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Abstract

This paper presents a formal framework for identifying and filtering SPIT calls (SPam in Internet
Telephony) in an outbound scenario with provable optimal performance. In so doing, our work
is largely different from related previous work: our goal is to rigorously formalize the problem in
terms of mathematical decision theory, find the optimal solution to the problem, and derive concrete
bounds for its expected loss (number of mistakes the SPIT filter will make in the worst case). This
goal is achieved by considering an abstracted scenario amenable to theoretical analysis, namely SPIT
detection in an outbound scenario with pure sources. Our methodology is to first define the cost
of making an error (false positive and false negative), apply Wald’s sequential probability ratio test
to the individual sources, and then determine analytically error probabilities such that the resulting
expected loss is minimized. The benefits of our approach are: (1) the method is optimal (in a sense
defined in the paper); (2) the method does not rely on manual tuning and tweaking of parameters but
is completely self-contained and mathematically justified; (3) the method is computationally simple
and scalable. These are desirable features that would make our method a component of choice in
larger, autonomic frameworks.
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1 Introduction

Over the last years, Voice over IP (VoIP) has gained momentum as the natural complementary to
emails, although its adoption is still young. The technologies employed in VoIP are widely similar to
those used for e-mails and a large portion is actually identical. As a result, one can easily produce
hundreds concurrent calls per second from a single machine, replaying a pre-encoded message as soon
as the callee accepts the call. This application of SPAM over Internet Telephony – also known as SPIT
– is considered by many experts of VoIP as a severe potential threat to the usability of the technology
[12]. More concerning, many of the defensive measures that are effective against email SPAM do not
directly translate in SPIT mitigation: unlike with SPAM in emails, where the content of a message is
text and is available to be analyzed before the decision is made of whether to deliver it or flag it as
SPAM, the content of a phone call is a voice stream and is only available when the call is actually
answered.

The simplest guard against SPIT would be to enforce strongly authenticated identities (maintaining
caller identities on a secure and central server) together with personalized white lists (allowing only
friends to call) and a consent framework (having unknown users first ask for permission to get added
to the list). However, this is not supported by the current communication protocols and also seems
to be infeasible in practice. Thus a number of different approaches have been previously suggested
to address SPIT prevention, which mostly derive from experience in e-mail or web SPAM defense.
They range from reputation-based [4] and call-frequency based [11] dynamic black-listing, fingerprinting
[19], to challenging suspicious calls by captchas [10, 13, 7], or the use of more sophisticated machine
learning. For example, [6, 5] suggests SVM for anomaly detection in call histories, and [18] proposes
semi-supervised learning, a variant of k-means clustering with features optimized from partially labeled
data, to cluster and discriminate SPIT from regular calls.

These methods provide interesting building blocks, but, in our opinion, suffer from two main short-
comings. First, they do not provide performance guarantees in the sense that it is difficult to get an
estimate of the number of SPIT calls that will go through and the number of regular calls they will
erroneously stop. Second, they require a lot of hand-tuning for working well, which cannot be sustained
in today’s networks.

The initial motivation for this paper was to explore whether there would be ways to design SPIT
filters that would not suffer from these two shortcomings. For this, we start by considering an abstracted
scenario amenable to theoretical analysis where we make essentially two simplifying assumptions:

1. we are dealing with pure source SPIT detection in an outbound scenario,

2. we can extract features from calls (such as, for example, call duration) whose distribution for
SPIT and regular calls is known in advance.

Here, “outbound scenario” means that our SPIT detector will be located in, or at the egde of, the
network where the source resides, and will check all outgoing calls originating from within the network.
Technically, this means that we are able to easily map calls to sources and that we can observe multiple
calls from each source. By “pure source” we mean that a source either produces only SPIT or only
NON-SPIT calls for a certain observation horizon. Under these assumptions, we have been able to
design a SPIT filter which requires no tuning and no user feedback and which is optimal in a sense that
will be defined later in this paper.

This paper reports on this SPIT filter and is organized in two parts: one theoretical in Section 3
and one practical in Section 4. The theoretical part starts with Section 3.1 describing precisely and in
mathematical terms the context in which we will design the SPIT filter. Section 3.2 shows how it is then
possible to derive from a simple statistical test a SPIT filter with the desired properties and Section 3.3
provides analytical expressions to compute its performance. Monte Carlo simulations in Section 3.4 and
3.5 then examine the theoretical performance of the SPIT filter. The practical part starts with Section
4.1 describing how the SPIT filter could be integrated as one module into a larger hierarchical SPIT
prevention framework. The primary purpose of this section is to demonstrate that the assumptions we
make in Section 3 are well justified and can be easily dealt with in a real world application. (Note that
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a detailed description of the system architecture is not the goal of this paper.) For example, Section
4.2 describes how the assumption that the distributions for SPIT and NON-SPIT must be known in
advance can be dealt with using maximum likelihood estimation from labeled prior data (which in
addition allows us to elegantly address the problem of nonstationary attackers). Then, using learned
distributions, Section 4.3 demonstrates for data extracted from a large database of real-world voice call
data that the performance of our SPIT filter in the real world is also very good and is in accordance
with the performance bounds derived analytically in Section 3.

2 Related Work

To systematically place our work in the context of related prior work, we will have to consider it along
two axes. The first axis deals with (low-level) detection algorithms: here we have to deal with the
question on what abstract object we want to work with (e.g., SIP headers, stream data, call histories),
how to represent this object such that computational algorithms can be applied (e.g., what features),
and what precise algorithm is applied to arrive at a decision, which can be a binary classification (NON-
SPIT/SPIT), a score (interpreted as how likely it is to be NON-SPIT/SPIT), or something else. The
second axis deals with larger SPIT detection frameworks in which the (low-level) detection algorithm is
only a small piece. The framework manages and controls the complete flow and encompasses detection,
countermeasures, and self-healing. The formal framework for SPIT filtering we propose in this paper
clearly belongs to the first category and only addresses low-level detection.

