
DNStamp: Short-lived Trusted Timestamping*

Christoph Neumannn, Olivier Heen and Stéphane Onno
Technicolor

Email: {christoph.neumann, olivier.heen, stephane.onno}@technicolor.com

*The extended version of this work is to appear in Elsevier Computer Networks 64 (2014) pp. 208-224.

ABSTRACT
Trusted timestamping consists in proving that certain data
existed at a particular point in time. Existing timestamping
methods require either a centralized and dedicated trusted
service or the collaboration of other participants using the
timestamping service.

We propose a novel trusted timestamping scheme, called
DNStamp, that does not require a dedicated service nor col-
laboration between participants. DNStamp produces short-
lived timestamps with a validity period of several days. The
generation and verification involves a large number of Do-
main Name System cache resolvers, thus removing any sin-
gle point of failure and any single point of trust. Any host
with Internet access may request or verify a timestamp, with
no need to register to any timestamping service. We pro-
vide a full description and analysis of DNStamp. We analyze
the security against various adversaries and show resistance
to forward-dating, back-dating and erasure attacks. Experi-
ments with our implementation of DNStamp show that one
can set and then reliably verify timestamps even under con-
tinuous attack conditions.

1. INTRODUCTION
Trusted timestamping, i.e., proof that certain data

existed at a certain time, is indispensable in many situ-
ations of the digital world. Examples of such situations
include: online auctions to ensure correct order of bids;
electronic voting to ensure that the vote was cast at an
allowable time; publication systems to prove that a doc-
ument was published at a given time and on-line betting
to make sure that a bet is placed before the event.

Trusted timestamping generally relies on trusted and
centralized timestamping authorities that provide the
timestamp. This introduces a single point of trust, a
single point of failure and may limit the scalability of
the system. While these constraints are acceptable for
some use-cases, they can hinder the functioning or de-
ployment for use-cases that e.g. cannot afford deploying
and operating dedicated timestamping servers and in-
frastructure.

Temporal decoupling [15] is a motivating example that
requires a trusted timestamping scheme having no sin-
gle point of failure and being able to absorb peak load.
Temporal decoupling consists in generating a timestamp
proving that a bid or information existed before a given
due date. Yet, the bids can be submitted during the
validity period of the timestamp, even if the due date
has passed. Overwhelming the server by submitting the
bids just before the due date can thus be circumvented.
Typical use-cases for temporal decoupling are the sub-
mission of tax return or of papers to a conference. Such
systems often encounter peak load just before the due
date, which could lead to service interruption.

We propose a completely distributed timestamping
scheme, called DNStamp, that takes advantage of the
Internet Domain Name System (DNS). DNStamp in-
volves a large number of DNS resolvers and domain
names, thus removing any single point of failure and dis-
tributing trust to the DNS resources involved. DNStamp
provides timestamping for free, i.e., with zero deploy-
ment and operational costs, as there is no need to de-
ploy and operate timestamping servers and infrastruc-
ture. In its simplest form, DNStamp is a command line
tool. An example timestamp request, followed by the
verification is shown below.

$./dnstamp -request -duration=1day data.7z
Timestamp set on 2012/01/31-13:22:48
$./dnstamp -verify -date="2012/01/31-13:22:48"
-duration=1day data.7z
Timestamp set 02:53:11 hours ago, still valid

In order to timestamp data with DNStamp, a re-
quester sends recursive resolution requests to a list of re-
solvers. The resolution requests contain domain names,
which have been derived from the timestamping time
(i.e. the current time) and data to be timestamped us-
ing a one-way function. Similarly, the list of resolvers
is selected using another one-way function. At recep-
tion of above resolution requests, the resolvers add new
DNS cache entries of the requested domain names into
their cache. The resolvers keep these entries in their
cache during a certain Time-To-Live (TTL), a value
that is maintained and continuously decremented for
each cache entry. In order to verify the timestamp, typ-

ar
X

iv
:1

30
7.

57
56

v2
 [

cs
.N

I]
 1

1
M

ar
 2

01
4

Requester

3) Recursive resolution

Authoritative name
server of dn(d,t)

DNS cache resolver
2) Check cache: not in cache

4) Add to cache: dn(d,t)

Verifier DNS cache resolver
7) Check cache: in cache

Verifier
11) Check if current time -

(86400-77089) == t

1) IP of dn(d,t)?

5) 1.2.3.4, TTL=86400

6) IP of dn(d,t)?

8) 1.2.3.4, TTL=77089

9) Reference TTL of dn(d,t)?

10) RefTTL=86400

Verifying the timestamp 2h35m11s later

Setting a timestamp at time t

Figure 1: Sketch of DNStamp scheme using a
single domain name and a single resolver. dn(d, t)
denotes a domain name derived from data d to
be timestamped and the timestamping time t,
using a one-way function.

ically once data is released, a verifier reiterates the pro-
cedure of the requester and retrieves the remaining TTL
for each DNS entry. In addition, the verifier asks for
the reference TTL at each domain name’s authoritative
server. The verifier can calculate the time of the times-
tamp using the current time, the reference TTL and the
remaining TTL. Figure 1 sketches the DNStamp scheme
using a single resolver and a single domain name.

The contributions of this paper are as follows:
(i) We present a novel timestamping scheme called

DNStamp that takes advantage of the DNS. DNStamp
produces short-lived timestamps with a validity period
of several days. Anyone can request and verify times-
tamps without any dedicated trusted service.

(ii) We formalize the security requirements for trusted
timestamping and the associated adversarial model. We
analyze the security of DNStamp and show its resistance
to forward-dating, back-dating and erasure attacks.

(iii) We implement a command line tool of DNStamp.
Our experiments from various locations (cloud, broad-
band access) show that we can reliably set and then
verify timestamps. Adversaries with reasonable capa-
bilities cannot overwrite an existing timestamp.

The paper is organized as follows. Section 2 recalls
some important concepts of the DNS. Section 3 intro-
duces our security objectives and describes the DNStamp
protocol. Section 4 discusses the impacts of DNS uses,
misuses and security issues on DNStamp. Section 5
provides a security analysis of DNStamp. Section 6
presents our implementation and experimental results.
Section 7 presents related work and Section 8 concludes.

DNS cache resolver
2) Check cache: not in cache

9) Add to cache

DNS client

Root name server
(198.41.0.4)

1) IP of example.com?

3) IP of example.com?

4) Ask 192.5.6.30

7) IP of example.com?

8) 1.2.3.4, reference
TTL=86400

10) 1.2.3.4,TTL=86400

example.com
authoritative name

server (4.5.6.7)

.com name server
(192.5.6.30)

5) IP of example.com?

6) Ask 4.5.6.7

Figure 2: Example sequence diagram for a stan-
dard DNS resolution request.

2. THE DOMAIN NAME SYSTEM
The DNS is a worldwide name resolution service that

turns Fully Qualified Domain Names (FQDN), such as
www.example.com, into the corresponding IP address.
This process is called the resolution. The DNS also
performs the inverse operation, called reverse resolu-
tion, which turns an IP address into its FQDN.

Crucial requirements for the DNS are high-availability
and consistency. Therefore, the DNS is highly distributed
worldwide, with many local and regional replicas. More
precisely, the DNS system relies on a hierarchical struc-
ture of DNS name servers. There are currently 13 root
name servers responsible for the root zone ‘.’. These
root name servers are operated by institutions such as
the NASA, ICANN1, VeriSign or RIPE2. Descending
one level the DNS hierarchy, a set of regional zones have
been defined (.com, .org, .net. . .), each zone having
its own set of name servers. Finally, a particular do-
main (e.g., example.com) has its own name server. A
DNS server is said authoritative for a domain if it has
the ability to define the corresponding IP addresses and
other attributes such as the domain’s Time-To-Live.

