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Abstract

Internet measured data collected via passive measurement are analyzed to ob-
tain localization information on nodes by clustering (i.e., grouping together)
nodes that exhibit similar network path properties. Since traditional clus-
tering algorithms fail to correctly identify clusters of homogeneous nodes,
we propose the NetCluster novel framework, suited to analyze Internet mea-
surement datasets. We show that the proposed framework correctly analyzes
synthetically generated traces. Finally, we apply it to real traces collected at
the access link of Politecnico di Torino campus LAN and discuss the network
characteristics as seen at the vantage point.

1. Introduction and Motivations

Internet is a complex distributed system which grows and evolves in time,
with new services and technologies that are rolled out at a constant pace.
Today, cloud computing and Content Delivery Networks (CDNs) are the key
technologies that enable efficient and high-demanding services over the Inter-
net, with reports stating that today about 70% of web traffic is being served
by the cloud and CDN infrastructures of top players like Google, Akamai,
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or Amazon [1]. In this scenario, the topological and geographical location
of nodes offering some service is today becoming more and more difficult to
retrieve, especially considering the above mentioned CDNs and cloud based
services for which little or no information is provided by their owner. This
has created a tangled world wide web that is very hard to unwind, impair-
ing ISPs and network administrators capabilities to understand the traffic
flowing on their network.

Notice that several solutions are currently being available to find the both
the topological and geographical position of an IP address1. However, these
databases exhibit well-known limits especially when asked information about
CDN or cloud service [2, 3]. Worst of all, little information is known about
the methodologies followed by the maintainers of these databases, so that
their accuracy can hardly be evaluated.

In this paper, we propose the idea of exploiting passive measurements
to derive node topological information. We leverage information that can
be passively extracted by traffic that is observed at the edge of a network,
e.g., at a Campus or Company access router, or at an ISP Point of Presence,
where several client nodes access service in the Internet [24].

We wish to classify (by grouping together) sets of nodes that exhibit
similar network path properties, such as delay, loss, throughput, as measured
at a given network observation point (vantage point) by passively observing
packets. Clustering algorithms are exploited to achieve this goal. We show
that, by exploiting passive monitoring of traffic exchanged from/to a vantage
point, it is possible to group servers to form homogeneous sets. Our aim is
to retrieve information about the topological information. For example, our
methodology allows to discover which IP subnets are present in the same
datacenter. The geographical information of a cluster of nodes can then be
eventually added later using external databases or additional information.
In general, dealing with homogeneous clusters makes the mining of server
characteristics easier than considering single server IP addresses.

Our methodology can thus be instrumental to complement, verify and
update the information provided by other IP location databases. This is
however outside the scope of our work, which instead focuses on the data
mining methodology.

1See for example http://www.iplocation.net/, http://www.ipfingerprints.com/ or
http://www.maxmind.com/
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Data mining algorithms [8] allow sifting through large amounts of data
and picking out relevant information. Based on a notion of object similarity,
clustering methods assign objects to different groups. More precisely, clus-
tering algorithms partition a data set into subsets (called clusters), so that
objects in each subset share some common trait - often measured as prox-
imity according to some defined distance measure. It is therefore natural
to apply clustering techniques to identify sets of Internet nodes that exhibit
similar network properties. However, in this paper we show that traditional
clustering algorithms fail to correctly identify clusters of homogeneous nodes.
Therefore, we propose “NetCluster”, a novel framework to achieve this goal.
Most clustering algorithms prefer a non dense measurement space, so that
borders between clusters could be easily defined. However, this assumption
does not hold on the typical Internet measurement dataset. Thus, new ap-
proaches are needed, as the one proposed in this paper.

Given a network trace of TCP flows generated by Internet nodes, Net-
Cluster analyzes a small set of flow features (dimensions in a metric space).
It relies on a data preprocessing phase tailored to the specific features of
the considered networking application domain. More specifically, the orig-
inal traffic trace is split in disjoint subsets, independently analyzed. The
partition is driven by the values of dimensions for which a distance definition
hardly holds (e.g., the TTL feature). Then, nodes that exhibit similar net-
work properties are grouped by an appropriate clustering algorithm. To reach
on-line processing speed, an incremental version of the selected clustering al-
gorithm is proposed. This new algorithm, while preserving its effectiveness,
is characterized by a reduced complexity, which provides enhanced execution
performance. Finally, a post-processing analysis refines the cluster definition
identified in the previous step. Extensive tests performed both on artificial
traffic and real traffic traces prove that NetCluster outperforms several well
known clustering algorithms.

The main contribution of the paper is twofold:

• the definition of a framework that analyzes passive measurements and
allows the identification of clusters of Internet nodes that are network-
wide (topologically) close to each other, as seen from the measurement
point;

• the definition of an incremental clustering algorithm tailored to the
analysis of typical Internet measurement datasets.
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We provide also an the analysis of characteristics of the servers as seen
at a measurement point.

The paper is organized as follows. Section 2 introduces the architecture
of the proposed framework. We describe the considered measurement setup
and the selection of the dataset to analyze in Section 3, whereas the pro-
posed incremental clustering algorithm is presented in Section 4, together
with a brief discussion of alternative clustering techniques. Results obtained
from both real and synthetic traffic traces are then presented in Section 5.
Section 6 describes related research activities, while conclusions are drawn
in Section 7.

2. The NetCluster Framework

We wish to identify clusters (groups) of Internet nodes (objects) that,
from a given vantage point, are network-wide similar, i.e., show similar
network-related characteristics. Nodes will be grouped according to the fea-
tures of the TCP connections originated at or received by the nodes. The
NetCluster framework includes two blocks: (i) Data acquisition and pre-
processing (see Section 3), and (ii) clustering (see Section 4).

The data acquisition and pre-processing activities are detailed in Sec-
tion 3. Intuitively, network data information is acquired by passively moni-
toring traffic entering/leaving an edge node. The TCP flows are rebuilt and
characterized by the most significant variables for node classification from
a localization point of view. Finally, the generated flows are segmented in
disjoint subsets subsequently analyzed in a separate fashion.

We tested several different clustering approaches to evaluate their abil-
ity in grouping objects in our application scenario. We found that most
off-the-shelf algorithms suffer from significant drawbacks (see Section 4 for
theorical discussion and Section 5 for experimental results). The main rea-
sons are the difficulty in setting input parameters and the tendency to create
excessively fragmented or excessively large clusters. The WaveCluster al-
gorithm [20] has been identified as an appropriate algorithm for analyzing
Internet measurement datasets. This algorithm has been modified (i) to in-
troduce a refinement process, which allows the improvement of the clustering
quality in the context of Internet measurements, and (ii) to operate incremen-
tally, thus allowing real-time data processing. Besides proposing an effective
clustering algorithm, the NetCluster framework is designed to overcome the
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limitations shown by well-known clustering algorithms when applied to the
node localization problem.

