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Abstract—Modeling and understanding BitTorrent
(BT) dynamics is a recurrent research topic mainly
due to its high complexity and tremendous practical
efficiency. Over the years, different models have un-
covered various phenomena exhibited by the system,
many of which have direct impact on its perfor-
mance. In this paper we identify and characterize a
phenomenon that has not been previously observed:
homogeneous peers (with respect to their upload
capacities) experience heterogeneous download rates.
The consequences of this phenomenon have direct
impact on peer and system performance, such as
high variability of download times, unfairness with
respect to peer arrival order, bursty departures
and content synchronization. Detailed packet-level
simulations and prototype-based experiments on the
Internet were performed to characterize this phe-
nomenon. We also develop a mathematical model
that accurately predicts the heterogeneous download
rates of the homogeneous peers as a function of their
content. Although this phenomenon is more prevalent
in unpopular swarms (very few peers), these by far
represent the most common type of swarm in BT.

I. I NTRODUCTION

Peer-to-peer (P2P) applications have widely
been used for content recovery in Internet. Among
them, BitTorrent (BT) [1] is one of the most
popular, used by millions daily to retrieve millions
of files (movies, TV series, music, etc), accounting
for large fractions of today’s Internet traffic [2].
The mainstream success of BT is closely related
to its performance (e.g., fast download times) and
together with its high complexity, has triggered the
interest of researchers.

Understanding and characterizing the perfor-
mance of BT through mathematical models has
been an active topic of research [3]. Several studies
have uncovered peculiar aspects BT’s dynamic,
many of which have direct impact on system
performance. Moreover, models that capture user
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and system performance under homogeneous and
heterogeneous peer population (with respect to
their upload capacities) have been proposed for
various scenarios [4]–[7]. However, most proposed
models target large-scale systems, either with a
large and fixed initial peer population or relatively
high arrival rates.

We consider a BT swarm where all peers have
identical upload capacities but unconstrained (or
large) download capacities. In this context, we
identify and characterize a phenomenon that has
not been previously observed: homogeneous peers
experience heterogeneous download rates. This is
surprising because peers are identical and should
thus exhibit similar average performance and be-
cause it has not been captured by any prior model
(to the best of our knowledge). Moreover, this ob-
servation has several important implications, such
as high variability of download times, unfairness
with respect to peer arrival order, bursty departures
and content synchronization among the peers. Two
peers are said to be content synchronized after their
content become identical at a given instant. This
last consequence is particularly critical since it is
closely related to the missing piece syndrome [8].

We characterize the fact that homogeneous peers
experience heterogeneous download rates and its
various consequences by using detailed packet-
level simulations and prototype-based experiments
on the Internet. To underpin critical parameters for
this behavior, we consider various scenarios. We
also develop a mathematical model that explains
the phenomenon and predicts the heterogeneous
download rates of the homogeneous peers as a
function of their content. The comparison of model
predictions with simulation results indicate the
model is quite accurate. More importantly, the
model sheds light on the key insight for this
behavior: upload capacity allocation of peers in BT
depends fundamentally on piece interest relation-
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ship, which for unpopular swarms can be rather
asymmetric.

Finally, the phenomenon we identify is more
prevalent in swarms that have a very small peer
population and usually a single seed (peer with
entire content) with limited bandwidth. However,
this is by far the most prevalent kind of swarm in
BT [9]. Measurement studied indicates that more
than35% of the swarms have less than5 peers at
any point in time. Thus, we focus our attention on
unpopular swarms.

The rest of this paper is organized as follows.
In §II we present a brief overview of BT and moti-
vate the phenomenon we have identified. In§III we
characterize the phenomenon and its consequences
using simulations and experiments with a real BT
application.§IV presents our mathematical model
and its validation. In§V we apply the model
to make predictions about bursty departures. We
extend our discussion and present some related
work in §VI and §VII, respectively. Finally, we
conclude the paper in§VIII.

II. BT OVERVIEW AND THE OBSERVED

BEHAVIOR

In this section we briefly describe the BT proto-
col and identify an unexpected behavior common
in unpopular swarms.

A. Brief BT overview

BT is a swarm based file sharing P2P applica-
tion. Swarm is a set of users (peers) interested in
downloading and/or sharing the same content (a
single or a bundle of files). The content is chopped
into pieces (chunks) which are exchanged among
peers connected to the swarm. The entities in a
swarm may be of three different types: (i) the
Seeds which are peers that have a complete copy
of the content and are still connected to the system
altruistically uploading data to other peers; (ii) the
Leechers which are peers that have not yet fully
recovered the content and are actively downloading
and simultaneously uploading the chunks; and, (iii)
the Tracker which is a kind of swarm coordinator,
it keeps track of the leechers and seeds connected
to the swarm.

Periodically, the Tracker distributes lists with a
random subset of peers connected to the swarm
to promote the interaction among participating
peers. In a first interaction, two peers exchange
their bitmaps (a list of all file chunks they have
downloaded). Any latter update in their bitmaps
must be reported by the leecher.

