BitTorrent-like P2P Approaches for VoD:
A Comparative Study

Lucia D’Acunto, Nitin Chiluka, Tamds Vink4!, Henk Sips

Faculty of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology, Mekelweg 4, Delft 2628CD, The Netherlands

Abstract

The enormous popularity of Video on Demand (VoD) has attracted substan-
tial research attention into the effective use of peer-to-peer (P2P) architec-
tures to provide solutions at large-scale. In particular, the high efficiency of
BitTorrent has inspired many P2P protocols for VoD. However, these proto-
cols use different approaches to adapt the design of Bittorrent to VoD, and
in most cases their performance has been evaluated separately and in lim-
ited scenarios. As a consequence, the research community still lacks a clear
understanding of how these protocols compare against each other and how
well each of them would work in real world conditions, where, for instance,
peers have heterogeneous bandwidths, may freeride or may be located behind
NAT /firewall.

In this paper, we propose a simulation based methodology which aims
at putting forward a common base for comparing the performance of these
different protocols under a wide range of conditions. We show that, despite
their considerable differences, (i) existing BitTorrent-like VoD approaches all
share some characteristics, such as that their bandwidth reciprocity based
methods to incentivize cooperation do not always yield an optimal over-
all performance. Furthermore, we demonstrate that (ii) in these protocols
there is a trade-off between QoS and resilience to freeriding and malicious
attacks. We also discover that, (iii) when peers doing streaming coexist with
peers doing traditional file transfer, the latter actually benefit from this co-
existence, at the expenses of the former. Finally, we show that (iv) early
departures of peers from the system do not significantly affect the QoS de-

!Permanent address: Institute of Informatics, University of Szeged, Hungary

Preprint submitted to Computer Networks December 29, 2012

livered, while jumping to a different position in the file has a bigger negative
impact. Overall, our findings provide important implications for both VoD
service providers and future system designers. On the one hand, our results
can guide VoD service providers in selecting the most appropriate protocol
for a given environment. On the other hand, exposing the flaws of current
approaches will help researchers in improving them and/or designing better
ones.

Keywords: Peer-to-Peer, Video-on-Demand, BitTorrent

1. Introduction

In recent years, significant research effort has focused on the effective use
of a peer-to-peer (P2P) architecture to provide large-scale video-on-demand
(VoD) services [18, 2, 8, 13, 41]. Current major VoD services like YouTube,
Hulu and NetFlix, which supply hundreds of thousands of videos to millions
of users everyday, make massive use of central servers for content provi-
sioning. However, a P2P-based approach, with its natural scalability, could
drastically cut the costs of VoD service providers. It has been demonstrated
that, for instance, the MSN video server load can be reduced by roughly 95%
through the use of a P2P-based approach [17]. Furthermore, non-profit orga-
nizations like Wikipedia?, that cannot afford deploying the necessary servers
to provide large-scale on-demand media services, would greatly benefit from
such an approach [3].

Despite the potential benefits, providing on-demand services using a P2P
approach is also a challenging task. In fact, similar to live P2P streaming sys-
tems, some quality-of-service (QoS) requirements have to be fulfilled, namely
providing users with a high playback continuity and a short startup delay.
However, the data access pattern in the two cases is different. In live stream-
ing, peers have a shared temporal content focus, meaning that their playback
positions are similar, while in the VoD case nodes might request videos at
different times, and thus their playback positions would differ greatly.

Many of the early P2P systems were built to efficiently distribute large
files among the participating users. Therefore, trying to adapt the designs of
these systems to the streaming case came as a natural choice. In particular

2recently, Wikipedia has started a partnership with European project P2P-Next to
provide videos and audio files on their pages with the help of a P2P infrastructure [27].

BitTorrent, which has been shown to make nearly optimal use of peers’ up-
load bandwidth [4], has inspired many P2P protocols for VoD [8, 39, 33, 32,
25, 7]. In the context of traditional file transfer, BitTorrent achieves a high
utilization of peers’ upload bandwidth by means of a smart piece retrieval
mechanism and strong incentives for cooperation®. The piece retrieval mecha-
nism is based on a local rarest-first rule, where each peer prefers to download
the pieces that are the rarest among its neighbors. Cooperation is incen-
tivized by using a direct bandwidth reciprocity mechanism: peers select for
uploading those peers that have uploaded to them at the highest rates in the
past. However, BitTorrent was not designed for streaming and adapting its
design to VoD poses two conflicting goals: (i) satisfying the fundamental QoS
requirements for streaming, while (ii) still maintaining the high efficiency of
the original BitTorrent protocol.

To date, a number of protocols has been proposed which tackle the prob-
lem by adapting to the VoD case the components of BitTorrent commonly
acknowledged for its high efficiency: piece selection and peer selection. In
particular, greater attention has been paid to piece selection, as the use of
local rarest-first would result in long startup delays [28]. The piece selec-
tion policies for VoD proposed in literature can be broadly classified into:
window-based, probabilistic, and priority-based. Window-based policies work
by defining a sliding window, just ahead the playback position, within which
pieces are downloaded, generally according to a local rarest-first rule. With
probabilistic policies, pieces are downloaded according to some probability
function, which normally is biased towards the first piece not yet downloaded.
Finally, priority-based policies give priority to pieces which are close to being
played. For what concerns peer selection, most VoD proposals [8, 39, 32, 7]
maintain the default BitTorrent’s policy, based on direct reciprocity. On the
other hand, Mol et al. [25] argue that this policy is not the best fit for VoD
applications, as it may be difficult for peers with lower level of progress re-
ciprocate peers with higher level of progress. To remedy that, they propose a
new peer selection policy based on indirect reciprocity, in which peers prefer
uploading to other nodes that have forwarded pieces to others at the highest
rate in the past.

3In contrast, the P2P protocols used by most commercial systems like PPStream and
UUSee do not provide incentives for cooperation. Hence, users can just limit their upload
contribution to the system or not contribute at all. This has caused these commercial
systems to overprovision their network with a large number of servers [40].

However, all these approaches have been evaluated under different and
limited scenarios. Hence, some methods might perform better than others
under a certain set of conditions and worse under another. Furthermore,
it is unclear how well each of them would work in real world conditions,
where, for instance, peers have heterogeneous bandwidths and may reside
behind a NAT or a firewall. Similarly, it is still unknown to what extent each
approach really maintains the original BitTorrent’s incentives for cooperation
and whether it is as secure against malicious attacks. Exposing the pros and
cons of each approach can guide in selecting the most appropriate protocol to
use in a given environment. Likewise, understanding the behavior of different
BitTorrent-like VoD protocols will help researchers and system designers in
improving current approaches and/or designing better ones.

In this paper, we take a first step towards answering these questions.
We study and compare different peer selection and piece selection policies
used by the BitTorrent-like VoD approaches proposed so far, under a wide
range of conditions reflecting real world scenarios. Our analysis presents new
insights into the impact of unconnectable and heterogeneous nodes, different
malicious behaviors, coexistence with nodes doing traditional file-transfer
and typical users” watching behaviors.

Specifically, we make the following contributions:

1. We propose a simulation based methodology which aims at putting
forward a common base for comparing the performance of different
BitTorrent-like P2P protocols for VoD under a wide range of conditions
(Section 5);

2. We find out that, in general, a trade-off exists between QoS and freerid-
ing resilience and between QoS and security (i.e. a more QoS ori-
ented design is more susceptible to freeriding and /or malicious attacks);
moreover, we identify a number of ways in which malicious peers can
undermine the performance of the system (Sections 6-7);

3. We discover that the current approaches to incentivize cooperation re-
sult in overall bad performance when peers have heterogeneous band-
widths or are unconnectable (i.e. behind a firewall or NAT) (Sections
8-9);

4. We show that the coexistence of nodes doing streaming and nodes
doing traditional file transfer is disadvantageous for the former and
advantageous for the latter (Section 10);

5. Furthermore, we consider the impact of typical watching behaviors of

P2PVoD systems’ users and we show that peers departing early do not
influence much the delivered QoS, while peers jumping to a different
position in the file can have a bad influence for the probabilistic and
window-based policies (Section 11);

6. Finally, we discuss the implications of our findings for future system
designs and for VoD service providers (Section 12).

2. Related Work and Motivation

Previous works on P2P VoD systems mostly focused on studying and
improving their performance, under the assumption that every peer would
donate all its upload capacity and could communicate with every other peer
in the system. Early studies [17, 28, 14|, for example, show that, under
this assumption on the nodes, the P2P approach is potentially effective in
distributing on-demand content and providing users with good QoS. On the
same line of work, Yang et al. [41] focus on the load balancing problem among
P2P nodes as well as on the efficient scheduling of piece requests in order to
further enhance QoS.

However, we note that these previous efforts do not take into account some
important factors that can drastically reduce the performance and scalability
of P2P systems. The first of these factors is user contribution. It has been
argued that peers will not contribute their resources (namely files and upload
bandwidth) unless they are given an incentive to do so. A study conducted
on the Gnutella P2P system [1] seems to confirm this hypothesis, as it reports
that a high percentage (> 70%) of users freeride (at the time, Gnutella did
not provide any incentives for users to contribute). On the other hand, it has
been shown that in BitTorrent, which has an embedded incentive mechanism,
only 10% of the users freeride [43]. BitTorrent also makes nearly optimal
use of peers’ upload bandwidth [4]. Therefore, it is no surprise that it has
attracted a lot of research in the past decade, and many recent works on P2P
VoD have been inspired by its design [8, 39, 33, 32, 25, 7]. Closely related to
users’ willingness to contribute is the problem of malicious attacks, which has
also been mostly ignored in previous research on P2P VoD. However, systems
that are not robust against attacks might suffer from overall performance
degradation and fail in providing good QoS to their users.

Another important aspect that received little attention in P2P streaming
literature is the heterogeneity of P2P nodes. Part of this heterogeneity is

intrinsically related to users’ Internet access means, which may result in dif-
ferent bandwidth capacities as well as reduced connectability of some nodes
(hosts residing behind a firewall or a NAT, for example, cannot receive in-
bound connections, unless the firewall/NAT is configured to do so). In open
systems there is also another kind of heterogeneity related to the protocol
used. In the BitTorrent ecosystem, for example, it is not uncommon to have
some nodes performing traditional file transfer, while some others are re-
questing the same file in streaming mode (nowadays, the streaming function-
ality is supported by many BitTorrent clients, such as BitTorrentDNA [6],
pTorrent [37], and Tribler [36]).

To the best of our knowledge, there is only one previous work that rec-
ognized the importance of some of the aforementioned aspects for VoD sys-
tems [34]. In particular, the authors focus on incentives and peer uncon-
nectability. To incentivize users to contribute, they propose the setup of a
special infrastructure to keep track of individual peer contribution. For what
concerns unconnectable nodes, they introduce an approach to make these
peers discoverable by connectable ones. However, we will show in Section 9
that, already when the fraction of unconnectable nodes is a mere 30%, this
is not enough to solve the problem.

