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Abstract

Network calculus is an elegant theory which uses envelopes to determine the
worst-case performance bounds in a network. Statistical network calculus
is the probabilistic version of network calculus, which strives to retain the
simplicity of envelope approach from network calculus and use the arguments
of statistical multiplexing to determine probabilistic performance bounds in
a network. The tightness of the determined probabilistic bounds depends
on the efficiency of modelling stochastic properties of the arrival traffic and
the service available to the traffic at a network node. The notion of effective
bandwidth from large deviations theory is a well known statistical descriptor
of arrival traffic. Similarly, the notion of effective capacity summarizes the
time varying resource availability to the arrival traffic at a network node.
The main contribution of this paper is to establish an end-to-end stochastic
network calculus with the notions of effective bandwidth and effective capac-
ity which provides efficient end-to-end delay and backlog bounds that grows
linearly in the number of nodes (H) traversed by the arrival traffic, under
the assumption of independence.

Keywords: Stochastic Network Calculus, Network Service Envelope, QoS,
Effective Bandwidth, Effective Capacity

1. Introduction

The increasing share of real-time traffic (IPTV, VoIP, Internet Radio,
etc.,) over the Internet has motivated the study of Quality of Service (QoS)
guarantees in data networks. The key aspect of guaranteeing QoS in a data
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network is to be able to efficiently model the arrival traffic and the service
offered by the network. There exist many network theories which facilitate
the modelling of traffic and service in data networks. Network calculus is
one of the popular theories in recent times useful for the performance analy-
sis of data networks. Network calculus uses deterministic arrival and service
envelopes to bound traffic arrivals and the service offered at the nodes, respec-
tively, to compute the worst case end-to-end performance bounds. However,
most of the multimedia traffic observed in the Internet can tolerate some vi-
olation in its QoS requirements, and moreover, the statistical multiplexing in
data networks smoothens the burstiness of the aggregate arrival traffic with
high probability. Therefore the theory of network calculus was extended to
the probabilistic domain, especially to benefit from the statistical multiplex-
ing in data networks. The probabilistic version of network calculus is called
statistical network calculus 1 and it strives to retain many of the favourable
characteristics of the network calculus, especially the simple envelope ap-
proach to derive probabilistic bounds. The main issue with the envelope
approach employed in statistical network calculus is that the utilization of
statistical multiplexing for network analysis is limited to network ingress,
as the stochastic information of the arrival traffic is lost once the statistical
arrival envelope is derived at the network ingress and no statistical multi-
plexing can be considered inside the network [1, 2]. This leads to not so
efficient end-to-end delay and backlog bounds in a feed-forward network.

Probably the most influential related analytical technique used to model
stochastic arrival traffic at a network node is effective bandwidth [3] from
large deviations theory. Effective bandwidth describes the minimum band-
width required at a network node to provide an expected QoS for a given
traffic. Similarly, the concept of effective capacity [4, 5, 6] from large devi-
ations theory can be used to represent the stochastic service received by an
arrival traffic at a network node. The QoS measures at a network node can
be expressed using the large deviations theory under many sources limiting
regime (infinite sources) in terms of effective capacity and effective band-
width. In spite of the successes in analyzing the single node case, there has
been only limited success at identifying end-to-end measures for the network
models using large deviations theory.

1The terms statistical network calculus, stochastic network calculus and probabilistic
network calculus are used interchangeably in the literature
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The key contribution of this paper is that we develop an end-to-end
stochastic network calculus based on the notions of effective bandwidth [3]
and effective capacity [4, 5, 6] from large deviations theory. Such an extension
of end-to-end stochastic network calculus allows the stochastic information
about the arrival traffic and the service available to an arrival traffic at a
network node to be retained as long as possible using the concept of effective
bandwidth and effective capacity, respectively, which in turn enables effi-
cient computation of end-to-end stochastic delay and backlog bounds than
in other approaches with statistical envelopes [7, 8, 9, 10] where the stochas-
tic information about the arrival and the service processes are lost as soon
as statistical envelopes are fixed.