In order to receive new chunks, the leecher
must send “Interested” messages to all peers that
announced to have the wanted pieces in their
respective bitmaps. Because of the “rarest first”
approach specified in BT protocol, leechers prior-
itize to download first the chunks that are scarcer
in the swarm. Once a sub-piece of any chunk is
received, the “strict priority” policy defines that
the remaining sub-pieces from that particular chunk
must be requested before starting the download of
any other chunk.

Whenever an “Interested” messages is received,
peers have to decide whether to “unchoke” that
leecher and serve the piece or to “choke” the peer
and ignore the request. Leechers preferentially up-
load content to other leechers that reciprocate like-
wise, it is based on a “tit-for-tat” incentive strategy
defined by BT’s protocol. However, a minor frac-
tion of its bandwidth must be dedicated to altruis-
tically serve leechers that have never reciprocated.
This policy, referred to as “optimistic unchoke”,
is useful for leechers to boost new reciprocity
relationships. As the seeds do not reciprocate, they
adopt the “optimistic unchoke” approach all the
time. Those BT policies were designed with the
main purpose of giving all leechers a “fair share” of
bandwidth. It means that peers uploading in higher
rates will receive in higher download rate, and in a
population of leechers uploading at the same rate,
they all must reach equal download rates.

B. The observed behavior

Having presented BT’s mechanisms, we now
illustrate the heterogeneous download rate phe-
nomenon and its consequences with two simple
examples. Consider a swarm formed by a seed and
5 leechers. All peers, including the single seed,
have identical upload capacity (64 kBps), but large
(unconstrained) download capacity. The leechers
download a file containing 1000 pieces (256MB)
and exit the swarm immediately after download
completion. The seed never leaves the swarm.
This system was evaluated using a detailed packet-
level simulator of BT and also an instrumented
implementation of BT running on PlanetLab [10].

Figures 1a and 1b show the evolution of the
swarm size as a function of time for both simu-
lation and experimental results and two different
leecher arrival patterns. In Figure 1a, peers leave
the swarm in the order they arrived (i.e., FIFO)
and have a relatively similar download time. Thus,
the download time is relatively indifferent to arrival
order (with the exception of the first peer).
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Fig. 1. Evolution of the number of leechers in the swarm.

Figure 1b shows the same metric just for dif-
ferent arrival times (in fact, the inter-arrival times
of peers are also mostly preserved). Surprisingly,
a unexpected behavior can be observed in the
system dynamic: despite the significant difference
on arrival times, all five leechers completed their
respective download nearly at the same time. The
time inter departures is small comparing to the
download time, which characterizes bursty depar-
tures. It means that peers that arrive later to the
swarm have a smaller download time. In fact, the
fifth peer completed the download in about half
the time of the first leecher. Thus, the system
is quite unfair with respect to the arrival order
of leechers, with late arrivals being significantly
favored. What is happening? Why does BT exhibit
such dynamics? We answer these questions in the
next sections.

III. H ETEROGENEITY IN HOMOGENEOUSBT
SWARMS

In order to understand the unexpected behav-
ior exhibited by BT in Figure 1b, we will ana-
lyze the total number of pieces each leecher has
downloaded over time. Consider Figures 2a and
2b where each curve indicates the total number
of pieces downloaded by a given peer for the
corresponding scenario in Figures 1a and 1b, re-
spectively. One can note that the slope of each
curve corresponds to respective leecher’s download
rate.

We start by considering Figure 2a. Despite the
slope of the first leecher being smaller than that
of the remaining peers, the curves never meet. In
particular, a leecher finishes the download (and
leaves the swarm) before the next leecher reaches
its number of blocks. We also note that all other
leechers have very similar slopes. In addition, we
observe a peculiar behavior: the slope of the fifth
leecher suddenly decreases when it becomes the
single leecher in the system.
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Fig. 2. Evolution of the number of downloaded pieces.

The results illustrated in Figure 2b which cor-
respond to the scenario considered in Figure 1b
show a very different behavior. Several interesting
observations can be drawn from this figure. The
slope of the first peer is practically constant, re-
maining unchanged by the arrival of other peers.
The slope of all other peers is larger than that of the
first peer, meaning the curves may eventually meet.
When two curves meet, the corresponding leechers
have the same number of blocks and possibly the
same content (we will comment on this point in
the following section). The figure also shows that
a younger peer does not overcome the first peer,
but instead the two maintain the same number of
downloaded pieces after the joining point, possibly
with their contents synchronized. Finally, the slope
of the second, third and fourth peer are rather
similar. However, the slope of the fifth peer is
slightly larger than the others, meaning a higher
download rate and consequently smaller download
time.

In summary, we make the following general
observations:

• The first leecher downloads approximately at
constant rate.

• Subsequent leechers download at a faster rate
than the first.

• Once a leecher reaches the total number of
pieces downloaded by the first leecher, their
download rates are identical.

• Once a leecher reaches the total number of
pieces downloaded by the first leecher, the
download rates of other leechers increase.

All these observations are related to the dynamics
of BT and will be discussed and explained in
Section IV using a simple mathematical model.
In the remainder of this section, we discuss the
consequences of the observed phenomenon and
illustrate that it happens even when peer arrival is
random (i.e., Poisson process).