The Progressive Multi Gray-leveling (PMGL) proposed in [11] is a low-level detector that monitors
call patterns and assigns a gray level to each caller based on the number of calls placed on a short and
long term. If the gray level is higher than a certain threshold, the call is deemed SPIT and the caller
blocked. The PMGL is similar to what we are doing in that it attempts to identify sources that are
compromised by bot nets in an outbound scenario. The major weakness of the PMGL is: (1) that it
relies on a weak feature, as spitters can easily adapt and reduce their calling rate to remain below the
detection threshold, and high calling rates can also have other valid causes such as a natural disaster; (2)
that it relies on “carefully” hand-tuned detection thresholds to work, which makes good performance in
the real world questionable and – in our opinion – is not a very desirable property as it does not come
with any worst-case bounds or performance guarantees. Our approach is exactly the opposite as it starts
from a mathematically justified scenario and explicitly provides performance guarantees and worst-case
bounds. Our approach is also more generic because it can work with any feature representation: while
we suggest call duration is a better choice than call rate, our framework will work with whatever feature
representation a network operator might think is a good choice (given their data).

In [18] a low-level detector based on semi-supervised clustering is proposed. They use a large number
of call features, and because most of the features become available only after a call is accepted, is also
primarily meant to classify pure sources (as we do). The algorithm they propose is more complex
and computationally more demanding than what we propose. In addition, their algorithm also relies on
hand-tuned parameters and is hard to study analytically; thus again it is impossible to have performance
guarantees and derive worst-case bounds for it. Performance-wise it is hard to precisely compare the
results due to a different experimental setup, but our algorithm compares favorably and achieves a very
high accuracy.

The authors of [6, 5] propose to use support vector machines for identifying a varied set of VoIP
misbehaviors, including SPIT. Their approach works on a different representation of the problem (call
histories) with a different goal in mind and thus is not directly comparable with what we do. While it
also cannot offer performance guarantees and worst-case bounds, in some respect it is more general than
what we propose; it also describes both detection and remediation mechanisms in a larger framework.

In SEAL [10], the authors propose a complete framework for SPIT prevention which is organized in
two stages (passive and active). The passive stage performs low-level detection and consists of simple,
unintrusive and computationally cheap tests, which, however, will only be successful in some cases and
can be easily fooled otherwise. The purpose of the passive stage is to screen incoming calls and flag those
that could be SPIT. The active stage then performs the more complex, intrusive and computationally
expensive tests, which with very high probability can identify SPIT (these tests more actively interact
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with the caller). SEAL is very similar to what we sketch in Section 4 of this paper. On the other hand,
the low-level detection performed in SEAL is rather basic: while it is more widely applicable than what
we do, it essentially consists only in comparing a weighted sum of features against a threshold. As
with all the other related work, weights and thresholds again need to be carefully determined by hand;
and again, since the problem is not modeled mathematically, performance guarantees and worst-case
bounds are impossible to derive.

Finally, it should be noted that, while the problem of SPIT detection can, in some sense, be related
to the problem of anomaly detection and prevention of DoS attacks in VoIP networks, for example see
the work in [8, 20, 3, 21], it is not the same. The reason why this is not the same is that these security
threats are typically specific attacks aimed at disrupting the normal operation of the network. SPIT
on the other hand operates on the social level and may consist of unwanted advertisements or phishing
attempts – but not per se malicious code. As a consequence, techniques from anomaly detection and
prevention of DoS attacks cannot be directly applied to SPIT detection.

3 A SPIT Filter with Theoretically Optimal Performance

This section describes a formal framework for an outbound SPIT filter for which it is possible to prove
optimality and provide performance guarantees. Note that this section is stated from a theoretical point
of view. In Section 4 we outline how one could implement it in a real world scenario.

3.1 Problem Statement

As shown in Figure 1, we assume the following situation: the SPIT filter receives and monitors incoming
calls from a number of different sources (in real-world operation the SPIT filter will be placed in the
outbound network, but implementation details such as this will be ignored in this theoretical section).
The sources are independent from each other and will each place numerous calls over time. We assume
that, over a given observation horizon, each source will either only produce regular calls or will only
produce SPIT calls. As the sources are independent, we can run a separate instance of the SPIT filter
for each and thus in the following will only deal with the case of a single source.

Every time a call arrives at the filter, the filter can do one of two things: (i) accept the call and
pass it on the recipient or (ii) block the call. Each call will be associated with certain features and we
assume that only if a call is accepted, we can observe the corresponding feature (e.g., call duration).
The fundamental assumption we then make is that the distribution over these features will be different
depending on whether a call is a SPIT call or a regular call, and that these distributions are known in
advance.

Our goal is to decide, after observing a few calls, whether or not the source sends out SPIT. More
precisely, we look for a decision policy that initially accepts all calls, thus refining the belief about
whether or not the source is SPIT, and then at some point decides to either block or accept all future
calls from the source. Seen as a single-state decision problem over time, the SPIT filter has three
possible actions: (1) accept the next call, which reveals its features and thus refines the belief about
the type of the source, (2) block all future calls, and (3) accept all future calls. The last two actions
immediately stop the decision-making process and, if the decision was wrong (that is, deciding to accept
when in truth the source is SPIT, or deciding to block when in truth the source is NON-SPIT), will
incur a terminal loss proportional to the number of remaining calls. In addition, we also have a per step
cost during the initial exploration if the source is of type SPIT (for erroneously accepting SPIT calls).

In doing so, we arrive at a well defined concept of loss. Within the framework outlined above, every
conceivable SPIT filter algorithm will have a performance number: its expected loss. The particular
SPIT filter that we are going to describe below will be one that minimizes this expected loss.