The raison d’être of network calculus is the possibility to model a network
of nodes as a single abstract node using a network service envelope. In [11],
authors have shown that the end-to-end worst-case performance measures
obtained by summing the per-hop results are bounded by O(H2), while the
end-to-end bounds obtained using network service envelope scales linearly
in the number of nodes H connected in series. There have been many at-
tempts to achieve similar linear scaling of end-to-end probabilistic perfor-
mance bounds in statistical network calculus but with limited success. Most
of these attempts use network service envelope with conservative envelope
definitions [7] or with some mathematical extensions like, rate correction
factor [8], delay threshold, busy period bounds [9], time-domain extensions
[10]. Most notably, in [8] authors employed network service envelope with
rate correction factor to compute the end-to-end performance measures that
scales as O(H logH). In [2], authors have shown using stochastic network
calculus with moment generating functions that, if the arrival traffic and the
service offered at each network node are independent of one another, the
end-to-end performance bounds can scale linearly, i.e., O(H). We direct the
interested readers to the corresponding papers and to [9] for an elaborate
discussion on what makes statistical network calculus so difficult.

In the later part of this paper, we show that the end-to-end QoS measures
determined using newly developed stochastic network calculus with effective
bandwidth and effective capacity also scales linearly under the assumption of
existence of effective bandwidth and effective capacity for arrival and service
processes, respectively, and the independence of processes. Moreover, the
usage of effective bandwidth and effective capacity functions to describe the
arrival and service processes, respectively, at the network node will nullified
any necessity to use rate correction factor [8] or delay threshold, busy period

3



Figure 1: Network of H concatenated nodes

bounds [9], time-domain extensions [10] in network calculus and allows effi-
cient representation of stochastic processes to compute tighter bounds even
for single node case.

The rest of the paper is structured as follows: Section 2 introduces the ar-
rival and service model used in the paper. In Section 3, we derive end-to-end
backlog and delay bounds using stochastic network calculus with effective
bandwidth and effective capacity functions. In Section 4, a numerical ex-
ample using Markov Modulated On-Off traffic is presented for illustration.
Brief conclusions are presented in Section 5.

2. Arrival and Service Models

In this section, we give a brief overview of the arrival and service models
employed in this paper. Throughout this paper, we use a discrete time model
t ∈ N0 = {0, 1, 2, . . .}. We consider a network of H nodes connected in series
as shown in Fig. 1, with each node in the network having infinite-sized
buffer serves the arrival traffic in a work-conserving fashion. Let the arrival
and departure processes at a network node h are modelled with bivariate
real-valued left-continuous processes Ah(s, t) andDh(s, t), respectively, which
represents the cumulative amount of data seen in the interval (s, t] for any
0 ≤ s ≤ t. Let the service offered at hop h for h = 1, . . . , H is characterized
using a bivariate real-valued left-continuous process Sh(s, t), which represents
the cumulative amount of data served at the node in the interval (s, t] for any
0 ≤ s ≤ t. To simplify the notation, we denote Ah(0, t) = Ah(t), Dh(0, t) =
Dh(t), Sh(0, t) = Sh(t) for any t ≥ 0. We assume that the network is causal,
i.e., Ah(t) ≤ Dh(t) at any hop h in the network for any t ≥ 0, and there are
no arrivals in the interval (−∞, 0]. For an arrival process Ah at a network
node h, whose offered service is characterized by a stochastic service process
Sh, the corresponding departure process Dh satisfies for any fixed sample
path and all t ≥ 0:

Ah ⊗ Sh(t) ≤ Dh(t) (1)

where ⊗ denotes the (min,+) convolution of Ah and Sh which is defined as
Ah ⊗ Sh(t) = inf0≤s≤t{Ah(0, s) + Sh(s, t)}. Any random process S satisfying
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the above relationship (equation (1)) between arrival process and departure
process for any fixed sample path is referred to as “dynamic F-server” [12].