A. Consequences of heterogeneity in homogeneous
swarms

The observations above imply essentially that the
download time of peers are quite different, despite
their homogeneous upload capacity. In summary,
the consequences are:

• Variability in download times. Since peers
can experience a consistently different down-
load rate, their download times can also differ.

• Unfairness with respect to peer arrival
order. Since peers download rates, and thus
download times, may depend on their arrival
order, the system is inherently unfair, poten-
tially benefiting latecomers in a swarm.

• Content synchronization. Due to different
download rates and BT’s piece selection
mechanisms (most notably rarest-first), leech-
ers can synchronize on the number of pieces
they have and, more strongly, on the content
itself. This means that peers may end up
with exactly the same content at some instant,
despite arriving at different points of time.

• Bursty departures. A direct consequence of
content synchronization is bursty departures.
This means that peers tend to leave the swarm
within a small interval despite arriving at the
swarm at relatively far apart instants.

Although figures do not show the content syn-
chronization explicitly, since the first leecher is
downloading the file at the same rate at which the
seed push new pieces into the swarm, whenever a
leecher reaches the same number of pieces than it,
they have exactly the same content.

Of course, the prevalence of the phenomenon
and its consequences depend directly on the pa-
rameters of the swarm. In particular, the arrival
times of peers is certainly the most determinant.
However, parameters like upload capacity of seed
and leechers and number of pieces are also fun-
damentally important. Intuitively, a file with a
larger number of pieces or a seed with a lower
upload capacity increase the probability that the
consequences above occur. In fact, for any arrival
order of a small set of peers, one can always find
system parameters for which this behavior and its
consequences occur.

B. Heterogeneity under Poisson arrivals

The behavior above does not require determin-
istic arrivals or any crafted leecher arrival pattern.
It arises even when arrival patterns are random.
In this section we characterize the consequences
of the heterogeneous download rates phenomenon
under Poisson arrivals.
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Fig. 3. Average download time as a function of arrival order
in a busy period.

We conducted a large amount of evaluations us-
ing detailed packet-level simulations. In particular,
we consider a BT swarm where a single seed is
present at all times, while leechers arrive according
to a Poisson process and depart the swarm as soon
as their download is completed. In the evaluation
that follows, all leechers have the same upload
capacity of 64 kBps (and very large download
capacities) and download a file with 1000 pieces.
The upload capacity of the seed (cs) varies between
48 kBps, 64 kBps, and 96 kBps, and the leecher
arrival rate (λ) is 1/1000. These scenarios generate
a swarm that has a time average size of 3.7, 3.4
and 3.0 leechers, respectively.

We start by characterizing the variability in the
download times and the unfairness with respect
to leecher arrival order. Figure 3 illustrates the
average download time for leechers as a function
of their arrival order in a busy period. Thus, the
i-th arrival of a busy period is mapped to indexi.
The different curves correspond to different upload
capacities of the seed. The results clearly indicate
that the download time depends on leecher arrival
order. In particular, for the casecs = 64 kBps,
the average download time tends to decrease with
increasing arrival order, and so the first arrival has
the largest average download time. Moreover, the
download time differences are also significant, and
can reach up to 30% (e.g., difference between first
and fourth arrival).

Figure 3 also indicates that variability in down-
load times strongly depends on the seed upload
capacity. In particular, a fast seed yields the reverse
effect: leechers’ download times tend toincrease
with arrival order. Intuitively, when a slow seed is
present, late arrivals to a busy period obtain large
download rates from other leechers, thus exhibiting
a lower download time. However, when a fast seed
is present, the first leecher has the larger upload
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Fig. 4. Empirical CCDF of the inter-peer departure time
conditioned on a busy period.

capacity of the seed until the second arrival, thus
exhibiting a lower download time. The results also
illustrate second order effects. For instance, a very
late arrival can have an average download time
slightly larger (or smaller) than a late arrival (e.g.,
the sixth leecher arrival has longer download time
than fourth for cs = 64 kBps). Intuitively, this
occurs because a very late arrival is likely to be
alone in the busy period, having to resort to the
seed for finishing the download. Since the upload
capacity of the seed can be smaller (larger) than
the aggregate download rate it receives from other
leechers, its download time can increase (decrease).
This behavior and its consequences will be ex-
plained and captured by the mathematical model
presented in the next section.

In what follows we characterize the burstiness in
the leecher departure process. Figure 4 shows the
empirical CCDF (Complementary Cumulative Dis-
tribution Function) of the leecher inter-departure
times conditioned on a busy period (i.e., not in-
cluding the inter-departure time between the last
leecher in a busy period and the first leecher of the
next). Note that the peer inter-arrival times follow
an exponential distribution with rate 1/1000. How-
ever, the results indicate a very distinct departure
process. In particular, many peers tend to leave the
swarm at roughly the same time: up to 30% of
peers leave the swarm within a couple of seconds
from each other (whencs = 64 kBps). Moreover,
the departure process also exhibits high variability
and some peers take as much as ten times more to
leave the system after a departure than the average
(when cs = 64 kBps). The figure also clearly
shows that this observation strongly depends on
the seed upload capacity, and is more pronounced
when the seed is slow. Intuitively, a slower seed in-
creases the average download time, thus increasing
the chances that leechers synchronize their content
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during the download and depart almost at the same
time. Finally, we also note that a fast seed yields a
much less bursty departure process, although still
favoring shorter inter-departure times.