The study presented here is different and complementary to these previous
efforts in that it aims at understanding to what extent a P2P approach
is suitable for VoD, when the aforementioned factors come into play. In
particular, we consider a BitTorrent-based approach, due to BitTorrent’s
characteristics of having built-in incentives for user contribution and efficient
peers’ upload bandwidth usage.

3. Background on BitTorrent

BitTorrent is a widely popular P2P protocol for content distribution. In
BitTorrent, files are split into pieces, allowing peers which are still download-
ing content to serve the pieces they already have to others. Corresponding to
each file available for download, there is a central component called tracker
that keeps track of the nodes currently in the system. When a new peer
joins, it contacts the tracker to obtain a list of a random subset of these
nodes. Some implementations of the BitTorrent protocol also make use of
a DHT (which was not part of the original design), next to the tracker, to
enhance peer discovery.

Each node then establishes persistent connections with a large set of peers
(typically between 40 and 80), called its neighborhood, and uploads data to a
subset of this neighborhood. More specifically, each peer equally divides its
upload capacity into a number of upload slots. There are two types of upload
slots: regular unchoke slots and optimistic unchoke slots. Regular unchoke
slots are assigned according to a strategy based on direct reciprocity: peers
prefer other nodes that have recently provided data to them at the highest
speeds. Each peer re-evaluates the allocation of its regular unchoke slots
every unchoke interval ¢ (generally 10 seconds). Different from the regular
unchoke slots, the optimistic unchoke ones are assigned to randomly selected
nodes. Also, their allocation is re-evaluated every optimistic unchoke interval,
which is generally set to 30. Optimistic unchoke slots serve the purposes of
(i) having peers discover new, potentially faster, nodes to unchoke so as to
be reciprocated, and (ii) bootstrapping newcomers (i.e. peers with no pieces
yet) in the system.

Each peer maintains its neighborhood informed about the pieces it owns.
The information received from its neighborhood is used to request pieces of
the file according to the Local Rarest First policy. This policy determines
that each peer requests the pieces that are the rarest among its neighbors.
The emergent effect of this policy is that less-available pieces get replicated
fast among peers and each peer obtains first the pieces that are most likely
to interest its neighbors [20].

4. Protocol Policies for BitTorrent-like VoD

In this section, we give an overview of the piece selection and peer selec-
tion policies used in the BitTorrent-like VoD protocols we consider.

4.1. Piece Selection Policies

A piece selection policy determines the next piece of the video file a
peer selects for download. The piece selection policies for VoD proposed in
literature try to find a trade-off between in-order download (necessary for
QoS) and high bartering opportunities among peers (to ensure an efficient
peer bandwidth utilization). In order to do so, they are all equipped with
a sequentiality parameter, which can be tuned prior to deployment to favor
one aspect or the other. In this work, we consider three categories of piece
selection policies: 1) window-based 2) probabilistic, and 3) priority-based, as
described below.

4.1.1. Window-based piece selection (WIN)

Window-based solutions typically employ a sliding window within which
pieces are chosen [33]. The window advances from the beginning to the
end of the file according to the sequential download progress at the local
peer. Normally, the window starts at the first piece not yet downloaded.
Within the window, rarest-first piece selection is often applied. Naturally, a
smaller window ensures close to sequential piece retrieval, but reduces piece
diversity and, hence, bartering opportunities among peers. On the other
hand, a larger window allows for higher bartering opportunities among peers
but increases users’s startup delays and their chance of downloading pieces
before their playback is due. The size (in pieces) of the window represents
the sequentiality parameter of this piece selection policy and we denote it
with w.

4.1.2. Probabilistic piece selection (PROB)

In probabilistic piece selection, pieces are chosen in relation to some prob-
ability distribution, generally with a bias towards the first pieces not yet
downloaded. In this work, we consider the policy proposed in [9], where a
Zipf probability distribution is used. Specifically, the probability that a peer
a selects to download a piece k is proportional to (k + 1 — k)% where kg
is the index of the first piece peer a has not yet downloaded. Similar to the
window size w for the window-based policy, 6 represents the sequentiality
parameter of this piece selection policy and can be tuned to provide close to
sequential piece retrieval, but low bartering opportunities among peers (large
0), and vice versa (small 0).

4.1.8. Priority-based piece selection (PRIO)

With priority-based approaches, priority is given to pieces which are close
to be played. We use the method presented in [25], where a peer, whose
current playback position is p, will request a piece ¢ on the first match in the
following list of sets of pieces (known as priority sets):

e high priority: p <17 < p+ h: in-order piece selection if the local peer
has already started playback, rarest first otherwise;

e mid priority: p+ h < i < p+ bh: with rarest first piece selection;

e low priority: p+ bh < 1: with rarest first piece selection.

In these definitions, h denotes the size (in pieces) of the high priority set and
represents the sequentiality parameter of this piece selection policy. Similarly
to the previous policies, the parameter h can be tuned to give more emphasis
to sequential piece retrieval (large h) or high bartering opportunities among
peers (small h).

4.2. Peer Selection Policies

A peer selection policy determines how a node selects another node to
upload data to. In BitTorrent-like systems, the peer selection policy has the
task of incentivizing peer cooperation, and therefore it is usually designed to
favor good uploaders. In this work, we will consider two policies, based on
direct reciprocity and indirect reciprocity, respectively.

4.2.1. Direct Reciprocity

When a node uses peer selection based on direct reciprocity, it will upload
to other nodes that have recently uploaded to it at the highest rates. As
mentioned in Section 3, this is the standard peer selection policy employed
in BitTorrent.

Direct reciprocity is easy to implement: each peer takes its decisions
based only on the information locally available (i.e. the measured upload
rates of other nodes) and no long-term memory is required (normally peers
re-evaluate the upload rates of other nodes every 10 seconds). Many studies
show that it works successfully in the context of traditional file transfer [43,
19, 20]. However, it has been argued that in P2P VoD systems, due to the
somewhat in-order download progress of peers, it is more difficult for peers
with lower degrees of progress to reciprocate peers with higher degrees of
progress [25]. Consequently, it would be more difficult for a peer to detect
whether another peer is freeriding or simply has no interesting piece to barter
for.

4.2.2. Indirect Reciprocity

When a node uses peer selection based on indirect reciprocity, it will
upload to other nodes that have recently forwarded data to others at the
highest rates. In this work, we use the method introduced in the give-to-get
(G2G) protocol [25]. In G2G, a peer a discovers the forwarding rate of a child
node b by periodically asking its grandchildren about the pieces received from
b. Note that the child b is not asked directly as it could make false claims.
This process is depicted in Figure 1.

—> video data

---+> feedback

Figure 1: Data flow and feedback flow for indirect reciprocity.

Indirect reciprocity is intuitively more suitable to a VoD scenario, since it
does not necessarily require nodes with lower levels of progress to reciprocate
nodes with higher levels of progress. However, since each peer needs to gather
information from other nodes, it is more costly to implement (especially in
presence of NATs and firewalls) and is potentially more vulnerable to various
types of attacks, as we will show in Section 7.

5. Methodology

In this section, we describe the approach we use to compare and study
different VoD protocols. First, we introduce some of the terms we will employ
in our analysis, as well as the model of the system we consider. Then, we
illustrate in detail the experimental setup for our analysis and how we tuned
the sequentiality parameters of the piece selection policy considered.

5.1. Definitions

In this subsection we introduce the most important definitions which are
used throughout the whole paper. The first three definitions are related to
user behavior, which are followed by definitions closer to the system level.

A peer whose upload capacity is set to 0 is called a freerider. A freerider
follows the specific protocol in all aspects. Freeriders generally correspond to
users who configure their network access in order not to share their upload
capacity. The behavior of freeriders is termed as freeriding. A malicious
peer does not follow (some of) the rules of the specific protocol. Finally,
an honest peer follows all the rules of the specific protocol and has upload
capacity larger than 0. Honest peers do not try to manipulate the protocol
and, whenever possible, share all their upload capacity.

An unconnectable peer does not possess a globally reachable address. Usu-
ally, this happens when the peer resides behind a NAT or a Firewall which
is not configured to accept incoming connections. A missed piece is a piece
whose download cannot be completed before the time it is due to be played.
A peer a is said to be interested in another peer b when a possesses a piece

that b does not and has not missed. Similarly, a is said to be interesting for
b.

5.2. System Model

We consider a system where the participating peers can retrieve the
stream of a particular video file, of playback rate R and size F, which is
split into n pieces of identical size. Fach peer maintains on disk a copy of all
the pieces it has ever downloaded, so that it can serve them to others. The
system is assumed to be in steady state*, with peers joining at a constant
rate A. Peers have an average upload capacity denoted by p and, for the
purpose of the analysis, we assume that their download capacity is not a
bottleneck and can be considered to be infinite. In addition to the peers,
the system contains a number of servers (or seeders) which contribute an
aggregate (constant) upload capacity of Us. Based on the watching behavior
observed in recent measurement studies of P2PVoD systems [22], we assume
that users play the video sequentially from the beginning. Furthermore, we
assume that peers leave as soon as their download is complete and, at any
point in time, there is no other peer is seeding the content of the video file
besides the servers. Although this scenario may not be realistic in practice,
minimizing the bandwidth supplied to the peers will make the distinction
between the performance of various policies more visible.

Given the above notation, it is easy to see that the expected download
speed u of a peer in steady state is

U,
N

u=—==+u, (1)
where N is the number of peers in the system. From Little’s Law it follows
that

N = \m, (2)

4a system is said to be in steady state when, although peers might join and leave, the
total number of peers remains constant over time.

where m is the average residence time of peers in the system.

Based on this observation, it is clear that, if the server bandwidth U,
is constant, the average download speed u of peers in a system with a low
workload (i.e. low arrival rate or short residence time) is larger than in a
system with a high workload (high arrival rate or long residence time). This
would lead to an unfair comparison among scenarios characterized by differ-
ent workloads, e.g. peers in scenarios with low arrival rates would achieve
faster download speeds and, consequently, better QoS, than peers in sce-
narios with higher arrival rates. To make the comparison fair, the server
bandwidth U needs to be dimensioned to the system workload such that,
in all scenarios, peers reach a certain desired steady state download speed
denoted with u* and therefore

Us = (u* — p) dm,

where this formula is obtained by combining Eqs. (1) and (2). For the system
to be able to provide a good QoS, it is necessary to have u* > R. In partic-
ular, the closer u* is to R, the lower the server bandwidth. If we express u*
as a function of R as follows

u* =R, with v > 1
then the required server bandwidth Uy can be calculated as

In the particular case where peers leave as soon as their download is com-
plete, their average residence time in the system, m, equals to the expected
download time of the entire video file, i.e. m = F/u*. Then Eq. (3) can be

rewritten as
0
U;,=|1—-—=]\F. 4
(7R> @

In this way, once the characteristics of the system are known, the VoD service
provider only needs to set a value for the v parameter that suits the needs
of the system.

5.3. FExperimental Setup

We compare the performance of different schemes of peer and piece se-
lection policies by means of simulations within a wide range of aspects and
scenarios representative of the real world. Our simulation approach is de-
scribed below.