Let A = A1 be the arrival traffic at the node 1 or ingress of the network
and D = DH = AH+1 represent the departure traffic from the node H or
egress of the network as shown in Fig. 1. The departure traffic Dh from the
node at hop h becomes the arrival traffic Ah+1 to the downstream node at
hop h+1, i.e., Ah+1 = Dh for all h = 1, . . . , H . In [12, 2], authors show that
the stochastic network service process Snet describing the service offered in
network of H nodes connected in series, with stochastic service process Sh

for h = 1, . . . , H characterizing the corresponding service offered at hop h,
for any fixed sample path is given by

Snet = S1 ⊗ S2 ⊗ · · · ⊗ SH (2)

To derive probabilistic performance measures using the stochastic arrival
and service processes, one needs non-random functions characterizing the
arrival and service processes. In [2], authors used moment generating function
of the arrival traffic and conjugate moment generating function of the service
process to derive the performance measures in a network. Here we adopt the
popular notions of effective bandwidth (αh) [3] and effective capacity (βh)
[4, 5, 6] from large deviations theory to describe the stochastic arrival process
and the service process characterizing the service offered at a network node
h, respectively. The effective bandwidth of an arrival traffic Ah from [3], for
all θ, t > 0, is given as

αh(θ, t) =
1

θt
logE

[

eθAh(t)
]

(3)

Similarly, the effective capacity function of a stochastic service process Sh at
a node h from [6], for all θ, t > 0, is defined as

βh(θ, t) = −
1

θt
logE

[

e−θSh(t)
]

(4)

3. Stochastic Network Calculus with Effective Bandwidth and Ef-

fective Capacity

In this section we apply the arrival and service models from Section 2
to derive end-to-end performance bounds using stochastic network calculus
with effective bandwidth and effective capacity. The fundamental difference
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between the statistical network calculus and its deterministic counterpart
is that the performance bounds are expressed as probabilistic tail bounds,
i.e., the derived bounds are violated with some probability. The end-to-
end backlog B and delay W processes at time t in network of H nodes
connected in series as shown in Fig. 1 are given by B(t) = A(t) − D(t)
and W (t) = inf {d ≥ 0 : A(t− d) ≤ D(t)}, respectively. In the following we
derive the probabilistic bound on the end-to-end backlog and delay using
stochastic network calculus with effective bandwidth and effective capacity
functions. It should be noted that no assumptions on the independence of
arrival and service processes were made.

Theorem 3.1. Let A be the arrival traffic to a network of H nodes connected

in series with effective bandwidth function α and D be the departure traffic

from the network. Assume Sh for h = 1, . . . , H be the stochastic service

process at each hop in a network of H nodes with their corresponding effective

capacity βh. Then we have the following probabilistic bounds.

1. Backlog bound : The probabilistic bound on the backlog in a network is

given, for all t ≥ 0, by

P {B(t) > x} ≤ inf
θ>0

t
∑

uH=0

· · ·

u3
∑

u2=0

u2
∑

u1=0

e
θ

H+1
((t−u1)α(θ,t−u1)) ·

e−
θ

H+1
((u2−u1)β1(θ,u2−u1)+···+(t−uH )βH (θ,t−uH )+x) (5)

2. Delay bound : The probabilistic bound on the delay in a network is

given, for all t ≥ 0, by

P {W (t) > d} ≤ inf
θ>0

t
∑

uH=d

· · ·
u3
∑

u2=d

u2
∑

u1=d

e
θ

H+1
((t−d−u1)α(θ,t−d−u1)) ·

e−
θ

H+1
((u2−u1)β1(θ,u2−u1)+···+(t−uH )βH (θ,t−uH)) (6)

Proof: We now prove the probabilistic bound on backlog B. For any t ≥ 0,
we have

P {B(t) > x} = P {A(t)−D(t) > x} ≤ P {A(t)−A⊗ Snet(t) > x}

= P {A(t)− A⊗ S1 ⊗ · · · ⊗ SH(t) > x}

= P

{

sup
0≤u1≤t

{A(t)− A(0, u1)− S1 ⊗ · · · ⊗ SH(u1, t)} > x

}
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= P

{

sup
0≤u1≤u2≤u3≤···≤uH≤t

{A(u1, t)− {S1(u1, u2)