One consequence of the heterogeneous down-
load rates that is closely related to the bursty
departures is content synchronization. Figure 5
illustrates the intensity of such synchronization for
different arrival rates. It shows the average number
of leechers in the system and the average number
of those which are synchronized. Here we refer
to as synchronized leechers that are not interested
in more than 50 pieces (5% of the file) of any
other. We observe that, the number of synchro-
nized leechers remains practically the same as we
increase the inter-peer arrival time, indicating that
a larger fraction of peers have similar content when
popularity decreases.

We next consider the influence of the leecher
arrival rate on the download times, independently
of arrival order. Figure 6 shows a box plot of
the download times of peers as a function of the
average inter-peer arrival time (i.e., the inverse of
arrival rate), forcs = 64 kBps. For each scenario,
the box plot curve indicates the minimum, 25-th



percentile, average, 75-th percentile and maximum
download times. Note that when the inter-arrival
time is large (2000 or 2500), the 75-th percentile is
very close to the maximum download time, indicat-
ing that many peers have similar download times.
As the average inter-arrival time decreases, this
concentration near the maximum diminishes signif-
icantly. However, the variability between minimum
and maximum download time does not diminish
with the inter-arrival time. In addition, we run
simulations for different values ofcs and observed
that a faster seed also has strong influence on
this behavior, exhibiting a much less concentrated
download times (ommited for conciseness).

C. Real experimental evaluation

The results shown above were all obtained
through simulations but we now present results
from prototype-based experiments deployed in
more realistic scenarios. The real experiments were
performed in the Internet using machines from
Planetlab [11] and running an instrumented version
of a BT client [10]. Although a large number of
experiments were conducted, we report only on a
limited set of these results due to space constraints.
The goal here is to validate the phenomenon of
heterogeneity in homogeneous BT swarms and its
consequences in real BT application running over
the Internet.

We consider only private swarms in the ex-
periment, in the sense that only peers controlled
by the experiment can connect to the swarm for
uploading and downloading content. Each private
swarm consists of a single file of sizeS MB which
is owned by a single seed that is always available
and has upload capacity ofcs. Leechers interested
in downloading the content arrive to the swarm
according to a Poisson process with rateλ. All
leechers that arrive to the swarm are homogeneous
and have upload capacity equal tocl. Each exper-
iment run is executed fort = 5, 000 seconds.

We start by analyzing the evolution of the swarm
size for an unpopular swarm. Figure 7 shows the
number of leechers in the swarm over time for
the duration of the experiment, with parameters
λ = 1/125 peers/sec.,S = 20 MB, and cs = cl =
50 kBps. We can observe several occurrences of
bursty departures, even if leechers arrive according
to a Poisson process. As previously discussed,
bursty departures are consequence of content syn-
chronization among the leechers in the swarm.

Using the same experiment as above, we in-
vestigate the impact of the leechers’ arrival order
on their download times. Figure 8 illustrates the
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dynamics of the swarm, where each horizontal line
corresponds to the lifetime of a leecher in the
swarm, starting when the peer arrives and ending
when it departs the swarm. Note that peers ex-
hibit significantly different download time (which
corresponds to their lifetime in the system). In
particular, in many cases leechers arrive at different
time instants but depart in the same burst. For
instance, the fifth leecher to arrive to the swarm
departs in a burst together with all four prior
arrivals. Thus, the fifth leecher has a much smaller
download completion time, when compared to the
first leecher. Similar behavior occurs between the
fifteenth leecher and the three leechers that ar-
rived immediately before. Besides illustrating the
variability of the download times, this observation
also indicates the unfairness with respect to leecher
arrival order. In particular, late arrivals to a busy
period tend to have smaller download times.

We now focus on the distribution of the leechers’
download times to illustrate their relative high
variability. Figures 9a and 9b show the comple-
mentary cumulative distribution function (CCDF)
of download times computed for two experiments
with distinct upload capacities for the seed (cs =
50 kBps and cs = 60 kBps, respectively, with
all other parameters the same). In both results,
download times exhibit a high variance, as shown
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Fig. 9. CCDF of download time from real experiments.

in the figures. In the casecs = 50 kBps (Figure 9a),
the minimum and maximum values are 145 and
480 seconds, respectively, with the maximum being
more than three times the minimum. When the
upload capacity of the seed is higher than that of
the leechers, Figure 9b shows that the variance
in download times decreases, as expected, since
the system capacity is increased. Finally, we note
several discontinuities (i.e., sharp drops) in both
CCDF curves which are caused by sets of leechers
that have approximately the same download time.

IV. M ODEL

We develop a simple model attaining to under-
stand the origin of the heterogeneous download
times and its consequences. Our model obtains an
approximation to the average upload and download
rates observed by each leecher on different time
intervals.