Note that the expected loss is an example for the typical exploration vs exploitation dilemma.1 On
the one side, since the decision to accept or block all future calls is terminal, we want to be very certain

1Note that while at first glance the scenario described might bear a strong resemblance to traditional 2-armed ban-
dit formulations, the major difference is that here we assume that the precise form and parameters of the underlying
distributions are known in advance whereas in typical bandit scenarios this is not the case [9].
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Figure 1: Sketch of the simplified problem. The SPIT filter operates in an outbound fashion and checks
all outgoing calls originating from within the network. The filter treats the source of a call as being pure
over a certain observation horizon. In this scenario, each source (which will correspond to a registered
user) will try to sequentially place calls over time which are either all SPIT (if the source is compromised
by a SPIT bot) or all NON-SPIT (if the source is a regular user). The SPIT filter then has to decide for
each source individually if, given the calls that originated from that source in the past, it is a regular
user or a SPIT bot.

about its correctness to avoid making an expensive error. On the other side, as long as we are observing
we are automatically accepting all calls and thus will increase our loss if the source turns out to produce
SPIT calls. To minimize our expected loss, we therefore also want to observe as few samples as possible.

To address the problem mathematically, we employ Wald’s sequential probability ratio test for
simple hypotheses introduced in [15]. The sequential probability ratio test (SPRT) has the remarkable
property that among all sequential tests procedures it minimizes the expected number of samples for a
given level of certainty and regardless of which hypothesis is true (the optimality of SPRT was proved
in [16]). In addition, the SPRT comes with bounds for the expected stopping time and thus allows us
to derive concrete expressions for the expected loss as a function of the characteristics of the particular
problem (meaning we can express the loss as a function of the parameters of the distribution for SPIT
or NON-SPIT). Finally, SPRT requires only simple algebraic operations to carry out and thus is easy
to implement and computationally cheap to run.

3.2 SPIT Detection via the SPRT

The SPRT is a test of one simple statistical hypothesis against another which operates in an online
fashion and processes the data sequentially. At every time step a new observation is processed and one
of the following three decisions is made: (1) the hypothesis being tested is accepted, (2) the hypothesis
being tested is rejected and the alternative hypothesis is accepted, (3) the test statistic is not yet
conclusive and further observations are necessary. If the first or the second decision is made, the test
procedure is terminated. Otherwise the process continues until at some later time the first or second
decision is made.

Two kind of misclassification errors may arise: decide to accept calls when source is SPIT, or decide
to block all future calls when source is NON-SPIT. Different costs may be assigned to each kind, upon
which the performance optimization process described in Section 3.3 is built.

To model the SPIT detection problem with the SPRT, we now proceed as follows: Assume we can
make sequential observations from one source of a priori unknown type SPIT or NON-SPIT. Let xt
denote the features of the t-th call we observe, modeled by random variable Xt. The Xt are i.i.d.
with common distribution (or density) pX . The calls all originate from one source which can either be
of type SPIT with distribution pSPIT(x) = p(x|source=SPIT) or of type NON-SPIT with distribution
pNON-SPIT(x) = p(x|source=NON-SPIT). Initially, the type of the source we are receiving calls from is
not known; in absence of other information we have to assume that both types are equally likely, thus
the prior would be p(SPIT) = p(NON-SPIT) = 1

2
. In order to learn the type of the source, we observe

calls x1, x2, . . . and test the hypothesis

H0 : pX = pSPIT versus H1 : pX = pNON-SPIT. (1)
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(Note again that in this formulation we assume that the densities pSPIT and pNON-SPIT are both known
so that we can readily evaluate the expression p(x|source=SPIT) and p(x|source=NON-SPIT) for any
given x.)

At time t we observe xt. Let

λt :=
p(x1, . . . , xt|NON-SPIT)

p(x1, . . . , xt|SPIT)
=

t
∏

i=1

p(xi|NON-SPIT)

p(xi|SPIT)
(2)

be the ratio of the likelihoods of each hypothesis after t observations x1, . . . , xt. Since the Xi are
independent we can factor the joint distribution on the left side to obtain the right side. In practice it
will be more convenient for numerical reasons to work with the log-likelihoods. Doing this allows us to
write a particular simple recursive update for the log-likelihood ratio Λt := log λt, that is

Λt := Λt−1 + log
p(xt|NON-SPIT)

p(xt|SPIT)
. (3)

After each update we examine which of the following three cases applies and act accordingly:

A < λt < B =⇒ continue monitoring (4)

λt ≥ B =⇒ accept H1 (decide NON-SPIT) (5)

λt ≤ A =⇒ accept H0 (decide SPIT) (6)

Thresholds A and B with 0 < A < 1 < B < ∞ depend on the desired accuracy or error probabilities of
the test:

α :=P{accept H1 |H0 true} = P{decide NON-SPIT | source=SPIT} (7)

β :=P{reject H1 |H1 true} = P{decide SPIT | source=NON-SPIT}. (8)

Note that α and β need to be specified in advance such that certain accuracy requirements are met (see
next section where we consider the expected loss of the procedure). The threshold values A and B and
error probabilities α and β are connected in the following way

β ≤ A(1− α) and α ≤ (1− β)/B. (9)

Note that the inequalities arise because of the discrete nature of making observations (i.e., at t = 1, 2, . . .)
which results in λt not being able to hit the boundaries exactly. In practice we will neglect this excess
and treat the inequalities as equalities:

A = β/(1− α) and B = (1− β)/α. (10)

Let T be the random time at which the sequence of the λt leaves the open interval (A,B) and a
decision is made that terminates the sampling process. (Note that stopping time T is a random quantity
due to the randomness of the sample generation.) The SPRT provides the following pair of inequalities
(equalities) for the expected stopping time (corresponding to each of the two possibilities)

EXi∼pSPIT
[T ] =

1

κ0

(

α log
1− β

α
+ (1− α) log

β

1− α

)

(11)

EXi∼pNON-SPIT
[T ] =

1

κ1

(

β log
β

1− α
+ (1− β) log

1− β

α

)

. (12)

The constants κi with κ0 < 0 < κ1 are the Kullback-Leibler information numbers defined by

κ0 = Ex∼pSPIT

[

log
p(x|NON-SPIT)

p(x|SPIT)

]

(13)

κ1 = Ex∼pNON-SPIT

[

log
p(x|NON-SPIT)

p(x|SPIT)

]

. (14)

The constants κi can be interpreted as a measure of how difficult it is to distinguish between pSPIT and
pNON-SPIT. The smaller they are the more difficult is the problem.
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3.3 Theoretical Performance of the SPIT Filter

We will now look at the performance of our SPIT filter and derive expressions for its expected loss. Let
us assume we are going to receive a finite number N of calls and that N is sufficiently large such that
the test will always stop before the calls are exhausted (the case where we observe fewer samples than
what the test demands will be ignored for now, e.g., see the truncated SPRT [15]).