To reduce the load on the DNS infrastructure and
to increase the overall speed, hosts requesting a DNS
resolution do not talk directly to the above authorita-
tive name servers but use a DNS cache resolver instead.
The resolver is provided typically by the host’s ISP. A
resolver maintains a cache of DNS entries. When a re-
solver receives a resolution request, the resolver first
checks whether the requested domain name is in its
cache. If the requested domain name is in its cache,
the resolver will directly respond. If the entry is not in
its cache, the resolver will forward the request to the

1https://www.icann.org/
2https://www.ripe.net/

2

https://www.icann.org/
https://www.ripe.net/

d data to be timestamped
h, ha, hb, hc cryptographic hash functions
y = h(d) data digest
tR,tP ,tV request time, publication time

and verification time of a timestamp
tA time of an attack
T a timestamp

request requesting function
verif verification function
α duration of a timestamp

in DNStamp: α < 7days
[tR, tR + α] validity period of a timestamp
tR + α expiration time of a timestamp

Table 1: Notations

upper most authoritative DNS name server not in its
cache. Once the resolution succeeds, the resolver adds
the domain name of the new request (and its interme-
diate resolution requests) to its cache. Figure 2 depicts
an example DNS resolution request. The host sending
a DNS request may specify whether the resolver should
forward the request or not. This option is called recur-
sive resolution: a recursive resolution request indicates
that the resolver should forward the request if the re-
quested domain name is not in its cache; a non-recursive
resolution request indicates that the resolver should not
forward the resolution request and only respond based
on its own cache; the resolver returns an empty response
if the requested domain name is not in its cache.

The replication period of a cache entry in a resolver
is called Time-To-Live (TTL). Only an authoritative
server can define the reference TTL of its domain name.
A typical value is 86400 seconds (1 day) but values up
to 7 days are supported. A resolver copies the reference
TTL when a domain name is added to its cache and
afterwards decrements the TTL every second. We call
this TTL the remaining TTL. When answering a reso-
lution request, the resolver returns the remaining TTL.
When the remaining TTL expires, the resolver deletes
the corresponding cache entry. In order to honor sub-
sequent requests, the resolver must initiate a recursive
resolution until the authoritative server is reached.

3. TIMESTAMPING USING DNS
Trusted timestamping consists in proving that certain

data d existed at a point in time tR. More precisely, a
generic timestamping process involves three steps: (i)
at time tR, a requester timestamps a digest y = h(d) (h
is a hash function), which results in the generation of
a timestamp T , (ii) at time tP , tP ≥ tR, the requester
publishes the timestamp T (iii) at time tV , tV ≥ tP ,
a verifier verifies whether T was actually produced at
time tR as a function of digest y.

We consider a timestamp to be trusted if it resists to
back-dating, forward-dating and availability attacks as

follows (Section 5 describes the considered adversaries):
(i) It should be impossible for an adversary to back-
date an existing timestamp T . Back-dating consists in
changing the date of an existing timestamp T to a time
tR − ∆ prior to tR. (ii) It should be impossible for
an adversary to forward-date an existing timestamp T .
Forward-dating consists in changing the date of an ex-
isting timestamp T to a time tR +∆ after tR. A specific
case of forward-dating consists in timestamping using
the time tA at which the attack occurs. (iii) It should
be impossible for an adversary to prevent the request of
a new timestamp. It should be impossible for an adver-
sary to prevent the verification of a valid timestamp.

3.1 Requesting a new timestamp
With DNStamp, a requester generates a list of do-

main names D = 〈dn1, . . . , dnn〉 and a list of resolvers
R = 〈res1, . . . , resn〉, as described later, which both de-
pend on data digest y = h(d), the generation time tR
and the duration α of the timestamp. Then, she per-
forms the resolution dn2ip(dnj , resj) of each domain
name dnj ∈ D using the resolver resj ∈ R; she forces
recursive resolution in her DNS resolution requests. As
an effect, resolvers that did not cache a requested do-
main name add this domain name to their cache and
set the reference TTL refi. As specified by the DNS
standard, the resolver starts decrementing the TTL and
deletes the domain name from its cache when the re-
maining TTL reaches 0. If an entry dnj was already
cached by the resolver resj , the domain reference TTL
will not be set, and the resolver will continue to decre-
ment the remaining TTL. The requester can ensure with
some probability that a subset of the requested domain
names are not already cached, if the sizes of lists D and
R are large enough.

The requester generates the above lists D and R as
follows. We suppose that a list of valid resolvers, de-
noted rlist, is provided. To compute D, the requester
generates a list of m IP addresses ip1 . . . ipm using a
hash function ha such that ipi = ha(y||tR||α||i). ||
denotes the concatenation. She also generates a list
of reverse resolvers using a hash function hb as fol-
lows: invi = rlist[hb(i)]. She then perform the re-
verse resolutions ip2dn(ipi, invi) of each ipi using invi.
The reverse resolution can fail for some IP addresses,
since not all possible IP addresses have a correspond-
ing domain name. The result is the list of domains
D = 〈dn1, . . . , dnn〉 with n < m. We denote I the list
of indices j such that the reverse resolution of ipj re-
turns a valid domain name. R is computed such that
resi = rlist[hc(y||tR||α||i)] where i ∈ I.

The resulting timestamp is request(y||tR||α) = T =
(D, I).

3.2 Publishing the timestamp

3

At time tP , the requester publishes T to the world
(web) or to a group (social network), or directly to some
verifiers (email). We also recommend publishing y and
tR||α along with the timestamp T (see Section 5).

3.3 Verifying an existing timestamp
We suppose that the verifier retrieved T , y, tR and α.

The verifier computes the list of resolvers R using the
same algorithm than the requester. She then retrieves
the remaining TTL for each domain name dnj ∈ D us-
ing the resolvers resj ∈ R. In addition, she retrieves
the domain reference TTL for each domain name in
D by querying the respective authoritative servers (see
details in Section 6). The verification succeeds if, for
a portion 1 − ε of the domain names of D, the differ-
ence between the domain reference TTL (refi) and the
remaining TTL (remi) is consistent with the time pro-
vided with the proof, i.e. tV = tR + (refi − remi). Fi-
nally, having y, tR and α, she can also generate the list
of domain names D and verify if it is equal to the one
contained in T . The above procedure corresponds to
checking whether verif(request(y||tR||α)) = T) = tR.

4. SUBTLETIES OF THE DNS
The primary purpose of the DNS is to translate do-

main names into IP addresses. However, over the years
many different uses and security issues appeared. This
section presents non-malicious uses and implementation
specificities as well as malicious uses and security issues
of the DNS and discusses their impact on DNStamp.
Finally, this section presents two variants of DNStamp.

4.1 Non-malicious uses and specificities
The DNS is sometimes used as a load-balancing mech-

anism. One technique, called round-robin DNS, returns
a list of IP addresses instead of a single IP address. The
host that sent the resolution request may pick any of
the returned IP addresses. Another technique, used
by Content Delivery Networks such as Akamai, sets
short TTL values ranging from a few seconds to sev-
eral hours [12]. This enables dynamic redirection of the
domain names to other servers and locations as condi-
tion changes. Content delivery networks also localize
the provenance of a DNS resolution requests (generally
based on the resolver’s IP address) in order to return
the IP addresses of servers close to the requester [3].
These optimizations are not an issue for DNStamp. The
domain selection algorithm of DNStamp (see details in
Section 6.1) removes all TTL below the expected du-
ration of the timestamp. This eliminates small TTL
values used by content delivery networks. The usage of
round-robin DNS is also not an issue, since round-robin
adds multiple entries into resolver, all set to the same
TTL. A subsequent DNS resolution request on the same
domain returns the same list of entries, which can all

be used to calculate the timestamp. Finally, the local-
ization optimizations used by content delivery networks
are not an issue since the resolver returns its cache en-
tries independently of the IP address of the verifier.