Consider a homogeneous swarm of an unpopular
content with a single seed to which leechers arrive
sequentially and depart as soon as they complete
their download, such as the one illustrated in
Figure 1a. In this scenario, bursty departures can
only happen if younger leechers obtain roughly
the same number of pieces as older ones, and
leave the swarm at about the same instant. This
in turn implies that younger leechers must have

1st queue

2nd queue

Leecher i

uplink
capacity

N-th queue

(a) Leecheri can be represented
as server with multiple queues, one
for each neighbor, contaning pieces
that are interesting to them.

neighbors (sorted by gij)

gij

fully
satisfied

insatisfied (unbounded)

(b) The upload bandwidth
allocation of leecheri fol-
lows a progressive filling
algorithm.

Fig. 10. Multiple queueing system.

higher download rates than older ones, at least for
some periods of time. Why is that? At a given
moment, an older leecheri may have all pieces
owned by a younger leecherj. Thus, leecher’sj
uplink capacity will be used by other leechers until
j receives a piece thati does not have. During
this period of time,j simply cannot servei, even
if it has no other leecher to serve. Therefore, the
sets of pieces owned by each leecher are the root
causes for heterogeneous download rates and must
be considered.

In order to capture the observation above, each
peer, either a seed or a leecher, is represented by
a queueing system with multiple queues (see Fig-
ure 10a), one for each neighbor, under a processor
sharing discipline. Queuei of peerj contains the
pieces interesting to peeri (i.e., all pieces thatj
has thati has not). When peeri downloads one
of these pieces, either fromj or some other peer,
this piece is removed from this queue, as well as
all other queues where the piece was present. On
the other hand, whenever a peer downloads a piece
that other neighbors are interested in, this piece
will be placed in the queues corresponding to those
neighbors, increasing their queues sizes. Finally,
the queues of the seed always have all pieces that
are needed by the leechers. As a leecher downloads
pieces from the seed and other leechers, this queue
decreases, eventually becoming empty when the
leecher downloads the entire content and departs
the swarm. We note that the order at which these
pieces are served from these queues depend on the
piece selection policy, but is not important for our
discussion.

Let cs and cl be the seed and leechers’ uplink
capacities, respectively. Assume that the leechers’
downlink capacities are much larger thancs or cl.
Let N(t) be the number of leechers in the system
at time t. Since the seed always has interesting



pieces to every leecher, all theN(t) queues in
the seed are backlogged. Thus, all queues will be
served at ratecs/N(t). Note that, since the swarm
is unpopular, we assume the swarm size is small
enough such that every leecher is neighbor of every
other leecher, including the seed.

A leecher may not have interesting pieces to
some of its neighbors at timet. Let a leecher
be identified by its arrival order, thus leecheri
is the i-th leecher to join the swarm. Also let
ni(t) ≤ N(t) − 1 be the number of leechers
interested in pieces owned byi. The instantaneous
upload rate fromi to any of these leechers is
cl/ni(t).

Whether a leecher has or has not pieces interest-
ing to another depends on the leechers’ respective
bitmaps, i.e. the current subsets of pieces owned
by a leecher. The set of bitmaps of all leechers
would precisely determine the exact pieces in each
queue. However, the dynamics of the bitmaps are
intricated and to keep track of them would be
unnecessarily complicated for modeling the phe-
nomenom we are interested in. Instead, we consider
the number of pieces owned by each leecheri,
bi(t), ∀i and infer whether a leecher has interesting
pieces to other leechers.

For the sake of simplicity, letbi(t) = bi,
N(t) = N andni(t) = n, ∀i. Two remarks can be
made with respect tobi and the interest relationship
among leechers:

Remark 1. If bi > bj , theni has at leastbi − bj
interesting pieces toj.

Remark 2. If 0 < bi ≤ bj , it is impossible to
determine whetheri has or has not interesting
pieces toj without further information.

In the following, we will use these two remarks
to derive a simple model to capture the upload and
download rates between the peers. With respect to
Remark 2, we will assume no further information is
available, and hence the piece interest relationship
among peers will be ignored in this case.

A. A simple fluid model

We assume that the content is a fluid, or equiv-
alently, its pieces can be subdivided in infinitely
many parts that can be exchanged (uploaded and
downloaded) continuously.

To simplify the explanation, assume thatb1 >
b2 > . . . bN , i.e. an older leecher has strictly
more pieces than a younger one. We assume that
if leecher i has joined the swarm afterj, i.e.
i > j, i can still upload pieces toj as long

as i downloads pieces from any peerk that has
more pieces thanj, i.e. k < j. We also assume
that every piece downloaded from the seed by
a leecher is immediately interesting to all other
leechers, independent of their age. This assumption
is justified due to the rarest first piece selection
policy used in BT.