3. Data Acquisition and Pre-processing

A passive probe sniffs all packets flowing on the access link (vantage
point) that connects the edge network to the Internet. Therefore, the passive
probe can monitor all incoming and outgoing packets, i.e., packets directed
to a node inside the network and generated by a node in the Internet, and
vice versa. The probe runs Tstat [24, 25], a passive monitoring tool that
permits to derive network and transport layer measurements. Tstat rebuilds
each TCP connection by matching incoming and outgoing segments. Thus,
a flow-level analysis can be performed, like the one in [25]. A TCP flow is
identified by snooping the signaling flags (SYN, FIN, RST), and the status of
the TCP sender is rebuilt by matching sequence numbers on data segments
with the corresponding acknowledgment (ACK) numbers.

Since we are interested into properties of the path to a given server IP
address, we restrict our attention to the sequence of packets received by
hosts in the monitored networks, i.e., those packets that traveled toward the
vantage point. Among the large set of available measurements describing
flow behavior, the following were selected, because they contain the most
useful information for node classification from a localization point of view:

• the minimum IP Time-To-Live (TTL) observed on packets belonging
to the TCP flow, i.e., the number of hops from the remote node to the
vantage point2;

• the minimum Round-Trip-Time (RTT ) observed on a TCP flow, i.e.,
the minimum time lag between the observation of a TCP segment and
the observation of the corresponding ACK, a variable strongly related
to the distance between the two nodes;

• the flow reordering probability (P{reord}), which can be useful to dis-
tinguish different paths;

2The initial TTL value is set by the source, typical values being 64 and 128. TTL
values are converted to the range 0-64 for normalization purposes.
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• the flow dropping probability (P{drop}), that can be used to separate
a low-speed, unreliable or congested paths;

• the flow duplicate probability (P{dup}), that can highlight a destina-
tion served by multiple paths3.

Thus, an object is defined by the record {TTL,RTT, P{reord}, P{drop}, P{dup}}
(see Section 5.1 for the experimental analysis). As a case study, only TCP
flows which last more than P = 100 packets are considered, to obtain reliable
estimates on reordering, dropping and duplicate probabilities in particular.
This choice is also helpful in focusing the analysis on long-lived flows where
the network path characteristics have more impact and thus can provide
valuable information.

The server IP address could be another possible candidate variable. How-
ever, it does not provide a proper “distance” information. For example, two
consecutive IP addresses might belong to two different ISPs operating at very
different locations. Furthermore, the server IP address does not take into ac-
count the network condition. Since we look for a dynamic node localization,
a key requirement is that the variables depend on link state and on node
congestion.

Network traces are then pre-processed to improve cluster quality and al-
gorithm efficiency. In the context of Internet measurements, some dimensions
of the measurement space represent indices for which even a small variation
corresponds to a huge distance in the measurement space. For example, two
objects with different TTLs should belong to distinct clusters, because, if
they were sharing the same path, they would likely have the same TTL4.
In this case, it is appropriate to enforce an a-priori dataset partitioning to
increase the effectiveness of the clustering algorithm.

Considering the measurement space under analysis, we segmented the
original dataset into a number of disjoint subsets on the values of the TTL

dimension. In particular, objects are assigned to different groups on the
basis of their TTL value and only objects (connections) with the same TTL

3P{reord}, P{drop} and P{dup} are computed by observing the TCP sequence and
acknowledgement numbers carried by segments of a given flow. We refer the reader to [25]
for more details.

4This consideration is correct if the measurement window is not too large, so that
the Internet routes are stationary, as reported in [26]. Similarly, we assume anycast

routes are stable.
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value are then analyzed by the clustering algorithm. Thus, the clustering
algorithm will process a four dimensional measurement space characterized
by {RTT, P{reord}, P{drop}, P{dup}}. Since the clustering algorithm will
operate on a smaller dimension space (4 dimensions) and a reduced set of
objects (due to segmentation), its execution will be also more efficient.

4. Clustering

Clustering algorithms group objects into sets (clusters) on the basis of the
available information describing objects [8]. The aim is to obtain clusters
containing similar objects, whereas objects in different clusters should be
dissimilar. The larger the similarity among objects within a cluster, and
the larger the difference between clusters, the higher the clustering quality.
Similarity is normally measured according to a notion of distance among
objects and clusters in a measurement space describing object features.

More formally, let us consider a measurement space X and a set of ob-
jects A = {x1, . . . , xN | xi ∈ X} which have to be grouped (clustered) into K

subsets. The clustering algorithm finds a partition C = {C1, . . . , CK}, such
that

⋃

i Ci = A and Ci ∩ Cj 6=i = ∅, with K possibly being unknown a priori.
The subsets in the partition are named clusters. Clusters contain “similar”
objects, whereas objects associated with different clusters should be “dissim-
ilar”, the similarity being measured via object-to-object or cluster-to-cluster
distances.

Clustering algorithms rely on many different approaches. The algorithms
we considered for the NetCluster framework are introduced in Section 4.1,
while Section 4.2 discusses the motivations of our final choice in favor of
the WaveCluster algorithm. Section 4.3 describes NetCluster, an improved
version of the WaveCluster algorithm. Finally, Section 4.4 describes an ex-
tension of NetCluster specifically designed to analyze network traffic data,
which operates incrementally. This novel incremental algorithm allows the
analysis of measurement data captured in real-time.

4.1. Clustering Algorithms

We considered the following algorithms to be interesting candidates for
network traffic analysis: (i) DBSCAN [18], (ii) EM (Expectation-Maximization) [22],
and (iii) WaveCluster [20]. DBSCAN is a well-known representative of density-
based approaches, whose objective is to identify portions of the measure-
ment space characterized by a high density of objects. The Expectation-
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maximization (EM) algorithm is a representative of the model-based meth-
ods, which assume that each cluster can be modeled by means of a math-
ematical model and group objects by determining the best fit between the
mathematical model and the objects. Finally, WaveCluster is a representa-
tive of grid-based methods, which exploit a multi-dimensional grid to quan-
tize the measurement space and define clusters by aggregating adjacent cells
characterized by a high object density. These approaches are discussed in
more details in the following.

Other approaches, such as hierarchical-based methods exploit an agglom-
erative or divisive approach to generate a hierarchical collection of clusters.
The (most common) agglomerative approach [33] initially assigns each data
object to a singleton cluster. The two closest clusters are then iteratively
merged using a cluster proximity measure (e.g., MIN or single link, MAX or
complete link, group average, Wards method) [36]. Among them both the
group average and Wards measures are less susceptible to noise and outliers
than both MAX and MIN measures. However, they tend to identify clus-
ters with globular shapes, which could be a limitation for our research aim.
Hierarchical-based methods are often used when the underlying application
requires the creation of a taxonomy, which is not the case for our application
scenario.

Other approaches, such as partitioning approaches (e.g., K-Means [23]),
deal with the same issue as the EM algorithm. However, to automatically
initialize the K-Means parameter (i.e., the number of clusters) the work [39]
proposed the construction of a minimum spanning tree by means of Prims al-
gorithm. The technique has been validated by analyzing astrophysics images
(e.g., satellite view of Paris, images of the planet Mars) to show the effec-
tiveness of the method in automatically initializing the K-Means algorithm.
Since the authors of [37] stated that the proposed approach is effective when
the data to be analyzed are approximately distributed according to a Poisson
distribution, it was not considered in our scenario.