5.8.1. Simulation Environment

For this purpose, we have extended the BitTorrent simulator designed
by Microsoft Research [4], in order to support VoD. This is a very detailed
simulator, where all the elements of a BitTorrent system are modelled with
great accuracy, from the creation of the overlay to the exchange of piece
between peers. The overlay is created by means of a tracker module op-
erating in the classical BitTorrent fashion outlined in Section 3: when it
is contacted, the tracker returns a list of random nodes to the requesting
peer. Although the end-to-end delay is not modelled in this simulator, we
believe that this simplification does not have significant impact on our re-
sults due to following reasons. First, the end-to-end delay is usually an order
of magnitude or two smaller than the time required to download a piece,
the basic unit of data transfer. A measurement study [44] shows that over
90% of all pairs of PlanetLab and King dataset [46] hosts have round-trip
latency of less than 200 ms and 300 ms respectively. Another study [45]
shows that nearly 80% of all pairs of Gnutella peers have round-trip la-
tency of less than 280 ms. In comparison, the time required by one peer
to download a piece of 256 KiB from another peer whose upload rate to
the former is 200kbps (which is the typical scenario in our paper) is over
10 seconds. Second, BitTorrent’s pipelining mechanism [10] masks much of
the control traffic latency in practice. Furthermore, the simulator does not
model packet-level dynamics of TCP connections but rather it assumes that
the connections traversing a link share the link bandwidth equally, with the
share of each connection fluctuating as the number of connections varies. Al-
though this simplification means that “T'CP anomalies” (e.g. timeouts) are
not modeled, the occurrence of these anomalies would impact all the policies
considered in an equal measure and, hence, would not affect the relations
between them (i.e. if a policy performs better than another when we do not
consider TCP anomalies, it will still be so when we consider them). Due to
its great level of accuracy in reproducing the behavior of BitTorrent systems,
this simulator has been widely used, also for simulating BitTorrent-like VoD
protocols [7, 11, 41]. Next to all the elements of the original BitTorrent pro-
tocol, our extension also supports all the piece selection policies presented
in Section 4.1 and allows for the system to either adopt direct reciprocity
or indirect reciprocity as peer selection policies. We have made our exten-
sion available at http://www.pds.ewi.tudelft.nl/dacunto/research for
those interested in continuing this research.

The settings for our simulations are shown in Table 1. In this setup, we
assume that the peer upload capacity p equals to 1000kb/s and consequently
we set the video playback rate R to a value just below that, 800kb/s, in order
to avoid that peers experience a bad playback continuity due to bandwidth
contention. This video playback rate is within the typical range of P2P VoD
systems [16]. In general, to guarantee a high QoS, VoD service providers
should stream videos at a playback rate that can be sustained by the aver-
age peer upload bandwidth. For the video duration, we choose 50min, as
this represents a common value for the video streamed in commercial sys-
tems [18, 22, 42]. For what concerns the piece size, usually a smaller piece size
determines a faster propagation of pieces among peers in the system. How-
ever, as noted in [32], a small piece size also increases the communication
overhead (because more piece requests and announces of piece received have
to be sent out). Many BitTorrent clients (e.g. Azureus and Transmission)
recommend a piece size of 250k B for files of size in the range of 300—700M B,
and therefore we adopt this value here. For the computation of the server
bandwidth U, we use v = 1.3, in order to compensate for fluctuations in
download speeds and to account for the fact that downloaders are not al-
ways able to upload at their full capacities. To decide when playback can
safely commence, we use the strategy introduced in [8]. Specifically, a peer
will start playback only when it has obtained all the pieces in an initial buffer
of size B and its current sequential progress® is such that, if maintained, the
download of the file will be completed before playback ends. The buffer
size B is equal to w or h for the window-based and the priority-based piece
selection policies, respectively, and is set to 20 pieces for the probabilistic
one.

5.8.2. Aspects affecting the performance of P2PVoD systems
In this work, we consider the influence of six main aspects, typical of

today’s internet and user behavior as pictured in Figure 2, on the performance
of a P2PVoD systems:

1. freeriding
2. malicious attacks

Sa peer’s sequential progress is the speed at which the index of the first piece in the
file not yet downloaded grows and it represents the rate at which a continuous stream
is received [28]. It should not be confused with the sequentiality parameter (defined in
Section 4.1) that characterizes each piece selection policy.

Table 1: Simulation Settings

Parameter Value

Video playback rate R 800 kb/s

Video length L 50 min

Simulation time between 250 and 750 min (5L and 15L)
Piece size Pg 256 kB

Initial buffer B
Upload rate p

20 pieces (PROB) / w (WIN) / h (PRIO)
1000 kb/s (1.25R)

malicious
attacks

freeriding

unconnectable
nodes

heterogeneous
bandwidths

watching
behavior

Vs
file-transfer

Figure 2: Aspects affecting the performance of P2PVoD systems.

heterogeneous peer bandwidths

presence of unconnectable nodes

cohexistance of peers doing VoD with peers doing traditional file-transfer
watching behavior

AR ANl

As we have observed in Section 2, the lack of user contribution is one of
the crucial aspects that can affect the performance of P2PVoD systems. In
this work, we consider two ways in which users can avoid to contribute: by
means of freeriding and by means of malicious attacks. Furthermore, we ac-
count for the heterogeneity of peer bandwidths, and the fact that some nodes
reside behind NATSs or firewalls. In addition, we examine how the coexis-
tence of peers doing VoD with peers doing traditional file-transfer affects the

performance of either group of peers. Finally, we also explore some watching
patterns typical of the users of P2PVoD systems, such as jumping to a dif-
ferent part of the video or leave early, and evaluate their impact. In order to
be able to distinguish the influence of a specific aspect on the performance
of P2PVoD systems, we analyze the impact of each of them separately.

5.3.3. Performance Metrics
We analyze the performance of any combination of peer and piece selec-
tion policies using the following two metrics:

e continuity index, defined as the ratio of pieces received before their
deadline over the total number of pieces;

o startup delay, defined as the time a user has to wait before playback
starts.

Each simulation run is executed 15 times, and then average values and con-
fidence intervals (with confidence level of 95%) for the above metrics are
computed. The lower the arrival rate, the longer it takes for the system to
reach the steady state. Therefore, simulations times are longer for lower ar-
rival rates. Furthermore, for the results we have only considered the peers
who have joined after the first half of the simulation time and before the last
L minutes from the simulation end.

5.4. Tuning the Sequentiality Parameters for the Comparison

Recall from Section 4.1 that each piece selection policy for VoD is charac-
terized by a sequentiality parameter which allows one to give more emphasis
to sequential piece retrieval or to high bartering ability among peers. In order
to fairly compare these policies against each other, they need to be “tuned”
in such a way that they exhibit a similar level of sequentiality. To do so, we
have performed several experiments where each policy uses a wide range of
values for its sequentiality parameter. For these experiments, the fraction
of freeriders was set to 10%, as this represents a typical value in BitTorrent
systems [43] and peer arrival rates are as follows: A = (Ao, A1, Ao, A3) =
(0.005, 0.01, 0.05, 0.1) peers/s. The smaller values (0.005, 0.01) account for
the case of not very popular videos, which generate only little load in the
system, while the larger values account for the case of very popular video,
which thus generate higher load.

To find a common baseline, we use the following approach: we select the
sequentiality parameter for each piece selection policy such that the startup
delays experienced by honest peers within each of them are similar. We
first focus on the direct reciprocity case and then, based on it, we tune the
sequentiality parameters for the case of indirect reciprocity.

5.4.1. Direct Reciprocity
Given the setup introduced in Section 5.3, we have tested the following
values for the sequentiality parameters:

e w: from 10 to 60, with step 5 (this set is denoted by W);
e 0: from 1.5 to 4, with step 0.25 (this set is denoted by O);
e h: 10, to 60, with step 5 (this set is denoted by H).

As we can observe from Figure 3, the instances that produce short startup
delays generally determine low continuity index as well. This confirms that
a trade-off indeed exists between sequentiality and bartering ability among
peers (and thus between short startup delay and high continuity index).

To select our policy instances, we start from the window-based one. For
this policy, increasing the sequentiality parameter w means longer startup
delays but also higher continuity index (Figure 3 and Section 4.1). We select
the smallest sequentiality parameter w for which at most 10% of the hon-
est peers are experiencing a continuity index less than 0.95. This choice is
motivated by Habib et al. [15]: the user’s overall perceived video quality is
considered very good when the continuity index of a stream is not less than
0.95. This selection leads to w* = 40.

Then, we calculate the Euclidean distance between the startup delay val-
ues of this particular instance of the window-based policy and the startup
delay values of the other two policies. More specifically, having denoted with
DY = (DY, D¥", D¥", D¥") the vector containing the values for the startup
delays obtained with arrival rates A for the window-based policy character-
ized by w* = 40, and with D? = (D§, DY, Dy, D) and D" = (D}, D}, D!,
D) the startup delay vectors for the generic probabilistic and priority-based
policies, respectively, we find the vectors D’ and D" most similar to D*
as follows:

1.00
A
0.98 -
= A
go.ge— A B @ policy
= 094 LBl @ « | PRIO
2 AT °
5 A PROB
.E 0.92 U o
3 0.90-
0.88 - *

I I I I I I I
20 30 40 50 60 70 80

startup delay (s)

Figure 3: A scatter plot of startup delay vs continuity index for different piece selection
policy instances. Smaller points correspond to smaller values for the sequentiality param-
eters of each piece selection policy. Peer arrival rate is 0.005 peer/s and the remaining
simulation settings are as in Table 1.

3 3
w* % w* h
—renelél kz%D — DY) and —Enelg kz%D — D})

Note that technically this means that for all parameters from the sets ©
and H we take the magnitude of the four-dimensional vectors D’ and D"
and choose the one which has the most similar magnitude to that of D*".
Using this method, we obtain that the window-based policy characterized by
w* = 40 is mostly similar to the probabilistic and the priority-based policies
characterized by 6* = 2 and h* = 25, respectively. The Euclidian distances
for these and other values of the sequentiality parameters are shown in Ta-
ble 2. Figure 4 plots the startup delay and the continuity index for honest
peers when the three policies use these selected values for their sequential
parameters. Because we have used a discrete set of values for the sequen-
tiality parameters, we would like to evaluate how close to the ”optimal”
our solutions are. To do so, we have calculated, for both priority based and
probabilistic policies, the euclidian distance between the selected vectors and
those obtained by using the next higher and next lower value of the sequen-
tiality parameters. These results are reported in Table 3. As we can observe,
the distances of both D" and D" from their predecessors and successors

Table 2: Euclidian distances to D for different sequentiality parameters (direct reci-
procity)

Priority-based ‘ Probabilistic

h* =20 12s | 6 = 1.75 45s
h*=25 8 | 0" =2 15s
h* = 30 16s | 0" = 2.25 43s

Table 3: Euclidian distances to D" and D’ for different sequentiality parameters (direct
reciprocity)

Priority-based ‘ Probabilistic
h* =20 10s | 6% = 1.75 44s
h* = 30 125 | 0" = 2.25 40s

are quite similar, hence giving an idea that the values we found are very close
to the optimal.

