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Abstract

In this paper we introduce a capacity allocation game which models the prob-
lem of maximizing network utility from the perspective of distributed noncoop-
erative agents. Motivated by the idea of self-managed networks, in the developed
framework decision-making entities are associated with individual transmission
links, deciding on the way they split capacity among concurrent flows. An ef-
ficient decentralized algorithm is given for computing strongly Pareto-optimal
strategies, constituting a pure Nash equilibrium. Subsequently, we discuss the
properties of the introduced game related to the Price of Anarchy and Price of
Stability. The paper is concluded with an experimental study.

Keywords: computer networks, algorithmic game theory, capacity allocation

1 Introduction
Modern communication networks provide universal systems of data exchange within di-
versified services and applications. Publicly available communication channels, main-
tained by Internet service providers (ISPs), are shared by very large numbers of con-
current packet flows. Each of such data transmission usually corresponds to the com-
munication between a client application (invoked by a user) and a server application.
On the global scale, users can be seen acting independently and willing to selfishly
maximize their utility, reflected in their transmission speed or response delay. One
distinctive characteristic of such systems is the lack of central coordination or regula-
tion.

In the presence of limited communication resources, packet transfer protocols need
to incorporate congestion avoidance functionalities. It has been shown [36] what kind
of users’ utility can be maximized with the use of Internet transmission control protocol
(TCP) [30]. Many challenging questions arise when one seeks to design a communica-
tion network in such a way so as to optimize a given utility measure. In the last years,
this line of research has stimulated many advancements in the area of distributed
mathematical optimization [11]. Some of the most interesting results were obtained
with the use of algorithmic game theory, which has become a method of choice for
analyzing properties of distributed protocols.

In this paper we employ this approach to the analysis of distributed transmission
rate control problem, formulated within the network utility maximization framework.
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In the majority of prior research on the network resource allocation games, usually
users (clients or flow sources) were modeled as players. Motivated by the idea of self-
managed (autonomic) networking, we propose an alternative formulation, in which
players are associated only with transmission links. More specifically, in our model,
each decision-making agent manages one outgoing router interface, connected directly
to some other node. Consequently, with each node there can be associated multiple
players, but their decisions correspond to disjoint subsets of flows.

It was argued that the part of network maintenance cost corresponding to human
administering/operating of the system is rapidly growing, and becomes negligible in
comparison to the devices’ prices. It is predicted that such trend will last in the coming
years [1]. Therefore, it is crucial to develop mechanisms which enable managing the
network resources in an automatic or semi-automatic manner. The aim of the proposed
solution is to limit the human administrator role only to defining the goals of system’s
operation. It is assumed that network routers may be considered as autonomous
entities, which operate independently. Only limited coordinating communication is
allowed between them.

1.1 Related Work

The idea of autonomic networking was introduced by IBM [38]. A similar concept
underlies the self-organizing networks (SON) [60]. Recently, SON approach has been
extensively studied for the application in 4G LTE mobile networks [29]. In [51] authors
argue that some existing protocols like TCP or Open Shortest Path First (OSPF) may
be treated as basic solutions for autonomic networking.

The central network resource allocation problem is the network utility maximiza-
tion problem (NUM), which is also discussed in this paper. As formulated in [37], it
provides the basis for further considerations. An extensive survey of the utility-based
approach applied to the analysis of network resource allocation can be found in [14].
Moreover, in [35] it was shown that the NUM framework suits well for developing a
self-managing mechanism for the Internet.

A survey of the most important approaches in autonomic network management
may be found in [18] and [1]. However, it is worth noting that the most common con-
cepts towards self-management are related to control theoretic approach [16], biological
inspired mechanisms [5] and game theory [46].

Game theory is a very powerful framework for studying decision making problems,
involving a group of agents acting individually, being rational and competing or coop-
erating to achieve certain goals [52]. It provides mathematical tools for analyzing the
consequences of agents’ behavior and enables developing mechanisms, which encourage
them to take expected actions. Game theory has been widely studied in the context
of many different applications, mostly in economics, but also in politics, biology, phi-
losophy and computer science [45]. An introductory material on game theory may be
found in [21,55].

In the recent years a subfield known as algorithmic game theory has emerged
[42, 57], combining game theory and algorithms design. This was mainly motivated
by the need for analysis of interaction of independent agents in the Internet, in such
problems as inter-domain routing, peering, online auctions, online advertising, etc.
The problems tackled with the use of algorithmic game theory include establishing the
existence of Nash equilibria, computing the Price of Anarchy and Price of Stability,
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and designing computationally efficient procedures for determining players’ strategies.
Moreover, employing the mechanism design techniques allows for constructing and
analyzing computational procedures executed by collections of machines [54]. We
refer to [53] as a comprehensive textbook on algorithmic game theory.

Many interesting results in algorithmic game theory applied to computer networks
have been obtained in the last ten years. In [45] two TCP clients are interpreted
as players in the prisoner dilemma game. Another game-theoretical analysis of TCP
is given in [67], focusing on the Vegas version of this protocol. In [32] it is shown
that the noncooperative games for flow control problems have Pareto-inefficient Nash
equilibria.

In [66] the co-existence of different congestion avoidance protocols is considered.
It is shown that some properties related to the NUM approach do not hold in the
presence of heterogeneous congestion signals. Such a situation is explained through
game theoretical framework.

The important class of games concerning allocation problems in networks (not
necessarily communication networks) are congestion games [62]. Typically congestion
games are applied to routing problems in computer networks, where the sources (users)
are interpreted as players deciding on the selection of paths to transmit data at a given
rate [24,34]. The player’s strategy consists in deciding how to split this rate among all
possible paths from the source to the destination, or, if flows are unsplittable, which
routes to use for transmission. In [39] and [40] the authors propose a methodology
of architecting noncooperative games for network resource allocation problem, which
may improve overall system performance during provisioning and operating phase of
network lifecycle. The solution is obtained for a parallel link network structure. It is
shown that for such a case, the occurrence of the Braess paradox [8] may be avoided.
Some of these results are extended for a general network. In [31] the congestion game
for the rate allocation problem is presented. The variant of a one-link network is
analyzed, and it is shown that for such case, the Price of Anarchy is no greater than
4/3. Similarly, the extension for general networks is briefly discussed.

Bottleneck games are a similar class of routing games, in which a different payoff
function is used [28]. Although the Nash equilibria for such games usually exist, their
performance (estimated via Price of Anarchy values) is usually poor. A game with
a relatively low Price of Anarchy is proposed in [33]. In [6] two types of bottleneck
games are considered, for splittable and unsplittable flows. It is also shown that for
both proposed games the Price of Anarchy is unbounded. However, it is proven that
under some mild conditions the Nash equilibrium is socially optimal.

Work [43] considers both congestion game and bottleneck game, in the application
to the routing problem. It also proposes a new routing game specifically for the elastic
flows. All three approaches are compared. Basing on one example and two real network
experiments, some advantages of the introduced game are shown.

In [59] the approach to resource allocation for the networks with quality of service
(QoS) based on Differentiated Services [10] architecture is proposed. The sources
(flows) are players. They choose one QoS class and the transmission rate in this
chosen class. The players’ payoffs are proportional to the transmission rate if their
QoS requirements are satisfied and zero otherwise. For the proposed noncooperative
game, a simple algorithm computing Nash equilibrium is presented. The extension of
this concept is given in [26].