How does the filter work? At the beginning all calls are accepted (observing samples xi) until the
test becomes sufficiently certain about its prediction. Once the test becomes sufficiently certain, based
on the outcome the filter implements the following simple policy: if the test returns that the source is
SPIT then all future calls from it will be blocked. If the test says that the source is NON-SPIT then
all future calls from it will be accepted. Since the decision could be wrong, we define the following cost
matrix (per call):

Source=SPIT Source=NON-SPIT
Accept call c0 0
Block call 0 c1

Let L denote the loss incurred by this policy (note that L is a random quantity). To compute the
expected loss, we have to divide N into two parts: the first part from 1 to T corresponds to the running
time of the test where all calls are automatically accepted (T < N being the random stopping time with
expectation given in Eqs. (11)-(12)), the second part from T +1 to N corresponds to the time after the
test.

If H0 is true, that is, the source is SPIT, the loss L will be the random quantity

L|source=SPIT = c0T + αc0(N − T ) (15)

where c0T is the cost of the test, α the probability of making the wrong decision, and c0(N − T ) the
cost of making the wrong decision for the remaining calls. Taking expectations gives

EXi∼pSPIT
[L] = αc0N + c0(1− α)EXi∼pSPIT

[T ]. (16)

Likewise, if H1 is true, that is, the source is NON-SPIT, our loss will be the random quantity

L|source=NON-SPIT = 0 · T + βc1(N − T ) (17)

where 0 is the cost of the test (because accepting NON-SPIT is the right thing to do), β the probability
of making the wrong decision, and c1(N − T ) the cost of making the wrong decision for the remaining
calls. Taking expectation gives

EXi∼pNON-SPIT
[L] = βc1(N − EXi∼pNON-SPIT

[T ]). (18)

The total expected loss takes into consideration both cases and is simply

E[L] = p(SPIT) · EXi∼pSPIT
[L] + p(NON-SPIT) · EXi∼pNON-SPIT

[L]. (19)

For the case that both priors are equal, we have

E[L] =
1

2

{

N(αc0 + βc1) + log
1− β

α

(c0α(1− α)

κ0
−

c1β(1− β)

κ1

)

+ log
β

1− α

(c0(1− α)2

κ0
−

c1β
2

κ1

)}

(20)

Now let us consider the situation where we want to apply the filter in practice. For any given problem
distributions pSPIT, pNON-SPIT, the number of calls N and the cost of mistakes c0, c1 are specified in
advance. To be able to run the test, the only thing left is how to set the remaining parameters α, β.
However, looking at Eq. (20) we see that, given all the other information, the expected loss will be
a function of α, β. Thus one way of choosing α, β would be to look for that setting α∗, β∗ that will
minimize the expected loss under the given problem specifications (i.e., distributions pSPIT, pNON-SPIT

and cost c0, c1 ). Of course, Eq. (20) is nonlinear in α and β and cannot be minimized analytically and
in closed form. Instead, we will have to employ iterative techniques to approximately determine α∗, β∗

or solve a simplified problem (e.g., use linearization).
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3.4 Example: Exponential Duration Distribution

For the following numerical example we assume that pSPIT and pNON-SPIT are both exponential distri-
butions with parameters λ0, λ1 > 0, that is, are given by

p(x|SPIT) = λ0 exp(−λ0x)

p(x|NONSPIT) = λ1 exp(−λ1x)
(21)

for x > 0. While this example is primarily meant to illustrate the behavior of a SPRT-based SPIT filter
theoretically, it is not an altogether unreasonable scenario to assume for a real world SPIT filter. For
example, we could assume that the only observable feature x of (accepted) calls is their duration (see
Section 4). In this case SPIT calls will have a shorter duration than regular calls because after a callee
answers the call, they will hang up as soon as they realize it is SPIT. The majority of regular calls on
the other hand will tend to have a longer duration. While this certainly simplifies the situation from
the real world (e.g., it is generally assumed that call duration follows a more complex and heavy-tailed
distribution [1]), we can imagine that both durations can be modeled by an exponential distribution
with an average (expected) length of SPIT calls of 1/λ0 minutes and an average length of NON-SPIT
calls of 1/λ1 minutes ( 1

λ1
> 1

λ0
).

First, let us consider the expected stopping time from Eqs. (11)-(12). From Eqs. (13)-(14) we have
that the Kullback-Leibler information number for Eq. (21) is given by

κ0 =

∞
∫

0

log

[

λ1 exp(−λ1x)

λ0 exp(−λ0x)

]

· λ0 exp(−λ0x)dx

= log
λ1

λ0

∞
∫

0

λ0 exp(−λ0x)dx++(λ0 − λ1)

∞
∫

0

x · λ0 exp(−λ0x)dx

= log
λ1

λ0

+ 1−
λ1

λ0

(22)

(On the second line, the first integral is an integral over a density and thus is equal to one; the second
integral is the expectation of pSPIT and thus is equal to 1/λ0.) Similarly we obtain for κ1 the expression

κ1 = log
λ1

λ0

− 1 +
λ0

λ1

. (23)

Note that for more complex forms of distributions we may no longer be able to evaluate κi in closed
form.