The DBSCAN algorithm. The DBSCAN algorithm [18] exploits the
notion of “dense” neighborhood to define clusters. Density is defined as
the number of objects which are in a particular area of the measurement
space. DBSCAN explores the space by growing existing clusters as long as
the number of objects in their neighborhood is above a given threshold. More
specifically, DBSCAN requires two input parameters, which define a density
threshold in the measurement space: A real number ǫ and an integer number
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minPts. A high density area in the measurement space is an n-dimensional
sphere with radius ǫ which contains at least minPts objects. DBSCAN
iteratively considers objects in the dataset and analyzes their neighborhood.
If there are more than minPts objects whose distance from the considered
object is less than ǫ, then the object and its neighborhood originate a new
cluster.

DBSCAN is effective in finding clusters with arbitrary shape and is ca-
pable of identifying outliers as low density areas in the measurement space.
However, setting appropriate values for the ǫ and minPts parameters is a
rather difficult task [27]. Ref. [37] presented a comparative study between
DBSCAN and FN-DBSCAN (fuzzy neighborhood DBSCAN) and demon-
strated that the latter is more robust than the former for dataset character-
izing by various shapes and densities. In particular, from the result quality
FN-DBSCAN is able to identify more realistic and robust results with re-
spect to the DBSCAN algorithm. However, to find the optimal values for
the FN-DBSCAN parameters is rather a difficult task, as for DBSCAN.

The Expectation-Maximization algorithm. The Expectation-Maximization
(EM) is a general iterative procedure used in statistics to find maximum like-
lihood estimates of unknown parameters for which a likelihood function can
be built. The EM algorithm for clustering [22] exploits the EM approach to
group objects in clusters. It computes the parameters of a Gaussian mix-
ture model distribution. A mixture is a convex combination of N probability
distributions where each distribution represents a cluster. At the beginning,
parameters are assigned with random values. Then, the algorithm iterates
recomputing them, until a convergence threshold is reached. More precisely,
consider a set of vectors, where each vector is interpreted as an object picked
among one of N Gaussian distributions. The EM algorithm groups together
vectors originated by the same distribution. Each distribution models a clus-
ter. For each distribution (i.e., cluster) the EM algorithm estimates (i) the
mean and the standard deviation, (ii) the sampling probability, i.e. the prob-
ability that one of the N Gaussian distributions is used as a data source. The
entire procedure is repeated until model parameters converge.

A relevant requirement of the EM algorithm is its need to set the number
N of the Gaussian components, i.e., the number of clusters, before the algo-
rithm is applied. This issue, which is relevant in our application domain, is
further discussed in Section 4.2.

The work [38] proposed an effective approach to automatically discover
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an optimal number of clusters to initialize the EM parameter. However,
the number of required iterations to discover an estimating model similar
to the real model (i.e., the best value for the cluster number) may signif-
icantly increase by increasing the number of data points and the number
of dimensional attributes. Since the robust EM clustering algorithm [38] is
expensive in terms of computation it was not considered because it may not
effectively support real-time analysis of passive measurement data, which is
our scenario.

The WaveCluster Algorithm. The WaveCluster algorithm (WC),
analogously to other grid-based methods (e.g., Clique [19]), quantizes the
measurement space by means of a a multi-dimensional grid. Each object
is assigned to a single cell, which is “dense” if it contains enough objects.
Objects belonging to adjacent dense cells are assigned to the same clus-
ter, while objects not belonging to any clusters are labeled as noise. More
specifically, the WaveCluster algorithm [20] is characterized by three main
steps: (i) Quantization, (ii) wavelet transform, and (iii) cluster definition. In
step (i), the measurement space is quantized into a finite set of cells. The
(multidimensional) cell size is an input parameter. For each cell, its density,
defined as the number of objects belonging to the cell, is computed. This
phase reduces the number of objects to analyze, because clustering will op-
erate on cells and not on objects. The next step is the application of the
discrete Wavelet transform to smooth the density value of each cell accord-
ing to the density values of adjacent cells. Thus, regions containing high
density cells are emphasized, whereas regions containing low density cells are
smoothed out. In step (iii) clusters are defined on the transformed space. A
cluster is the maximal set of connected cells with a non negligible density. A
threshold parameter needs to be defined to identify high density cells.

The Wavecluster algorithm exploits the wavelet transform to deal effec-
tively with outliers and noise. However, it requires the definition of a density
threshold, whose value may be hard to set appropriately. Furthermore, sim-
ilarly to other grid-based approaches, it may scale poorly in the number
of dimensions, because the number of cells is exponential in the number of
dimensions.

4.2. Selection of the Clustering Algorithm

The following main issues guided our choice of the most suitable clustering
algorithm: (i) The amount of knowledge needed to correctly set the input
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parameters, and (ii) the ability to deal with noisy data, i.e. the sensitivity
to outliers, missing, or erroneous data. Noise reduction is a fundamental
requirement for the analysis of any measurement data affected by noise, such
as Internet measurements.

All clustering algorithms require the definition of several input parame-
ters. A proper setting of these parameters is often crucial to obtain high-
quality clusters. However, appropriately setting input parameters is very
difficult, because the best choice usually depends on the considered dataset.
Parameters may be defined by checking clustering quality in scenarios in
which the “best” clustering configuration is known (i.e., in synthetically gen-
erated datasets). However, there is no guarantee that the same parameter
values would provide a high-quality clusterization when applied to datasets
characterized by a different data distribution. For this reason, clustering
algorithms whose parameter values can be somehow related to known data
characteristics are preferable.

A specific input parameter required by some clustering algorithms (e.g.,
the EM algorithm) to operate correctly is the number of clusters. Since
we would like to infer Internet node location information and properties by
analyzing passive network measurements on data generated by relatively long
TCP connections, it is definitely difficult to “guess” the correct number of
clusters in our application scenario. Obviously, several clustering sessions
with different values of the final number of clusters may be run. However,
this procedure is quite time consuming. Furthermore, the selection of the
best clustering result is not straightforward.

Among the clustering algorithms described in Sec.4.1, the grid-based
WaveCluster algorithm showed remarkable properties in the context of net-
work traffic analysis: Scalability, ability to remove noise, multi-resolution
analysis capability, and straightforward parameter setting. Scalability in the
number of objects is provided by the grid-based approach. Noise reduction
is achieved via the Wavelet transform. The cell size may be defined sepa-
rately for each variable in the measurement space. Hence, multi-resolution
analysis may be obtained by appropriately managing the grid granularity.
Furthermore, most WaveCluster parameters can be easily related to the net-
work characteristics of our analysis scenario, as shown later, thus simplifying
the critical task of parameter setting. The other algorithms require instead
the definition of parameters which do not straightforwardly correspond to
connection-related characteristics. Finally, WaveCluster does not require the
a-priori knowledge of the number of clusters.
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When analyzing Internet measurement data, the classical algorithms iden-
tify either few, very large clusters, or a large number of highly fragmented
clusters.5 This is due to the nature of the Internet measurements, in which
the intrinsic variability of the measurements tends to spread-out objects.
Furthermore, the WaveCluster algorithm creates large clusters, being the cell
adjacency the criterion adopted to form clusters. The NetCluster algorithm
enhances the WaveCluster algorithm by means of a reshaping process to refine
cluster definitions. This is a key point that makes the NetCluster algorithm
more robust and precise than classical clustering techniques on networking
data. We also propose a novel incremental version of this algorithm, named
Incremental NetCluster. This incremental version may operate in an on-line
fashion and it will be shown to provide a clustering partition very similar to
the one provided by the non-incremental version, while drastically reducing
the processing time, thus achieving real-time processing capabilities.