5.4.2. Indirect Reciprocily

In the case of indirect reciprocity we have chosen, for each piece selection
policy, a value for the sequentiality parameter such that the startup delay of
honest peers is similar to that of the same policy in the case of direct reci-
procity. To evaluate similarity, we have used again the Euclidean distance.
This approach led to the following values: w* = 30, * = 2 and h* = 20,
which, as we can see in Figure 4, exhibit equal or slightly lower startup delays
than their respectives in the case of direct reciprocity.

The selected values for the sequentiality parameters for both indirect and
direct reciprocity are summarized in Table 4. Unless otherwise stated, we
will use these values in the remainder of this paper.

Table 4: Setups for the Sequentiality Parameters

Direct reciprocity Indirect reciprocity
h* 25 20
0* 2 2
w* 40 30

direct indirect

1.04
<
L 0.8+ policy
c
é 0.6- - PRIO
= e
g 0.4 - PROB
c -= WIN
S 0.2+
o

0.0 I I I I I I I I

0.005 0.01 0.05 0.1 0.005 0.01 0.05 0.1
peer arrival rate (peer/s)
direct indirect

60
& 50 .
% 404 policy
> -~ PRIO

30
= -+ PROB
é 20 -= WIN
S 10—
»

0 -

I I I I
0.005 0.01 0.5 0.1 0.005 0.01 0.05 0.1
peer arrival rate (peer/s)

Figure 4: Performance of honest peers with piece selection policies using the selected
sequentiality parameters (Table 4). The simulation settings are as in Table 1 and freeriders
are 10% of the population.

6. Freeriding Resilience

One of the key factors for the success of BitTorrent is its effective incentive
mechanism which induces peers to contribute bandwidth while downloading.
This has motivated researchers to apply the same design to the VoD case.
However, to the best of our knowledge, the research community still lacks
of a clear understanding of whether, once applied to VoD, this mechanism
yields to the same degree of freeriding resilience as the original BitTorrent
protocol. In order to verify that, in this section, we analyze the performance
of each combination of piece and peer selection policy as we vary the fractions
of freeriders. We will first analyze the case of direct reciprocity and then the
case of indirect reciprocity.

10% freeriders

20% freeriders

30% freeriders

1.0
0.8
0.6
0.4+
0.2
0.0+

B P—"

1Seuoy

1.0
0.8

continuity index

0.6
0.4
0.2

0.0+

Jopliaaly

[[[[
0.005 001 0.05 0.1
peer arrival rate (peer/s)

10% freeriders

20% freeriders

30% freeriders

1Seuoy

startup delay (s)

1oplioal)

1 1
0.005 0.01

1
0.1

I I I I
0.005 0.01 0.05 01
peer arrival rate (peer/s)

policy

- PRIO
-4 PROB
% WIN

policy

-+ PRIO
-4 PROB
-= WIN

Figure 5: Performance of honest and freeriding peers in a system using direct reciprocity
with different fractions of freeriders.

6.1. Direct reciprocity

Figure 5 plots the continuity index and startup delay for different frac-
tions of freeriders. As we can observe, when the fraction of freeriders is small
(10%), all the policies succeed in providing optimal playback continuity (con-

B
N b
| |

2

3]

S 10 Arrival rate (peer/s)
©

o 8- — 01
o

S 6 © 0.05
g, -~ 001
8 0.005
©

H*

[[
10 15 20 25 30
window size (pieces)

Figure 6: Expected number of bartering partners for the window-based piece selection
policy with different window size and peer arrival rate. Parameters are from Table 1.

tinuity index almost 1) to honest peers. However, as the fraction of freeriders
increases, their continuity index worsens, especially for lower arrival rates.
This can be explained as follows. When the arrival rate is low, newly joined
peers have a harder time in reciprocating older peers, because the latter have
a significantly higher level of progress. As a consequence, it is difficult for
an older peer p to distinguish between a freerider and a newly joined peer,
who, although willing to reciprocate, is not doing so because it does not have
any interesting piece for p. Intuitively, reducing the sequentiality of the piece
selection policy will increase the bartering ability of peers, thus improving
freeriding resilience. We have analyzed in more detail the relationship be-
tween sequentiality and number of bartering partners for different peer arrival
rates by means of mathematical analysis, for which we refer the reader to the
Appendix. Figure 6 demonstrates our analysis for the window-based piece
selection policy; with low arrival rate even high window size would result in
only a few bartering partners.

For what concerns the specific piece selection policies, the probabilistic
one performs the best, providing the highest continuity index for honest
peers, and relatively low continuity index for freeriders. The priority-based
policy, on the other hand, determines the worst continuity indexes for honest
peers. This is due to the fact that, different from the window-based and
probabilistic ones, in the priority-based policy, the download point is relative
to the current playback position, rather than the first piece not yet down-
loaded. Hence, there is a “less safe” distance between the download progress

10% freeriders

20% freeriders

30% freeriders

1.0
0.8
0.6
0.4+
0.2
0.0+

1Seuoy

1.0
0.8

continuity index

0.6
0.4
0.2

0.0+

Jopliaaly

[[[[
0.005 001 0.05 0.1
peer arrival rate (peer/s)

10% freeriders

20% freeriders

30% freeriders

1Seuoy

startup delay (s)

1oplioal)

I I I I
0.005 0.01 0.05 01
peer arrival rate (peer/s)

\ \
0.005 0.01 0.05 01

policy

-+~ PRIO
-4 PROB
-= - WIN

policy

-»- PRIO
-4 PROB
-= WIN

Figure 7: Performance of honest and freeriding peers in a system using indirect reciprocity
with different fractions of freeriders.

and the playback progress, which causes peers to miss pieces more frequently.
As future work, it might be interesting to see how this policy performs if its
download point is redefined to the first piece not yet downloaded, as for the
other policies.

Turning our attention to startup delay, we observe that, while for low
arrival rates the probabilistic policy provides the shortest startup delays to
honest peers, for higher arrival rates the window-based policy performs the
best. This is due to the fact that, with the probabilistic approach, peers
tend to download also pieces which are farther away. This will increase their
bartering ability when peer arrival rate is low but it will slow them down
when arrival rate is high. In fact, in the latter case, downloading pieces
farther away is unnecessary, since peers have considerably more chance to
meet peers with similar level of progress. Finally, we observe that in all
cases freeriders experience much longer startup delays when the probabilistic
policy is used, thus reducing their incentive to freeride even further.

6.2. Indirect reciprocity

Figure 7 shows the simulation results when using indirect reciprocity. We
observe that, in general, this policy provides better QoS to honest peers,
both in terms of continuity index and startup delay, than direct reciprocity.
At the same time, freeriders experience worse performance. We also observe
a lower negative influence of low arrival rates on honest peers. This is due
to the fact that peers are rewarded for forwarding, not for bartering. To
summarize, we can say that indirect reciprocity works better for VoD than
direct reciprocity, for what concerns freeriding resilience.

7. Resilience to Attacks

BitTorrent itself is susceptible to gaming strategies, collusion, and Sybil
attacks [23, 29, 21]. Hence, by extension, these attacks can also be performed
on BitTorrent-like VoD approaches. In this section, we explore further vul-
nerabilities of these approaches particularly in the context of VoD. We first
develop a better understanding of who s interested in whom in these ap-
proaches, and then discuss how malicious peers using this insight may for-
mulate strategic attacks that undermine the performance of the system.

7.1. Analyzing Interests

Regardless of the peer selection policy, a VoD-based piece selection policy
is based on somewhat in-order downloading of pieces. We hypothesize that
peers with lower download progress level typically depend on peers with
higher download progress level to upload pieces corresponding to the latter

. 100
—— higher progress
-+ lower progr —
801 ower progress 5 oo
12
o G 2
[} o 0
O 604 28 60
Q. o 2
= £
k= Z g_ DIRECT
=
o
8 4] 401 INDIRECT
<t 2
o} c <
] £S5
= 204 B E
$*
S E
2
[A o
1) 500 1000 1500 2000 PRIO PROB win
time line (s) piece selection policy
(a) (b)

Figure 8: Dependence of peers with higher progress. The peer arrival rate is set to 0.05
peer/s.

part of the file. Put another way, a peer is more often interested in peers
with higher progress than in those with lower progress.

To verify our hypothesis, we examine which peer is interested in what
other peers in the system. Specifically, we measure the number of peers with
higher and lower progress that are interesting to a peer at each instance in
time. Figure 8(a) illustrates an example of a peer employing probabilistic
piece selection policy and direct reciprocity-based peer selection policy. Dur-
ing its lifetime in the system, the number of peers with higher progress are
almost always more interesting than those with lower progress. This shows
the extent of dependence on peers with higher progress to meet the constraint
of playback continuity.

Figure 8(b) plots the percentage of peers with higher progress among all
the peers interesting to a peer, across all combinations of piece and peer
selection policies. We have used an arrival rate of 0.05peers/s, which is
the average value for popular content [31]; the results for other peer arrival
rates showed similar results. In each scenario, the majority of the peers
that are interesting to a peer have higher progress than itself, confirming
our hypothesis. This extent of dependence is more than 95% in the case
the window-based piece selection policy, compared to nearly 80% for the
probabilistic and less than 60% for the priority-based ones. This is because
the latter policies also download pieces that are further ahead in the file.

Another interpretation of this result is that the majority of peers that
are interested in a peer p have a lower progress than the peer p itself. This

direct indirect

1.0 &=—-8-rog
< >
L 0.8+ policy
c
'Z 0.6 - PRIO
2

e

g 0.4 - PROB
c -= WIN
€ 02 i
o

0.0 I I I I I I I I I I I I

0 0.1 03 05 0.7 09 0 0.1 03 05 07 0.9
fraction of vandals
direct indirect

1400
@ 1200+ .
Z 1000 - policy
© 800 -o- PRIO
o
o 600+ -4 PROB
£ 400+ = WIN
I
% 200

[[[[[[[[[
0 01 03 05 07 09 0 01 03 05 07 09
fraction of vandals

Figure 9: Impact of vandals. The peer arrival rate is set to 0.05 peer/s.

insight motivates malicious peers to throttle honest peers with lower progress
by keeping them choked and never uploading. In the remainder of the section,
we discuss variants of this strategy and their impact on the performance.

7.2. Vandalism

The main intent of vandals is to disrupt the system, even at the cost of
not benefiting themselves. Motivated by the above insight, such a vandal
acting individually uploads only to peers with higher progress than itself,
while choking the rest. Hence, this attack would work even if peers were to
use an accounting mechanism to keep track of the contributions of others,
while normal freeriders would easily be detected and neutralized.

Figure 9 shows that the average continuity index significantly degrades
as the fraction of vandals increases. Even when vandals comprise a mere
30% of all the peers in the system, the performance becomes substandard,

i.e., continuity index is less than 1. In particular, we observe that, among
peer selection policies, indirect reciprocity performs generally worse. This is
due to the fact that the principle behind this policy is having higher progress
peers forward to lower progress ones. Hence, it suffers more from attacks
aimed at disrupting this “down-forwarding” chain. For what concerns piece
selection policies, the probabilistic one performs better than the other two
in terms of continuity index. This is because peers using the former policy
also download pieces that are farther from the first missing piece, and hence
are lesser dependent on peers with marginally higher progress. With the
priority-based piece selection policy, a peer downloads pieces that are farther
from the first missing piece only if it is experiencing a good performance.
Furthermore, as already observed in Section 6, the fact that the high priority
range for the pieces to download is relative to the playback position causes
this policy to be more vulnerable to missing pieces. This explains its lower
continuity index.