Some resolvers use load-balancing themselves to sup-
port a large load of resolution requests. If properly con-
figured, the servers involved in load-balancing share the
same cache. However, some resolvers use load-balancing
with poor cache sharing [3]. As a consequence, recur-
sive resolution requests generate additional traffic even
if a corresponding DNS entry is already in the cache
of one the servers. This abnormal behavior can impact
DNStamp as the resolvers may return fresh cache en-
tries (thus with bad TTL) when verifying a timestamp.
Two techniques allow to mitigate this issue: (i) dis-
tributing a single timestamp over a large number of re-
solvers reduces the impact of badly configured resolvers
and (ii) requesting a domain name several times in a row
during the timestamp request ensures that the entry is
added to most servers involved in load-balancing.

Several companies3 provide DNS-based blackhole lists
(DNSBL) to test whether a domain name or IP-address
is known to be malicious or not [27, 28]. To verify a
domain test.net a client can send a DNS resolution
request such as test.net.dnsbl.example.com, where
example.com is the DNSBL service provider. The re-
turned IP address, typically a loopback address, indi-
cates whether the domain is blacklisted or not. DNS-
based blackhole lists have no impact on DNStamp that
uses random publicly addressable IP addresses to select
a domain name. This ensures that domain names of the
type test.net.dnsbl.example.com are not selected.

We noticed unexpected variations in the handling of
CNAME records by resolvers. A CNAME record is an alias
towards another domain name. For instance, the alias
www.linux.org points to the classical A record linux.org.
Following the DNS specifications, resolvers must keep
independent TTL, one for the CNAME record and one for
the A record. However, it appears that a proportion of
resolvers do not follow this expected behavior. Instead,
they do reset the TTL of the A record when they re-
solve the corresponding alias. This behavior is revealed
in the session hereafter.

$ dig @24.180.22.42 +noall +answer linux.org
linux.org. 14400 IN A 209.92.24.80
$ dig @24.180.22.42 +noall +answer linux.org
linux.org. 14392 IN A 209.92.24.80
$ dig @24.180.22.42 +noall +answer www.linux.org
www.linux.org. 14400 IN CNAME linux.org.
linux.org. 14400 IN A 209.92.24.80
$ dig @24.180.22.42 +noall +answer linux.org
linux.org. 14398 IN A 209.92.24.80

A weak attacker could use these ”resetters” against
DNStamp as follows: the attacker guesses as much as

3e.g. Spamhaus http://www.spamhaus.org

4

http://www.spamhaus.org

possible CNAME records that point towards records used
by a timestamp. The attacker then resolves the CNAME

records and, if resetters are frequent enough, modifies
a significant portion of the timestamp. To evaluate the
impact of such an attack, we evaluate the number of
resetters. From the resolver list rlist we select a sample
of 4469 resolvers that answer plausible version informa-
tion4. We then test how each resolver handles CNAME

records and get the following results: 87.8% do not re-
set, which is the expected behavior; 5.6% announce a
reset but do not actually reset, which is harmless for
DNStamp; 4.3% do actually reset, which is the bad case
for DNStamp; 2.3% fall in less significant cases. In light
of the above discussion, a realistic countermeasure con-
sists in removing all resetters (4.3%) from rlist.

4.2 Malicious uses and security issues
The DNS is also used for malicious purposes. Simi-

larly to content delivery network, fast-flux service net-
works rely on DNS round-robin and short TTL [9, 19].
Fast-flux is used by malware to hide the location of
malicious servers. It consists in constantly changing
(through short TTL) the list of IP-addresses being as-
sociated to the malicious domain name. The IP ad-
dresses are selected from a large pool of compromised
machines, which act as proxies and redirect the connec-
tion to the malicious server. DNStamp can cope with
fast-flux exactly the same way DNStamp copes with
content delivery networks.

Some domain names are specifically created for ma-
licious activity, e.g. for spam campaigns, for a fast
flux service network or for a botnet. These domain
names have very specific characteristics which can in-
clude short TTL, high number of distinct IP addresses,
short domain life time (e.g. suddenly disappearing af-
ter several day of existence), the string of the domain
name (e.g. in the English dictionary or not), abrupt
lookup patterns etc. [7, 17]. Attacks exist to maintain
such domains in caches even if the domain has been
revoked by name servers which are higher in the DNS
hierarchy [20]. DNStamp may use domain names used
for malicious activities. These domain names are main-
tained in caches as other cache entries and their TTL
decrements normally. DNStamp also checks a set of cri-
teria during the domain name selection, typically suffi-
cient high TTL values (see Section 6.1), which ensure
that the domains can be used for timestamping.
NXDOMAIN hijacking is another malicious use of the

DNS: some resolvers return specific IP addresses when
an empty domain name has been requested, instead of
the NXDOMAIN message [3]. Their objective is to gain
some money by pointing to IP addresses of search en-
gines or advertisement-websites. In DNStamp, the do-
main name selection process is based on IP-addresses

4we use the command dig @IP version.bind txt chaos.

Domain # probability

[A-Z0-9]{3}.com 46656 98.1%
[A-Z]{4}.org 456976 32.9%
[A-Z]{4}.com 456976 97.5%
[A-Z0-9]{4}.com 1679616 38.1%

Table 2: Observed probabilities of finding valid
short domains.

and performs checks to eliminate NXDOMAINs (see Sec-
tion 6.1).

Cache poisoning [22] attempts to inject false cache
entries into resolvers. The objective is to associate a
legitimate domain name to an IP address that the at-
tacker controls. The attack was possible because some
fields in a DNS request were predictable, and a mali-
cious name server could respond in lieu of the autho-
rized name server. Several mitigations have been pro-
posed since [18, 30]. DNStamp is affected by the cache
poisoning attack. An attacker may try to inject false
TTL values into the cache using cache poisoning. By
distributing a single timestamp over a large number of
domain names and resolvers, we reduce the impact of an
attacker that could poison a vulnerable resolver. Still,
a long term solution to cache poisoning (for the DNS
and for DNStamp as well) would consist in moving to
DNSSEC.

Finally, DNS reflector attacks [26] use open DNS cache
resolvers as traffic amplifiers during a DoS attack. The
existence of open DNS cache made this attack possi-
ble. DNStamp does neither increase nor decrease the
importance of this attack.

4.3 Variants of DNStamp
DNStamp, as described in Section 3 does not work

with IPv6. The domains 〈dn1, . . . , dnn〉 are obtained
from the inverse resolution of IPv4 addresses. This
method succeeds because i) almost all IPv4 addresses
are assigned, and ii) enough IPv4 addresses reverse to
a valid domain name (our experiments report ∼20%).

With IPv6, the first condition does not hold: the
probability of a random IPv6 address being assigned
is close to 0 due to the size of the IPv6 address space.
A solution then is to choose 〈dn1, . . . , dnn〉 among short
second level domain names, typically three to four char-
acters long. This method succeeds if (i) the probabil-
ity of finding valid domain names is high, and (ii) the
number of domain names is large enough. We exhaus-
tively tested four ways of constructing random domain
names as depicted in Table 2. Our measurements in-
dicate that short domain names generate a sufficient
number of valid domain names to be used for DNStamp.

We now introduce another variant of DNStamp with
interesting characteristics such as generating timestamps

5

with a long validity period. Yet, this variant introduces
a single point of trust. We suppose that we own a given
domain example.com and control the corresponding au-
thoritative server. Instead of randomly choosing IP ad-
dresses, we generate a list of strings 〈s1 . . . sn〉 that de-
pend on data digest y = h(d) and s. The resolution
request occurs against the domains s1.example.com,
. . . sn.example.com using the list of resolvers R as de-
scribed and computed before. The authoritative server
resolves each string generated using a predefined TTL.
Dedicating an authoritative server to timestamping en-
ables to set reference TTL values higher than the gener-
ally observed 7 days or less. The standard [14] specifies
the TTL as a 32 bit unsigned number ranging from 0
to 2147483647 seconds, thus about 68 years. We ob-
served in our experiments that about one third of the
resolvers set a remaining TTL of 1 day even if the ref-
erence TTL is higher (see Section 6.6). We can expect
that such behavior becomes more important with signif-
icantly higher TTL values. A solution would consist in
using resolvers dedicated to the timestamping service,
or in using only certified resolvers supporting high TTL
values.