The joint problem of QoS routing and capacity allocation problem is considered
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in [22]. In the proposed game, two groups of players are introduced, namely capacity
players (each related to one link) and network users (each related to one pair of source
and destination). Each capacity player divides its capacity among given Class of
Services to minimize overall congestion over the associated link. On the other hand
each user splits their traffic among all available paths so as to maximize a degree of
satisfaction.

In [70] the bandwidth allocation problem in the virtual networks (VN) [20] environ-
ment is considered. The problem is presented in terms of the non-cooperative game
between service providers (VNs’ owners) seen as players. The strategy of a player
is determined by virtual links’ capacities and flow rates in the particular VN. The
utility and cost functions constitute the payoffs. The constraints concerning limited
amount of physical links’ capacities (bandwidths) are substituted with a congestion
cost which is one of the addends of the cost function. Authors prove the existence of
Nash equilibrium for such a game. An iterative algorithm is proposed, converging to
the equilibrium, based on the best response method.

Furthermore, another type of games called auctions [48] seems very suitable for
computer network applications [41]. In [65] classic Vickerey-Clarke-Groves (VCG)
mechanism [47], together with the so-called Kelly mechanism (based on results ob-
tained in [37]), is used for the network resource allocation. In [17] the capacity alloca-
tion problem is stated as an auction game between flows (users), seen as buyers, and
network operator, seen as an auctioneer. A distributed algorithm to find efficient Nash
equilibrium is proposed. The presented mechanism is described as VCG-like, since, on
the contrary to the classic VCG auction, it does not require a full valuation function.

Currently, the game-theoretical framework is also extensively studied in the context
of wireless networks [23]. For instance, in [64] bandwidth allocation problem for a class
of wireless networks is investigated. The uniqueness of Nash equilibrium for some
particular network topologies is shown. It is also stated that some of the presented
results may be also generalized for different cases. In [49] the problem of choosing
an access point by a mobile user is considered from the perspective of this approach.
Similar frameworks for issues in wireless networks categorized under corresponding
OSI Layers (namely: physical, data link, network and transport layers) are presented
in [13]. The VCG auctions were also applied to the wireless networks, e.g. in [25] it is
proposed for the resource allocation problem in multimedia wireless networks.

In [63] coalitional games for a communication systems are considered. A classifi-
cation of such games distinguishing three main types of cooperative games is given.
It is stressed that the need of autonomic and self-organizing networks implies the
necessity of developing distributed algorithms which enable each network device to
make independent decision concerning network management. Application examples
of cooperative games in computer networks, mainly wireless, are discussed. Presented
arguments corroborate the game-theoretic approach as a promising solution for auto-
nomic (and self-organizing) networks.

More detailed surveys of game theoretical applications in various network resource
allocation problems may be also found in [2, 13].

The solution approach presented in this paper, can be seen as an efficient decen-
tralized heuristic for the network utility maximization problem. There exists a large
body of work on this subject; most of these works however focus on exact algorithms,
formulated as gradient-based procedures [9], Lagrangian methods [56], dual decom-
positions [11], Newton-type procedures [4] and interior-point methods [19]. Since
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the NUM problem is basically a convex optimization problem, it can be solved in
polynomial time. However, due to large scale of practical instances, exact solutions
often require considerable computational effort. Moreover, since many models involve
uncertain parameters, it is justified to consider approximate solutions. For general
multicommodity flow problems approximation algorithms were considered in [44]. For
a special type of flow control problems, where formulation can be stated with the use
of positive linear programs, a distributed approximation algorithm was given in [7].
Our solution is more general, as a wider class of utility functions are allowed, however
only for a restricted subset of instances the approximation bounds are proven; for gen-
eral network topologies we consider our algorithm a heuristic method, and evaluate
its effectiveness via computational experiments.

1.2 Original contribution

The main contribution of this paper is an efficient distributed algorithm which provably
halts at Pareto-optimal Nash equilibrium of link capacity allocation in the considered
utility maximization problem. Unlike typical distributed methods of solving such net-
work problems (e.g. Lagrangian relaxation-based methods for finding saddle point) our
approach leads to a fast constructional procedure. Although finding optimal alloca-
tion is not guaranteed, computational experiments show that the proposed algorithm
is very scalable. It requires only a few iterations regardless of the number of links and
flows, and gives a very good approximation of the optimal solution.

Moreover, this paper introduces a new type of network game, motivated by the idea
of self-management. The algorithm is designed to be implemented in a decentralized
manner: local information is used by decision-makers, with minimal communication
between them achieved via simple mechanisms. The conceptual framework of self-
management assumes that each decision-making agent relies on its local information
and acts in order to achieve its local goals, which form a decomposition of the global
goal, designated by the system designer.

Unlike prior works, e.g.: [3,6,34,65], in the proposed game decision-making agents
control routers’ outgoing interfaces (i.e. each player corresponds to one link, and
not to end user or flow, as it is usually assumed in the aforementioned literature).
This approach makes our solution prone to the negative effects of users’ selfishness,
limiting their possibilities of abuse. Instead, the proposed algorithm is designed to
be implemented by network operators on their router devices in a fully decentralized
manner.

While different routers can be under control of independent organizations (e.g.:
network operators, ISP companies), they are not obliged to use the same algorithm
for allocating transmission rates. Since each decision-making agent is interested in
maximizing only the utility of its own services, the selfishness is apparent. Conse-
quently, when designing decentralized algorithms it is crucial to analyze the system’s
equilibria. Typically, network routing games (such as congestion games or bottleneck
games) utilize the notion of Wardrop equilibrium [15] as a desirable state of the system.
In these games, players may choose between alternative paths to transfer their traffic,
in order to minimize delays. Moreover, in routing games it is often assumed that there
are infinitely many players. However, the game introduced in this paper models a dif-
ferent type of conflict: flow sources do not choose between alternative paths, as these
are predetermined. In contrast, individual path components (i.e. links) choose rate al-
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locations for finitely many flows, and the game outcome is defined in terms of network
utility. Furthermore, if one would try to transform our game into a kind of routing
game, where instead of individual packets, players are considered as aggregations of
packets (e.g. originating from a common source), then one would notice that there
is significant difference between the strategy spaces. While in both games strategies
can be seen as vectors of nonzero allocations, in our game the sum of elements of this
vector has to be no greater than given amount, while in routing games it has to be no
less than a given amount.

For such game a natural notion of stability is a pure Nash equilibrium. In such
state no link has an incentive to change the rate allocation, as that would not improve
link’s utility. The utility, in turn, translates into operators’ income for providing
transmission services.

Finally, we develop preliminary results concerning the quality of Nash equilibria
of the game, as compared to the optimal solution of NUM. This allows us to bound
approximation ratio of the presented algorithm for a special network topology (i.e.
serial network).

1.3 Organization of paper

The paper is organized as follows. Section 1.1 gives an overview of the related work,
including references to the game theoretical literature and studies on relevant network
resource allocation problems. Section 2 consists of two parts. The statement of network
utility maximization problem is given in Subsection 2.1. The definition of the capacity
allocation game is presented in Subsection 2.2. Main results of the paper are contained
in Section 3 including two algorithms for computing strategies, and the proof that the
strategy profile computed by the latter algorithm (denoted Algorithm 1) is a pure Nash
equilibrium. Section 4 discusses additional properties of the game: Pareto-optimality
(Subsection 4.1), Price of Anarchy and Stability (Subsection 4.2). The general results
are based on the analysis of hypothetical strategy profile corresponding to the optimal
solution of NUM. Computational study is presented in Section 5. Finally, Section 6
concludes the paper.