+S2(u2, u3) + · · ·+ SH(uH , t)}} > x}

≤ E
[

eΘsup0≤u1≤u2≤u3≤···≤uH≤t{A(u1,t)−S1(u1,u2)−S2(u2,u3)−···−SH (uH ,t)}
]

e−Θx

≤
t

∑

uH=0

· · ·

u3
∑

u2=0

u2
∑

u1=0

E
[

eΘ{A(u1,t)−S1(u1,u2)−S2(u2,u3)−···−SH (uH ,t)}
]

e−Θx

≤

t
∑

uH=0

· · ·

u3
∑

u2=0

u2
∑

u1=0

E
[

eΘ(H+1)A(u1,t)
]

1

H+1 E
[

e−Θ(H+1)S1(u1,u2)
]

1

H+1

E
[

e−Θ(H+1)S2(u2,u3)
]

1

H+1 · · ·E
[

e−Θ(H+1)SH (uH ,t)
]

1

H+1 e−Θx

=

t
∑

uH=0

· · ·

u3
∑

u2=0

u2
∑

u1=0

e
θ

H+1
((t−u1)α(θ,t−u1)) ·

e−
θ

H+1
((u2−u1)β1(θ,u2−u1)+(u3−u2)β2(θ,u3−u2)···+(t−uH )βH (θ,t−uH )+x)

The proof of the probabilistic bound on delay W follows the similar steps.
For any t ≥ 0, we have

P {W (t) > d} = P {A(t− d)−D(t) > 0} ≤ P {A(t− d)− A⊗ Snet(t) > 0}

= P {A(t− d)−A⊗ S1 ⊗ · · · ⊗ SH(t) > 0}

= P

{

sup
d≤u1≤t

{A(t− d)− A(0, u1)− S1 ⊗ · · · ⊗ SH(u1, t)} > 0

}

= P

{

sup
d≤u1≤u2≤u3≤···≤uH≤t

{A(u1, t− d)− {S1(u1, u2)

+S2(u2, u3) + · · ·+ SH(uH , t)}} > 0}

≤ E
[

eΘsupd≤u1≤u2≤u3≤···≤uH≤t{A(u1,t−d)−S1(u1,u2)−S2(u2,u3)−···−SH(uH ,t)}
]

≤
t

∑

uH=d

· · ·
u3
∑

u2=d

u2
∑

u1=d

E
[

eΘ{A(u1,t−d)−S1(u1,u2)−S2(u2,u3)−···−SH (uH ,t)}
]

≤

t
∑

uH=d

· · ·

u3
∑

u2=d

u2
∑

u1=d

E
[

eΘ(H+1)A(u1,t−d)
]

1

H+1 E
[

e−Θ(H+1)S1(u1,u2)
]

1

H+1

E
[

e−Θ(H+1)S2(u2,u3)
]

1

H+1 · · ·E
[

e−Θ(H+1)SH (uH ,t)
]

1

H+1
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=

t
∑

uH=d

· · ·

u3
∑

u2=d

u2
∑

u1=d

e
θ

H+1
((t−d−u1)α(θ,t−d−u1)) ·

e−
θ

H+1
((u2−u1)β1(θ,u2−u1)+(u3−u2)β2(θ,u3−u2)···+(t−uH )βH (θ,t−uH ))

The inequalities in the respective parts of the proof for probabilistic backlog
and delay bounds follow the similar reasons. The first inequality is from
the property of stochastic network service process (equation (1)). The sec-
ond inequality is due to the application of Boole’s inequality. The third and
fourth inequalities are from Chernoff’s bound2 and Hölder’s inequality3, re-
spectively. The final step is obtained by setting θ = (H + 1)Θ and from the
definition of effective bandwidth and effective capacity. Minimizing the ex-
pression over θ proves our claim on probabilistic backlog and delay bound.�
Since the use of Hölder’s inequality can be avoided for the independent ran-
dom variables4, the performance bounds from Theorem 3.1 can be further
improved if the arrival traffic process A and the stochastic service process Sh

at each hop h for h = 1, 2, . . . , H are statistically independent of one another,
and is given by the following corollary.

Corollary 3.1. If the arrival traffic A with effective bandwidth α and the

stochastic service process Sh with effective capacity βh for h = 1, . . . , H are

independent of one another. Then we have the following probabilistic bounds

for the network shown in Fig. 1.