5. SECURITY ANALYSIS
We first define the considered adversaries. Then, we

discuss attacks against the timestamping process and
we consider forward-dating and back-dating attacks. We
discuss the specific case of a very strong adversary and
finish with attacks against the timestamping software
itself and privacy considerations.

5.1 Adversary models
A weak adversary has the same capabilities as a reg-

ular verifier. We suppose that once a timestamp has
been set the weak adversary has knowledge of T , y,
tR and α. A weak adversary can send any number of
regular DNS requests to any DNS server. She cannot
eavesdrop the traffic generated by a timestamp request
nor by a timestamp verification. She has no particular
privilege or right over the DNS. She has no control over
any particular resolver or authoritative server.

An intermediate adversary has the same capabilities
as a weak adversary. Additionally, the intermediate
adversary can eavesdrop all messages between the re-
quester and any DNS server, and between a verifier and
any DNS server.

A strong adversary has the same capabilities as an
intermediate adversary. Additionally, the strong adver-
sary controls a limited number of resolvers and author-
itative servers.

A very strong adversary can eavesdrop, alter, replay
or inject any message between the requester and the
DNS. This adversary is equivalent to a Dolev-Yao ad-
versary [13] that controls the entire network.

5.2 Attacking the timestamping process
Early disclosure of a timestamp In this attack,

an intermediate adversary tries to deduce a timestamp
before it is disclosed by the requester. The intermediate
adversary observes all calls to the ip2dn function during
the request of a timestamp. The intermediate adversary
records all reverse resolution requests that are grouped
in a very short period of time and that have the same
source address (i.e. the IP address of the requester).
This provides a superset of values 〈dn1, ..., dnn〉 that
will be used by the requester to set the timestamp. The
intermediate adversary performs non-recursive resolu-
tions for each captured dni to all resolvers in the list
rlist. Whenever the domain dni appears to be in the
cache of the DNS resolver resj , the intermediate adver-
sary deduces that dni was used by the requester to set
the timestamp. Doing so, the intermediate adversary
ends up learning all the elements of the timestamp: the
observed domain names dni, the deduced index num-
bers Ii, the deduced resolvers resj . The intermediate
adversary can also deduce the probable duration of the
timestamp: this duration is majored by the minimum
TTL observed in domains dni. The intermediate ad-
versary is then able to disclose this information before
the requester. Note that, the adversary is not able to
disclose the digest y or data d a fortiori. However, a
careless verifier may successfully verify the early dis-
closed timestamp. Later on, once y or d is published,
the verifier may believe that the adversary really made
the timestamp.

This attack typically requires |rlist|.m resolutions from
the adversary, where m is the number of inverse reso-
lutions performed by the requester. With the current
implementation of DNStamp, we have |rlist| = 11000
and m = 1100 for a typical 1 day timestamp. Thus, the
intermediate adversary must perform 12, 100, 000 res-
olutions. This value is high but still tractable for an
intermediate adversary having a lot of bandwidth. We
recommend that all the elements of the timestamp T
be considered public as soon as the requesting process
starts. In particular, we recommend avoiding use cases
where the requester starts a request process and then
waits for long before publishing the timestamp T .

Early setting of a timestamp In this attack, an
intermediate adversary tries to set a timestamp before
the requester has completed the timestamping process.
The adversary observes the dni during the requester’s
calls to the ip2dn. She can then set the TTL for dni
in all resj before the requester sets the TTL for dni in
some resk. As a result, the cache of resk will expire a
bit earlier than if set through the un-attacked process.

We argue that this is not a serious threat. First, the
intermediate adversary must write all cache entries be-
fore the requester does. Even though, the anticipated
timestamp will precede the expected timestamp by a

6

short duration. This duration corresponds to the delay
before the requester writes the cache entries. Because
we use the value tR for the generation of the IP ad-
dresses ipi, a careful verifier can detect the attack. The
time of the timestamp will be earlier than the time tR,
instead of being equal.

Disturbing a timestamp request A very strong
adversary can easily block a timestamp, this case is dis-
cussed in Section 5.4. An intermediate adversary can-
not rewrite DNS traffic, but she may try to disturb the
timestamping process. By performing the observations
of the ”early disclosure attack”, the intermediate ad-
versary can overload the resolvers as soon as they are
selected by the requester to set the timestamp. This
gives partial control over the function dn2ip. If these
resolvers are overwhelmed, they will not fulfill the recur-
sive request. As a result some (dni, i) pairs in the times-
tamp T will not have the domain dni set in a resolver.
The verifier of T will get less corresponding pairs, pos-
sibly reaching a threshold above which the timestamp
is destroyed. As a countermeasure, the requester may
retry the recursive requests if it was unsuccessful. This
raises the cost of overloading the resolvers for the inter-
mediate adversary.

Disturbing a timestamp verification An inter-
mediate adversary may disturb the resolvers that will
be used during a verification process. This attack pro-
ceeds in a fashion similar to the former attack, but is
only executed if a timestamp has already been set.

5.3 Forward-dating and back-dating attacks
This section analyses if an adversary can forward-date

or back-date a timestamp. We suppose that a times-
tamp T has already been requested and set. During
verification, the timestamping time is calculated accord-
ing to t = tV − (ref − rem). We consider that it is up
to the verifier to ensure that its local time tV is correct.
An adversary may thus try to modify ref or rem to
forward-date or back-date a timestamp.

If an adversary were able to override the remain-
ing TTL rem of an existing cache entry with a TTL
remA = rem+ ∆ > rem, then she would be capable of
forward-dating a timestamp. Similarly, if an adversary
were able to override the remaining TTL rem of an ex-
isting cache entry with a TTL remA = rem−∆ < rem,
then she would be capable of back-dating a timestamp.
The attacked timestamp is tV − (ref − (rem ± ∆)) =
tR ∓∆.

If an adversary were able to override the reference
TTL ref of a domain name entry with a TTL refA =
ref − ∆ < ref , then she would be capable of back-
dating a timestamp. Similarly, if an adversary were
able to override the remaining TTL ref of a domain
name entry with a TTL refA = ref + ∆ > ref , then
she would be capable of back-dating a timestamp. The

attacked timestamp is tV −((ref±∆)−rem) = tR∓∆.
Weak and intermediate adversary The weak

and intermediate adversaries have the same capabili-
ties regarding the rem and ref values. The weak and
intermediate adversary cannot change ref , since they
cannot modify the answers of an authority server or
otherwise tamper the status of an authoritative server.
The weak and intermediate adversary may try to mod-
ify rem by sending resolution requests to resolvers. Ac-
cording to the DNS standard [24], the resolver does not
update the rem value of a cached domain name if a
resolution request for this domain occurs. Instead, the
resolver simply returns the cached answers with a TTL
rem and decrements the value rem by 1 every second
as usual, as long as rem > 0. We have rem > 0 for all
domain names until the expiration time tR + α of the
timestamp. Thus, if all resolvers comply with the stan-
dard, an adversary cannot forward-date nor back-date
an existing timestamp until its expiration time tR + α.
Our experiments confirm that it is not possible for a
weak adversary to overwrite the remaining TTL of an
existing cache entry during a timestamps lifetime (see
Section 6.5).

After tR +α, back-dating is still not possible, since a
weak or intermediate adversary can only reset a cache
entry to the reference TTL. As we will demonstrate be-
low, after tR + α, forward-dating is also not possible
if T depends on parameters tR and α. We first show
that there exist a forward-dating attack if T does not
depend on tR and α. Then, we show that the attack
is not possible anymore if T depends on parameters tR
and α.