2 Capacity allocation game
We show how the interaction between concurrent decision-making agents can be mod-
eled as a game. Subsequently, we establish a relationship of the formulated game and
the solution of the NUM problem.

2.1 Network utility maximization problem

In the considered problem the network consists of a set of L links, each with capacity
cl > 0, l ∈ {1, . . . , L}. Denote c = [c1, . . . , cL]T . There are R flows (users’ packet
transmissions), defined by a routing matrix A = [alr], where alr = 1 if r-th flow
traverses lth link, and alr = 0 otherwise. Each flow is characterized by the transmission
rate xr ≥ 0 (expressed in bits per second). Denote x = [x1, . . . , xR]T . For each
flow there is an associated utility measure ur(xr), which is assumed to be strictly
increasing concave and twice-differentiable function of transmission rate (reflecting
user’s willingness to pay their network operator).
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The network utility maximization problem (NUM) introduced in [37] is defined as
follows:

maximize Q(x) =
R∑
r=1

ur(xr) (1)

subject to:
Ax ≤ c, (2)

x ≥ 0. (3)

In this paper we restrict the choice of utility functions to the so-called isoelastic
functions, that is, to the class of functions1:

ur(xr) =

{
wr

1
1−γx

1−γ
r γ > 0, γ 6= 1,

wr log xr γ = 1.
(4)

It was shown that such class of functions leads to proportionally fair allocations of
transmission rates [50], thus is typically employed in the analysis of network resource
allocation problems.

In practical instances of interest (especially on the scale of Internet autonomous
systems or ISP networks), the number of concurrent flows is very large and there is no
central authority capable of managing all transmission rates simultaneously. Therefore
we are interested in designing and analyzing decentralized protocols, which solve this
problem (or approximates its solution) in a distributed manner. Such protocols are
typically implemented as a part of low-level operating system’s kernel software; in
particular TCP/IP stack includes procedures for flow control and congestion avoidance,
available in many implementation-dependent variants. Emerging networking solutions
provide more advanced means of rate control, incorporating Quality of Service (QoS)
capabilities [27, 69].

2.2 Definition of the game

We introduce the following network game. Each lth link in the network is associated
with one player. Players must decide on the way they allocate their total capacities
cl among the set of flows traversing their corresponding link. Each player makes a
decision individually. The decision of lth player, called player’s strategy, is denoted
sl = [sl1, sl2, . . . , slR]T , where slr is the fraction of lth link’s capacity allocated for
rth flow. We restrict the player’s choice only to feasible decisions, that is, satisfying∑R

r=1 alrslr ≤ cl. However, the transmission rate of a single flow is limited by the min-
imal allocation of some link along the path of that flow (defined by the routing matrix
A). The player’s payoff is computed as the value of weighted utility of transmission
rates of all the flows passing through the corresponding link. The strategy profile of
the game is defined as S = [s1, . . . , sL]. The payoff of lth player is given by:

Ql(S) =
R∑
r=1

alrbrur

(
min
k:akr=1

skr

)
(5)

where br ≥ 0 is a weight assigned to the rth flow.
1Symbol log x denotes the natural logarithm function.
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We define social welfare as the sum of utilities of all flows:

W(S) =
R∑
r=1

ur( min
l:alr=1

slr).

Observe that this is equal to the value of objective function (1) of NUM, if transmission
rates xr are computed as minimum of allocations along paths. We make use of this
fact in the analysis of Price of Anarchy and Stability in Subsection 4.2. Moreover, the
social welfare is also equivalent to the sum of all payoffs (5) with weights:

br =
1∑L

k=1 akr
. (6)

Here each r-th weight is a reciprocal of length of the path associated with rth flow.
Such form of weights penalize long flows (proportionally to the number of involved
links).

In this paper two types of game’s payoffs are considered: uniform payoffs, that is,
all weights br = 1, and the one with the set of weights defined by (6), called path length
payoffs.

3 Algorithms for computing strategies
In the following subsections we present two algorithms for computing certain feasible
strategies. In both cases the computations can be carried out independently by all
players, since the only constraints imposed on player strategies sl are local. This makes
these algorithms suitable for implementation as decentralized protocols. Next, we show
that the first algorithm, although simple to implement, does not guarantee establishing
an equilibrium. However, the second one, which can be seen as its extension, always
finds a pure strategy strongly Pareto-optimal Nash equilibrium.

3.1 Local one-step allocation algorithm

Consider the following algorithm. Each player solves a local concave optimization
problem, given as:

SIl = arg max
Sl∈Dl

R∑
r=1

alrbrur(slr) (7)

where:

Dl =

{
sl :

R∑
r=1

alrslr ≤ cl, ∀r alrslr = slr

}
.

For the assumed class of utility functions (4), given fixed γ, the solution can be
derived analytically, as:

slr = alrcl
(brwr)

1/γ∑R
j=1 alj(bjwj)

1/γ
.

This algorithm is a realization of the simplest rational strategy, which can be
computed without any communication between players. Due to this fact, there are no
synchronization issues concerning implementation in a networked environment. This
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approach resembles the “safe” algorithm for distributed optimization, given in [58] for
solving positive linear programs. Moreover, the computational complexity is low, as
constructing such solution boils down to solving concave maximization problem in nl =
|{r ∈ R : alr = 1}| variables (in general, this can be accomplished in polynomial time
with the use of interior-point methods [12]; for isoelastic utilities evaluating analytic
solutions results in O(nl) time complexity).

However, as the following example shows, in general this algorithm does not pro-
duce a state of equilibrium; a player may be better off changing its allocation without
informing other players.

Example 1. Consider two links (L = 2), the first with capacity c1 = 10 and the
second with capacity c2 = 100. There are three flows (R = 3); first flow passes
through both links, while the two other flows use single links, link 1 and link 2,
respectively (see Figure 1). All utility functions are assumed to be logarithmic, i.e.
u1(x) = u2(x) = u3(x) = log x.

The local algorithm computes the following strategy vectors for both players (links),
SI = (sI1, s

I
2):

sI1 = (5, 5, 0),

sI2 = (50, 0, 50).

The payoffs of players (i.e. the local utilities of their corresponding flows) are equal
Q1(sI1) = log 5 + log 5 and Q2(sI2) = log 5 + log 50.

If SI were a Nash equilibrium, no player would have an incentive to unilaterally
deviate from this allocation. However, since the capacities in both links are uneven,
a fair allocation is suboptimal. The high-speed link with c2 = 100 should promote
the flow 3, as it does not pass through the bottleneck link with c1 = 10. Thus the
following change of player 2 strategy:

s′2 = (5, 0, 95)

gives a better outcome, Q2(s′2) = log 5 + log 95.

Figure 1: Illustration of a simple network setup in Example 1.