1. Backlog bound : The probabilistic bound on the backlog in a network is

given, for all t ≥ 0, by

P {B(t) > x} ≤ inf
θ>0

t
∑

uH=0

· · ·

u3
∑

u2=0

u2
∑

u1=0

eθ((t−u1)α(θ,t−u1)) ·

e−θ((u2−u1)β1(θ,u2−u1)+···+(t−uH )βH (θ,t−uH )+x) (7)

2. Delay bound : The probabilistic bound on the delay in a network is

given, for all t ≥ 0, by

P {W (t) > d} ≤ inf
θ>0

t
∑

uH=d

· · ·

u3
∑

u2=d

u2
∑

u1=d

eθ((t−d−u1)α(θ,t−d−u1)) ·

2For random variable X and x, θ ≥ 0, P{X > x} ≤ E[eθX ]e−θx.
3For random variables X,Y and a, b > 0 with 1/a+1/b = 1, E[XY ] ≤ E[Xa]

1

aE[Y b]
1

b .
4For any two independent random variables X,Y , E[XY ] = E[X ]E[Y ]
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e−θ((u2−u1)β1(θ,u2−u1)+···+(t−uH )βH (θ,t−uH )) (8)

To analyze the linear scaling of end-to-end probabilistic performance bounds
from Corollary 3.1 we consider a tandem network of H nodes connected in
series as shown in Fig. 1, with each node offering similar service characterized
by the stochastic service process S with the corresponding effective capacity
β. Let the effective bandwidth α of the arrival traffic A and the effective
capacity β of the service process S, satisfy the condition α(θ, t) ≤ α(θ) and
β(θ, t) ≤ β(θ) for any t, θ ≥ 0. Then the probabilistic backlog bound from
Corollary 3.1, for any θ ≥ 0 and t → ∞, will become

P {B(t) > x} ≤ lim
t→∞

t
∑

uH=0

· · ·

u3
∑

u2=0

u2
∑

u1=0

eθ((t−u1)α(θ)−(t−u1)β(θ)−x)

=
e−θx

(1− e−θ(β(θ)−α(θ)))
H

(9)

The probabilistic delay bound from Corollary 3.1, for any θ ≥ 0 and t → ∞,
will become

P {W (t) > d} ≤ lim
t→∞

t
∑

uH=d

· · ·

u3
∑

u2=d

u2
∑

u1=d

eθ((t−d−u1)α(θ)−(t−u1)β(θ))

=
e−θα(θ)d

(1− e−θ(β(θ)−α(θ)))
H

(10)

We used the equality limt→∞

∑t

uH=0 · · ·
∑u3

u2=0

∑u2

u1=0 e
−a(t−u1) = 1

(1−e−a)H
for

all a ≥ 0 and the stability condition α(θ) ≤ β(θ) for all θ ≥ 0 in the equations
(9) and (10).

If the probabilistic backlog and delay bounds are violated at most with
the probability ε, then setting the bounds on the right-hand sides of equations
(9) and (10) to ε and solving for x and d gives

x ≥ −
H

θ
log

(

1− e−θ(β(θ)−α(θ))
)

−
log ε

θ
(11)

d ≥ −
H

θα(θ)
log

(

1− e−θ(β(θ)−α(θ))
)

−
log ε

θα(θ)
(12)

It is apparent from equations (11) and (12) that the end-to-end backlog and
delay bounds using Corollary 3.1 grows linearly in the number of nodes H a
flow traverses in a network.
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Figure 2: Network of H concatenated nodes with cross traffic

The significance of the presented approach is that the stochastic informa-
tion about the arrival and service processes are retained as long as possible
using the concept of effective bandwidth and effective capacity, respectively,
which allows the efficient computation of end-to-end stochastic performance
measures than in other approaches as in [7, 8, 9, 10] where the stochastic
information about the arrival and service processes are lost as soon as sta-
tistical envelopes are fixed.