Vulnerable case T = request(y): Once a times-
tamp T has expired, an adversary possessing T may set
a new timestamp that replaces the previous one such
that verif(T) = tA > tR + α. The adversary does
not need y or d to perform this attack. The adversary
simply requests a recursive resolution of all the domain
names of dni ∈ D using the resolvers resi ∈ R. The
resolvers do not cache dni, thus the caches are updated
and the requested domain names dni are cached with
the reference TTL. At verification time tV , the verifier
does not know whether the genuine timestamp T has al-
ready expired or not (i.e. if tV greater or smaller than
tR + α). Thus in general, the verifier does not know
whether the returned time t = verif(T) is tR or tA,
and therefore cannot trust the returned time.

Non-vulnerable case T = request(y||tR||α): As
long as y, tR and α have not been released by the re-
quester, the verifier does not know whether the times-
tamp T has expired or not; the function verif(T) re-
turns a timestamp and the verifier has no means to
verify if this timestamp has been modified by an adver-
sary or not. If tR and α have been disclosed, the ver-
ifier knows whether the timestamp has expired or not

7

and can check that verif(request(y||tR||α) = T) = tR.
Once a timestamp T has expired, an adversary pos-
sessing T may replace the domain name cache entries
dni ∈ D using the resolvers resi ∈ R and set a new
time tA. However, the verifier will detect the attack be-
cause verif(request(y||tR||α) = T) 6= tR. An adversary
may of course request its own timestamp T ′ using tA;
however, this does not attack the timestamp T .

Strong adversary A strong adversary is capable
of changing the ref values for the authoritative server
she controls. Similarly, a strong adversary is capable of
changing the rem values for a resolvers she controls.

If DNStamp exclusively relied on domains and re-
solvers controlled by a strong adversary, the adversary
would be able to forward-date and back-date any times-
tamp. To address this issue, DNStamp distributes its
trust over a large number of domain names and re-
solvers, typically 100 as in our experiments in Section 6.
An adversary needs to control a high number of domain
names and resolvers to back-date the timestamp.

We depict the effect of above strategy with an exam-
ple. For one timestamp we suppose that we require 100
domain names to be stored in 100 different resolvers.
We validate a timestamp if more than 50% of these
entries return the same timestamp. According to the
hypergeometric distribution, a strong adversary needs
to control 4194 resolvers of the 11k resolvers in rlist in
order to modify a given timestamp with a probability
1%. Similarly, an adversary that controls 15% of the
11k resolvers attacks a given timestamp with a prob-
ability of 2.2 ∗ 10−16. Finally, to depict the required
power of an adversary that controls some domains, we
assume that our algorithm randomly chooses domains
out of the ∼143 million active domains.5 An adversary
would need to control 21 million in order to modify a
given timestamp with a probability 1.1 ∗ 10−16.

5.4 The case of a very strong adversary
The very strong adversary can back-date, forward-

date, block any timestamp. To forward or back-date a
timestamp, the very strong adversary modifies the re-
maining or the reference TTL of the resolver responses.
To block a timestamp, the very strong adversary drops
all related DNS requests or responses.

A very strong adversary can forward or back-date
a timestamp even if DNSSec [4, 5] is used. DNSSec
provides integrity and authenticity for DNS records re-
turned by a resolver. In particular, DNSSec ensures
the integrity of the reference TTL. A very strong ad-
versary cannot modify the reference TTL without al-
tering the integrity of the resolver responses. However,
DNSSec does not protect the remaining TTL, and the

5Numbers retrieved from DomainTools, http://www.
domaintools.com/internet-statistics/, Retrieved Jan.
2013.

very strong adversary can set any arbitrary remaining
TTL without being detected as long as the modified
TTL is smaller than the reference TTL.

One classical workaround is the use of a tunnel to-
wards an Internet application server. For instance, an
SSL or SSH server performs DNStamp requests on be-
half of the requester. This solution may be useful, but
breaks our requirement of no single point of trust.

Thus, DNStamp is not resistant to a very strong ad-
versary. A typical very strong adversary is an Internet
Service Provider that performs deep packet inspection
on all its traffic. A very strong adversary can also be a
malware running on the host of the requester or verifier
and inspecting all outgoing traffic.

5.5 Attacking the timestamping software
As any piece of software, DNStamp may be altered.

If unnoticed, such alteration would invalidate existing
timestamps or redirect timestamps to specific domain
names or resolvers. For instance, the domain name se-
lection can be changed so that the software preferably
selects domain names controlled by the attacker. Sim-
ilarly, the resolver list rlist can be modified towards
controlled resolvers. To mitigate above issues, classi-
cal software protection mechanisms should be imple-
mented, such as providing a hash of both the DNStamp
software and rlist.

5.6 Privacy considerations
Privacy is not one design goal of DNStamp. However,

we conjecture that once a timestamp is properly set, a
weak adversary cannot deduce participant information.
In particular, she cannot link timestamps to a requester,
or tell when a timestamp was verified and by whom.
This is due to DNStamp not requesting identity related
information and resolvers not revealing the sources of
DNS operations. Intermediate adversaries and above
probably break many privacy properties as they directly
observe the full DNS traffic from the requester.

6. MEASUREMENTS AND EXPERIMENTS
We have implemented DNStamp by extending and

adapting the EphPub command-line tool [8]. The pro-
totype takes as input the file to be timestamped, the
duration the timestamp should stay valid and an op-
tion indicating whether to request or verify the times-
tamp. Our prototype works with IPv4 addresses only
and supports a timestamp duration up to 1 day. The
case of timestamps different than 1 day is discussed in
Section 6.6.

6.1 Selecting domain names
In our experiments we require that each timestamp

generates 100 resolution requests. We need to generate
100 random domain names with a reference TTL equal

8

http://www.domaintools.com/internet-statistics/
http://www.domaintools.com/internet-statistics/

to 1 day. We do so by executing the domain name
selection process described below.

First, we generate a list of random IP addresses and
try a reverse resolution for each of them. The reverse
resolution fails for an important number of IPv4 ad-
dresses. This is normal, since not all of the possible
IPv4 addresses have an assigned domain name. In ad-
dition, we require that (i) the returned domain name
is valid, i.e. that it does not generate an NXDOMAIN

error [24] when queried and that (ii) an authoritative
server exists for the returned domain. Our measure-
ments over 100 timestamping processes shows that on
average 20% of the randomly generated IPv4 can be
successfully reversed to a valid domain name.

Then, we retrieve the reference TTL for each domain
name and verify whether the reference TTL is strictly
equal to 1 day. We drop a domain name if it does not
satisfy this constraint. We continue to search for do-
mains that satisfy this constraint until we reach the 100
expected domain names. To retrieve the reference TTL
for a given domain, we emit an SOA query [24]. This re-
turns the authoritative server of the domain name and
related information such as the minimum TTL. Accord-
ing to the standard, this TTL should be used as the
reference TTL. However, we observed that this was not
always the case. Therefore, we decided to use a more
accurate source of information for the reference TTL
consisting in sending a DNS resolution (A query) to the
authoritative server itself.

Figure 4 shows the distribution of reference TTL we
observe during our experiment. This distribution is con-
sistent with the results presented by [29]. According to
this distribution, if the targeted reference TTL is equal
to 1 day, we must drop on average 54% of the returned
domain names.

Figure 3(a) shows that on average our prototype tests
1100 random IP addresses to generate 100 domain names
with a TTL equal to 1 day. Approx. 220 IP addresses
are successfully reversed to a domain name that is valid
and has an authoritative server. These numbers stay
constant over time.