As we can see, κi only depends on the ratio λ1/λ0. Thus for fixed accuracy parameters α, β the
expected stopping time in Eqs. (11)-(12) will also only depend on the ratio λ1/λ0. The closer the ratio
is to zero, the fewer samples will be needed (the problem becomes easier); the closer the ratio is to
one, the more samples will be needed (the problem becomes harder). Of course this result is intuitively
clear: the ratio λ1/λ0 determines how similar the distributions are.

In Table 1 we examine numerically the impact of the difficulty of the problem, in terms of the ratio
λ1/λ0, on the expected number of samples until stopping for different settings of accuracy α, β. For
instance, an average NON-SPIT call duration of 2 minutes as opposed to an average duration of SPIT
calls of 12 s leads to λ1/λ0 = 0.1, and distributions that are sufficiently dissimilar to arrive with high
accuracy at the correct decision within a very short observation horizon: with accuracy α, β = 0.001,
the filter has to observe on the average 1.0 calls if the source is NON-SPIT and 4.9 calls if the source
is SPIT to make the correct decision in at least 99.9% of all cases. (Notice that the stopping time is
not symmetric.) On the other hand, with λ1/λ0 > 0.5 the similarity between SPIT and NON-SPIT
becomes too strong, which is an indication that other/more features should be tried.

Next we will compute the log-likelihood ratio Λt. From Eq. (28) we have

Λt =

t
∑

i=1

log
p(xi|NON-SPIT)

p(xi|SPIT)
=

t
∑

i=1

[

log
λ1

λ0

+ (λ0 − λ1)xi

]

. (24)
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α, β = 0.05 α, β = 0.01 α, β = 0.001
λ1/λ0 κ0 κ1 ESPIT[T ] ENON[T ] ESPIT[T ] ENON[T ] ESPIT[T ] ENON[T ]
0.99 -0.00005 0.00005 52646.2 52294.7 89463.4 88865.9 136938.9 136024.5
0.95 -0.00129 0.00133 2049.0 1980.1 3481.9 3364.9 5329.7 5150.5
0.90 -0.00536 0.00575 494.3 460.8 840.0 783.0 1285.8 1198.6
0.70 -0.05667 0.07189 46.7 36.8 79.4 62.6 121.6 95.8
0.50 -0.19314 0.30685 13.7 8.6 23.3 14.6 35.6 22.4
0.30 -0.50397 1.12936 5.2 2.3 8.9 3.9 13.6 6.1
0.10 -1.40258 6.69741 1.8 0.3 3.2 0.6 4.9 1.0
0.01 -3.61517 94.39486 0.7 <0.1 1.2 <0.1 1.9 0.1

Table 1: How does the difficulty of the problem, expressed in terms of the ratio λ1/λ0, affect the
expected number of samples until stopping ESPIT[T ] and ENON-SPIT[T ] for different settings of the
accuracy parameters α, β.
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Figure 2: An example run of SPRT. The log-likelihood ratio Λt starts at t = 1 in the region between the
decision boundaries and, with each new sample observed from the unknown source, performs a random
walk over time. Eventually it will cross over one of the decision boundaries and either enter the region
marked “decide SPIT” or enter the region marked “decide NON-SPIT”.

The decision regions for the SPRT from Eq. (4) are thus

log
β

1− α
< t · log

λ1

λ0

+ (λ0 − λ1)

t
∑

i=1

xi < log
1− β

α
(25)

or, equivalently,

log
β

1− α
+ t ·

(

log
λ0

λ1

)

< (λ0 − λ1)

t
∑

i=1

xi < log
1− β

α
+ t ·

(

log
λ0

λ1

)

. (26)

From the latter we can see that the boundaries of the decision regions are straight and parallel lines (as
a function t of samples). Running the SPRT can now be graphically visualized as shown in Figure 2:
the log-likelihood ratio ΛT starts for t = 1 in the middle region between the decision boundaries and,
with each new sample it observes from the unknown source, does a random walk over time. Eventually
it will cross over one of the lines after which the corresponding decision is made. For a fixed value of
α, β, changing the ratio λ0/λ1 changes the slope of the decision boundaries. For a fixed value of λ0, λ1,
changing the accuracy α, β shifts the decision boundaries upward and downward.

3.5 Experiment: perfectly known distribution

To examine the (theoretical) performance of SPRT, we ran a large number of Monte Carlo simulations
for various settings of problem difficulty λ1/λ0 (λ0 was set to 1, λ1 was varied between 0.9 and 0.1)
and accuracy α, β (α, β = 0.05, α, β = 0.01, α, β = 0.001). For each setting we performed 50,000
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Figure 3: Monte Carlo simulation of SPRT with the results averaged over 50,000 independent runs
and error bars denoting one standard deviation. The top row shows the average number of calls
necessary before SPRT stops for various settings of accuracy α, β. The red dots indicate the respective
expected stopping time. The bottom row shows the proportion of SPRT ending up making the wrong
decision (that is, accepting SPIT or blocking NON-SPIT) for various settings of accuracy α, β (shown
as horizontal lines). As can be seen, in many instances the height of the bars is notably below the
corresponding horizontal line, meaning that the actual error rate can be much smaller than what the
accuracy parameters α, β would suggest, which are merely an upper bound.

independent runs and recorded, for each run, how many samples were necessary for SPRT to reach a
decision and whether or not that decision was wrong. The experiment examines separately the case
where the source is SPIT and NON-SPIT. The result of the simulation is shown in Figure 3 and confirms
the expected stopping time computed analytically in Table 1. In addition, the results show that the
actual number of mistakes made (the height of the bars in the figure) is in many cases notably smaller
than the corresponding error probabilities α, β (the dashed horizontal lines in the figure), which are
merely upper bounds.