4. Numerical Example

In this section, we illustrate the benefits of end-to-end stochastic network
calculus with effective bandwidth and effective capacity using the arrival
traffic modelled as Markov modulated on-off (MMOO) process, especially
we show that the end-to-end performance bounds computed using Theorem
3.1 and Corollary 3.1 are as good as the ones obtain using statistical envelopes
[8]. Markov modulated on-off process is commonly used to model voice [13]
and video traffic [14] in the Internet. Markov modulated on-off process can be
in ”‘On”’ state or ”‘Off”’ state for random time intervals which are negative
exponentially distributed with averages E[Ton] and E[Toff ], respectively. In
”‘On”’ state, arrival traffic transmits data at a constant rate P and no data is
transmitted in ”‘Off”’ state. The effective bandwidth of Markov modulated
on-off process has an interesting property that α(θ, t) ≤ α(θ) and for any
θ > 0 is given by

α(θ) =
1

2θ

(

Pθ − r10 − r01 +

√

(Pθ − r10 + r01)
2 + 4r10r01

)

(13)

where r10 =
1

E[Ton]
and r01 =

1
E[Toff ]

.

For the analysis we consider a network of H nodes connected in series
with cross traffic as shown in Fig. 2. The queue at each hop h is served in
a work conserving fashion at a constant deterministic service rate C. The
flow of interest is the one which traverses through the network of H nodes
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connected in series and is termed through flow A. The flow which transits
the network at each hop is termed cross flow Ach for h = 1, . . . , H . Let α and
αch be the effective bandwidth functions of the through flow A and the cross
flow Ach, respectively, for h = 1, . . . , H . Let there be N independent through
flows at the ingress of the network and Mh independent cross flows at each
hop h inside the network. The stability condition C ≥ Nα(θ) + Mhαch(θ)
must be satisfied at each hop h, for h = 1, . . . , H and any θ ≥ 0.

The simplified network considered in Fig. 2 can be seen as a section of
a larger network where the arrival traffic traverses. No assumption is made
about the topology of the larger network and can include both feedforward
and networks with feedback traffic. However, two main assumptions were
made about the considered network, firstly, stochastic information about the
cross flow at each network node along the path of through flow is assumed
to be known. Secondly, the traffic flow is assumed to follow the same path,
i.e., routing is assumed to be fixed for the entire duration of its transmission.

To simplify the analysis, we assume all the cross flows have similar charac-
teristics i.e., Ac1 ≡ Ac2 ≡ · · · ≡ AcH ≡ Ac

5 and M1 = M2 = · · · = MH = M .
The service available to the N through flows at hop h can be character-
ized using leftover stochastic service process Sh(t) = S(t) = Ct − MAc(t)
with effective capacity function βh(θ) = β(θ) = C − Mαc(θ) under gen-
eral scheduling model [2] for h = 1, . . . , H and any t, θ ≥ 0. We evaluate the
larger time interval [0,∞] instead of [0, t] to compute end-to-end, closed-form
performance measures using Theorem 3.1 and Corollary 3.1. The backlog x

and delay d bounds which are violated at most with probability ε can be
computed from equations (5) and (6), for any t ≥ 0 and θ > 0, as

x ≥ −
H(H + 1)

θ
log

(

1− e−θ(C−Nα(θ)−Mαc(θ))
)

−
H + 1

θ
log ε (14)

d ≥ −
H(H + 1)

θα(θ)
log

(

1− e−θ(C−Nα(θ)−Mαc(θ))
)

−
H + 1

θα(θ)
log ε (15)

For the case where arrival traffic and service offered at each network node are
independent of one another, only feedforword network can be considered, and
the backlog x and delay d bounds which are violated at most with probability

5For any two random variables X and Y , X ≡ Y denotes that X and Y have the same
distribution (the same cumulative distribution function (CDF))
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Figure 3: End-to-end delay bound with violation probability ε = 10−9 for Markov modu-
lated on-off traffic in a network of increasing number of nodes H with N = 781 through
flows and M = 1953 cross flows at each hop

ε can be computed, for any t ≥ 0 and θ > 0, from equations (11) and (12)

x ≥ −
H

θ
log

(

1− e−θ(C−Nα(θ)−Mαc(θ))
)