3.2 Iterated allocation algorithm

The solution computed by the algorithm presented in the previous section can be easily
improved, if we allow players to interact in the following way. Initial allocations are
computed with the use of the local one-step algorithm. After these allocations are
computed, all sources start sending data and transmission rates of all flows gradually
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increase from zero. The rate of a flow stops accelerating as soon as some link on the
path becomes a bottleneck, i.e. the rate reaches minimal allocation of some link along
its path. This must be detected with the use of a congestion avoidance algorithm
(e.g. as a part of TCP), which notifies the source that the capacity on the path has
been exceeded. We call such flow saturated. This means that it is no longer possible
to increase its rate. However, other links on the path of such flow may have unused
capacity. Thus it is possible to assign this capacity among the non-saturated flows,
increase their rates and repeat that until all the flows become saturated.

This procedure is summarized as Algorithm 1. Step 1 requires executing lo-
cal one-step algorithm (solving problem (7)). In the presented pseudocode, S(n) =

[s
(n)
l , . . . , s

(n)
l ]T denotes the strategy vector computed in nth iteration. The final strat-

egy vector returned by the algorithm is denoted SII . The following auxiliary notation
is used in the algorithm’s description. Denote Rl = {r : alr = 1} the set of flows
traversing link l. Set R̂n denotes all the flows that are not yet saturated in nth it-
eration. Set Ln denotes all the links that ran out of capacity in nth iteration. The
smallest index of link that runs out of capacity in nth iteration is denoted φ(n).

The implementation of the presented algorithm needs to be appropriately struc-
tured in the networked environment. In particular, step 11 is executed concurrently
by all links l ∈ {1, . . . , L} using local information, while step 6 can be seen as “co-
ordinating” phase, in which saturated flows are detected and removed from further
considerations (this is also achieved locally by each link, by detecting whether a flow
stopped increasing its rate).

The correctness of Algorithm 1 follows from the following fact:

Proposition 1. For isoelastic utility functions the set

Li =

{
l :

R∑
r=1

alr

(
min
k:akr=1

s
(i)
kr

)
= cl

}

is nonempty for all i, such that R̂i 6= ∅.

Proof. The proof is by contradiction. Assume that at nth iteration of the Algorithm 1
there is no link with the capacity completely filled. Since the set R̂n 6= ∅, this implies
the existence of sequence of links, constructed as follows. In m1th link there is a flow,
which is saturated by link m2. In link m2 there must be some spare capacity, that is,
there must be a flow, which is saturated by link m3. Continuing this reasoning, we
conclude that there is some link mk, which must belong to the set {m1,m2, . . . ,mk−1},
since there is only a finite number of links (otherwise mk must be completely filled, as
no other link prevents the increase of its allocation). Without the loss of generality,
let mk = m1, and rk = r1.

Suppose link m1 saturates the flow r1, that is:

sm1r1 = min
k:akr1=1

skr1 = xr1 ,

and suppose flow r2, which also passes through link m1, is saturated by the link m2.
Similarly, link m2 saturates the flow r2, and contains the flow r3, saturated in the link
m3, etc. The last of the considered flows, rk−1, is saturated in the link mk−1, which
contains the flow r1.
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Algorithm 1 Iterated Allocation Algorithm
1: S(1) ← SI

2: R̂1 ← {1, . . . , R}
3: L1 ←

{
l :
∑R

r=1 alr

(
mink:akr=1 s

(1)
kr

)
= cl

}
4: n← 2
5: while n ≤ L do
6: R̂n ← R̂n−1 \ Rφ(n−1),

where:
φ(i) := minLi,

Li =

{
l :

R∑
r=1

alr

(
min
k:akr=1

s
(i)
kr

)
= cl

}

7: if R̂n = ∅ then
8: SII ← S(n)

9: return SII

10: end if
11: determine S(n):

s
(n)
l = arg max

sl∈Dn
l

∑
r∈R̂n

alrbrur(slr)

where:

Dn
l =

{
sl :

R∑
r=1

alrslr ≤ cl, ∀r 0 ≤ slr ≤ alrslr,

∀r∈⋃n−1
i=1 R̂φ(i)

slr = min
k:akr=1

s
(n−1)
kr

}
12: n← n+ 1
13: end while
14: SII ← S(n)

15: return SII
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The class of isoelastic functions (4) has the property that optimal allocations are
proportional to the weights vr = (brwr)

1/γ. Thus rth flow on lth link gets the share of
capacity cl equal to vr.

The allocations of flows r1 and r2 in link m1 can be written as:

sm1r1 =
vr1cm1∑

k:am1k
=1 am1kvk

,

sm1r2 =
vr2cm1∑

k:am1k
=1 am1kvk

,

and consequently:
sm1r2

sm1r1

=
vr2
vr1

.

Since the flow r2 is not saturated in link m1, there exists a constant 0 < α1 < 1, such
that:

xr2 = α1
vr2
vr1

xr1 .

Similarly, the allocation ratio of flows r2 and r3 in link m2 can be written as:
sm2r3

sm2r2

=
vr3
vr2

,

and there exists a constant 0 < α2 < 1, such that:

xr3 = α2
vr3
vr2

xr2 = α2α1
vr3
vr1

xr1 .

Continuing this reasoning, we reach the link mk−1, in which the allocation ratio is:
smk−1r1

smk−1rk−1

=
vr1
vrk−1

,

and consequently:

xr1 =

(
k−1∏
i=1

αi

)
xr1 .

Since the product of αis is less than 1, we get a contradiction.

Remark 1. Strategy SII has the property that all link allocations along the path of
any flow are equal to the minimum allocation for that flow, i.e.:

∀r ∀l:alr=1 s
II
lr = min

k:akr=1
sIIkr.

The algorithm executes no more than L iterations of its main loop. In result, a
strategy profile SII is returned. Moreover, the strategy SII computed by Algorithm 1
dominates the strategy computed by local one-step algorithm.

In each iteration the algorithm completely fills the capacity of a subset of links.
However, observe that in each iteration exactly one link (with the smallest index in such
subset) is removed from the further consideration. Thus without the loss of generality,
it is always possible to renumber the indices of links in such a way, that the order of
removed links matches the iteration number, i.e.: φ(n) = n for all n = 1, . . . , L.

Henceforth, we assume that the links have been renumbered this way, prior to the
execution of the algorithm.

To illustrate the idea of Algorithm 1, let us consider the following example.

12



Figure 2: The idea of Algorithm 1.

Example 2. Assume the same data as in Example 1 (including network structure,
number of flows, routing matrix, links’ capacities, utility functions) and the game
with uniform payoffs. At the beginning of the execution of Algorithm 1 all flows are
not saturated, R̂1 = {1, 2, 3}, so each link allocates capacities maximizing its own
objective, and the players’ strategies are the same as in Example 1, i.e.:

s
(1)
1 = (5, 5, 0),

s
(1)
2 = (50, 0, 50),

as it is depicted in Figure 2a. Once all strategies are computed, the sources may
transmit data at rates:

x = (5, 5, 50).

It is clear that only first link becomes filled (L1 = {1}), and the first and the second
flows are saturated (which means that only the third one is not saturated, R̂2 = {3})
as it is shown in Figure 2b. Consequently, there is unused capacity in the second link,
which may be used in the next step.
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Now, for n = 2 the procedure is illustrated in Figure 2c. The second link does not
change its strategy (allocation) since it is filled, i.e.:

s
(2)
1 = (5, 5, 0).