Next, we examine the performance of the SPRT-based SPIT filter with loss function from Eq. (20)
in Table 2. This time the accuracy parameters α, β were not set by hand but chosen to be optimal
with respect to the loss function Eq. (20) (the minimization was carried out using MATLAB’s interior
point solver for constrained problems). To avoid getting overly large stopping times for λ1/λ0 close to
1, α, β > 0 were constrained to be greater than 10−5 during the minimization. The priors in Eq. (20)
for pSPIT and pNON-SPIT were both set to 1/2. In the experiment we examine the effect of setting
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source=SPIT

N=500 N=5000

λ1/λ0 c1 = c0 c1 = 10c0 c1 = 100c0 c1 = c0 c1 = 10c0
β∗ 0.0014 0.0001 0.0001 0.0001 0.0001

0.1 nErr 1 1 2 1 1

T 5.31 6.95 7.20 6.93 7.20

β∗ 0.0024 0.0002 0.0001 0.0002 0.0001

0.2 nErr 3 2 5 2 1

T 8.14 11.01 12.12 11.01 12.11

β∗ 0.0040 0.0004 0.0001 0.0004 0.0001

0.3 nErr 3 3 2 3 3

T 11.82 16.37 19.17 16.41 19.11

β∗ 0.0065 0.0006 0.0001 0.0006 0.0001

0.4 nErr 4 5 0 5 5

T 5.31 6.95 7.20 6.93 7.20

Table 2: Empirical performance of the SPRT-based SPIT filter as a function of difficulty λ1/λ0, varying
the cost of blocking NON-SPIT c1 = k · c0, and varying the number of calls N = 500 or N = 5, 000 for
the case that source=spit. Each entry consists of three values: β∗ the optimal setting of the accuracy
obtained from minimizing Eq. (20); nErr how often the SPIT filter made the wrong decision (out of
100,000 independent trials); T the average stopping time (number of calls). α∗ has a constant value
of 0.0001 (which is the lower boundary value used in optimization) in this scenario and is therefore
omitted.

different values for the difficulty λ1/λ0, the cost of blocking NON-SPIT c1 = k · c0, and the number
of calls (N = 500 or N = 5, 000). For each such setting, we ran 100,000 independent simulation
trials and computed the average of the result. The table shows that either increasing c1 with respect
to c0 or increasing the number of calls N will make the optimizer prefer smaller values for β to avoid
making costly errors (which is proportional to N and c1), which in turn increases the number of samples
necessary for SPRT to stop. The table also shows, as we have already seen before, that the numbers
of actual misclassifications is below the respective values of the error probabilities α∗ and β∗. More
importantly, the number itself is very small: out of 100,000 trials the number of times the SPIT filter
made the wrong decision varied between 0 and 5, which is less than 0.005%.

4 Network Operator’s Perspective

Having so far described our SPIT filter from a purely theoretical point of view, we now discuss the steps
necessary to deploy it in the real world. Note that in what follows it is neither our intent nor within the
scope of the paper to describe in detail the architecture of a fully functional SPIT prevention system.

The section is structured as follows. First we will sketch how the SPIT filter, which should more
appropriately be seen as a SPIT detector, could be integrated into a larger SPIT prevention system as
one building block among many others. We will make suggestions on how the problem-dependent parts
of the SPRT can be instantiated by specifying:

• sources: how to map calls to sources such that the pure source assumption is fulfilled

• features: what call features to use such that SPIT and NON-SPIT calls are well presented

• actions: what action to take if the SPRT indicates a source is likely to send out SPIT

We will then explain how the distribution of the features that discriminate SPIT from NON-SPIT can
be learned from labeled data by first assuming that the distribution is of a certain parameterized form
and then estimating these parameters from the data via maximum likelihood. In the second part of the
section we use data extracted from a large database of real-world voice calls and demonstrate empirically
that the performance of the SPIT filter under real-world conditions with a priori unknown distribution
is also very good.
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Figure 4: A hierarchical and modular SPIT prevention system. The SPRT-based SPIT filter we propose
in this paper is one particular module in the always-on component of the basic service layer.

4.1 Integration into a SPIT Prevention System

For a network operator, a SPIT prevention system such as the one we propose and sketch in Figure 4 must
allow both to maintain and guarantee an acceptable level of service under adverse operating conditions
and have a low maintenance cost. To achieve this goal, we adopt the overall strategy presented in
[14] which proposes a hierarchical system consisting of two modular layers: a basic service layer and a
diagnostic layer. The basic service layer manages and processes call requests and as a whole serves to
protect against attacks in VoIP networks – among which SPIT is just regarded as one particular threat.
For the prevention of SPIT the basic layer is made up of two subcomponents (a conceptually similar
setup was also proposed for SEAL [10]): always-on detection and on-demand protection.

Always-on detection consists of passive modules which essentially extract and make use of informa-
tion which is “already there” and thus have zero or very low computational costs. On the other hand,
these modules are only weak detectors in that they are successful only under restrictive conditions.
If the always-on detection component cannot establish with high certainty that a call is NON-SPIT,
in which case it would be allowed to pass through unharmed, the call is internally forwarded to the
on-demand protection component.

The on-demand protection component consists of active modules which require additional processing
and can have medium to high computational costs; e.g., digit-based audio CAPTCHAs [13] or hidden
Turing tests and computational puzzles [7]. These modules are meant to protect the network with high
accuracy. However, because of the cost involved (they interfere with natural communication, consume
and block resources, and may to some degree annoy human callers), they are triggered only individually
and on demand. An intelligent decision policy controls the precise way a call gets probed by the various
security tests, such that resource consumption is minimized, until a final decision SPIT or NON-SPIT
can be made with high certainty.

4.1.1 Deployment as outbound SPIT filter

Logically, the SPIT filter we propose would be located within the always-on component. Physically, the
SPIT filter would be located at the proxy servers which form the gateway between one’s own network and
the outside world. The SPIT filter will then act as an outbound filter: it will perform self-moderation of
outgoing calls and unveil the presence of a SPIT botnet within one’s own network before other networks
take countermeasures. Previous experience with e-mail has shown that outbound filters are critical to
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keep control over one’s traffic. They ensure that the whole network’s address space will not end up on
a black list as soon as a single of its child systems becomes enrolled into a botnet.

