any of the two subsets

found by the AMPR set computation algorithm. Hence,

|M(vi)
∗| ≥ |R(vi)′∗|and|M(vi)

∗| ≥ |R(vi)′′∗|.

Proof This proof is by contradiction. Considering that

43

|M(vi)
∗| < |R(vi)′∗|,

M(vi)
∗ would not be able to cover all two-hop neighbors of vi. Since R(vi)∗

is optimal and it is able to cover a subset of two-hop neighbors of vi, the

complete set of two-hop neighbors would require a greater number of nodes

in M(vi)
∗ set. In this case, M(vi)

∗ would not be optimal which is not in

accordance with our initial claim. The proof for |M(vi)
∗| ≥ |R(vi)′′∗| is

equivalent.

Appendix C. Proof of Claim in Theorem 3

In Theorem 3, we claim that the total number of ascendent and descen-

dent nodes in a wireless mesh network is the same. Hence,

n∑
i=1

|A(vi)| =
n∑

i=1

|D(vi)|.

Proof This proof is by induction. The proof of the base case is straight-

forward. If n = 1, the number of |A(vi)| = |D(vi)| = 0. In the step case,

however, if we add a node to a tree, this node will be a leaf. Hence, the

number of ascendents in a (n + 1)-node network becomes
∑n

i=1 |A(vi)| + l,

where l is the length of the branch of the tree the node was connected. This

represents the number of nodes in the ascendent set of the joining node. The

number of descendents, on the other hand, becomes
∑n

i=1 |D(vi)| +
∑l

j=1 1

because every node in the branch of the joining node adds one more de-

scendent in their descendent sets. Therefore, the number of ascendents and

descendents in the network remains the same.

44

Acknowledgment

The authors would like to thank CNPq, Faperj, CAPES, FINEP, and

FUNTTEL for the work support. The authors would also like to thank Igor

M. Moraes and Marcelo D. D. Moreira for their valuable comments.

References

[1] Akyildiz, I.F., Wang, X., Wang, W.. Wireless mesh networks: A

survey. Computer Networks 2005;47(4):445–487.

[2] Robinson, J., Knightly, E.W.. A performance study of deployment

factors in wireless mesh networks. In: IEEE Conference on Computer

Communications (INFOCOM). 2007, p. 2054–2062.

[3] Robinson, J., Uysal, M., Swaminathan, R., Knightly, E.W.. Adding

capacity points to a wireless mesh network using local search. In: IEEE

Conference on Computer Communications (INFOCOM). 2008, p. 1247–

1255.

[4] Waharte, S., Ishibashi, B., Boutaba, R., Meddour, D.E.. Design

and performance evaluation of iar: Interference-aware routing metric for

wireless mesh networks. Mobile Networks and Applications (MONET)

2009;14(5):649–660.

[5] Gawedzki, I., Agha, K.A.. Resilience to dropping nodes in mobile ad

hoc networks with link-state routing. In: IFIP Networking. 2008, p.

99–111.

45

[6] Clausen, T., Jacquet, P., Laouiti, A., Muhlethaler, P., Qayyum,

A., Viennot, L.. Optimized link state routing protocol. In: IEEE

International Multi Topic Conference (INMIC). 2001, p. 62–68.

[7] Perkins, C., Bhagwat, P.. Highly dynamic destination-sequenced

distance-vector routing (DSDV) for mobile computers. In: ACM SIG-

COMM. 1994, p. 234–244.

[8] Perkins, C.E., Royer, E.B.. Ad-hoc on-demand distance vector routing.

In: IEEE Workshop on Mobile Computing Systems and Applications.

1999, p. 90–100.

[9] David B. Johnson, D.A.M., Broch, J.. Ad Hoc Networking; chap. 5.

DSR: The Dynamic Source Routing Protocol for Multi-Hop Wireless Ad

Hoc Networks; Addison-Wesley; 2001, p. 139–172.

[10] Ni, S.Y., Tseng, Y.C., Chen, Y.S., Sheu, J.P.. The broadcast storm

problem in a mobile ad hoc network. In: ACM International Conference

on Mobile Computing and Networking (MobiCom). 1999, p. 152–162.

[11] Costa, L.H.M.K., de Amorim, M.D., Fdida, S.. Reducing latency

and overhead of route repair with controlled flooding. ACM/Kluwer

Wireless Networks 2004;10(4):347–358.

[12] Campista, M.E.M., Passos, D.G., Esposito, P.M., Moraes, I.M.,

de Albuquerque, C.V.N., Saade, D.C.M., et al. Routing metrics and

protocols for wireless mesh networks. IEEE Network 2008;22(1):6–12.

[13] Draves, R., Padhye, J., Zill, B.. Routing in multi-radio, multi-hop

46

wireless mesh networks. In: ACM International Conference on Mobile

Computing and Networking (MobiCom). 2004, p. 114–128.