Since the seed’s upload capacity iscs, each
leecher downloads from it at ratecs/N . Now let
gij be the rate at which peeri could potentially
upload data to peerj provided that there is no ca-
pacity constraints (i.e. independently of upload and
download capacities of peersi andj, respectively).
If a leecher i is older thanj, i has interesting
pieces toj. Therefore, from the perspective of the
multiple queueing system, queuej in leecheri is
backlogged andgij = ∞. On the other hand, if
i is younger thanj, the rategij is given by the
rate at whichi downloads interesting pieces toj.
According to the previous assumptions, this rate is
equal to the rate at which peers older thanj upload
to peeri. Adding this to the rate at which peeri
downloads from the seed, we thus have:

gij = cs/N +
∑

k<j

uki, i > j. (1)

whereuki is the rate at which leecherk uploads
to i.

We now make an important observation con-
cerning Equation (1). Consider leecheri and some
other leecherj. The olderj is with respect toi
the smaller is the rate at whichi can upload to
j, that is, the smaller isgij . If j is younger than
i, then gij = ∞. This observation implies that
gi1 ≤ gi2 ≤ · · · ≤ giN .

Since the upload capacity of peers is finite, we
must now determine how the capacity of a given
peeri will be divided to serve each of the leechers.
In particular, recall thatuij is the upload rate from
peeri to peerj and note that

∑

k uik ≤ cl, where
cl is the upload capacity of a leecher. To determine
uij we will use gij and a bandwidth allocation
mechanism that follows a progressive filling al-
gorithm, as is illustrated in Figure 10b. Roughly,
infinitesimal amounts of bandwidth are allocated to
each leecher until no available bandwidth remains
or one or more leechers are satisfied with respect to
thegij∀j constraints. In the latter case, it continues
to distribute the capacity among the non-satisfied
leechers. The final bandwidth allocation for leecher
i can be obtained by computing the following



Fig. 11. Example of matrixU = (uij) showing the right
order of calculation.

equation in the orderj = 1, . . . , N .

uij = min

(

gij ,
cl −

∑

k<j uik

n− |{k|k < j, k 6= i}|

)

(2)

where |A| is the cardinality of a setA. Re-
call from Equation (1) thatgij depends on
u1,i, u2,i, . . . , uj−1,i, for i > j. By calculating
uij in the order i = 1, . . . , N , we assure that
every variable in Equation (2) has been previously
computed.

As an example, consider the calculation of the
matrix U = (uij), which determines upload rates
between peers at a given moment, for a small
swarm containing a single seed andN = 3
leechers. Let their upload capacities be equal to
cs = 60 kBps andcl = 96 kBps, respectively,
and assumeb1 > b2 > b3. Matrix U and the
order of computation of its elements are depicted in
Figure 11. The download rate for peeri is simply
the sum of the elements in columni.

Equation (2) corroborates the idea that homoge-
neous peers can exhibit heterogeneous upload rates
which depend on the number of pieces owned by
the leechers. Moreover, the younger leechers tend
to have a higher download rate, as they obtain a
higher upload rate from other leechers.

Eventually the number of pieces owned by a
leecher may reach the number of pieces owned
by an older one. In particular, this is bound to
occur since younger leechers tend to have a higher
download rate. In this case, these two leechers will
no longer have pieces interesting to each other.
Thus, Equations (1) and (2) must be rewritten as
functions ofbi, ∀i:

gij = cs/N +
∑

bk>bj

uki , bi ≤ bj . (3)

uij = min

(

gij ,
cl −

∑

k|bk>bj
uik

n− |{k|bk > bj , k 6= i}|

)

(4)

Intuitively, Equation (4) combines the two con-
straints on the rate at whichi upload pieces to
j. The first term stands for the maximum instan-
taneous rate irrespective of capacity limitations.

The second term reflects the fraction ofi’s uplink
capacity that can be dedicated toj given that some
bandwidth has already been allocated. In this case,
cl −

∑

k|bk>bj
uik is the remaining capacity ofi

and n − |{k|bk > bj , k 6= i}| is the number of
peers that will share it (includingj).

B. Model Validation

Our model gives an approximation to the average
download rate experienced by a leecher in a swarm
which depends on the relationship between the
number of pieces owned by the peers. In this
section, we validate the model comparing its pre-
dictions with simulations results.

We consider a homogeneous swarm containing
N leechers withcs = cl. In this scenario, it is rea-
sonable to assume thatb1 ≥ b2 ≥ · · · ≥ bN if the
index reflects the peer arrival order. We partition
the set of leechers in two subsets: leechers with
the same number of pieces as the oldest leecher
(subsetA), and those with less pieces than the
oldest one (subsetB). In the scenario considered,
the model predicts that all leechers in a subset will
have identical download rates. Moreover, a leecher
in B will have a higher download rate than one in
A and this difference depends on the set sizes. In
the following, we compare the average download
rate of peers in each of these sets with simulation
results.

We use deterministic arrivals to reproduce the
exact scenarios we intend to compare. For a swarm
with N leechers such thatnA of these belong to
partitionA (i.e. haveb1 pieces) the arrivals are set
as follows: the firstnA arrivals occur next to each
other, after they have roughly the same number
of pieces, i.e.,|b1 − bi| < 3, the otherN − nA

leechers to join the swarm sequentially and far
apart. We then compute the average download rate
experienced by a leecher in subsetA and for a
leecher inB, over a large time interval but before
any departures.