Figure 9 also shows that the average startup delay increases as the fraction
of vandals increases. In contrast to continuity index finding, the probabilistic
piece selection policy performs worse than window-based and priority-based
ones in terms of startup delay. This shows that better playback continuity
comes at the expense of longer startup delay. To summarize, the result of
this experiment shows that, when more peers adopt the strategy of vandals,
it worsens the performance for all peers.

7.8. Collusion

We now describe an attack strategy by a group of malicious colluding
peers. Each malicious peer uploads to other malicious peers as well as hon-
est peers with higher progress compared to itself. At the same time, this
malicious peer chokes honest peers with a lower progress. This enforces an
honest peer to compete with malicious peers for the upload bandwidth of
honest peers with a higher progress.

Figure 10 plots the continuity index and the startup delay as we vary the
fraction of colluders. Both continuity index and startup delay for honest peers
worsen when colluders outnumber honest peers. In contrast, the performance
for colluders remains practically unaffected. Among peer selection policies,
indirect reciprocity based approaches for honest peers are more resilient to
this attack strategy in terms of continuity index. On the down side, it comes
at the cost of a longer startup delay. Among piece selection policies, window-
based approach performs the best in terms of startup delay while experiencing

direct indirect

1.0+
0.8+

0.6

1s8U0Y

0.4+
0.2+ policy
0.0- - PRIO
1.0+ -4 PROB
0.8 -= | WIN

continuity index

0.6
0.4+

snoioiew

0.2+

0.0+

T T
0 01 03 05 07 09 0 01 03 05 07 09
fraction of colluders

direct indirect

600 —
500
400 +
300
200
100

1s8U0Y

policy

-~ PRIO
-4~ PROB
-= WIN

35

startup delay (s)

30

25

snoioiew

20 e F o a0 \’:;_-tl"iu.__‘*'_.f_,:if,-,__-i

I I I I I I
0 0.1 0.3 0.5 0.7 0.9 0 0.1 0.3 0.5 0.7 0.9

fraction of colluders
Figure 10: Impact of collusion. The peer arrival rate is set to 0.05 peer/s.

comparable playback continuity.

There are two main implications of this result. First, if a client implement-
ing the strategy of colluders becomes very popular and its peers outnumber
those with a default implementation, the latter will experience a substandard
performance with continuity index less than 1 and a long startup delay. Sec-
ond, colluders can start the playback very soon and keep continually playing
without any stalling problems during the video, irrespective of the fraction

freeriding sybil attack

1.0+

0.8+
0.6

1s8U0Y

0.4+

0.2+
0.0- - PRIO
1.0 _ -4~ PROB
= - -= | WIN

0.8+ o - - &=

0.4+

continuity index

snoioiew

0.2+

0.0+

T T T
0.005 0.01 0.05 0.1 0.005 0.01 0.05 0.1
peer arrival rate (peer/s)

freeriding sybil attack

80
70
60
50
40
30

1s8U0Y

-~ PRIO
-4 PROB
-= WIN

80
70
60
50
40
30

startup delay (s)

snoioifew

I I I
0.005 0.01 0.05 0.1 0.005 0.01 0.05 0.1
peer arrival rate (peer/s)

Figure 11: Impact of Sybil attack. The fraction of malicious nodes is set to 0.1 and the
peer arrival rate to 0.05 peer/s.

of honest peers.

7.4. Sybil Attack to Indirect Reciprocity

In a system with the peer selection policy based on indirect reciprocity,
a peer uploads to those peers that have recently forwarded data to others
at the highest rates. To game the system, a malicious peer b first creates
Sybils ¢y, ..., ¢, which act as b’s children. Whenever b downloads a piece from

another peer a, each of b’s children ¢; immediately reports to a that b has
forwarded pieces to it at a fast rate. From a’s perspective, b becomes a fast
uploader and hence a keeps uploading to b in the future rounds. As a result,
the malicious peer b can keep downloading pieces without any incentive to
actually forward or upload any data to other peers; in other words, b is a
freerider. Since this is a “dominant strategy” for any peer, it results in a
“tragedy of commons” if each peer adopts this strategy.

To illustrate the impact of this attack, we compare the performance for
honest and malicious peers under the scenarios of freeriding and the pro-
posed sybil attack. Figure 11 plots the continuity index and startup delay
as we vary the peer arrival rate. We make the following observations. First,
the continuity index for malicious peers employing sybil attack strategy is
(i) comparable to that of honest peers and (ii) much better than that for
freeriders. Second, the startup delay for malicious peers under sybil attack is
(i) lower than that for honest peers and (ii) significantly lower compared to
freeriders. This shows that, even without uploading any data to others, ma-
licious peers have a similar performance to that of honest ones. This result
highlights the drawbacks of the indirect reciprocity-based approaches which
were not considered in [25].

8. Influence of Heterogeneous Peer Bandwidths

The peer selection policies considered in this paper are both based on
bandwidth reciprocity: i.e. a peer receives (roughly) as much bandwidth
as it provides to the system. In traditional file transfer, this mechanism
incentivizes peers to upload as much as they can, in order to get faster
downloads. A consequence of this approach is that faster uploaders will
download at faster rates and slower uploaders will download at slower rates.

In VoD however, we note that peers do not need to download as fast as
possible, but rather maintain a download speed high enough to experience
a continuous playback. In other words, a peer’s only interest is to maintain
a download speed above the video playback rate R. Hence, it is natural to
question this approach in the case of peers having heterogeneous bandwidths.

In this section, we investigate the performance of reciprocity-based peer
selection mechanisms in VoD systems where peers have heterogeneous band-
widths. We consider a scenario where 50% of the peers have a high upload
capacity and the other 50% have a slow upload capacity. Although the band-
widths of fast and slow nodes, py and p, respectively, are different in each

Table 5: Setups for the heterogeneous scenario.
setup pr/R o ps/R

Homogeneous 1.25 1.25
Mild heterogeneity 1.625 0.875
High heterogeneity 2 0.5

direct indirect

10 - = ™ —— T — - —

0.84

0.6 =

i

0.4+
P
é 0.2+ policy
>, 0.0+ - PRIO
'S5 1.0 -4 PROB
£
€ 0.8+ -= WIN
3

0.6

Mojs

0.4+
0.2+

0.0+

I I I I I I
homog mild heterog high heterog homog mild heterog high heterog

Figure 12: Continuity index in a scenario with heterogeneous peers. The peer arrival rate
is set to 0.05 peer/s.

setup, the average peer upload capacity is always equal to p = 1.25R (from
Table 1). This is larger than the average demand (which is equal the play-
back rate R). In each setup, the difference between pi; and p, is increased,
in order to evaluate the impact of higher heterogeneity. The homogeneous
case, where all peers have an upload capacity 1.25R, is reported as well for
comparison. The details for these setups are shown in Table 5, while all the
other simulation settings are as in Table 1 and Table 4.

Figures 12 and 13 plot the continuity index and startup delay of peers,
respectively. We note that, as the heterogeneity in the system increases,
startup delay for all peers increases while continuity index worsens only for
slow peers. This is in line with our previous work [11]. For what concerns
peer selection, indirect reciprocity performs better than direct reciprocity,
with generally higher continuity index for slow peers and lower startup delay
for all peers. Regarding piece selection policies, window-based exhibits the

direct indirect

w B ol
o o o
1 1 1

158y

N
o
1

z

g 10 policy

% o - PRIO
o

o 504 -4 PROB
=]

£ 40 -= | WIN
IS 40

7]

MO|S

T T T T T T
homog mild heterog high heterog homog mild heterog high heterog

Figure 13: Startup delay in a scenario with heterogeneous peers. The peer arrival rate is
set to 0.05 peer/s.

best continuity index and outperforms the other two also for startup delay,
at least when used in combination with indirect reciprocity. The more “fair”
performance of the window policy is due to the fact that peers only down-
load pieces from a small window ahead the first piece not yet downloaded.
Hence, a fast peer cannot barter with other faster peers having a lower or
higher progress level, but only with those peers (fast and slow) having similar
progress level to itself.

However, the fact that startup delay increases with heterogeneity is an
undesired drawback of these VoD approaches. To understand the reasons for
this behavior, we have looked at the peers average download rates (Figure
14). The average speed of peers (especially of the fast ones) is generally
far above the playback rate R (which is 800 kb/s). In particular, for fast
peers, we observe that the download speed is more or less constant (or in
some cases growing with the level of heterogeneity) in all setups. Therefore,
the increase of startup delay in the heterogeneous scenarios can be explained
with peers downloading at slower rates when at the beginning of the file,
while downloading much faster when towards the end.

The fact that peers are downloading at rates much higher than needed
while others are delayed, means that the bandwidth reciprocity approach is
not optimal for the VoD case. Based on this intuition, in a previous work [11]

direct indirect

R g

S 600

< 400+ i

g 2004 policy

® o | PRIO
o

@ -+ PROB
o

8 - WIN
E

<] 5

© =

T T T T T T
homog mild heterog high heterog homog mild heterog high heterog

Figure 14: Download speed in a scenario with heterogeneous peers. The peer arrival rate
is set to 0.05 peer/s.

we have proposed to equip the reciprocity-based policy with an adaptive
“altruism” mechanism. Specifically, our approach is to have a peer utilize
the current reciprocity-based approach when its download rate is below or
close to the video playback rate R. Conversely, when its download rate is
much higher than R, the peer will reduce its reciprocity-based behavior and
start allocating bandwidth to peers at random, with a bias towards the new
comers. In this way, startup delays are reduced and peer QoS enhanced.

9. Influence of Unconnectable Peers

NATs and Firewalls are well known for causing problems to P2P com-
munication, since peers residing behind those devices are not able to receive
inbound connections, unless the NAT /firewall is properly configured.

In this section, we analyze the performance of the current BitTorrent-
like VoD approaches in a system where a certain fraction a of nodes are
unconnectable. As Skevik et al. [34] observed, one of the problems introduced
by unconnectable nodes is that they are not reachable by others and thus it
is difficult to discover their presence. To improve their discoverability, in our
experiments unconnectable peers request new nodes from the tracker more
frequently than connectable ones. In this way, more links between the groups
of connectable and unconnectable peers are established.

continuity index

direct

indirect

104 = =

0.8+
0.6
0.4+
0.2+
0.0

3]ge198Uu0d

1.0+
0.8
0.6
0.4+
0.2+

0.0+

3|geI08UUOoUN

T
0.5

T T T T
07 09 0 0.1
fraction of unconnectable peers

0.3

0.5

policy
- PRIO
-4 PROB
-5 WIN

Figure 15: Continuity index experienced by peers when some are unconnectable. The peer
arrival rate is set to 0.05 peer/s.

direct indirect
Q
o
=1
>
(9
Q
Q
—~ g
) o)
N policy
)
° -+~ PRIO
°
a -4 PROB
=]
z c| -= WIN
@ =1
— (=]
»]
>
>
@
Q
QD
o
@

I I I I
0.5 0.7 0.9 0 0.1

0 0.1 .
fraction of unconnectable peers

0.3

Figure 16: Startup delay experienced by peers when some are unconnectable. The peer
arrival rate is set to 0.05 peer/s.