The second link sets allocations for saturated flows equal to their current trans-
mission rates (i.e. minimal capacity allocated for these flows on their paths) and
calculates the allocations for non-saturated flows (in this case for r = 3) to maximize
its objective. Finally, its strategy is given by:

s
(2)
2 = (5, 0, 95).

In consequence, only the third source may increase its rate, resulting in rates:

x = (5, 5, 95).

Since both stopping conditions are met in the next iteration, i.e. n = 3 > L = 2
and R̂2 = ∅, the execution ends with the following players’ strategies:

s
(II)
1 = (5, 5, 0),

s
(II)
2 = (5, 0, 95).

It is easy to check that these strategies constitute a Nash equilibrium.

3.3 Pure strategy Nash equilibrium

Observe that utility functions in the considered game are concave (as a composition
of isoelastic function and minimum function). From the Rosen’s theorem on concave
L-person games [61] at least one pure strategy Nash equilibrium always exists in this
game. It is however not obvious how to compute one efficiently. In this paper we give
a polynomial time algorithm which always finds an equilibrium. Our main result is
stated as the following theorem:

Theorem 1. A pure strategy Nash equilibrium in capacity allocation game can be
computed by Algoritm 1 as strategy profile SII .

Before we prove this theorem, we need the following lemmas.

Lemma 1. Let fm : R+ ∪ {0} → R, m = 1, . . . ,M , be continuous, strictly increasing,
strictly concave and twice-differentiable functions.

For any β ≥ 0, let us define a vector-valued function α∗ : R+ ∪ {0} → RM :

α∗(β) = arg max
α

{
M∑
m=1

fm(αm) :
M∑
m=1

αm = β

}
,

where α = [α1, . . . , αM ]T .
Each component α∗m(β) is nondecreasing.

14



Proof. Consider the following optimization problem:

maximize
M∑
m=1

fm(αm)

subject to:
M∑
m=1

αm = β.

The Lagrange function of the problem is:

L(α, µ) =
M∑
m=1

fm(αm) + µ

(
β −

M∑
m=1

αm

)
.

Under the assumptions on functions fm, the problem is concave, thus the KKT con-
ditions [12] imply, that the optimal solution α∗, µ∗ satisfies:

∂L(α∗, µ∗)

∂α∗m
= f ′m(α∗m)− µ∗ = 0, (8)

∂L(α∗, µ∗)

∂µ∗
= β −

M∑
m=1

α∗m = 0. (9)

Since function fm is twice differentiable and strictly concave, thus the function
f ′′m(αm) < 0 for all αm > 0. This implies that function f ′m is strictly decreasing
and continuous. Hence there exists the inverse function (f ′m)−1, which is also strictly
decreasing.

From (8) the solution must satisfy:

α∗m = (f ′m)−1(µ∗). (10)

Substituting α∗m, for m = 1, . . . ,M into (9) we obtain:

M∑
m=1

(f ′m)−1(µ∗) = β. (11)

A sum of strictly decreasing functions is also strictly decreasing, thus the lefthand
side of (11), denoted G(µ∗) =

∑M
m=1(f ′m)−1(µ∗) is strictly decreasing function of µ∗.

Given two values: β1 = G(µ∗1) and β2 = G(µ∗2), relation G(µ∗1) < G(µ∗2) implies that
µ∗1 > µ∗2. For decreasing µ∗, the value of function (f ′m)−1 increases. From relation (10),
the corresponding solution α∗m increases with the increase of β, for all m = 1, . . . ,M .

Lemma 2. Given the strategy SII computed by Algorithm 1, consider all strategies
S′ 6= SII , constructed as follows. For any fixed player l, let:

s′lr = sIIlr + εlr,

where each εlr is any real number. Other players’ strategies fulfill: S′−l = SII−l.
For any such strategy s′l, if there exists r /∈ R̂l, such that εlr > 0, then there exists

a strategy s′′l , such that:
∀r/∈R̂l εlr ≤ 0,

giving exactly the same payoff.
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Proof. We give a constructive proof. Let us denote the set of indices of saturated flows
r /∈ R̂l such that εlr ≤ 0 by R̄I

l and the set of remaining saturated flows (i.e. for which
εlr > 0) as R̄II

l . Let us consider the strategy S′′ constructed as follows: s′′lr = s′lr for
all r ∈ R̂l ∪ R̄I

l and s′′lr = sIIlr for all r /∈ R̂l. Such a strategy does not increase any
allocation for the saturated flow.

Since the strategy s′l is feasible, it is easy to see that the new strategy s′′l satisfies
the constraint Als

′′
l ≤ cl.

The value of player l’s payoff for strategy s′l is:

Ql(s
′
l,S

II
−l) =

=
∑

r∈R̂l∪R̄Il

alrbrur(min{s′lr, min
k 6=l:akr=1

sIIkr}) +
∑
r∈R̄IIl

alrbrur(min{s′lr, min
k 6=l:akr=1

sIIkr})

=
∑

r∈R̂l∪R̄Il

alrbrur(min{s′′lr, min
k 6=l:akr=1

sIIkr}) +
∑
r∈R̄IIl

alrbrur(s
II
lr )

= Ql(s
′′
l , s

II
−l).

The second equality follows from the fact that:

s′lr = sIIlr + εlr > sIIlr = min
k
sIIkl ,

which, in turn, follows from the assumption on accordance of numbering iterations
and links removed from consideration. Consequently, the payoff from strategy s′′l is
equal to the payoff from strategy s′l.

Lemma 2 immediately implies that all strategies deviating from SII and giving
better payoffs for player l should not have allocated more capacity for flows saturated
before lth iteration, than in the strategy SII . Otherwise, the difference in allocated
capacity is wasted; the superfluous fraction of capacity may be used for allocation of
the remaining flows in subsequent iterations.

Corollary 1. For any l ∈ {1, . . . , L}, if there is no strategy s′l such that ∀r/∈R̂lεlr ≤ 0,
for which:

Ql(s
′
l,S

II
−l) ≥ Ql(S

II), (12)

then there is no other strategy s′l satisfying (12).

Lemma 3. Let S′ be a strategy constructed as follows. For any fixed player l, let:

s′lr = sIIlr + εlr,

where:
∀r/∈R̂l εlr ≤ 0,

and the remaining εlr are arbitrary real numbers. Other players’ strategies fulfill: S′−l =
SII−l.

If there exists r ∈ R̂l such that εrl < 0, then there exists a strategy s′′l , such that
∀r∈R̂lεrl ≥ 0, giving no lower payoff.
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Proof. The following sequence of inequalities hold:

max
sl∈D′l

∑
r∈R̂l

alrbrur(slr) ≥
∑
r∈R̂l

alrbrur(s
II
lr ) (13)

≥
∑
r∈R̂l

alrbrur(min{s′lr, sIIlr }) = Ql(s
′
l,S

II
−l)−

∑
r/∈R̂l

alrbrur(s
′
lr).