[14] Bicket, J., Aguayo, D., Biswas, S., Morris, R.. Architecture and eval-

uation of an unplanned 802.11b mesh network. In: ACM International

Conference on Mobile Computing and Networking (MobiCom). 2005, p.

31–42.

[15] Pei, G., Gerla, M., Chen, T.W.. Fisheye state routing in mobile ad

hoc networks. In: ICDCS Workshop on Wireless Networks and Mobile

Computing. 2000, p. D71–D78.

[16] Chen, J., Lee, Y.Z., Maniezzo, D., Gerla, M.. Performance com-

parison of AODV and OFLSR in wireless mesh networks. In: IFIP

Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net). 2006, p.

1–8.

[17] Campista, M.E.M., Costa, L.H.M.K., Duarte, O.C.M.B.. WPR: A

proactive routing protocol tailored to wireless mesh networks. In: IEEE

Globecom 2008 Ad Hoc, Sensor and Mesh Networking Symposium (GC

AHSN). 2008, p. 1–5.

[18] Wellons, J., Dai, L., Xue, Y., Cui, Y.. Augmenting predictive with

oblivious routing for wireless mesh networks under traffic uncertainty.

Computer Networks 2010;54(2):178–195.

[19] Raniwala, A., Chiueh, T.C.. Architecture and algorithms for an IEEE

802.11-based multi-channel wireless mesh network. In: IEEE Conference

on Computer Communications (INFOCOM). 2005, p. 2223–2234.

47

[20] Viennot, L.. Complexity results on election of multipoint relays in

wireless networks. Tech. Rep.; INRIA Rocquencourt; 1998.

[21] Passos, D.G., de Albuquerque, C.V.N., Campista, M.E.M., Costa,

L.H.M.K., Duarte, O.C.M.B.. Minimum loss multiplicative routing

metrics for wireless mesh networks. Journal of Internet Services and

Applications 2011;1(3):201–214.

[22] olsrd. Accessed in http://www.olsr.org; 2007.

[23] Nguyen-Vuong, Q.T., Agoulmine, N., Ghamri-Doudane, Y.. A user-

centric and context-aware solution to interface management and access

network selection in heterogeneous wireless environments. Computer

Networks 2008;52(18):3358–3372.

[24] Camp, J.D., Knightly, E.W.. The IEEE 802.11s extended ser-

vice set mesh networking standard. IEEE Communications Magazine

2008;46(8):120–126.

[25] Fernandes, N.C., Moreira, M.D.D., Duarte, O.C.M.B.. An efficient

filter-based addressing protocol for autoconfiguration of mobile ad hoc

networks. In: IEEE Conference on Computer Communications (INFO-

COM). 2009, p. 2464–2472.

[26] Laufer, R., Dubois-Ferrière, H., Kleinrock, L.. Multirate anypath

routing in wireless mesh networks. In: IEEE Conference on Computer

Communications (INFOCOM). 2009, p. 37–45.

[27] Velloso, P.B., Laufer, R.P., Duarte, O.C.M.B., Pujolle, G.. Analyzing

a human-based trust model for mobile ad hoc networks. In: IEEE

48

Symposium on Computers and Communications (ISCC). 2008, p. 240–

245.

[28] He, J., Rexford, J.. Towards Internet-wide multipath routing. IEEE

Network 2008;22(2):16–21.

[29] Fall, K., Varadhan, K.. The ns Manual. UC Berkeley, LBL, USC/ISI,

and Xerox PARC; 2009.

[30] Xiuchao, W., Ananda, A.L.. Link characteristics estimation for IEEE

802.11 DCF based WLAN. In: IEEE Conference on Local Computer

Networks (LCN). 2004, p. 302–309.

[31] Xiuchao, W.. Simulate 802.11b channel within NS2. Tech. Rep.; Na-

tional University of Singapore; 2004.

[32] Holland, G., Vaidya, N.H., Bahl, P.. A rate-adaptive MAC protocol

for multi-hop wireless networks. In: ACM International Conference on

Mobile Computing and Networking (MobiCom). 2001, p. 236–251.

[33] Ros, F.J.. Accessed in http://masimum.dif.um.es/um-olsr/html/; 2005.

[34] Clausen, T., Jacquet, P.. Optimized link state routing protocol

(OLSR). IETF Network Working Group RFC 3626; 2003.

[35] Baumann, R., Heimlicher, S., Lenders, V., May, M.. HEAT: Scalable

routing in wireless mesh networks using temperature fields. In: IEEE

WoWMoM. 2007, p. 1–9.

[36] Papadaki, K., Friderikos, V.. Gateway selection and routing in wireless

mesh networks. Computer Networks 2010;54(2):319–329.

49