Results for our experiments are depicted in Figures 15 and 16. For what
concerns the continuity index, connectable nodes are not affected, until their
fraction drops below 10%. The unconnectable nodes, on the other hand,
start experiencing a bad continuity index already when their fraction reaches

direct indirect

4000
3000

3|0e199UU0d

7”:: 2000

)

< 1000 policy

E'g’_ —= PRIO
@ -+ PROB
ie]

I - WIN
ke}

c

2

o

=]

N W b

o o o

o O O

o o o
1 1 1

3|ge198UUodUN

T T T T
0 01 03 05 07 09 0 01 03 05 07 09
fraction of unconnectable peers

Figure 17: Download speed experienced by peers when some are unconnectable. The peer
arrival rate is set to 0.05 peer/s.

50%, which has been measured to be a typical value in BitTorrent as well
as BitTorrent-like VoD systems [24, 26]. Similarly, their startup delay suf-
fers a steep increase once past the 50% threshold. This phenomenon is due
to the fact that unconnectable nodes can only upload to connectable ones,
while the latter can potentially upload to any other peer. Hence, when the
unconnectable peers are the majority, the connectable ones receive a lot of
bandwidth from them while giving only a smaller amount of bandwidth in
return. This result was already predicted in our previous work on P2P swarm-
ing systems [12]. Consequently, it is clear that the presence of unconnectable
nodes severely affects the performance of P2P swarming systems, and VoD
systems in particular, and must be kept into account when designing a new
P2P system or protocol.

In order to explore avenues for possible improvements, we have looked
again at the download speeds of peers (Figure 17). While the download rate
of unconnectable nodes drops below the playback rate R (800 kb/s) already
when their fraction reaches 50%, that of connectable nodes stays above R,
and actually increases, until o = 90% . This implies that connectable nodes
often get more bandwidth than necessary to maintain a continuous play-
back. It is intuitive that this bandwidth surplus could be used to “help”
unconnectable peers, in a similar way as for the lower capacity nodes in the

file transfer peers VoD peers

Q
Q
2
2
o
2
@ policy
S 0- -+~ PRIO
=3
o -4 PROB
© 1500 -=- WIN
c
1000+ &—a 2 - - - - = -4 |
o
2
500
07 T T T T T T T T T T T T T T
0 01 03 05 07 09 1 0 01 03 05 07 09 1

fraction of peers doing VoD

Figure 18: Download and upload rates of nodes doing traditional file transfer against nodes
doing streaming, for different VoD piece selection policies (standard BitTorrent is used for
file transfer in all cases). The dashed horizontal line in the top-right panel represents the
video playback rate R. The peer arrival rate in these experiments is set to 0.05 peer/s.

previous section. The adaptive “altruism” mechanism proposed in our pre-
vious work [11] for heterogeneous environments could be used in this case as
well, to improve the QoS of unconnectable nodes, without harming that of
connectable ones.

10. Coexistence with Traditional File Transfer

In this section, we analyze the implications of having a mixed environ-
ment, where peers doing streaming coexist with those doing file transfer
using the standard BitTorrent protocol. In fact, nowadays many BitTorrent
clients (e.g. BitTorrent DNA [6], pTorrent [37], and Tribler [36]) already sup-
port streaming functionality and more clients are likely to start doing this in
the future.

At a first glance, one would expect that introducing VoD nodes in a
BitTorrent system where peers do traditional file transfer will negatively
affect piece availability and consequently decrease the download speed of the
original (non VoD) nodes. In order to verify whether this is really the case, we
have performed experiments with increasing fractions of VoD peers. Figure
18 plots the download rates for both file transfer nodes and VoD nodes. As

108,

801

60
file transfer peers

407 VoD peers

201

% of interesting peers
from the other group

PRIO PROB win

piece selection policy

Figure 19: Interest in the other group of peers in a system consisting of both streaming
and file transfer nodes.

we can observe, file transfer peers actually benefit from the presence of VoD
ones: the more the latter, the better for the former. The largest advantage
is obtained when the VoD nodes employ the window-based piece selection
policy. In order to explain this result, we took a look at the peers interests.
Figure 19 shows, for each group of peers, the percentage of interesting peers
belonging to the other group, in a scenario where VoD peers are 50% of the
total. While for the priority-based and the probabilistic policies the interest
of each group in the other one is more or less even, we observe that, for the
window-based policy, there are more file transfer nodes interested in VoD
nodes (68%) than vice versa (47%). We conjecture that the unbalanced
interests between the two groups are the main cause of the phenomenon,
which can be explained as follows. At first, file transfer nodes download the
pieces towards the end of the file (as those pieces are more rare). Later, they
need to download the pieces towards the beginning of the file as well, in order
to complete their downloads. These pieces are owned mostly by VoD nodes,
therefore file transfer peers become very interested in them. On the other
hand, VoD nodes using the window-based policy only download pieces within
a relatively small window, therefore they will not be very interested in file
transfer peers. This unbalance between the two groups’ interests causes the
VoD nodes to receive many more requests from file transfer nodes than other
VoD nodes, which then will be (as a group) optimistically unchoked more
often. However, file transfer peers will not have much to upload in return,
given the myopic interest of VoD nodes using the window-based policy. As a
consequence, file transfer nodes download from VoD nodes much more than
they upload to them in return.

1.0 350
« 0.8+ ™ 300
() T 250 policy
° i >
£ 06 & 200- - PRIO
= kel i
3 0.4 s 150 .- PROB
= 2 100 = WIN
§ 027 S 50+
o 2]
0.0 T T T T T T 04 T T T T T T
01 03 05 07 09 1 01 03 05 07 09 1
fraction of peers doing VoD fraction of peers doing VoD

(a) (b)

Figure 20: (a) continuity index and (b) startup delay in a system where some peers are
doing traditional file transfer while others are doing streaming. The peer arrival rate is
set to 0.05 peer/s.

Furthermore, regardless of the piece selection policy employed, VoD nodes
suffer from longer startup delays. According to Figure 20, when the fraction
of VoD nodes is 0.1, for example, their startup delay is, for all piece selection
policies, more than 10 times longer than it would be in a system where
all nodes are doing streaming. This is due to the fact that, the more file
transfer nodes, the lesser the availability of pieces near the beginning of the
file (since file transfer nodes download pieces according to the rarest-first
rule). Therefore, it takes longer for VoD nodes to complete the download of
the initial pieces necessary for the sequential viewing.

Turning our attention back to the download rates (Figure 18), we see
that the priority-based and the probabilistic policies are able to maintain the
rates of VoD nodes constantly far above the playback rate (dashed horizontal
line in Figure 18). This leaves room for improvement for these two policies.
In fact, similarly to the cases of heterogeneous and unconnectable nodes,
bandwidth can be allocated in a “smarter” way by having each VoD peer
help other VoD ones when its own QoS is good enough.

11. Impact of Watching Behavior

The watching behavior of users in VoD systems can be highly dynamic.
For example, it has been shown that users are very impatient and might
decide to leave the system after only a few minutes of watching [18, 42].
Similarly, users might want to “jump” to a specific part of the video file.
In this section, we analyze how these two types of watching behavior, as

Table 6: Distribution of peer departures according to [42].

departed within (min) 5 10 25 50
% of peers 37.44 52.55 7525 94.23

observed in real systems, affect the performance of different piece and peer
selection policies.

Recall from Section 5.3.3 that the continuity index is defined as the num-
ber of pieces received on time divided by the total number of pieces of the file.
However, this definition does not make sense for scenarios where peers can
leave before file completion or even jump (both forwards and backwards) to
another position. Therefore, for the following experiments, we have utilized
another definition for the continuity index as

Pw
Pw + Pm’
where p,, and p,, stand for the number of watched and missing pieces, re-
spectively.

Cl =

11.1. FEarly departures

From measurement studies over different VoD systems [18, 22, 42], it
emerges that the majority of users tends to watch a video for only a few
minutes and then leave the system. For example, the distribution presented
in [42] shows that at least half of the peers leave within 10 minutes (Table 6).
This behavior might have a serious impact on P2PVoD systems, where peers
depend on each other’s contribution of bandwidth. To evaluate how well dif-
ferent piece and peer selection policies cope with this problem, we compare
a scenario where peers leave only once they have completed the download of
the whole video file (standard behavior) against scenarios where they leave
earlier. Based on the distribution showed in Table 6, we have created syn-
thetic distributions with different average peer residence times. We denote
with 7" a distribution where 50% of the peers leave within 7" seconds. Recall
from Section 5.2 that the system’s load (i.e. the total number of nodes N)
depends on the peer average residence time, m as N = Am, where A is the
peer arrival rate. Consequently, to make the comparison among different sce-
narios fair, for these experiments we have dimensioned the server bandwidth
to the different workloads according to Eq. (3):

Us = (f}/R - ,u) Am,

where v = 1.3, u = 1000kb/s, and R = 800kb/s in our setup (see Section 5.3).

Figure 21 shows the results of experiments with peer arrival rate A\ =
0.05peers/s. As we can see, the peers leaving within the average peer resi-
dence time experience perfect continuity index in all situations. While the
peers remaining longer only experience a minor decrease in their continuity
index. The first result can be explained with the fact that, in a P2PVoD
system, the piece availability would anyway be skewed towards the pieces at
the beginning of the file. Therefore, normally peers proceed fast in download-
ing the beginning of the file and slower the end. This determines the good
performance of peers leaving earlier. On the other hand, since less peers
download the ending part of the file, there is less competition for the seeder’s
bandwidth. As a consequence, the performance of peers staying longer is not
significantly affected.

Furthermore, we note that peers leaving earlier has a general beneficial
effect over startup delays. This is due to the fact that, since many nodes
leave the system after only a few minutes, those that remain are left with
fewer peers to upload data to. Consequently, newcomers are more likely
to be unchoked earlier and by more nodes, which determines higher initial
download speeds and, hence, shorter startup delays.

11.2. Jumping

According to recent measurement studies [18, 22|, jumping to a different
position in a file is not a very common behavior of P2PVoD users and that the
number of jumps is also small. Furthermore, both measurement studies [18]
and [22] show that jumps, when they occur, are in the form of “random
seeking”, i.e. the landing position is uniformly distributed across the file and
uncorrelated to the current playback position of the user who jumps.

To evaluate the impact of jumps on the QoS, we have performed exper-
iments with growing number of average jumps. The traces analyzed in [18]
present an average number of jumps per peer between 1 and 4, therefore we
have tested a range going from 0 to 5. The results for the case of arrival rate
A = 0.05peers/s are shown in Figure 22. Note that in this type of experi-
ments, besides the initial startup delays, peers are subject to a further delay,
which we term jump delay, due to the fact that a new set of contiguous pieces
have to be downloaded ahead the new playback position, before playback can
start again.