Let:
s̃l = arg max

sl∈D′l

∑
r∈R̂l

alrbrur(slr), (14)

D′l =

sl :
∑
r∈R̂l

alrslr ≤ cl −
∑
r/∈R̂l

alrs
II
lr , ∀r 0 ≤ slr,∀r/∈R̂l slr = sIIlr

 .

s′′l = arg max
sl∈D′′l

∑
r∈R̂l

alrbrur(slr), (15)

D′′l =

sl :
∑
r∈R̂l

alrslr ≤ cl −
∑
r/∈R̂l

alrs
′
lr, ∀r/∈R̂lslr = s′lr, slr ≥ 0

 ,

It is clear that s̃l = sIIl (compare with step 11 of Algorithm 1).
From the assumption on εlr for r /∈ R̂l, it holds that:

cl −
∑
r/∈R̂l

alrs
′
lr = cl −

∑
r/∈R̂l

alr(s
II
lr + εlr)

= cl −
∑
r/∈R̂l

alrs
II
lr −

∑
r/∈R̂l

alrεlr

≥ cl −
∑
r/∈R̂l

alrs
II
lr . (16)

Consider feasible solutions sets D′l and D′′l projected on a linear subspace restricted
only to the coordinates r ∈ R̂l (values of all other coordinates of vectors sl are fixed,
although may be different in sets D′l and D′′l ). Let us put β1 = cl −

∑
r/∈R̂l alrs

′
lr and

β2 = cl−
∑

r/∈R̂l alrs
II
lr . Observe that the optimal solutions in both cases must fulfill the

constraints with equality, as the objective functions are strictly increasing. Since both
objective functions (15) and (14) on the restricted coordinates are identical, and from
(16) it holds that β1 ≥ β2, thus from Lemma 1, the corresponding optimal solutions
must satisfy:

∀r∈R̂l s
′′
lr ≥ sIIlr

which implies:
∀r∈R̂l εlr = s′′lr − sIIlr ≥ 0.

Combining Corollary 1 and Lemma 3 the following can be concluded:
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Corollary 2. For any l ∈ {1, . . . , L}, if there is no strategy s′l such that ∀r/∈R̂lεlr ≤ 0
and ∀r∈R̂lεlr ≥ 0, for which:

Ql(s
′
l,S

II
−l) ≥ Ql(S

II), (17)

then there is no other strategy s′l satisfying (17).

Lemma 4. Consider any link l ∈ {1, . . . , L} and two flows, one that is saturated in
lth iteration (denoted r = 1), and one that is not saturated in lth iteration (denoted
r = 2). Denote:

[s∗1l, s
∗
2l]
T = arg max

[x1,x2]T∈D
(u1(x1) + u2(x2)) ,

where D = {[x1, x2]T : x1 + x2 ≤ c}. Consider any allocation satisfying s1l ≤ s∗1l and
s2l ≥ s∗2l. Let δ > 0. Then:

0 ≤ (u1(s∗1l) + u2(s∗2l))− (u1(s∗1l − δ) + u2(s∗2l + δ))

≤ (u1(s1l) + u2(s2l))− (u1(s1l − δ) + u2(s2l + δ)) . (18)

Proof. The first inequality in the claim (18) is valid, since [s∗1l, s
∗
2l]
T is the maximal

solution. The second inequality follows from the concavity of functions u1 and u2:

u1(s∗1l)− u1(s∗1l − δ) ≤ u1(s1l)− u1(s1l − δ), (19)

u2(s2l + δ)− u2(s2l) ≤ u2(s∗2l + δ)− u2(s∗2l). (20)

Summing (19) and (20) side by side, and reordering the terms we obtain the claimed
inequality (18).

This lemma states that transferring a fraction δ > 0 of capacity from a saturated
flow to a non-saturated one gives a degradation in the value of utility of the selected
pair of flows. Moreover, if the allocations deviate from the optimal one (for this pair
of flows) in a way that the saturated flow has less capacity, then this degradation is
even higher than the one corresponding to the optimal allocation.

The main result of this Section can be now proven.

Proof of Theorem 1. Let us consider the following transformation of strategy S into
Ŝ. Chose any δ > 0, select any link l ∈ {1, . . . , L}, select any flow r /∈ R̂l, subtract:
ŝrl ← srl − δ, select any flow q ∈ R̂l, and add ŝql ← sql + δ.

From Corollary 2 it is enough to restrict the considerations only to such strategies
S′, where s′lr = sIIlr + εlr, with ∀r/∈R̂lεlr ≤ 0 and ∀r∈R̂lεlr ≥ 0.

It is easy to see that any such strategy S′ can be produced from the strategy SII

using a finite number of described transformations: only flows r ∈ R̂l may get higher
allocations (adding δ), and only r /∈ R̂l may get lower allocations (subtracting δ). The
amount of added and subtracted capacity must be preserved. Let us denote a strategy
obtained after applying k such transformations by SII(k).

Therefore, it is enough to show that such transformations satisfy the assumptions
of Lemma 4. Consider a flow that gets saturated in nth iteration. Its allocations on
link l throughout the subsequent iterations of Algorithm 1 form the following sequence:

s
(1)
rl ≤ s

(2)
rl ≤ . . . ≤ s

(n)
rl = s

(n+1)
rl = . . . = sIIrl .
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This follows from the fact that as subsets of flows passing through link l get satu-
rated, in the subsequent iterations the amount of capacity to distribute among the
remaining non-saturated flows form a nondecreasing sequence. From the Lemma 1,
the allocations of a particular non-saturated rth flow are nondecreasing.

Consider a pair of flows, r1 /∈ R̂l and r2 ∈ R̂l, after applying k transformations.
Let n be the iteration in which the flow r1 gets saturated. Thus its allocation on link
l > n satisfy:

s
(n)
r1l
≥ min

k:akl=1
s

(n)
r1k

= s
(l)
r1l

= sIIr1l ≥ s
II(k)
r1l

. (21)

On the other hand, the allocation on the same link l > n of flow r2 satisfy:

s
(n)
r2l
≤ s

(l)
r2l

= sIIr2l ≤ s
II(k)
r2l

. (22)

However, the allocations [s
(n)
r1l
, s

(n)
r2l

]T are the optimal values obtained in the step 11 of
Algorithm 1. Observe that these values are also the optimal solution of the problem
of maximizing ur1(x1) + ur2(x2), with respect to x1, x2 ≥ 0, subject to: x1 + x2 ≤
cl −

∑
r/∈{r1,r2} arls

(n)
rl .

Notice that this optimization problem is equivalent to the one for a pair of flows
from the Lemma 4, while the allocation [s

II(k)
r1l

, s
II(k)
r2l

]T deviates from the optimal in the
same way as the one in Lemma 4 (see relations (21) and (22)). Thus any transformation
between strategies SII and S′ cannot improve the value of ur1(s′r1l)+ur2(s

′
r2l

). From the
additivity of objective function (1), the total utility

∑R
r=1 alrbrur(s

′
rl) cannot increase,

and consequently, the payoff
∑R

r=1 alrbrur(mink:akl=1 s
′
kl) cannot increase.

4 Properties of the game
In this section we discuss properties of the strategy profile SII computed by Algorithm
1, as well as properties of the game itself, in terms of the quality of its pure equilibria.

4.1 Pareto optimality

Taking a closer look at the construction of strategy SII we may conclude that it pro-
vides an allocation that cannot improve the payoff of any player without degradation
of other payoffs. In particular, we show that the obtained strategy is strongly Pareto-
optimal (Pareto-efficient).

Definition 1 (Pareto optimality). Strategy S is Pareto-optimal if there is no strategy
S′ 6= S such that ∀l Ql(S

′) > Ql(S).

Definition 2 (strong Pareto optimality). Strategy S is strongly Pareto-optimal if
there is no strategy S′ 6= S such that ∀l Ql(S

′) ≥ Ql(S) and there exists such k that
Qk(S

′) > Qk(S).