The following section details the proposed NetCluster algorithm, while
Section 4.4 describes the incremental version of NetCluster. Then, our algo-
rithm choice is validated in Sec. 5, where the quality of the clustering results
provided by the considered algorithms is compared.

4.3. The NetCluster algorithm

The NetCluster algorithm (denoted as NC in the following) integrates a
refinement process into the WaveCluster algorithm [20]. We assume that
the reader has a basic knowledge of WaveCluster. For more details,
the reader is referred to [20]. In particular, the following steps are
performed: (i) quantization, (ii) wavelet transform (identified by the Mexican
Hat wavelet transform), (iii) cluster definition, (iv) cluster resize. The first
three steps are common to both approaches6, while the cluster resize phase
characterizes NC only. Since cell adjacency is the criterion adopted to form
clusters in WaveCluster, the WC algorithm tends to intrinsically build large
clusters. To counter-balance this behavior, we enforce a maximum “range”
for feature values in each identified cluster. For example, clusters including
objects with very different RTT values (e.g., ranging in [0, 500]ms) would not
be allowed.

To reach this goal, we first define, for each dimension in the metric mea-
surement space, a maximum extension (i.e., a range) allowed when grouping

5These aspects will be better highlighted in the Performance Results Section.
6For more details on the first three steps see the WaveCluster algorithm [20].
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cells in the same cluster. This process defines a multi-dimensional ellipse
bounding the measurement space. Then, for each obtained cluster, the cell
with the maximum frequency is selected7. This cell becomes the center of a
multi-dimensional ellipse. All cells of the current cluster which are included
in the multi-dimensional ellipse are assigned to a newly created cluster. The
process is then iteratively repeated for all the cells of the original cluster. At
end of this process, the original big cluster is split into several new smaller
clusters. This refinement process is applied to all the clusters defined by the
WC algorithm.

At the end of the resize phase, all the objects belonging to the same clus-
ter are characterized by a distance smaller that twice the ellipse “radius”.
Bounding the size of each cluster requires to add new parameters to the pro-
cess, denoted in the following as Netp (see Section 5 for Netp values exploited
in our implemntation). These parameters can be derived by common sense
networking-based domain-knowledge. For example, considering the RTT, a
natural choice would be to limit the range of values in a given cluster to
about ±5ms when considering Wide Area Networks. Similarly, reordering or
loss probability are expected to range in a ±1% range or less.

4.4. The Incremental NetCluster algorithm

Both the WC and NC algorithms operate on the full trace, i.e., all the
objects in the trace (typically a very large number of objects) are processed
together after being collected. However, in a network measurement scenario,
the objects are not available all together at the same time. In particular,
batches of objects are measured and collected in a stream-like environment.
Hence, we propose an incremental version of the NC algorithm, denoted in
the following as NCI, which incrementally reclusters objects after a new data
batch is received. More specifically, a small batch of objects, denoted as Bt, is
collected every ∆k seconds. The new clustering is computed as a function of
the new objects in Bt and the clusters generated from the previous batches.

The WC algorithm [20] is not very efficient because the transform step
and the cluster discovery are performed on all the cells of the quantized
space. Furthermore, both the current and past objects need to be stored
and processed at each run, thus severely reducing the applicability of the

7The chosen cell order may affect the result. However, we experimentally verified that
by modifying the cell order we did not obtain better results.
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approach to the on-line analysis. Conversely, when dealing with batches of
objects, only a small portion of the quantized feature space is modified, both
in terms of cell density and cluster shape. This effect is due to the fact that
each batch contains a limited number of objects compared to the full trace.

The main ideas that inspired NCI are (a) recomputing the wavelet trans-
form only over the subset of cells modified by the current batch Bt and (b) ex-
ploiting the wavelet transform and the information in the current batch Bt

to incrementally define the new clusters. In general, the t-th execution of
the NCI algorithm on batch Bt entails the following steps: i) Quantization,
to count the cell density for the new batch Bt in the quantized space, ii) cell
status update, to update the wavelet transform only on cells whose density
has been changed by the new data objects in Bt, iii) cluster discovery, to
update the set of relevant clusters, and iv) cluster resize and (cluster) label
assignment, to refine clusters by identifying the most connected groups of
data objects.

Algorithm 1 The NCI algorithm
Require: Data batch Bt, minimum frequency threshold ρF , network parameters Netp

Ensure: set of clusters

1: Quantize feature space for the data batch, then assign data objects to the cells

2: Apply Wavelet transform only for cells whose density has changed

3: Find the adjacent cells in the new space

4: Assign island labels to the cells by exploiting ρF
5: Assign cluster labels to the islands

6: Resize clusters by exploiting network parameters

7:
8: return set of clusters

Algorithm 1 reports a pseudo code of NCI. At the t-th execution, the
NCI algorithm analyzes the new data collected at time t, i.e., Bt. Besides
the data, the configuration parameters ρF and Netp are required. ρF is the
minimum frequency threshold for the wavelet transform, while the network
parameters Netp allow resizing clusters at the end of the analysis to split
large clusters and identify strongly connected groups.

The first step of the algorithm is the computation, on the current batch
Bt, of the cell density in the quantized space. The wavelet transform is then
computed only for the cells for which the density has been changed by the
objects of the current batch. This approach reduces the run time needed to
analyze a data batch.

To perform the next step, the algorithm exploits the concept of island,
defined as the maximum set of adjacent/connected cells characterized by a
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wavelet transform value larger than a minimum frequency threshold ρF . For
each cell, its neigborhood, identified by the Mexican Hat wavelet transform,
is explored to identify relevant cells. The algorithm assigns an island label
to each cell. For an arbitrary cell three cases are given. (i) If the
cell is adjacent to an island, it is added to it. (ii) If its adjacent
cells do not belong to an island, a new island label is assigned to
the cell. (iii) Two islands can be merged in one because they are
connected by the cell. In this case, a new label is assigned to the
newly generated island.An example of the procedure is reported
in Fig.1. The figure on the top reports the new island formation,
labelled as ’3’. The figure on the bottom reports the merging of
the island, i.e., island 3 and island 2 are merged in the new island 4.
Different values for ρF may slightly change the selection of relevant cells. A
high value of ρF limits the number of relevant cells and increases the number
of cells discarded as noise. Low values of ρF may identify rather large groups
of conncected cells.