4.1.2 Defining sources

For an outbound filter, the definition of sources – that is, the mapping of individual call requests to
the appropriate state slot in our filter – is straightforward since sources correspond to registered users
and/or customers. The amount of information required per source (one additional number) and the
number of potential sources itself is low enough to accommodate most operator’s need without having
to rely on aggregation.

4.1.3 Defining features

The choice of which call features to use in our SPIT filter is crucial for its performance. While the SPIT
filter is theoretically guaranteed to work with any choice of single feature or combination of features
(under which the distributions for SPIT and NON-SPIT are non-identical), for practical reasons features
with the following properties are highly desired:

• good separation of the distributions pSPIT and pNON-SPIT as quantified by the Kullback-Leibler
information numbers κ1, κ0 from Eqs. (13)-(14). This ensures that the filter will be able to stop
a source from sending out further SPIT as quickly as possible.

• hard to manipulate for spitters

• availability of data, e.g., from old logfiles

• easy access to the feature during runtime, meaning that the feature should be easily observable
during normal operation without requiring extra machinery.

We believe that in this regard a good choice of features in SPIT detection are features which capture
the reaction of users to SPIT rather than features that capture the technical properties of SPIT bots.
Indeed, a SPIT call is: (1) undesirable and has likely shorter duration, as the call would be hanged
up by the callee with higher probability; (2) likely to be playing back a pre-recorded message such
that double-talk2 may occur; (3) unexpected with possibly longer ringing time and a higher rate of
unanswered/refused calls; (4) automated with likely shorter time-to-speech and fewer pause during the
call. Although these features are more likely to be affected by cultural or social habits, they are much
harder to manipulate for a spitter than features such as inter-arrival time or port number. They are
also less likely to be affected by the technical characteristics of one specific botnet, and thus could more
easily take the moving nature of SPIT attacks into account.

In this paper, we argue that call duration might be a good feature (also because it simplifies calcu-
lation).

Of course, other choices of features are also possible. In fact, the theoretical framework in Section 3
allows one to do feature selection. In practice, one would thus start by identifying a set of all possible
candidate features. Given data, one would then compute the κ0 and κ1 Kullback-Leibler information
number either from parametric density estimation (as shown below in Section 4.2), or in more compli-
cated cases from non-parametric density estimation such as, e.g., histograms. Knowing the respective
κ1, κ0 allows one to rank the subsets and ultimately to select the features that achieve minimum ex-
pected regret, as the worst-case false positive and false negative rates can be explicitly computed using
the equations presented in section 3.3.

2Double-talk means that caller and callee talk at the same time. As is described in [17], this can be computed directly
from the packet header information and does not require expensive processing of the voice stream.
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4.1.4 Defining decisions

Finally we have to talk about the actions the SPIT filter can take. In Section 3 we have assumed that
once a source has been identified as a SPIT bot, all subsequent calls are to be blocked. And conversely,
once a source has been identified as a regular user, all subsequent calls are to be allowed through. It is
clear that in practice this decision rule alone will not be sufficient. However, recall from the beginning of
this section that our SPIT filter is meant to be only one particular module in a larger SPIT prevention
system (see Figure 4). Thus the outcome of the SPRT should be seen as another feature by itself, based
on which a higher-level decision-making policy would then act. (The specific details of this high-level
decision-making policy are outside the scope of the paper.)

4.2 Example: learning the distribution from labeled data

Maximum likelihood estimation is a simple way to learn the distribution from labeled data. Assume
we are given n calls either all labeled as SPIT or all labeled as NON-SPIT (without loss of generality
we assume they are all SPIT). To estimate the distribution pSPIT necessary to perform the SPRT, we
proceed as follows. First, we extract the feature representation from each call, yielding x1, . . . , xn.
Next, we make an assumption about the form of pSPIT; for example, assume xi is the call duration
and we believe that an exponential distribution with (unknown) parameter λ would describe the data
well. To find the parameter λ that best explains the data (under the assumption that the data is i.i.d.
drawn from an exponential distribution) we then consider the likelihood of the data as function of λ
and maximize it (or equivalently, its logarithm):

max
λ>0

L(λ) := log p(x1, . . . , xn|λ) (27)

= log
(

n
∏

i=1

p(xi|λ)
)

=
n
∑

i=1

log
(

λ exp(−λxi)
)

= n log(λ)− λ

n
∑

i=1

xi. (28)

The best parameter λML is then found by equating the derivative of L(λ) with zero, yielding n
λ −

∑

xi =
0, or

λML =
n

∑n
i=1 xi

. (29)

To run the SPIT filter we would thus take p(x|SPIT) := λML exp(−λMLx) in Eq. (21).

4.3 Evaluation with real world data

As said above, in the real world we cannot assume that we know the generating distributions pSPIT
and pNON-SPIT. Instead we have to build a reasonable estimate for the distributions from labeled data.
The natural question we have to answer then is: what happens if the learned distribution used in the
SPIT filter does not exactly match the true but unknown distribution generating the data we observe
(remember, the case where they do match was examined in Section 3.5).

To examine this point with real-world data, we used call data from 106 subjects collected from
mobile phones over several months by the MIT Media Lab and made publicly available3 in [2]. The
dataset gives detailed information for each call and comprises about 100,000 regular voice calls. Ideally
we would have liked to perform the evaluation based on real-world data for both SPIT and NON-SPIT.
Unfortunately, this dataset only contains information about regular calls and not SPIT—and at the
time of writing, no other such dataset for SPIT is publicly available.

In the following we will take again call duration as feature for our filter to discriminate SPIT from
NON-SPIT. To obtain SPIT calls from the dataset, we proceed as follows. The dataset is artificially
divided into two smaller datasets: one that corresponds to SPIT and one that corresponds to NON-
SPIT. The set of SPIT calls is obtained by taking 20% of all calls whose call duration is <80 seconds,

3http://reality.media.mit.edu/download.php
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the remaining calls are assigned to the set of NON-SPIT calls. Each time a call is generated, we
randomly select a call from the SPIT or NON-SPIT dataset, extract its call duration and forward it to
the SPIT filter. As this time we are dealing with real-world data, we do not know the true generating
distributions pSPIT, pNON-SPIT. Instead we fit, as described in Section 4.2, an exponential distribution to
the datasets we have built and use the learned distributions as surrogate4 for the unknown distribution
pSPIT, pNON-SPIT in the SPIT filter (i.e., κ1, κ0 is calculated for the learned distributions which in our
case have mean 30.23 seconds for SPIT and 129.64 seconds for NON-SPIT).