Let us observe the following fact:

Proposition 2. Strategy SII is Pareto-optimal.
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Proof. It is enough to consider only link l = 1. Since the allocation sII1 = sI1, and
this is the optimal solution of the problem (7), no strategy can give higher payoff. We
conclude that there is no strategy S′ 6= SII such that for all l simultaneously higher
payoff can be achieved.

In order to prove the strong Pareto-optimality, it is enough to show that for no link
a strictly higher payoff can be obtained, without decreasing the payoff of any link.

Theorem 2. Strategy SII is strongly Pareto-optimal.

Proof. The proof is by induction with respect to the increasing sequence of link subsets
A1 ⊃ A2 ⊃ . . . ⊃ AL. Initially, consider a single link, A1 = {1}, and similarly, as in
the proof of Proposition 2, observe that the allocation sII1 cannot be changed, as it is
the optimal solution of the problem (7).

Let l ≥ 2. Suppose all flows in the set Al−1 cannot have their allocations changed
in a way to improve the payoff. Now consider the subset of links Al = Al−1 ∪ {l}.
Flows in link l can be divided into two disjoint subsets: R̂l (the flows which allocation
is about to be set in lth iteration, or later) and Rl \ R̂l (the flows which allocation is
already fixed in lth iteration). As the latter flows are saturated, the increase of their
allocations is useless as this cannot contribute to the increase of lth link’s payoff (due
to the transmission rate limit imposed by bottleneck link in Al−1). However, if we
decrease any of these allocations the payoff of some link in Al−1 will have to decrease,
which contradicts the inductive assumption. The remaining capacity is allocated in
lth iteration among the flows in R̂l in a way that gives the highest payoff for link l (as
in the step 11 of Algorithm 1). Any deviation from the strategy SII of the allocation
of flows in R̂l would give equal or lower payoffs. Consequently, the allocation SII has
the property that any change to this strategy cannot improve any links’ payoff without
causing a loss of at least one of the remaining players’ payoffs.

4.2 Price of Anarchy and Stability

In this section we develop some results concerning the quality of social welfare resulting
from pure Nash equilibria of the considered game, as compared to the optimal social
welfare (which is nearly impossible to achieve in practice, as that would usually require
fully centralized planning with the accurate knowledge of all problem parameters by
a single decision maker). In contrast, Nash equilibria can be obtained easily in a
decentralized way.

For the sake of further analysis, we assume that utility parameter γ in (4) is strictly
between 0 and 1. This is due to the fact that the notions of Price of Anarchy and
Stability – measures of quality of game equilibria [42] – require the payoffs to be of the
same sign (either positive or negative). Consequently, we make use of the following
definition:

Definition 3. Let E be the set of all Nash equilibria of a game. Let x∗ be the optimal
solution of NUM problem (1)–(3). Let W be the social welfare function. The Price of
Anarchy is defined as:

PoA =
maxSW(S)

minS∈EW(S)
.

The Price of Stability is defined as:

PoS =
maxSW(S)

maxS∈EW(S)
.
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To begin with, let us consider a reversed problem of game design: given an optimal
solution of the NUM problem, does it constitute a Nash equilibrium of some game
variant?

Theorem 3. For the uniform payoffs (∀r br = 1) the global optimum of problem
(1)–(3) is a Nash equilibrium.

Proof. The proof is by contradiction. All players play the strategy S, such that
∀r∀l:alr=1 slr = x∗r, where x∗r is the global solution of the problem (1)–(3). Consider a
player l ∈ {1, . . . , L}. Obviously, increasing allocations slr of flows sharing multiple
links does not improve the payoff of player l. Consider flows traversing only link l,
denoted R̄l = {r : arl = 1,

∑L
k=1 ark = 1}. We call such flows local.

Links with R̄l 6= ∅ must be completely filled (as otherwise increasing any local flow
gives higher payoff). Thus in order to increase the allocation of such flow, at least
one non-local flow’s allocation must be decreased. But on the other hand, if non-local
flows yield some capacity for local flows, then from Lemma 1 the allocations of all
local flows must increase.

Let us denote R′l = Rl \ R̄l. Let εr > 0 and ηr > 0 be taken so as to satisfy:∑
r∈R′l

εr =
∑
r∈R̄l

ηr. (23)

Suppose such change in lth player’s strategy would improve its payoff:∑
r∈R′l

ur(x
∗
r − εr) +

∑
r∈R̄l

ur(x
∗
r + ηr) >

∑
r∈Rl

ur(x
∗
r). (24)

The value of global objective can be expressed by adding to the both sides of (24) the
utilities of all flows that do not pass through lth link:∑

r∈R′l

ur(x
∗
r − εr) +

∑
r∈R̄l

ur(x
∗
r + ηr) +

∑
r∈{1,...,R}\Rl

ur(x
∗
r)

>
∑

r∈{1,...,R}

ur(x
∗
r) = max

x: Ax≤c

∑
r∈{1,...,R}

ur(xr). (25)

The last expression is the global optimum of (1)–(3). From (23):∑
r∈R̄l

(x∗r + ηr) +
∑
r∈R′l

(x∗r − εr) =
∑

r∈R̄l∪R′l

x∗r ≤ cl,

which shows that the lefthand side of (25) is a value of feasible solution. Hence the
inequality in (25) gives a contradiction.

This immediately implies that the strategy giving optimal solution is also the best
possible equilibrium:

Corollary 3. For the uniform payoffs the Price of Stability is 1.

Local flows (i.e. ones occupying only a single links), introduced in the above proof,
play a key role in the attainability of equilibria. The following example shows that
the optimal solution of NUM occurs at a non-equilibrium point of the game variant in
which weights are proportional to flow lengths (6).
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Example 3. Consider the game with weights br = 1/
∑L

k=1 akr, with 10 players,
corresponding to links of equal capacity, c1 = . . . = c10 = 6. As depicted in Figure 3,
there are two flows: one that passes through all links, with utility function u1(x1) =
10 log x1, and one local, with utility function u2(x2) = 2 log x2. The global optimum
is x∗1 = 5 and x∗2 = 1.

The payoff of 1st player for allocations s11 = 5 and s12 = 1 is:

u1(x∗1)∑10
k=1 ak1

+
u2(x∗2)∑10
k=1 ak2

=
10

10
log 5 +

2

1
log 1 = log 5.

However, changing strategy of player 1 to s11 = 2 and s12 = 4 gives a higher payoff:
log 2 + 2 log 4 = log 2 + log 16 > log 5.

Figure 3: Illustration of Example 3: one flow passes through all links, one flow is local.

Corollary 4. The global optimum of problem (1)–(3) is not necessarily a Nash equi-
librium of a game with path length payoffs (i.e. weights ∀r br = 1/

∑L
k=1 akr).

One may observe that, provided there are no local (single-link) flows, it is easy to
characterize strategies giving pure Nash equilibria, even for a more general class of
games (including the one considered in this paper, see Remark 1).

Theorem 4. If there are no local flows, i.e. for all r ∈ {1, . . . , R},
∑L

l=1 alr > 1, any
strategy profile such that:

∀l1,l2 ∀r:al1r=al2r=1 sl1r = sl2r

constitutes a pure Nash equilibrium of the considered game (regardless the values of
br).