The next step defines the new cluster set. For each island the corre-
sponding density is computed as the sum of its cell densities. Only islands
for which the sum of their cell densities is larger than zero become clusters.
More specifically, due to the smoothing effect of the wavelet transform filter,
some cells in the neighborhood of a high density cell may be characterized by
a density equal to zero. Hence, islands may emerge from cells with density
equal to zero. When the island total density is equal to zero, it should not
become a cluster.

Finally, the clusters are resized by exploiting the network parameters
Netp., i.e., big clusters are split into several small and more connected clusters
to avoid excessively large clusters (see Section 4.3).

5. Performance Results

To test the effectiveness of the proposed framework, we ran a large set
of experiments on both synthetic and real traces. The experimental vali-
dation addressed the following issues: (i) Clustering algorithms comparison
(Section 5.2), (ii) algorithm sensitivity and robustness (Section 5.3), (iii) in-
cremental NetCluster performance (Section 5.4), and (iv) characterization of
the Internet traffic (Section 5.5).

We analyzed three classical clustering algorithms (i.e., DBSCAN [18],
EM [22], and WaveCluster, denoted as WC [20]), NetCluster, denoted as
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Figure 1: Island formation (top) and island merge (bottom) for an exemplary two dimen-
sional dataset.
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Table 1: Default Parameters for the Clustering Algorithms

Algorithm Parameters

DBSCAN minPts = 4 ǫ = 0.005
EM N = 59
WC P{reord} = P{dup} = 0.01 RTT = 5ms

NC P{reord} = P{dup} = 0.01 RTT = 5ms

RTTMAX = 10ms P{reord}MAX = P{dup}MAX = 0.09
NCI as for NC, with ρF = 1.5

NC, and Incremental NetCluster, denoted as NCI. Unless otherwise specified,
we used the set of parameters reported in Tab. 1 to run the algorithms. In
particular, theRTTMAX , P{reord}MAX , and P{dup}MAX represent theNetp
parameter set. Experiments have been performed on an AMD Athlon 64 X2
Dual-Core PC with 2 Gbyte main memory running WinXp.

5.1. Datasets and feature selection

We first ran a set of experiments in which several connections to known
servers were artificially generated. We considered a set of N HTTP mirrors
located in different known geographical positions. For each HTTP server, we
downloaded the same file L times. Therefore, a clustering algorithm should
identify N clusters, each one including L objects. This scenario, named
“known servers” in the remainder of the paper, is a simple case study that
permits to know a priori the “correct” clustering. This idealized environment
permits to detect if the clustering algorithms are able to correctly identify
correlated groups of servers. Since the “optimal” solution is known, this
trace allowed us to evaluate the quality of the clusters obtained by different
algorithms.

To characterize each TCP flow, we exploited Tstat. Clustering algorithms
are then run. Identified clusters are compared to the expected set of clusters
(i.e., “optimal” solution). We run several experiments, considering first the
set of N = 59 UBUNTU mirrors to download the distribution of “wget”,
and then the set of N = 25 sourceforge mirrors to download the distribution
of “visualwget”. Moreover, L is set to 100. The experiments were repeated
both during the day and the night, to observe the impact of different network
conditions.

For real traces, we presented the results for a 24-hours trace collected
on Politecnico di Torino Campus LAN access link. We collected Internet
traffic exchanged between our Campus LAN and the external network (i.e.,
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Table 2: The error percentage and the number of clusters by considering dif-

ferent sets of features
Set of features Error Cluster number

{TTL,RTT, P{reord}, P{drop}, P{dup}} 12% 54
{TTL, P{reord}, P{drop}, P{dup}} 60% 32
{TTL,RTT} 40% 54
{RTT, P{reord}, P{drop}, P{dup}} 81% 12

Internet). This scenario, named “real trace” in the remainder of the paper,
represents a fairly large dataset that covers a large set of Internet servers.
TCP flows are again characterized by exploiting Tstat. 24 subsets of objects
were considered, one set for each hour. Since in this scenario no a-priori
information is available on the “optimal” clustering, we exploited different
measures (e.g., cluster homogeneity [33], adjusted rand index [29]) to prove
the effectiveness of the NetCluster framework.

In all scenarios, measurement data are pre-processed by partitioning them
on the TTL value (see Section 3). Thus, TCP flows characterized by different
TTL are analyzed in different clustering sessions.

Feature selection. Among the large set of available measurements de-
scribing flow behavior, we selected {TTL,RTT, P{reord}, P{drop}, P{dup}}
as the most useful information for node classification from a localization point
of view. Our selection was based on theoretical aspects (see Section 3) and
experimental analysis. In particular, we have studied the order of importance
of the features by evaluating the performance of the NetCluster algorithm on
the known servers dataset. The error percentage (computed as [33]) and the
number of clusters obtained at the end of the clustering have been analyzed
by considering different subsets of the considered features. Tab. 2 reports
the main results. The most important parameters are the RTT and the
TTL. In particular, when the TTL is not considered, the error is more than
80% and the number of clusters (i.e., 12) is very low with respect to the
real value (i.e., 59). By removing the RTT from the analysis, the error is
more than 60% and the number of clusters (i.e., 32). By only considering the
{TTL,RTT}, the error is close to 40%. To minimize the error and identify a
number of clusters close to the real value, all features need to be considered
in the analysis.
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Figure 2: Number of identified clusters (left) and error percentage considering different
clustering algorithms (right). The ground truth is 59 clusters

5.2. Clustering algorithm comparison

Clustering algorithms are compared to show their ability in correctly iden-
tifying clusters of nodes which exhibit similar network path properties. We
addressed the following issues: (i) Characterization of clustering results and
(ii) agreement measures between two clustering results.
Characterization of clustering results. The left plot of Fig. 2 reports the
number of clusters identified on the known servers trace by the considered
clustering algorithms (i.e., DBSCAN, EM, WaveCluster (WC), NetCluster
(NC), and Incremental NetCluster (NCI)). Since the known server trace con-
tains 59 UBUNTU mirrors, 59 clusters should be identified. EM requires the
number of clusters as an input parameter. Hence, it (obviously) identifies
the correct number of clusters. DBSCAN identifies a large number of small
clusters, while WC tends to identify few, large clusters. Both NC and NCI,
after the resize phase, identify a number of clusters very close to the expected
one (55 and 57 respectively).

The right plot of Fig. 2 reports the error percentage in the clustering com-
position yielded by the different algorithms. For each cluster C = 1, . . . , K,
let NOK(C) be the number of flows belonging to the dominant server, i.e.,
the server to which refers the majority of flows in the cluster. Let NKO(C) be
the number of flows in C referring to other servers and |D| the total number
of flows in the dataset. The error percentage [33] is then evaluated as

η =

∑

C NKO(C)

|D|
× 100
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The reported results show that NetCluster performs significantly bet-
ter than the other algorithms, showing an error percentage of about 10%,
whereas the other algorithms range around 50%. Note that EM, even if con-
sidering exactly N clusters, shows a large error percentage, because it does
not explicitly address noise.