Our general experimental setup is the same as before in Section 3.5. We consider three scenarios:
(1) scenario one, where SPIT is generated from a model and NON-SPIT is generated from the data; (2)
scenario two, where SPIT is generated from data and NON-SPIT is generated from a model; (3) scenario
three, where SPIT is generated from data and NON-SPIT is generated from data. Here “generated from
model” means that the generating distribution is exponential with known mean (thus the distribution
in the SPIT filter matches the data generating distribution); “generated from data” means that we use
the real-world data described above (thus the distribution in the SPIT filter does not match the data
generating distribution).

We performed 10,000,000 independent runs of the SPIT filter for each of the cases source=SPIT and
source=NON-SPIT, and settings of the accuracy parameters α, β. For each setting, Table 3 shows the
number of times the SPIT filter made the wrong decision and how many calls the filter needed to observe
to arrive at this decision. For example, when both SPIT and NON-SPIT are generated from real-world
data (column 3) and with α, β set to 10−3, the empirical error rate for NON-SPIT is 6.96·10−2 (meaning
that 6.96% of regular calls are wrongly identified as SPIT), while the empirical error rate for SPIT is 0
(meaning that 0% of SPIT calls are wrongly identified as NON-SPIT). The average number of calls the
SPIT filter had to let through to arrive at this decision was 6.64 and 8.18, respectively. Note that while
the error rate for NON-SPIT seems rather high (and is higher than the expected error for this setting
accuracy), we should keep in mind that in our experiment it occurs under unfavorable conditions (an
intentional mismatch between the true model and the distribution generating the data).

In practice, one would use more sophisticated (and more accurate) methods to estimate the distri-
butions from data and, since the SPRT filter would ideally be just one component in the larger SPIT
prevention framework and not be alone responsible for making the decision of whether to accept or
reject the call, also allow higher tolerance thresholds for the error (which are automatically adjusted as
described in Section 3.3 by having a human operator define the cost of making an error appropriately).

5 Summary

In this paper, we presented the first theoretical approach to SPIT filtering that is based on a rigorous
mathematical formulation of the underlying problem and, in consequence, allows one to derive perfor-
mance guarantees in terms of worst case cumulative misclassification cost (the expected loss) and thus,
on the number of samples that are required to establish with the required level of confidence that a
source is indeed a spitter. The method is optimal under the assumption of knowing the generating dis-
tributions, does not rely on manual tuning and tweaking of parameters, and is computationally simple
and scalable. These are desirable features that make it a component of choice in a larger, autonomic
framework.

Moreover, we have outlined the procedure that needs to be followed to apply this SPIT filter as an
outbound filter in a realistic SPIT prevention system, including which potential call features to use and
how the best feature could be found from the candidates via automated feature selection. In particular,
we have sketched how the generating distributions can be learned from data. The difficulty of the
problem of successfully detecting SPIT is then only related to how similar/dissimilar the generating
distributions are. This difficulty can be quantitatively expressed in terms of the Kullback-Leibler infor-
mation numbers κ1, κ0—which in turn can be calculated analytically or approximately from the learned

4Note again that the true generating distribution is likely not exponential. Thus the theoretical bounds we derived in
Section 3 do not directly apply. However, if the true distribution is “close” to an exponential, then we can expect that the
result obtained from using only the learned distribution will also be “close”. The experiments in this section will confirm
that this is indeed the case.
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SPIT=model, NON-SPIT=data SPIT=data, NON-SPIT=model SPIT=data, NON-SPIT=data

Source=SPIT

α, β Error Stopping time Error Stopping time Error Stopping time

1·10−6 0 15.68 0 20.74 0 15.67

1·10−5 0 13.18 0 17.48 0 13.18

1·10−4 1.10·10−5 10.69 0 14.07 0 10.66

1·10−3 1.13·10−4 8.19 0 10.73 0 8.18

1·10−2 1.43·10−3 5.67 0 7.38 0 5.66

1·10−1 1.74·10−2 2.98 1.10·10−6 3.89 0 3.05

Source=NON-SPIT

α, β Error Stopping time Error Stopping time Error Stopping time

1·10−6 6.17·10−3 10.10 1.10·10−6 9.30 6.16·10−3 10.11

1·10−5 1.38·10−2 9.10 4.00·10−6 8.05 1.39·10−2 9.12

1·10−4 3.13·10−2 7.96 6.20·10−5 6.79 3.15·10−2 8.00

1·10−3 6.95·10−2 6.64 6.52·10−4 5.54 6.96·10−2 6.64

1·10−2 1.53·10−1 4.96 6.31·10−3 4.25 1.54·10−1 4.97

1·10−1 3.40·10−1 2.79 6.88·10−2 2.68 3.40·10−1 2.79

Table 3: Results of running the SPIT filter on real-world call data. The column “Error” gives the
empirical error as the average number of times the SPIT filter ended up making the wrong decision (as
fraction over 10,000,000 independent runs). The column “Stopping time” gives the average number of
calls necessary for the SPIT filter to arrive at a decision.

distributions. Taken together this means that the worst case performance of the SPIT filter can be
computed in real-world operation (and can thus be potentially used to tune the other hyperparameters
of the whole system).

Our experimental evaluation, both on data synthetically generated and on data extracted from real-
world call data, verifies that our approach is feasible, efficient (“efficient” meaning that only very few
calls need to be observed from a source to identify SPIT), and able to produce highly accurate results
even when the generating distribution is not a priori specified but inferred from data.
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