6.2 Load and delay considerations
The important number of IP addresses and domain

names that needs to be generated and tested for one
timestamp could seem prohibitive. Our implementa-
tion requires about 3 minutes to iterate through and
test all IP addresses and domain names and to even-
tually set the timestamp. We believe that this delay
comes from our unoptimized implementation and that
we can reduce the timestamping delay: (i) by reducing
the number of cache entries required for one timestamp,
and (ii) by dispatching and multi-threading batches of
IP reverse-resolutions and search of authority requests
among a larger set of DNS server. This delay generates

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1
0

6
0

1
2

0
1
8

0
3
0

0
5
0

0
6
0

0
7
5

0
9
0

0
1
0

3
5

1
2

0
0

1
8

0
0

2
1

6
0

2
4

0
0

2
5

5
0

3
6

0
0

7
2

0
0

1
0

8
0

0
1
4

4
0

0
1
7

6
0

0
1
8

0
0

0
2
1

6
0

0
2
8

8
0

0
3
6

0
0

0
3
8

4
0

0
4
0

0
0

0
4
3

2
0

0
4
6

0
0

0
5
0

4
0

0
6
0

0
0

0
8
4

2
0

0
8
4

6
0

0
8
6

3
0

0
8
6

4
0

0
1
2

9
6

0
0

1
7

2
8

0
0

2
5

9
2

0
0

3
0

2
4

0
0

3
4

5
6

0
0

4
3

2
0

0
0

6
0

4
8

0
0

6
0

6
8

0
0

8
0

6
4

0
0

9
0

7
2

0
0

1
2

0
9

6
0

0

P
(X

=
<

x
)

Reference TTL

Figure 4: CDF of reference TTL of domains ob-
served during timestamp validations, represent-
ing a total of ∼757K domain names.

Experiment Duration Requests Approx. Load
(sec.) (requests/sec.)

1 hour DNStamp 94 1954 20.8
2 hours DNStamp 154 2214 14.4
1 day DNStamp 189 3564 18.8
2 days DNStamp 1836 25911 14.1
Start surf 12 94 7.8
Regular surf 600 2543 4.1
Lab activity 9 hours 207377 6.4

Table 3: Comparison of DNS loads

a timestamp that is shifted compared to tR. The re-
quester may estimate and add this delay to tR before
selecting the domain names. Otherwise, verifiers will
observe the shift and would have to tolerate a delay
representative of a requesting time.

The verification process does not need to reiterate
through all IP addresses and domains, thus generat-
ing less load than the timestamp request. The veri-
fier may directly use the domain names and resolvers
described in the structure T . Once the timestamping
time has been retrieved, the verifier may test whether
the domains and resolvers are actually bound to the
timestamped data d by executing the domain selection
algorithm.

We also evaluate the additional load of DNStamp on
the Domain Name System compared to other DNS con-
suming activities. Table 3 summarizes the experimental
results. With the current implementation of DNStamp
a request generates a peak load of 15 to 20 DNS requests
per second. The experiment called start surf consists
in starting the Internet browser Google Chrome and
searching for the term ”timestamping”. The experiment
called regular surf consists in consulting a new webpage
per minute during 10 minutes. The experiment called

9

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35 40

hours

of generated IP addr.
of valid domain names

(a)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

hours

of DNS cache entries read

(b)

Figure 3: (a) IPv4 addresses and valid domain names retrieved per timestamp verification to generate
100 valid domain names with 1 day TTL. (b) Cache entries read. Numbers are averages from five 1
day timestamps T continuously verified during 40 hours.

lab activity consists in recording the DNS activity of a
65 hosts lab during 9 working hours. DNStamp gener-
ates a higher DNS peak activity than regular surf, yet
it remains in the same order of magnitude.

6.3 Selecting resolvers
The selection of resolvers relies on a list of publicly

accessible resolvers. For our experiments, we use a list
of ∼11k resolvers. We obtained this list by keeping the
resolvers that were still online at the time of the ex-
periment from the list of ∼22k resolvers provided by
EphPub [8]. The latter list dates back to November
2009. This highlights that the list of resolvers needs to
be maintained and continuously updated: old resolvers
may go offline and new ones may be added. The meth-
ods for constructing the resolver list may rely on the
methods proposed by [11] and [8]. Castelluccia et al. [8]
estimated the number of resolvers that perform caching
properly to 1.7 million. As discussed in Section 5.5,
the list of resolvers has to be considered as an intrinsic
part the timestamping software. Updating this list is
equivalent to changing the domain selection process. If
the list changes, the resolvers selected for a particular
timestamp changes, thus making existing timestamps
invalid.

6.4 Retrieving a timestamp
Figure 3(b) shows the number of cache entries our

prototype could successfully read while continuously re-
trieving a timestamp over 40 hours. The timestamp
completely vanishes after 24 hours. This behavior is
normal since all remaining TTL reach 0 after 24 hours.

We observe that about 90% of the cache entries can be

read right after the timestamp has been set. The miss-
ing 10% correspond to the cache entries that could not
be successfully set by the requester. Indeed, we noted
that some resolvers either refuse a connection (returning
a DNS REFUSED message) or simply time out. This ratio
slightly decreases, and after 20 hours and until the expi-
ration of the timestamp, about 80% of the cache entries
are successfully retrieved. The decrease of valid cache
entries typically comes from cache leaks [23]. Still, the
remaining fraction of valid cache entries is sufficient to
validate the timestamping time.

Homogeneity We now verify for a given timestamp
T , if the computed time tR is the same for all cache en-
tries. Figure 5 shows an example distribution of com-
puted timestamping times for each individual cache en-
try with a timestamp composed of 100 cache entries. We
notice that the large majority of times hold in the inter-
val between 17h11min41sec and 17h11min50sec. Thus
the accuracy of the timestamp is around 9 seconds.

While Figure 5 depicts a typical distribution, outliers
in the distribution of computed timestamping times of
individual cache entries can occur. In a few cases, <<
1% of cache entries, DNStamp computed timestamp-
ing times far before or after the actual timestamping
time. We identified two causes for these outliers: (i)
the domain name was already cached by the resolver
when requesting the timestamp and its TTL is not re-
set by the timestamp request; the verification process
computes a timestamping time prior to the actual times-
tamping time for this particular cache entry. (ii) the
authoritative server returns a wrong reference TTL dur-
ing the verification process. We observed that a small
number of authoritative servers do not implement DNS

10

 0

 5

 10

 15

 20

 25

17:11:40 17:11:42 17:11:44 17:11:46 17:11:48 17:11:50 17:11:52

#
 o

f
o
c
c
u
rr

e
n
c
e
s

Time of timestamp in HH:MM:SS

Figure 5: Example distribution of computed
timestamping times for each cached domain
name with a 1 day timestamp.

caching correctly. An authoritative server should al-
ways return the reference TTL when receiving a do-
main resolution request (A query) for the domain it is
authoritative for. Yet, we noted that a small fraction
of authoritative servers does not conform to this behav-
ior and instead decrements the returned TTL as a nor-
mal resolver. Thus, the verification process computes
a timestamping time prior to the actual timestamping
time for this particular domain name.

Measurements from several locations We per-
formed additional experiments to verify whether times-
tamps can be requested and verified from different lo-
cations in the Internet. The different locations that we
use for our tests are: (i) Amazon cloud, by running the
requesters and verifiers on EC2 instances (ii) broadband
Internet access, by testing two standard ADSL lines
provided by two different ISP providers. The tests con-
sist in requesting a different timestamp on each of these
locations and verify the generated timestamps from all
other locations. We observe no significant differences
between the different locations. All locations can verify
the timestamps requested on the other locations. The
number of retrieved cache entries is similar from one lo-
cation to another and in line with the observations of
Figure 5. We observe that the calculated timestamp-
ing time for a specific cache entry has at most 1 second
difference from one location to another. This difference
may be explained by the network delays for some DNS
replies or responses.

6.5 Overwriting an existing timestamp
In this subsection, we experimentally demonstrate

that a weak adversary is not capable of overwriting the
remaining TTL of an existing timestamp. We conduct
the following experiment to demonstrate this property.

We first generate a valid 1 day timestamp consisting of
100 cache entries. Then, we continuously try to over-
write the existing timestamp during 70 hours. We verify
whether we can set cache entries to the reference TTL
and monitor the remaining TTL each time we try to
overwrite a cache entry.