The good performance of the NetCluster algorithm is largely due to its
(final) resize phase. Fig. 3 shows a graphical representation of part of the
measurement space after the first two steps of NetCluster, i.e., quantization
and wavelet transform, performed on the real trace. The resulting cell density
versus {RTT, P{reord}} is plotted for a given TTL value (TTL = 52).
At this processing step, clusters referring to a given server already emerge.
However, the group of cells with small RTT values forms a single set of
connected cells, i.e., a single huge cluster. The NetCluster resize phase allows
splitting this cluster into several smaller clusters, better partitioning the
original dataset.

We further explored the composition of the clusters obtained after Net-
Cluster resize phase. Fig. 4 plots the cluster homogeneity [33], defined as
100 × the ratio between the number of objects from the prevailing server
versus the total number of objects in the cluster. The higher the cluster
homogeneity is, the higher the clustering quality. Clusters are sorted in de-
creasing values of homogeneity. 39 clusters contain only flows from a single
server, while only 3 clusters are characterized by homogeneity smaller than
50%. Investigating further, the most heterogeneous clusters group together
flows coming from mirrors very close to each other (e.g. Bern and Lausanne
(CH)).

Since the NetCluster algorithm is an improved version of the WaveClus-
ter algorithm, in the following we will consider the NetCluster algorithm as
representative of both approaches.
Agreement measures between two clustering results. To compare
clustering results obtained with different clustering algorithms, agreement
measures (e.g., rand index [29], adjusted rand index [30]) between algorithm
pairs are exploited. The Rand Index [29] computes the number of pairwise
agreements between two partitions of a set. Hence, it may be exploited to
provide a measure of similarity between the cluster sets obtained by two
different clustering techniques.

Let O be a set of n objects, and X and Y two different partitions of set O
to be compared. The Rand Index, denoted as Rindex, is computed as follows:
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Figure 3: Graphical representation of cell density in the two-dimensional measurement
space RTT (round-trip time), P(reord) (reordering probability).

Rindex =
a+ d
(

n

2

) (1)

where a denotes the number of pairs of elements in O which are in the same
cluster both in X and Y , and d denotes the number of pairs of elements in
O which do not belong to the same cluster neither in X nor in Y . Thus,
the term (a + d) is the number of pair wise agreements of X and Y , while
(

n

2

)

is the number of different pairs of elements which can be extracted from
O. The Rindex ranges from 0 to 1, where 0 indicates that the two partitions
do not agree for any data pair, and 1 indicates that the two partitions are
equivalent.

Since the Rand index does not yield zero as expected value of two random
partitions, the adjusted Rand index has been proposed in [30] as follows:

ARI =
Rindex − expected value

maximumRindex − expected value
(2)

where the expected value is computed as the weighted average of all values
that the Rindex can take and the maximum Rindex is the maximum value that
Rindex can assume (i.e., 1). The adjusted Rand index is bound by 1 and is
0 when the index equals its expected value. Since the Rand index is always
larger than the adjusted Rand index, the sensitivity of the adjusted Rand
index is higher than that of the Rand index [30].

We first compared the clustering algorithms on the known servers trace.
For this dataset, the correct clusters are known. Tab. 3 reports the values
of the adjusted Rand index when separately comparing the result of each
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Table 3: Known servers trace: Adjusted Rand Index

Adjusted Rand Index

DBSCAN 0.25
EM 0.48
NC 0.87
NCI 0.86

Table 4: Known servers trace: Adjusted Rand index for the pairwise algorithm comparison

NC DBSCAN EM NCI

NC 1 0.29 0.21 0.85
DBSCAN – 1 0.22 0.31
EM – – 1 0.24
NCI – – – 1

clustering algorithm with the known solution. Both NC and NCI provide
good quality clusters, which are very close to the correct partition.

We also computed the adjusted Rand index given by the pairwise com-
parison of the cluster sets provided by the DBSCAN, EM, NC, and NCI ap-
proaches. Tab.4 and Tab.5 report the obtained values for the known servers
trace and for the real trace respectively. Consider the known servers. The
index value is rather low for most algorithm pairs. Hence, most algorithms
yield fairly different clusters. Not surprisingly, the (NC, NCI) index value is
the highest, suggesting that the two algorithms provide rather similar data
partitions. These results highlight that, even when two algorithms yield a
similar number of clusters, the cluster composition may be quite heteroge-
neous. Similar considerations hold for the real trace.

5.3. Algorithm sensitivity and robustness

We analyzed the robustness of the clustering quality to parameter set-
tings. For each considered algorithm, a set of experiments have been run

Table 5: Real trace: Adjusted Rand index for the pairwise algorithm comparison

NC DBSCAN EM NCI

NC 1 0.31 0.2 0.77
DBSCAN – 1 0.2 0.32
EM – – 1 0.2
NCI – – – 1
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to find the optimal input parameter settings, using, when available, tools to
optimize algorithm performance (e.g., OPTICS [27]).

The evaluation of the robustness of the clustering quality to parameter
settings requires the validation of the discovered clustering structures. Per-
forming the latter activity in the real world environment is the most difficult
task because no a-priori information is known to evaluate the goodness of
the resulting clusters. Thus, we only report results considering the dataset
of known servers, i.e., the UBUNTU dataset collected during the day. This
idealized environment permits to detect if the clustering algorithms are able
to correctly identify correlated groups of servers.

The EM algorithm requires as input parameter the number of clusters,
which is in general very difficult to define, given the wide range in which it
may vary. Hence, the analysis of algorithm sensitivity and robustness has
been addressed for the DBSCAN algorithm and for the NetCluster framework
only. The characteristics of the NCI algorithm are analyzed in Section 5.4.
DBSCAN algorithm. Tab. 6 shows the percentage of correctly clustered
flows when varying the input parameters ǫ (i.e., the radius of the neighbour-
hood) and minPts (i.e., the minimum number of points within ǫ radius) of
DBSCAN. As minPts increases, the percentage of correctly clustered flows
decreases, because more objects are labeled as noise8. The larger the radius
ǫ, the larger the obtained clusters. Thus, also in this case, the number of
correctly clustered flows decreases. Small values of ǫ may yield fragmenta-
tion and, thus, large error rates. Bold values reports the optimal parameters
in our experimental setting (38.27%) and the parameters selected by the
OPTICS algorithm [27] (17.64%). OPTICS has been proposed to simplify
DBSCAN parameter setting. However, it selects a parameter configuration
far from the optimal one, because its computation is based on the number
of clusters and not on the error, which is unknown a priori. Hence, devising
an appropriate parameter configuration for DBSCAN in a real operational
environment may be a complex task.

Table 7 reports the corresponding number of clusters NC for each pa-
rameter configuration. NC is inversely proportional to both ǫ and minPts

(as expected). The parameter configuration provided by OPTICS yields 64
clusters, a number which is quite close to the real number of servers (59).