We have simulated 5 runs for each scenario. The
confidence intervals obtained are relatively small
and will be omitted. The results for1 ≤ N ≤ 5
and1 ≤ nA ≤ N are presented in Figures 12(a,b).
Figure 12a shows simulation and model results
for leechers inA. The average download rate of
a leecher inA predicted by the model for this
scenario does not depend onN or nA and is
represented by the horizontal line. Note that model
is quite accurate, despite the various configurations
for N andnA. In particular, the relative error is less
than 1% for all scenarios.
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Fig. 12. Simulation results forcs = cl = 0.25.

Figure 12b shows the average download rate for
leechers inB. Since there are numerous points
showing either simulation or model results, we use
’+’ to identify simulations and ’x’ to identify model
results (except forN = 2, where a circle and a
square are used respectively). In addition, to ease
the work of comparing these points, there are lines
connecting results of the same type (simulation
or model) for same value ofN . We note that
the model is quite accurate, with differences being
unnoticeable in many scenarios and less than 10%
in all cases. More importantly, the model captures
well the behavior observed in simulation. For a
fixed N , as the number of leechers inA increases,
the average download rate of leechers inB grows.
On the other hand, for a fixednA, the average
download rate decreases withN . Finally, a larger
number of leechers in the swarm implies a larger
range of possible download rates for leechers inB,
sincenA can vary from 1 toN .

V. PREDICTING BURSTY DEPARTURES

The model presented in Section IV can be used
to estimate the number of departures that occur in a
burst. In particular, consider the arrival of a leecher
that initiates a busy period (i.e., the first arrival after
the swarm had no leechers). In the following, we
estimate the average number of peers that depart
the swarm in a burst together with the leecher that
initiated the busy period.

Let f denote the first leecher of a busy period
and assume that the leecher arrival follows a Pois-
son distribution with rateλ. Also, as assumed by
the model, a seed is always present and has uplink
capacity ofcs. Finally, letS denote the number of
pieces of the content.

According to the model, the first leecher,f , will
download the entire content at a fixed rate equal
to cs, independently on the number of peers in the
swarm. Note thatcs is also the upper bound on

the average download rate, since the seed cannot
push new pieces into the network at a faster rate.
Thus,f will take T = S/cs seconds to finish the
download.

Consider arrivals that occur while peerf is in
the swarm. The number of such arrivals, sayN ,
is a random variable and follows the Poisson dis-
tribution with parametersλ andT . The download
rates of these leechers are a function ofN and also
their instant of arrival. Moreover, as discussed in
Section IV-B, larger values ofN imply a larger
spread in the download rates (see Figure 12b).
To obtain a conservative lower and upper bound
on these download rates, we will consider a suf-
ficiently large value forN . In particular, we use
the 99-th percentile ofN , namelyN99, and thus,
P [N ≤ N99] ≤ 0.99.

Given that exactlyN99 leechers will join the
swarm before the departure off , we can use the
model to obtain the minimum and maximum down-
load rates of these peers, independent of their inter-
arrival timing. Letdmin anddmax be, respectively,
the minimum and the maximum download rates
obtained from the model given that the swarm has
N99 + 1 leechers. Thus, the minimum and maxi-
mum time for the leechers to obtain the content is,
respectively,S/dmax andS/dmin.

Therefore, at least all leechers that arrive before
T − S/dmin will leave the swarm together in a
burst with f . The expected number of peers that
will arrive within this time period,Bmin is simply
given by

Bmin = λ

(

T −
S

dmin

)

(5)

Similarly, at most all leechers that arrive before
T − S/dmax will leave the swarm in a burst with
f . The expected number of peers that will arrive



TABLE I
BOUNDS FOR THE EXPECTED NUMBER OF LEECHERS THAT

DEPART IN A BURST WITHf , FORλ = 1/1000.

cs
E[N ] Bmin Bmax

Bmin

E[N]
Bmax

E[N](kB/s)

48 5.333 1.667 4.378 0.312 0.821

64 4.000 0.400 1.895 0.100 0.474

96 2.667 0.000 0.857 0.000 0.322

128 2.000 0.000 0.468 0.000 0.234

within this time period,Bmax is simply given by

Bmax = λ

(

T −
S

dmax

)

(6)

Finally,Bmin andBmax provide a lower and upper
bound for the average number of leechers that will
depart the swarm in a burst withf .

Table I shows the expected number of arrivals to
the swarm beforef departs,E[N ], which is simply
λT , and both the lower and upper boundsBmin

andBmax, respectively. The table shows numerical
results for differentcs values but withcl = 64
kB/s andλ = 1/1000. The results indicate that
average number of peers that depart the swarm in
a burst withf can be significant: between 32% and
82% of all arrivals when the seed is slower than
the leechers and between 10% and 47% when they
have the same upload capacity. We also observe
that these ratios reduce ascs increases, indicating
that bursty departures are less likely to occur with
fast seeds.