From the results of our experiments, we note that the priority-based pol-
icy yields to a considerably better performance than the other two piece

continuity index

startup delay (s)

indirect

1.0
0.8
0.6
0.4+
0.2

0.04

[———— -

e

1.0

0.8+

0.6

0.4+

0.2

0.0+

Bae aiojaq Bunredap

1.0 &

0.8
0.6
0.4+

0.24

0.0

Bne saye Bunredap

1 J
standard 1200

1 I I I 1 1 1 I I 1
900 600 300 120 standard 1200 900 600 300 120
average residence time (s)

direct indirect

e

Bae aiojaq Bunredap

Bne saye Bunredap

1 1
standard 1200

1 1 1 1 1 1 I 1 I I
900 600 300 120 standard 1200 900 600 300 120
average residence time (s)

Figure 21: Impact of early departures.

- PRIO
-+ PROB
-5 WIN

- PRIO
-+ PROB
-5 WIN

direct indirect
1.0
S 0.8+
2
= 0.6 ~» PRIO
2z
A
2 04+ PROB
= -= . WIN
5 02-
o
0.0+
T T T T T l} T T T T T l}
0 1 2 3 4 5 0 1 2 3 4 5
of jumps
direct indirect
200 -
150 -
@
100~ =
c
=l
150 -
@ E---E
- o« & = PRIO
> 100 - - 3
% LA L o EN L= + Bl PROB
PIAREE O TR
T gl = i,,_«.:.‘.}i-“ = WIN
A;,\.h __vé-—"'
A =
04 ==l = — e e
200 -
x---% IR 1
150 T
T e N PPt =
e E E 5
100 — "‘Tv__f--" T i%;‘ 5
LA L
0-
T T T T T T T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5
of jumps

Figure 22: Impact of jumps to a new, uniformly distributed, position in the file.

selection policies, both for what concerns the jump delay and the continu-
ity index. This is due to the fact that, when using this policy, peers also
occasionally download pieces according to local rarest-first, which become a
precious asset when they jump ahead in the file. In fact, the jumping nodes
can immediately barter these rare pieces to get the needed pieces ahead the
new playback position. On the contrary, peers using the other two policies
do not have many interesting pieces to barter with older peers in the sys-
tem when jumping ahead, and can only be optimistically unchoked by them.
Hence, they experience much longer jump delays.

We also note that, for all piece selection policies, the startup delay expe-
rienced with direct reciprocity decreases as we increase the average number
of jumps, while with indirect reciprocity the opposite is true. We believe
that this phenomenon can be explained as follows. When direct reciprocity
is used, a peer b that jumps will try to barter pieces with peers that own
the part of the file where b has jumped to. Hence, it will stop uploading to
its previous bartering partners and look for new ones. As a consequence of
this, b’s previous bartering partners will be left with fewer peers to upload
data to, and hence newcomers are more likely to be unchoked earlier and by
more nodes, as in the case of early departures. On the other hand, in indi-
rect reciprocity, a peer b receives data from another peer a when b forwards
the pieces received from a to others (Figure 1). When b jumps and until it
finds better uploaders, it will still continue to forward the pieces received by
a to others. Hence, peer a will continue to be busy uploading pieces to b
for a while and will not unchoke more newcomers. To verify our hypothe-
sis, we have measured the average time needed by a peer to change 90% of
its uploaders after a jump for the case of one jump and piece selection pol-
icy WIN. The result of this experiments is that this time is approximately
20s for WIN+DIRECT and 86s for WIN+INDIRECT, hence confirming our
hypothesis. Furthermore, since with indirect reciprocity the jumping peers
continue to receive some pieces from the initial uploaders, another conse-
quence of this phenomenon is that, at least for WIN and PROB, the jump
delay is lower than for the case of direct reciprocity.

12. Discussion

In this paper, we have taken the first steps towards developing a deeper
understanding of how the numerous proposed BitTorrent-like P2P approaches
to VoD work. On one hand, this allows us to formulate the challenges that
future system designers will have to deal with. On the other hand, our study
provides useful information that can aid VoD service providers in the selec-
tion of the most appropriate protocol for their environment. We shall discuss
these two aspects in detail below.

12.1. Implications for future system designers

Rethinking incentives for VoD. We have shown that the current incentive
schemes adopted in BitTorrent-like VoD systems are not suitable to VoD.
This is due to the fact that current incentives are based on a general file

transfer goal rather than a VoD goal. In file transfer, the goal is to maximize
the total download speed, therefore an incentive based on bandwidth reci-
procity induces peers to contribute as much as they can. On the other hand,
in VoD the goal is to have as many peers as possible experience a smooth
playback. In other words, a peer does not earn any benefit in downloading
at much higher rates than the playback rate. Based on this insight, future
system designers should focus on creating incentives that better fit the VoD
case. Finally, it is also useful to observe how the incentives for VoD differ
from those for live streaming. In live streaming, peers have a shared tempo-
ral focus and therefore a similar playback position. Normally, peers closer to
the seeding source will be able to watch the video with a smaller delay than
peers further away. Hence, in this case, an effective method to incentivize
peers to contribute is to reward high contributors with closer distance from
the source, which increases the feeling of “live-ness” of the video. However,
this method is not applicable to VoD because of the skewed temporal focus
of peers.

More security. We have shown that current approaches are weak against
a number of attacks. Future system designers should think of ways to secure
them, for instance, by means of some reputation mechanism.

Firewalls and NATs support. We have shown how bad the performance of
unconnectable peers can get, even when they are only 30-50% (which is a re-
alistic range in P2P swarming systems, see [24] and references therein) of the
total and even when some methods to increase the reachability of these nodes
is in place. Therefore, in order to improve their QoS, it is important to make
these node completely open, which calls for the need of NAT traversal. This
is probably the reason behind the recent development of UDP-based P2P
swarming protocols®, such as the Peer-to-Peer Streaming Peer Protocol [35]
and the uTP protocol in the pTorrent client [38].

Analyzing scenarios with mized policies. A system where mixed policies
are used can drastically change the performance of these policies. We have
evaluated the case where one VoD protocol competes with the original Bit-
Torrent protocol. However, an interesting direction for future work is to test
other scenarios too, where, for example, different VoD protocols using dif-
ferent policies compete against each other. The recent paper of Rahman et
al. [30] is an attempt to give a framework, called Design Space Analysis, for

ONAT traversal is much easier to implement in UDP than TCP [5].

testing performance and robustness of P2P swarming systems, which may be
applied here.

12.2. Implications for VoD service providers

Our experiments were performed with a constant server bandwidth and
then the QoS degradation in the various scenarios was measured. In commer-
cial peer-assisted systems, however, server bandwidth is likely to be dimen-
sioned to the demand (i.e. QoS degradation is compensated by more server
bandwidth). Therefore, VoD service providers can interpret our findings as
follows: lower QoS means more server bandwidth needed to compensate,
which equals to higher costs. An estimation of the needed bandwidth (and
therefore the cost incurred) can be directly calculated from the average down-
load rate of peers (for each peer: bandwidth needed equals to playback rate
minus average download rate).

Table 7: Summary of findings.

Test case | Direct Indirect Overall Absolute
Freeriding resilience PROB PROB PROB, indirect ®
Resilience to vandalism PROB PROB PROB, direct —
Resilience to collusion PRIO PRIO PRIO, indirect q
Resilience to Sybil attack all PRIO all, direct)
Heterogeneous bandwidths WIN WIN WIN, indirect ()
Unconnectable peers WIN WIN WIN, direct q
Coexistence with trad. file transfer | PRIO n.a. PRIO, direct q
Early departures PROB PRIO PRIO, indirect (]
Jumps PRIO PRIO PRIO, direct)

Furthermore, Table 7 summarizes all the experiments done for the tested
policies. This table can aid the selection of the best protocol to be used by
a VoD service provider, given its particular environment and system charac-
teristics such as open/closed system, with or without unconnectable nodes
or nodes with heterogeneous bandwidth, etc. For each test case we selected
the best performing piece selection policy for both direct and indirect reci-
procity (in the Direct and Indirect columns, respectively). We also show, in
the ‘Overall’ column, which policy combination performed the best for each
scenario. The last column indicates how well BitTorrent-like VoD performs
in the given scenario in absolute terms (full circle means ‘good’, half circle
stands for ‘average’, and dash means ‘bad’). When using this table, the

reader should be aware of two things. Firstly, the Sybil attack presented in
this paper can only be performed in a protocol using indirect reciprocity, thus
all protocols using direct reciprocity are resilient to it. Secondly, traditional
BitTorrent works with direct reciprocity only. Therefore, in order to keep
the VoD and the file transfer protocols homogeneous, we have focused on the
case of direct reciprocity only.

Acknowledgements

The authors would like to thank the anonymous reviewers for their valu-
able comments and suggestions to improve the quality of the paper. The
research leading to this contribution has received funding from the European
Community’s Seventh Framework Programme in the P2P-Next project under
grant no. 216217. The experiments presented in this paper were performed
on the Distributed ASCI Supercomputer 4 (http://www.cs.vu.nl/das4).

References

[1] E. Adar, B. Huberman, Free riding on gnutella, First Monday 5 (10)
(2000) pp.2-13.

[2] S. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawardena, P. R. Ro-
driguez, Is high-quality vod feasible using p2p swarming?, in: Proceed-
ings of the 16th International Conference on World Wide Web, ACM,
2007, pp. 903-912.

3] A. Bakker, R. Petrocco, M. Dale, J. Gerber, V. Grishchenko,
D. Rabaioli, J. Pouwelse, Online video using BitTorrent and HTML5
applied to Wikipedia, in: Proceedings of the IEEE P2P, 2010, pp. 1-2.

[4] A.R. Bharambe, C. Herley and V.N. Padmanabhan, Analyzing and Im-
proving a BitTorrent Network’s Performance Mechanisms, in: Proceed-
ings of the IEEE INFOCOM, 2006.

[5] A. Biggadike, D. Ferullo, G. Wilson and A. Perrig, NATBLASTER: Es-
tablishing TCP connections between hosts behind NATSs, in: Proceedins
of the ACM SIGCOMM Asia Workshop, 2005.

[6] BitTorrentDNA, http://www2.bittorrent.com/dna

[7] Y. Borghol, S. Ardon, N. Carlsson and A. Mahanti, Toward Efficient On-
Demand Streaming with BitTorrent, in: Proceedins of the IFIP NET-
WORKING, 2010.

[8] N. Carlsson, D. Eager, Peer-assisted on-demand streaming of stored
media using bittorrent-like protocols, in: Proceedings of the IFIP NET-
WORKING, Springer, 2007, pp. 570-581.

9] N. Carlsson, D. L. Eager and A. Mahanti, Peer-assisted on-demand
Video Streaming with Selfish Peers, in: Proceedins of the IFIP NET-
WORKING, 2009.

[10] B. Cohen, Incentives Build Robustness in BitTorrent, in: Proceedings
of the Workshop on Economics of Peer-to-Peer Systems, 2003.