8In our case the noise is the instance of data that the algorithm cannot

cluster due to their lack of neighbors
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Table 6: DBSCAN: Percentage of correctly clustered flows

MinPts Eps
0.0005 0.001 0.003 0.004 0.005 0.007 0.01 0.05

2 26.95% 31.78% 37.23% 38.25% 26.33% 24.75% 16.62% 5.99%
4 26.08% 30.96% 36.98% 38.27% 26.11% 24.57% 17.74% 5.95%
6 24.75% 29.33% 36.14% 37.60% 25.14% 24.15% 16.92% 5.95%
8 23.31% 28.19% 35.25% 36.46% 25.41% 24.57% 17.59% 5.95%
10 22.62% 26.58% 34.06% 35.77% 24.75% 24.30% 18.26% 6.19%

Table 7: DBSCAN: Number of clusters

MinPts Eps
0.0005 0.001 0.003 0.004 0.005 0.007 0.01 0.05

2 434 385 368 355 286 231 112 32
4 171 193 210 208 163 136 64 27
6 93 125 149 151 124 99 52 27
8 57 82 109 111 93 78 53 27
10 46 67 82 88 79 68 47 29

208 cluster are instead found when the set of parameters that minimizes the
error is selected. The cluster quality provided by DBSCAN is strongly depen-
dent on the values chosen for the parameters. Hence, its robustness is rather
limited. Furthermore, the minPts and ǫ parameter values are not related
to networking characteristics, thus preventing the exploitation of domain-
knowledge when selecting the appropriate parameter configuration.
NetCluster framework. NetCluster parameters are the cell extensions in
the different dimensions. In the following, we analyze RTT and Preord, which
are the most relevant. Indeed, Ploss and Pdup are typically negligible in our
scenario given the very good connectivity of our campus LAN to the Internet.
In more details, Pdup has been found to be not zero only in few cases, where
possibly the path from the server was crossing some faulty links/interfaces.
Fig. 5(a) reports the variation of the number of created clusters versus the
RTT and Preord cell extension parameters. The algorithm is rather sensitive
to the variation of Preord. A large number of clusters is obtained with very
low values of Preord (e.g., less than 0.5%), while the variation of RTT does
not substantially affect the number of clusters.

Fig. 5(b) shows the total error by varying the RTT and Preord cell exten-
sion parameters. The variation of RTT affects the total error. The error can
be reduced by setting RTT=[2,5] ms as input parameter, which intuitively
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Figure 5: NetCluster framework on known server trace
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Table 8: Error percentage and number of clusters by varying ρF

ρF 1 1.25 1.5 1.75 2
Number of clusters 76 63 55 54 54
Error percentage 12% 13% 12% 16% 17%

suggests that samples that differ less than 5 ms in RTT can be grouped in
the same cell. Setting the parameters to “network-meaningful” values (e.g.,
RTTMAX = 10ms or P{reord} = 0.01 as previously discussed) is relatively
simple and provides a quite robust clustering quality.

To give more insight, we analyzed the error percentage and the
number of clusters by varying ρF . As expected, the sensitivity to
ρF is quite limited. For low values of ρF more clusters are gener-
ated, since a higher number of cells are considered. On the con-
trary, when ρF increases, more cells are considered, and the error
is slightly increased. At last, we choose ρF = 1.5 so to ignore those cells
with a too small number of point in them.

5.4. Incremental NetCluster performance

To analyze the performance of NCI, we simulated on-line incoming blocks
of traffic flows. We considered traffic flows of the real trace collected from
11:00 a.m. to 4:00 p.m. The traffic trace was partitioned in batches contain-
ing 500 flows. Let N be the number of batches and i the index of the current
batch (e.g., B(i) = 500 means that batch i contains 500 flows). To compare
the clustering results obtained by means of the NC and NCI algorithms, for
each batch i, the NC algorithm is run on all the first k = 0, 1 . . . i batches,
while NCI is only run on the single batch B(i). The performed experiments
addressed the following issues: (i) Characterization of clustering results, in
terms of cluster number, noise percentage, and adjusted rand index, and
(ii) time performance of the two approaches.
Characterization of clustering results. The results shown in Fig.6 com-
pare NCI and NC performance. For each sample in the set of batches B,
Fig.6(a) plots the number of identified clusters, while Fig.6(b) plots the noise
percentage of NCI and NC, i.e., the percentage of objects erroneously clas-
sified as noise. NC and NCI show a similar increasing trend in the cluster
number, by identifying 10 clusters when they analyze the first batch i = 0,
and more than 400 clusters for the last batch. Both NCI and NC show a
fastly decreasing trend in the noise percentage, keeping the noise bounded
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Figure 6: NCI versus NC on Internet traffic trace

Table 9: Adjusted Rand Index for Different Block Sizes considering the Real Clustering

Algorithms Block Size
10 100 1000

NCI w.r.t. NC 0.84 0.91 0.81

below 20% after 17, 000 samples.
Tab. 9 reports the adjusted rand index values given by comparing the

cluster sets obtained by the NC and NCI algorithms when varying the block
size. The real trace is discussed as representative dataset. The block size does
not consistently affect the values of the adjusted rand index. This confirms
that NCI and NC produce similar clusters.

Finally, Fig.6 reports the variation of the adjusted rand index between
NCI and NC for the real trace as a function of the sample number, for
different block sizes. Also in this case, the values of the adjusted rand index
are very similar considering different blocks. In particular, the adjusted rand
index values rapidly converge to 0.94.
Time performance. Fig. 8 shows the CPU time required to run the NC
and NCI algorithms for different block size. A logarithmic scale is used to
report the CPU time. The dataset including all TCP flows collected during
the entire day (i.e., including night) is considering. The dataset contains
100,000 objects. NC requires roughly 2s to process each block, almost inde-
pendently of the block size. On the contrary, NCI exhibits an exponential
decrease in the required CPU time when reducing the block size. As shown
in the previous paragraph, the quality of the final clustering structure is only
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Figure 7: Adjusted Rand Index on Internet traffic trace for different block sizes.

marginally affected by the block size. Thus, it is possible to select the block
size that better fits application domain characteristics or computational time
constraints without reducing the clustering quality.

5.5. Characterizing Internet Traffic

In this section we discuss the results of the analysis performed on the real
trace to characterize Internet traffic by means of the NetCluster framework.
Recall that the real trace has been obtained from the Campus access link
trace. The trace contains accesses to a large number of nodes, geographically
distributed over the entire Internet. The 24-hours trace is split in 24 sub-
sets, each lasting one hour. Since in this scenario no control information
(i.e., no label) on the flows characteristics is available, we analyzed cluster
homogeneity to evaluate the quality of the clustering results. We only discuss
the results provided by the NetCluster framework, which has been shown in
the previous sections to be the most reliable in finding homogeneous clusters.
The other considered clustering algorithms were also tested, but the provided
cluster homogeneity was lower than the one provided by NetCluster.

Fig. 9 depicts the number of flows with more than 100 packets (solid line)
and the number of identified clusters (solid bars) for each hour. As expected,
the number of clusters follows a day-night trend, as does the number of TCP
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Figure 9: Cluster Numbers and TCP
flows (solid line) in the dataset.

flows, due to the higher load offered during the day. In particular, during
peak hours from 9:00 a.m. to 6:00 p.m., the number of clusters is almost
stationary, varying between 110 and 130.