Figure 6(a) shows the number of cache entries that
could be successfully set to the reference TTL. At t = 0
and at multiples of 24 hours between 80 and 90 cache
entries could be updated. This is normal, since this cor-
responds to the initial timestamp request (at t = 0) and
the subsequent expirations of the timestamp every 24
hours. At these times, the DNS caches do not cache the
requested domain names or has just reached a remain-
ing TTL of 0.

Between these peaks and from time to time, the weak
adversary is able to set one or two cache entries. This is
possible because the domain name selection process en-
countered some error such as a timeout while reversing
an IP address or while requesting the reference TTL.
The adversary will thus select a list of domain names
different from the list selected by the requester. This
has only a limited impact on the verification. A veri-
fier relies on the domain names and resolver included
in T and will not use the cache entries set by the weak
adversary. Even if the verifier regenerates the domain
names, it is very unlikely that she will select a majority
of cache entries the weak adversary has set. We veri-
fied the latter assertion by continuously executing the
domain name generation process during the validity pe-
riod (24 hours) of the initial timestamp and checking
the remaining TTL. Figure 6(b) shows that 98% of the
remaining TTL decrement exactly as expected. Thus,
the attacker cannot modify these cache entries.

6.6 Timestamps having duration different than
one day

We describe experimental results using timestamp
durations of 2 days and one hour. The domain selec-
tion process works exactly as described in Section 6.1.
The only difference concerns the reference TTL. We ac-
cept reference TTL with a value greater or equal to the
desired duration.

Our experiments show that it is possible to use DNStamp
for timestamps having duration different than one day.
Yet, the verifier needs to eliminate falsely computed
timestamping times due to DNS cache resolver that set
a wrong reference TTL.

Requesting and verifying timestamps We gen-
erate 5 two day timestamps which we continuously ver-
ify during 72 hours. Similarly, we generate 5 one hour
timestamps which we continuously verify during 26 hours.
Figure 7(a) and Figure 7(b) shows the number of IP ad-
dresses and the number of domain names that the do-
main name generation process has to generate for each

11

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70

hours

of DNS cache entries set

(a)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 5 10 15 20

hours

remaining TTL

(b)

Figure 6: (a) Cache entries successfully set to the reference TTL during 70 hours continuous over-
writing of an existing timestamp. (b) Remaining TTL representing 98% of measured cache entries
during the validity period (24 hours) of the initial timestamp.

verification. With a two day timestamp (Figure 7(a)),
about 6500 random IP addresses and 1200 domain names
have to be generated, in order to end up with 100 do-
main names with a reference TTL greater or equal to
two days. This confirms the distribution of reference
TTL shown in Figure 4 where approx. 91% of domains
have a reference TTL smaller than two days. With a
one hour timestamp (Figure 7(b)), about 525 random
IP addresses and 110 domain names have to be gener-
ated.

The high number of IP addresses and domain names
required for a two day timestamps can seem prohibitive.
Indeed, we require about 30 minutes to request a two
day timestamp. In contrast, we only require about 1
minute 30 seconds for the one hour timestamp. We be-
lieve that this delay mainly comes from our unoptimized
implementation. The optimizations already discussed
for one day timestamps should considerably decrease
the timestamping delay.

Verifying a timestamp does not necessarily require to
reiterate through all IP addresses and domain names.
Instead of executing the whole domain name generation
process, as in our experimentation, the verifier may di-
rectly use the domain names and DNS cache resolvers
indices of T . Thus, verification is almost immediate.

Persistence of timestamps Figure 7(c) and Fig-
ure 7(d) show that the timestamp continues to exist
even when the desired reference TTL has exceeded. In
the case of two day timestamps, approx. one third of
the DNS cache entries continue to exist after 48 hours.
This portion corresponds to the domain names with a
reference TTL strictly greater than two days. Similarly,
with one hour timestamp we observe that approx. 50%

of the DNS cache entries last for one day, reflecting the
reference TTL distribution of Figure 4.

To avoid this behavior, it is possible to force reference
TTL to exactly the desired duration, resulting in all
DNS cache entries to disappear after this duration.

Errors due to DNS cache resolvers ignoring
reference TTL greater than one day We ob-
served that some DNS cache resolvers set the remaining
TTL to maximum one day, even if the reference TTL is
greater than one day. Our experiments show that this
represents about one third of the DNS cache resolvers.
For instance, Figure 7(c) shows that one third of the
returned timestamps disappear after 24h, even if the
desired reference TTL is greater or equal to two days.
This indicates that the remaining TTL for these DNS
cache resolvers was set to one day only, and that the
remaining TTL reaches 0 after 24 hours.

Homogeneity of the computed timestamping
times for the different DNS cache entries Fig-
ure 8(a) shows the distribution of computed timestamp-
ing times for the different DNS cache entries with one
example of 2 day timestamp. We notice that the ma-
jority of the computed times tends towards the original
timestamping time which is Feb 4th at 14h33. Some
peaks appear before that date, e.g. at one day and at
6 days prior to the actual timestamping date. Similar
behavior holds for one hour timestamp as depicted in
Figure 8(b). The outliers represent about one third of
the DNS cache entries in the two day timestamp, and
only a very small fraction for one hour timestamp.

The outliers can be explained by the fact that some
DNS cache resolvers set a false remaining TTL when a
new DNS cache entry is added. If the reference TTL of

12

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 10 20 30 40 50 60 70 80

hours

of generated IP addr.
of valid domain names

(a)

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

 0 5 10 15 20 25 30

hours

of generated IP addr.
of valid domain names

(b)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

hours

of DNS cache entries read

(c)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

hours

of DNS cache entries read

(d)

Figure 7: (a), (b): Number of IPv4 addresses and valid domain names retrieved per verification in
order to generate 100 valid domain names with a reference TTL greater or equal to (a) two days and
(b) one hour. (c), (d): Number of DNS cache entries read with a timestamp of (c) two days and (d)
one hour. Numbers are averages from 5 two day timestamps T continuously verified during 72 hours,
and from 5 one hour timestamps T continuously verified during 26 hours.

13

the cached domain name is 7 days and the DNS cache
resolver only sets a remaining TTL of one day, the com-
puted time is 6 days prior to the actual timestamping
time. In order to make the timestamping scheme robust
to these errors, a verifier must eliminate these outliers
by selecting only the most frequent timestamping times.

7. RELATED WORK
Trusted timestamping generally relies on a timestamp-

ing service, provided by a third party centralized ser-
vice. The third party receives a document or a docu-
ment digest, binds the received data with the present
time, e.g. by hashing received data together with the
present time or by simply appending the present time
and signing the results with the private key of the times-
tamping service. This timestamp can be verified using
the public key of the timestamping service. These mech-
anisms are standardized [1,2]. They rely on entire trust
of the third party. Yet, a dishonest third party may
generate false timestamps.

Haber and Stornetta [16] propose two trusted times-
tamping schemes. In both schemes, the trust is dis-
tributed among the participants of the timestamping
scheme. In the first scheme, the timestamping service
builds a sequence of timestamps by linking each times-
tamp with the preceding timestamp. The timestamping
service applies a one-way hash function on the digests
and on the times of the preceding and of the current
timestamps. The timestamping service signs the re-
sulting timestamp and distributes it to the requesting
participants. Verification of a timestamp consists in:
i) checking the time in the timestamp, ii) asking other
participants for the preceding and following timestamps
in the sequence and iii) verifying the correct linking and
times of these related timestamps. This reduces the risk
of false timestamps produced or inserted in an existing
sequence of timestamps. Haber and Stornetta [16] state
that circumventing this mechanism requires the times-
tamping service to collude with a significant number of
participants. Despite this objective, Just et al. [21] show
that a collusion attack between a single participant and
the timestamping service exists allowing for backdating
of timestamps. Just et al. propose several methods for
preventing this attack.