[11] L. D’Acunto, N. Andrade, J.A. Pouwelse and H.J. Sips, Peer Selec-
tion Strategies for Improved QoS in Heterogeneous BitTorrent-like VoD

Systems, in: Proceedins of the IEEE International Symposium on Mul-
timedia (ISM’2010), 2010.

[12] L. D’Acunto, M. Meulpolder, R. Rahman, J.A. Pouwelse and H.J. Sips,
Modeling and Analyzing the Effects of Firewalls and NATs in P2P
Swarming Systems, in: Proceedings of the IEEE IPDPS (HotP2P), 2010.

[13] P. Garbacki, D. Epema, J. Pouwelse, M. Van Steen, Offloading servers
with collaborative video on demand, in: Proceedings of the 7th Interna-
tional Workshop on Peer-to-peer systems, USENIX Association, 2008.

[14] Y. Guo, K. Suh, J. Kurose, D. Towsley, P2cast: peer-to-peer patch-
ing scheme for vod service, in: Proceedings of the 12th International
Conference on World Wide Web, ACM, 2003, pp. 301-309.

[15] A. Habib, J. Chuang, Service Differentiated Peer Selection: An Incentive
Mechanism for Peer-to-Peer Media streaming, IEEE Transactions on
Multimedia 8 (2006) 610-621.

[16] X. Hei, C. Liang, J. Liang, Y. Liu and K.W. Ross, A Measurement Study
of a Large-Scale P2P IPTV System, IEEE Transactions on Multimedia
9 (2007) 1672 — 1687

[17]

C. Huang, J. Li, and K. Ross, Can Internet Video-on-Demand Be Prof-
itable, in: Proceedings of the ACM SIGCOMM, 2007.

[18] Y. Huang, T. Fu, D. Chiu, J. Lui, C. Huang, Challenges, design and

[19]

[20]

[21]

[22]

analysis of a large-scale p2p-vod system, ACM SIGCOMM Computer
Communication Review, 38 (4) 2008 pp. 375-388.

M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. Al Hamra, L.. Garcs-
Erice, Dissecting bittorrent: Five months in a torrent??s lifetime, in:
Passive and Active Network Measurement, Springer Berlin / Heidelberg,
2004.

A. Legout, G. Urvoy-Keller and P. Michiardi, Rarest First and Choke
Algorithms are Enough, in: Proceedins of the ACM IMC, 2006.

D. Levin, K. LaCurts, N. Spring, B. Bhattacharjee, Bittorrent is an
auction: analyzing and improving bittorrent’s incentives, in: Proceedins

of the ACM SIGCOMM, 2008.

C. Li, C. Chen, Measurement-based study on the relation between
users?? watching behavior and network sharing in P2P VoD systems,
Computer Networks, 54(1) 2010 pp. 13-27.

T. Locher, P. Moor, S. Schmid, R. Wattenhofer, Free riding in bittorrent
is cheap, in: Proceedings of HotNets-V, 2006.

M. Meulpolder, L. D’Acunto, M. Capota, M. Wojciechowski,
J.A. Pouwelse, D.H.J. Epema and H.J. Sips, Public and private bittor-
rent communities: A measurement study, in: Proceedins of the IPTPS,

2010.

J.J.D. Mol, J.A. Pouwelse, M. Meulpolder, D.H.J. Epema and H.J. Sips,
Give-to-Get: Free-riding-resilient Video-on-Demand in P2P Systems, in:
Proceedins of the SPIE MMCN, 2008.

J.J.D. Mol, A. Bakker, J.A. Pouwelse, D.H.J. Epema, and H.J. Sips,
The Design and Deployment of a BitTorrent Live Video Streaming Solu-
tion, in: Proceedings of IEEE International Symposium on Multimedia
(ISM’09), 2009.

[27]

[28]

[30]

[31]

[32]

P2P Next Community CDN for Video Distribution,
http://blog.wikimedia.org/2010/09/27 /video-labs-p2p-next-
community-cdn-for-video-distribution/

N. Parvez, and C. Williamson and A. Mahanti and R. Carlsson, Analysis
of BitTorrent-like Protocols for On-Demand Stored Media Streaming, in:
Proceedins of the ACM SIGMETRICS, 2008.

M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, A. Venkatara-
mani, Do incentives build robustness in bittorrent?, in: Proceedins of

the NSDI'07, Cambridge, MA, 2007.

R. Rahman, T. Vinké, D. Hales, J. Pouwelse, H. Sips, Design space
analysis for modeling incentives in distributed systems, in: Proceedins

of the ACM SIGCOMM, 2011, pp. 182-193.

B. Zhang, A. Tosup J.A. Pouwelse, D.H.J. Epema, Identifying, Analyz-
ing, and Modeling Flashcrowds in BitTorrent, P2P11, 2011.

P. Savolainen, N. Raatikainen and S. Tarkoma, Windowing BitTorrent
for Video-on-Demand: Not All is Lost with Tit-for-Tat, in: Proceedins
of the IEEE GLOBECOM, 2007.

P. Shah and J. F. Paris, Peer-to-Peer Multimedia Streaming using Bit-
Torrent, in: Proceedins of the IEEE ITPCCC, 2007.

K. Skevik, V. Goebel, T. Plagemann, Evaluation of a comprehensive p2p
video-on-demand streaming system, Computer Networks 53 (4) (2009)
pp- 434-455.

Peer-to-Peer Streaming Peer Protocol (PPSPP),
http://datatracker.ietf.org/doc/draft-ietf-ppsp-peer-protocol /

Tribler, http://www.tribler.org

pTorrent, http://www.utorrent.com

uTorrent uTP Documentation, http://www.utorrent.com/help /documentation /utp

A. Vlavianos, M. Iliofotou and M. Faloutsos, BiToS: Enhancing BitTor-
rent for Supporting Streaming Applications, in: Proceedins of the IEEE
Global Internet Symposium, 2006.

[40]

[41]

[42]

[43]

[44]

[46]

Ap

C. Wu, B. Li and S. Zhao, Multi-Channel Live P2P Streaming: Refo-
cusing on Servers, in: Proceedings of IEEE INFOCOM, 2008.

Y. Yang, A. Chow, L. Golubchik, D. Bragg, Improving QoS in
BitTorrent-like VoD systems, in: Proceedings of the IEEE INFOCOM,
2010.

H. Yu, D. Zheng, B.Y. Zhao, W. Zheng, Understanding User Behavior
in Large-Scale Video-on-Demand Systems, in: Proceedings of the ACM
EuroSys, 2006.

M. Zghaibeh, K.G. Anagnostakis, F.C. Harmantzis, The behavior of free
riders in bittorrent networks, in: Handbook of Peer-to-Peer Networking,
Springer, 2010, pp. 1207-1230.

Dabek, Frank and Li, Jinyang and Sit, Emil and Robertson, James and
Kaashoek, M. Frans and Morris, Robert, Designing a DHT for low
latency and high throughput, In Proceedings of the 1st conference on
Symposium on Networked Systems Design and Implementation - Volume
1, 2004

Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A mea-
surement study of peer-to-peer file sharing systems, In Proceedings of
Multimedia Computing and Networking 2002 (MMCN ’02), San Jose,
CA, January 2002.

Gummadi, Krishna P., Saroiu, Stefan and Gribble, Steven D. King:
estimating latency between arbitrary Internet end hosts, Proceedings of
the 2nd ACM SIGCOMM Workshop on Internet Measurement, 2002

pendix

Our mathematical investigation aims to characterize and understand the

bartering ability of peers and its relation to the fundamental properties of
BitTorrent-like VoD systems. Bartering ability of a given peer 7 is expressed
by the expected value of the number of peers in the system with which peer
1 can exchange pieces of the file.

In the following, we analyze the window-based piece selection policy.

First, we derive the average number of potential bartering partners N, for

any peer in the system. In order to do so, we notice that each peer 7 joins
1/ seconds after its predecessor i — 1 to the system. Assuming that each
peer @« downloads pieces at a rate at least equal to the playback rate R, then
i is, on average, by, = R/(APs) pieces behind its predecessor i — 1, where
P is the size (in Kb) of a piece. This implies that a peer has an overlapping
window with (ﬁ} — 1 many of its predecessors. The same holds for the

successors of peer i. Therefore, the average number of potential bartering
partners for any peer 7 is

wes(i]) -o(()

This concept is exemplified in Figure 23.

iz PP B FE)

o T B L]

i+ O B B BT L] L1 1]

w2 OV T T PR LTI]I T 1T]]

Figure 23: Example of overlapping windows among consecutive peers. Peers are numbered

according to the time they joined the system. w = 6 and A = %, which implies that each

peer 7 is 2 pieces behind its predecessor and thus has N, = Q(WTFS)\ — 1) = 4 bartering
partners.

This simple analysis shows that a low arrival rate can easily lead to N, =
0, thus giving no chance for bartering, if the system parameters R, P; and w
are not set up carefully. Furthermore, it is desired in VoD systems that N, >
v holds, i.e., the number of potential bartering partners should be more than
the number of upload slots of the peers, otherwise peers would start allocating
upload slots to randomly chosen neighbors making the system less resilient
to freeriding. Note that it is not given that a peer can actually barter with
N, many peers, that needs to be analyzed below. However, we can already
see that NN, depends on the arrival rate A\ and the sequentiality parameter

w, thus it can be adjusted to be high enough (meaning high probability
of possible piece exchange between peers in the system), but that can lead
to longer startup delays. Hence, we argue that adopting a reciprocity-based
approach, in a VoD system characterized by low peer arrival rates, implies
that a trade-off exists between freeriding resilience and peer QQoS.

Knowing the number of potential peers for bartering, we are interested
now in the probability that two peers can exchange pieces between each
other, assuming they have overlapping windows. For the window-based piece
selection policy we can assume that both peers have downloaded half of the
pieces of their current window, and that peer ¢ is behind peer j in d > by,
pieces. Using the fact that the probability that two peers, ¢ and j, cannot
exchange any piece is the same as the probability that peer ¢ cannot give
pieces to peer 7, we obtain

P[two peers can exchange| =
=1 — P[peer i cannot give piece to peer j| =
L m‘“{di“’”} <d_ 1) <w —d- 1) <w/2+ k- 1)3*
k w/2—k k ’
k=max{0,d+1—w/2}

where B* = (7“;’)721) % and we assume that w > d holds. In this sum, the first
term counts the number of cases that pieces can be located within the first
d slots at peer i, the second term is the number of cases that pieces can be
located within the overlapping area of peer ¢ and peer j, the third term is
the number of cases that the still missing pieces of peer j can be located, and
finally 1/B* counts the total number of possible cases. As this probability
depends on w and on d, in the following we are using the notation P(w, d)
for it.

Note that P(w,d) is monotonically decreasing with the increase of d; it
stays very close to 1 up to d = w/2 and starts decreasing quickly from there
on.

Using the number of potential bartering peers N, and the probability
P(w, d) that two overlapping peers can barter, we are ready now to calculate
the expected value of the number of peers with which peer ¢ can barter, that
is

E[number of bartering partners of i| = 2 Z P(w,d),
deD

where D = {buyin,...,w — 1}. Here, for the sake of simplicity, we assume

that the probabilities that peer ¢ can barter with its potential partners are
independent from each other.