To show the quality of the identified clusters, Tab. 10 shows the IP ad-
dresses, the number of flows and the DNS server name9 of objects belonging
to the largest cluster (i.e., time slot 14:00). By looking at the IP addresses, it
can be observed that 97% of the contacted servers are Google servers (belong-
ing to different subnets), while only 11 servers are not registered by Google.
However, all servers are located in Amsterdam, the Netherlands10.

9The server name has been retrieved by performing DNS reverse lookup of the server
IP addresses. The name is thus generic.

10The whois.net website was used to collect the information.

Table 10: Composition of a cluster

IP Address Flow % Number of Flows Server Name
66.249.93.X 59% 217 ug-in-fX.google.com
66.249.91.X 22% 83 ik-in-fX.google.com
64.233.183.X 16% 58 nf-in-fX.google.com
82.94.210.200 2% 7 -
194.109.217.140 0.5% 2 emo.blender.org
62.50.24.217 0.5% 2 amst2.eu.psigh.com
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Figure 10: Graphical representation of cluster structure considering the 10 largest clusters.
The dataset considers flows active from 12:00 to 13:00.

Fig. 10 reports the breakdown of the largest ten clusters, showing the
countries to which the IP addresses belong to, and the largest ISP name, as
provided by the WHOIS service. Cluster homogeneity is quite astonishing.
For example C1, C3, C6, C8, and C10 contain objects which belong to a
single ISP in a single Country, or even of a single service (e.g., C10). Other
clusters, e.g., C5 and C7, group servers that are located in the same country
mainly, with about 20% of flows that belong to other countries, which could
possibly be verified further by using some other geolocation services. Overall,
NetCluster is very effective in correctly grouping servers together, and could
be seen as a promising technique to validate and improve the topological
information discovery of servers.

6. Related work

In the past, several research groups have been attracted by Internet To-
mography. Starting from the seminal work of Yardi [4], in which the authors
study how to derive the traffic matrix from link load measurements, several
authors studied how to infer internal network properties from data measure-
ments. Most works focus on path and topology characteristics. For example,
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in [10] and [11] the authors describe methods to infer the packet loss rates in
internal networks routers from the traffic required among edge nodes.

Ref. [34] proposed to understand the Internets structure by only analyz-
ing two passive measurements (i.e., the source IP address as unique identifiers
of hosts and the TTL information). To generate IP sources that are topolog-
ically close to each other the version of the EM algorithm proposed in [35]
has been used. Our work extends the one in [34] by considering a large set of
passive measurements. We also proposed an incremental clustering approach
to deal with the analysis of passive measurements captured in real-time.

Bottleneck link identification [12] is another research area of network
tomography. This approach can be based on either sending active probes,
or passively inferring informations exploiting TCP flow observation. Passive
monitoring [13] is usually preferred, since it allows obtaining information
without injecting additional traffic, thus having no impact on network status.

More recently, a new problem attracted the attention of the research com-
munity: How to define a network-wide positioning system to locate nodes.
Node position knowledge is then exploited to improve network performance.
For example, considering P2P systems, the knowledge of other peers posi-
tion could be exploited when building the overlay topology, so that neigh-
boring nodes are logically connected together to avoid exchanging data over
long (and possibly congested) paths. Currently, some commercial applica-
tion like [15] exploits geolocalization informations during the peer selection,
though this feature is usually limited to the same Autonomous System. While
several proposals have been defined to derive node position in the Internet
(see [16] and [17] to cite only the seminal paper and the most recent one), to
the best of our knowledge all previous works require the explicit cooperation
of end systems and, possibly, specialized nodes (called landmarks) to achieve
the goal. Thus, signaling and active probes are often adopted. Conversely,
we pursue an approach purely based on passive measurements of data traffic.

A parallel effort has been devoted to designing and developing incremental
clustering algorithms which are able to process new data as they are added
to the collection. In particular, incremental clustering algorithms (e.g., [6],
[5], [7]) are able to update the clustering structure after insertion and/or
deletion of new objects. Among the previous approaches, the aim of the
work presented in [7] is to identify clusters of objects characterized only by
categorical (i.e., not numerical) features. Thus, this approach cannot be
exploited to analyze traffic network data.

The COBWEB algorithm [6] is able to change the clustering structure
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concurrently with the collection of new data. It clusters a dataset in the form
of a classification tree, where the root node represents the whole dataset, the
leaves represent single objects and internal nodes represent clusters. Each
cluster is characterized by a probabilistic description. The tree is built in-
crementally with a single read of the dataset. When new data is available,
it is temporally added to each cluster to compute a metric called category
utility. This measure evaluates the similarity of the data belonging to the
same cluster and the dissimilarity of data belonging to other clusters. New
data is expected to improve the overall category utility. To achieve this goal
four actions can take place: (i) New data is added to an existing class, (ii) a
new cluster is created, (iii) an existing cluster is split, and (iv) two existing
clusters are merged.

The incremental version of DBSCAN [5] is able to deal with both inser-
tion and deletion of new objects, while the Incremental NetCluster algorithm
only manages new object insertions. However, in this analysis domain, ob-
ject deletion is not a relevant issue. On the other side, the Incremental
NetCluster algorithm presented in this paper provides better performance
than DBSCAN, in terms of both accuracy and efficiency.

The idea of exploiting clustering algorithms to derive node location infor-
mation by analyzing Internet measured data collected via passive measure-
ments was first introduced in [9]. This paper significantly improves over [9]
by introducing Incremental NetCluster, a novel and scalable approach suit-
able for on-line analyses unfeasible with the approach in [9]. Furthermore, a
significantly more extensive set of experiments has been performed to thor-
oughly explore the effectiveness of the NetCluster framework.

7. Conclusions

NetCluster is a framework that explois Internet passive measurements to
derive node location information. Extensive tests performed both on artifi-
cial and Internet traffic traces prove that NetCluster performs better than
several well known clustering algorithms. The Incremental NetCluster algo-
rithm is very efficient, thus it is potentially able to deal with the analysis of
measured data captured in real-time. The experimental results show that the
NetCluster framework effectively allows obtaining network-wide information
on the Internet structure, as seen at a vantage point.

Although we focus on segments generated by relatively long TCP connec-
tions characterized by at least 100 segments, the proposed approach can be
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easily extended to provide appealing information to devise novel and more in-
telligent applications. For example, considering Content Delivery Networks,
nodes could directly contact the closest server without leveraging on pure
load-balancing techniques or centralized control schemes. Similarly, con-
sidering P2P applications, the knowledge of other peers location could be
exploited to improve the structure of the overlay topology. This will be
beneficial to the network as well, because it will enforce traffic flow locality
properties.

Furthermore, up to now, NetCluster performs an a-priori dataset partition
based on the TTL to increase the effectiveness of the clustering approach.
Since load balancing strategies may affect TTL, we plan to address this issue
by pushing ad-hoc technique in NetCluster.
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