Proof. Fix l ∈ {1, . . . , L}. Any change of lth player’s strategy vector sl into s′l, such
that s′lr = slr + ε, ε > 0, cannot increase the payoff, unless all the players l′ sharing
the path with l also increase allocation: s′l′r = sl′r + ε. Any decrease in allocation,
s′lr = slr − ε, ε > 0, can only decrease the local payoff.

Although the strategies characterized in Theorem 4 are points of equilibrium of
the considered game, they can be arbitrarily bad in terms of the players’ outcomes.
Observe that a zero-allocation strategy (∀l,r slr = 0) is a Nash equilibrium if there are
no local flows. Consequently, in such case the Price of Anarchy is unbounded.

While in general the game has inefficient equilibria, it is possible to bound the Price
of Anarchy for some important special cases. The following network topology can be
seen as fragment of larger structure that occur repeatedly in complex networks.
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Example 4. Let us consider the following network structure. There are L ≥ 2 links of
equal capacity connected serially, as depicted in Figure 4. There are L+1 flows, where
each link contains one local flow, and there is a single “long” flow passing through all
links (this flow has weight wL+1). For such network setup, it is possible to analytically
derive the value of PoA. It is enough to observe that the worst equilibrium can occur
in one of two cases: either when each player allocates zero for the “long” flow and C
for local flow; or when each player allocates k = maxl=1,...,L s

(I)
ll for local flow and the

remaining C − k for the “long” flow. Which one of these is the worst case depends on
the weights of flows. Let W =

∑L
r=1wr and ω = maxl=1,...,Lwl. In the first case we

obtain:

PoA1 =

w 1
γ

L+1

W
1
γ

+ 1

γ

,

while in the second case:

PoA2 =

(
w

1
γ

L+1 +W
1
γ

)γ (
bL+1w

1
γ

L+1 + ω
1
γ

)1−γ (
bL+1w

1
γ

L+1 +Wω
1
γ
−1

)−1

.

The actual value of PoA is equal to max{PoA1, PoA2}.

Figure 4: Illustration of serial network setup from Example 4.

Let us define χ = wL+1

W
, that is the ratio of importance of “long” flow to local flows.

This enables us to conclude the following:

Corollary 5. The Price of Anarchy for a serial network with L local flows and one
flow of length L (Figure 4) satisfies:

1) if χ→ 0 then PoA → 1,
2) if χ = 1 then PoA ≤ (1 + b

1/γ
L+1)1−γ(b

1/γ
L+1)−1 (in particular, for uniform payoffs,

PoA ≤ 2),
3) if χ→∞ then PoA →∞.

The above statement applies to both uniform and path length payoffs. One in-
teresting case is when χ = 1, that is, the sum of local flow weights is equal to the
weight of “long” flow. From 2) it can be seen that for uniform payoffs (bL+1 = 1) the
PoA is no greater than 2. However, in the game variant which penalizes “long” flow
(bL+1 = 1/L) the PoA grows to infinity with increasing L.

5 Computational experiments
In this section we present an experimental study based on a prototype implementation
of Algorithm 1. Routing matrices used in the experiments were generated randomly,
with probability of a flow passing through a link equal to 0.5. Link capacities were in
the range 10–100 Mbps. Utility functions were of the form (4) with parameter γ = 0.5.
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Figure 5: Small network: payoffs of players in subsequent iterations.

Figure 6: Small network: utilities of flows in subsequent iterations.

The first experiment involves a small example of 5-link network with 8 flows. For
the game variant with weights inversely proportional to path lengths, Figure 5 shows
how players’ payoffs changed in the subsequent iterations, while Figure 6 shows the
corresponding changes of flows’ utilities. It can be seen that only 4 out of 8 flows
get improved by Algorithm 1, as compared to the initial solution computed by one-
step local algorithm. Moreover, algorithm stabilizes all transmission rates after just 3
iterations. Figure 7 compares the total utility (1) obtained in this process with its value
obtained by the considered algorithm in the game variant with uniform payoffs (all
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weights br = 1). The latter variant gives a slightly better solution, but it overestimates
the social welfare, which leads to a small degradation of solution in case of larger
networks. Additionally, both solutions are compared to the optimal one, computed by
directly solving NUM problem (1)–(3) using interior-point method solver.

Figure 7: Small network: comparison of total utility (NUM objective) obtained from
Algorithm 1 in two game variants.

Figure 8: Large network: comparison of total utility (NUM objective) obtained from
Algorithm 1 in two game variants.

In the second experiment there were 100 links and 200 flows. Figure 8 presents
the comparison of solution value changes throughout the iterations, compared to the

25



optimal solution. In the variant of weights inversely proportional to path lengths the
algorithm stopped after 6 iterations, while for uniform weights it took 7 iterations.
Both solutions are similar and close to the optimum (only about 5% worse).

The above results show the huge speedup that can be achieved with the use of
the presented algorithm, as compared to the state of the art exact gradient-based
algorithms for NUM. In particular, [9] gives an algorithm that has asymptotically
faster convergence rate than typical gradient-based methods, but still requires about
1000 iterations to reach 5% region around the optimum even for 5-link network. In
contrast, our procedure reaches such accuracy in 3 iterations for 5-link network and
in 7 iterations for 100-link network. It should be noted that execution time of a single
iteration in both algorithms is very similar.

In [68] authors proposed to use a distributed variant of Newton method for solving
NUM on the same network topology as in [9]. The algorithm required about 100 iter-
ations to reach 5% region around the optimum. However, a single step in distributed
Newton method is more expensive than one step computation in our method.

Concluding, from the practical point of view our method (which in general case is
a heuristic) is better suited for real-time distributed optimization problems, such as
the ones encountered in computer networks. It should be noted that the implementa-
tion used in the presented experiments neglects some technical details related to real
networks. In particular, detecting the flow saturation based on the measurements of
rate variability requires a careful treatment and considering real-time programming
issues.

6 Conclusions
The distributed optimization algorithm presented in this paper provides a fast and scal-
able method of solving network utility maximization (NUM) problem. By considering
links (network routers) as decision-making agents, it extends the idea of solving the
problem separately for each of them, by iteratively improving local solutions, based on
the detection of minimal rate allocation along flows’ paths. Considering this algorithm
as a method of computing a strategy for the introduced capacity allocation game, we
proved that it finds a strongly Pareto-optimal pure Nash equilibrium. Since in the
considered game links are considered players, and payoffs are interpreted as total util-
ities of all flows passing through a link, the objective of NUM coincides with the sum
of payoffs (social welfare), if the utilities of flows are weighted inversely proportional
to flow path lengths.

We also proved that in the game variant with equal weights of all flows, the con-
sidered game has a pure Nash equilibrium at the point of optimum of NUM. Unfor-
tunately, if there are no flows occupying single links, then it is possible to construct a
pure Nash equilibrium resulting in arbitrarily bad solution (i.e. the Price of Anarchy
diverges to infinity). Apart from these general results, a detailed analysis concerning
Price of Anarchy has been carried out for a special serial network structure.

Computational experiments show that the presented algorithm is very efficient,
especially compared to exact gradient methods, and requires a very small number of
allocation updates in order to reach an equilibrium, regardless of the network size
and number of concurrent flows. Solutions even for very large randomly generated
networks were within a few percent of optimal value.
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