VI. GENERAL DISCUSSIONS

It is interesting to consider the prevalence of the
observed phenomenon in more general scenarios.
Although we have shown its prevalence under a
crafted peer arrival process and under Poisson
arrivals, we claim that homogeneous peers can have
heterogeneous download rates under very general
arrival patterns. In particular, given any arrival
pattern of peers into a swarm, it is possible to
choose system parameters (i.e., seed upload capac-
ity, leechers upload capacity, and file size) such
that the effects described in this paper will be very
prevalent. Intuitively, by choosing a fast enough
seed, peers will not be able to disseminate old
pieces before new ones are pushed into the swarm,
and thus will have significantly different number of
blocks, while by choosing a large enough file peers
are bound to synchronize before they finish the
download. In a sense, the behavior observed and
described in this paper is quite general, although
the requirement of the swarm being unpopular is
important, as we next describe.
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What happens if we consider very popular
swarms, where the peer arrival rate is very large,
yielding very large swarm sizes? Figure 13 shows
experimental results of the dynamics of leecher
arrivals and departures for this scenario (Poisson
arrivals with rateλ = 1/12 and uplink capacities
of cs = 50 kB/s andcl = 50 kB/s). Interestingly,
we can observe several of the consequences of
having heterogeneous download rates. In particular,
we can observe bursty departures, content synchro-
nization and high variability of download times
(peers that leave in a large burst have different
download times, as arrival is well-behaved), for
example, at times 600s and 1200s. In a sense,
the phenomenon is quite prevalent even during the
busy period, but not strong enough to end the
busy period. The characterization and modeling of
the phenomenon in this scenario is much more
entailed, given the complicated dynamics of piece
exchange of BT and consequently the interest rela-
tionship among peers. We leave the investigation of
these scenarios (popular swarms) as future work.

Last, we now comment on the relationship of
our findings and themissing piece syndrome[8].
The key aspect of this syndrome is content syn-
chronization, where a large fraction of peers have
all but one and the same piece. This situation is
particularly bad to the performance of the swarm,
as the departure rate of the swarm will be equal
to the seed upload capacity (assuming peers depart
as soon as they acquire the last block). Our work
has shown that peers can synchronize their content
much before the last piece. In some sense, this gen-
eralizes the syndrome to apiece synchronization
syndrome, which is inherent to BT dynamics, due
to the heterogeneous download rates. Once peers
have synchronized their content, they can only
acquire new pieces from the seed, at the upload
capacity of the seed. In this situation, themissing
piece syndromeis bound to occur.

VII. R ELATED PRIOR WORKS

Modeling P2P file sharing systems and in par-
ticular BT has been an active area of research in



the past few years, driven mainly by the high com-
plexity, robustness and user-level performance of
such systems. One of the first BT models to predict
the download times of peers was presented in [5].
This simple fluid model based on differential equa-
tions assumes homogeneous peer population (with
respect to download and upload capacities) and
Poisson arrivals, but yields analytical steady state
solution. Several subsequent BT models have been
proposed in the literature to capture various system
characteristics, among them heterogeneous peer
population (with respect to upload and download
capacities) [6], [7], [12]. BT performance was also
studied in the context of corporate and academic
LANs where access links are often symmetric [13].
However, to the best of our knowledge, all models
predict that identical peers (with respect to their
upload capacities) simultaneously downloading a
file will have identical performance (with respect
to download rates), contrary to the findings in
this paper. Moreover, BT models generally assume
either a rather large peer arrival rate (e.g., Poisson)
or a large flash crowd (all peers join the swarm at
the same time). This is somewhat surprising, given
that most real BT swarms are rather small in size
and quite unpopular [9]. Finally, one perverse effect
of this lack of popularity, content unavailability, is
shown to be a severe problem found in most of BT
swarms [14].

Another interesting aspect of BT has been the
discovery and characterization of some non-trivial
phenomena induced by its complex dynamics. For
example, peers in BT swarm tend to form clusters
based on their upload link capacities, exhibiting a
strong homophily effect. In particular, peers with
identical upload capacities tend to exchange rel-
atively more data between them [15], [16]. An-
other interesting observed behavior is the fact that
arriving leechers can continue to download the
entire content despite the presence of any seed in
the swarm, a property known as self-sustainability
[17]. More recently, a phenomenon known as
missing piece syndromehas been identified and
characterized mathematically, which states that in
large swarms of long durations, the system can
become unstable (i.e., number of leechers diverges
to infinity) if the upload capacity of the seed is not
large enough [8]. This last phenomenon is quite
related to our work and was discussed in Section
VI. Again, to the best of our knowledge, we are
not aware of any prior work that has alluded the
phenomenon we describe in this paper, namely,
that homogeneous peers can have heterogeneous
download rates.

VIII. C ONCLUSION

This paper identifies, characterizes and models
an interesting phenomenon in BT: Homogeneous
peers (with respect to their upload capacity) ex-
perience heterogeneous download rates. The phe-
nomenon is more pronounced in unpopular swarms
(few leechers) and has important consequences
that directly impact peer and system performance.
The mathematical model proposed captures well
these heterogeneous download rates of peers and
provides fundamental insights into the root cause of
the phenomenon. Namely, the allocation of system
capacity (aggregate uplink capacity of all peers)
among leechers depend on the piece interest rela-
tionship among peers, which for unpopular swarms
is directly related to arrival order and can be
significantly different.
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