−
log ε

θ
(16)

d ≥ −
H

θα(θ)
log

(

1− e−θ(C−Nα(θ)−Mαc(θ))
)

−
log ε

θα(θ)
(17)

It is apparent from equations (16) and (17) that the end-to-end backlog and
delay bounds for MMOO traffic model using Corollary 3.1 grows linearly in
the number of nodes H a flow traverses in a network, under the assumption of
independence. For the numerical experiment, we compute the end-to-end
delay and backlog bound for N through flows in the network with a violation
probability ε = 10−9. The capacity of the server C at each hop is set to
100Mbps. To simplify the numerical analysis, all arrival traffic at each node
in the network is assumed to be Markov modulated on-off process (MMOO)
with similar characteristics, i.e., A ≡ Ac. However, through flows and cross
flows can be of different traffic types and will have no influence on the analysis
as long as effective bandwidth functions for the considered arrival traffic
exists. For each Markov modulated on-off process, we choose the following
values which are typically used to model voice flows [13]: P = 64Kbps,
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Figure 4: End-to-end statistical delay bounds for Markov modulated on-off traffic in a
network of H nodes with violation probability ε = 10−9
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Figure 5: End-to-end backlog bound with violation probability ε = 10−9 for Markov
modulated on-off traffic in a network of increasing number of nodes H with N = 781
through flows and M = 1953 cross flows at each hop
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Figure 6: End-to-end statistical backlog bounds for Markov modulated on-off traffic in a
network of H nodes with violation probability ε = 10−9

E[Ton] = 0.4s and E[Toff ] = 0.6s. The average arrival rate (m) of the
Markov modulated on-off traffic using the given parameters is 25.6Kbps.

In Figs. 3 and 4, the end-to-end delay bound computed using statistical
envelope definitions from [8] and delay bound from equation (15) are plot-
ted. In Figs. 5 and 6, we plot the end-to-end backlog bound computed using
statistical envelope definitions from [8] and backlog bound from equation
(14). Fig. 3 and Fig. 5 shows the probabilistic end-to-end delay and backlog
bound with a violation probability (ε) of 10−9 as a function of increasing
number of hops H . At each hop, N = 781 through flows are multiplexed
with M = 1953 independent cross flows. In Fig. 4 and Fig. 6, we plot the
probabilistic end-to-end delay and backlog bounds for N through flows in a
network with H = 1, 2, 5, 10 hops for increasing N +M number of flows at
each hop while maintaining N = M . It can be observed that the delay and
backlog bounds from equations (15) and (14), respectively, yield a tighter
bounds than the ones computed using statistical envelopes [8]. The tighter
bounds are achieved using the new approach as the stochastic information
about the arrival and service processes are retained as long as possible using
the concept of effective bandwidth and effective capacity, respectively, which
allows the efficient computation of end-to-end stochastic delay and backlog
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Figure 7: Impact of cross flows on the delay bound of through flows

bonds than in other approaches as in [7, 8, 9, 10] where the stochastic infor-
mation about the arrival and service processes are lost as soon as statistical
envelopes are fixed. Fig. 7 shows the impact of cross flows on the delay bound
for the through flows at single node. The number of through flows (N) is
set at 781, to determine the delay bound for through flows as the number of
cross flows (M) is increased from 781 to 1950. It can be observed from the
Fig. 7 that the use of effective bandwidth and effective capacity functions of
arrival and service processes, respectively, allows to capture additional sta-
tistical multiplexing gain amongst independent cross traffic in comparison to
use of statistical envelopes. This has a direct influence on the delay bounds
for through flows at a network node as we modelled the service available to
the through flows from the left over service after serving the cross flows in
the network node.

5. Conclusion

We presented an end-to-end stochastic network calculus with effective
bandwidth and effective capacity functions. We then showed that such a
formulation of network calculus results in end-to-end performance measures
that grow linearly in the number of nodes traversed by the arrival traffic,
under the assumption of independence. Further we showed using numerical
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example with Markov modulated on-off arrivals traffic that the end-to-end
delay and backlog bound computed using the presented stochastic network
calculus are tighter than the bounds obtained using statistical envelopes.
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