The second scheme of Haber and Stornetta [16] does
not rely on any timestamping service. Timestamping
is completely distributed among participants.A partic-
ipant requesting to timestamp a document, uses the
document digest as a seed for a pseudo-random gen-
erator. The pseudo-random generator returns a set of
participant IDs. The requesting participant sends the
timestamping request to each of the returned partici-
pants. Each participant responds with a signed times-
tamp. Verification consists in i) checking whether all
returned timestamps are properly signed and include

the same time and ii) verifying that the pseudo-random
generator seeded with the document digest returns the
same participant IDs. This scheme requires all partici-
pants to be online and their clocks synchronized. Only
a large set of colluding participants would enable break-
ing the scheme.

Other schemes not relying on a timestamping service
rely on broadcast-based timestamping [6]. Broadcast-
based timestamping relies on k-ary hash trees that rep-
resent all the documents to be timestamped during one
timestamping round. Each tree leaf represents a doc-
ument belonging to a participant. Each leaf is linked
to the leaf of the preceding timestamping round. The
scheme assumes that the digest of all leaves is broad-
casted to all participants. This construction allows to
verify whether a given released document did or did not
exist in a given timestamping round. Just et al. [21] de-
scribes some shortcomings of [6] and propose methods
to rectify these shortcomings.

The P2P digital currency system BitCoin [25] times-
tamps the transactions.BitCoin operates without any
central authority and thus requires a completely dis-
tributed timestamping scheme. BitCoin relies on linked
timestamping and widely publishes the generated hashes
in newsgroup or Usenet posts. Each new hash relies on
the previous one that has already been published. A
timestamp also includes a proof-of-work, a moderately
hard puzzle that the peers of BitCoin try to solve. Once
a peer succeeded in solving the puzzle, the peer is re-
warded with newly created coins. Based on BitCoin,
CommitCoin [10] proposes a commitment protocol that
enables the sender to prove to a receiver that his com-
mitment existed prior to a time t. CommitCoin gener-
ates a small BitCoin transaction once the sender com-
mitted its message. As a consequence, the receiver is
able to verify and carbon date the commitment.

Schemes not providing timestamping but related to
this work were proposed by Ephemeral Publishing [8].
Their purpose is to allow withdrawing of user-owned
content from the internet. User can store ephemeral
cryptographic keys, by forcing the insertion of domains
in resolvers. The entries are automatically removed
from the cache once the TTL has expired. Therefore,
the cryptographic key automatically disappears after a
delay defined by the user.

8. CONCLUSIONS
In this work we proposed a new trusted timestamp-

ing scheme, called DNStamp, that exclusively relies on
the Domain Name System. DNStamp does not require
a dedicated trusted service nor any form of collabora-
tion among participants using the timestamping service.
DNStamp can be used without registration to any ded-
icated service. Thus, anyone with Internet access can
request and verify timestamps.

14

 0

 10

 20

 30

 40

 50

 60

 70

01/28 01/29 01/30 01/31 02/01 02/02 02/03 02/04

#
 o

f
o
c
c
u
rr

e
n
c
e

s

Time of timestamp in m/d

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

01/31 01/31 01/31 01/31 02/01 02/01 02/01 02/01

#
 o

f
o
c
c
u
rr

e
n
c
e

s

Time of timestamp in m/d

(b)

Figure 8: Example distribution of computed timestamping times for each cached domain name with
(a) a 2 day timestamp and (b) a one hour timestamp.

We formalized the security requirements for times-
tamping and the associated adversarial model. We an-
alyzed the security of DNStamp with respect to this
model. In particular, we showed the resistance to forward-
dating and back-dating attacks. We implemented a
command-line tool capable of setting and verifying times-
tamps in the Domain Name System. Our experiments
showed that we can set and reliably verify timestamps
during the validity period of the timestamp. The exper-
iments also showed that the adversaries with reasonable
capabilities cannot overwrite an existing timestamp.

Further work includes extending the validity period
of DNStamp. This may be achieved by using sequences
of linked timestamps or by asking timestamp renewals
to a server. These methods may however break our
requirement of having no single point of trust. Finally,
we work on an optimized implementation that increases
the precision of a timestamp and reduces the requesting
time thanks to a higher degree of multi-threading and
the use of several inverse resolvers.

Acknowledgment
We thank Augustin Soule and Gilles Guette for their
insightful comments that helped us improve this paper.
We also thank Augustin Soule for providing us the lab
DNS workloads.

9. REFERENCES

[1] ANSI X9.95-2005 Trusted Time Stamps
Management and Security, 2005.

[2] C. Adams, P. Cain, D. Pinkas, and R. Zucherato.
IETF RFC3161 - Internet X.509 Public Key
Infrastructure Time-Stamp Protocol (TSP), 2001.

[3] B. Ager, W. Mühlbauer, and S. Uhlig. Comparing
DNS Resolvers in the Wild. In IMC’10, 2010.

[4] R. Arends, R. Austein, M. Larson, D. Massey,
and S. Rose. IETF RFC4033 - DNS Security
Introduction and Requirements, 2005.

[5] R. Arends, R. Austein, M. Larson, D. Massey, and
S. Rose. IETF RFC4035 - Protocol Modifications
for the DNS Security Extensions, 2005.

[6] J. Benaloh and M. D. Mare. Efficient Broadcast
Time-Stamping. Technical report, TR-MCS-91-1,
Clarkeson University, 1992.

[7] L. Bilge, E. Kirda, C. Kruegel, M. Balduzzi, and
S. Antipolis. EXPOSURE : Finding Malicious
Domains Using Passive DNS Analysis. In
NDSS’11, 2011.

[8] C. Castelluccia, E. De Cristofaro, A. Francillon,
and M.-A. Kaafar. EphPub: Toward robust
Ephemeral Publishing. In ICNP 11, 2011.

[9] C. Castelluccia, M. A. Kaafar, P. Manils, and
D. Perito. Geolocalization of proxied services and
its application to fast-flux hidden servers. In IMC
’09, 2009.

[10] J. Clark and A. Essex. CommitCoin : Carbon
Dating Commitments with Bitcoin. In FC’12,
2012.

[11] D. Dagon, N. Provos, C. P. Lee, and W. Lee.
Corrupted DNS Resolution Paths : The Rise of a
Malicious Resolution Authority. In NDSS’08,
2008.

[12] J. Dilley, B. Maggs, J. Parikh, H. Prokop,
R. Sitaraman, and B. Weihl. Globally Distributed
Content Delivery. IEEE Internet Computing,
6(5), 2002.

[13] D. Dolev and A. Yao. On the security of public

15

key protocols. IEEE Transactions on Information
Theory, 29(2), 1983.

[14] R. Elz and R. Bush. IETF RFC2181 -
Clarifications to the DNS Specification, 1997.

[15] L. Froihofer, G. Starnberger, and K. M. Goeschka.
Experience report: Trading dependability,
performance, and security through temporal
decoupling. In DAIS’11, 2011.

[16] S. Haber and S. Stornetta. How to Time-Stamp a
Digital Document. Journal of Cryptology, 3, 1990.

[17] S. Hao, G. Tech, N. Feamster, and G. Tech.
Monitoring the Initial DNS Behavior of Malicious
Domains Categories and Subject Descriptors. In
IMC’11, 2011.

[18] A. Herzberg and H. Shulman. Security of Patched
DNS. In ESORICS, 2012.

[19] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling.
Measuring and Detecting Fast-Flux Service
Networks. NDSS’08, 2008.

[20] J. Jiang, J. Liang, K. Li, J. Li, H. Duan, and
J. Wu. Ghost Domain Names : Revoked Yet Still
Resolvable. In NDSS’12, 2012.

[21] M. Just. Some Timestamping Protocol Failures.
NDSS’98, 1998.

[22] D. Kaminsky. It’s the End of the Cache As We

Know It, 2008. Presentation at BlackHat.
[23] A. Kumar, J. Postel, C. Neuman, P. Danzig, and

S. Miller. RFC1536 - Common DNS
Implementation Errors and Suggested Fixes, 1993.

[24] P. Mockapetris. IETF RFC1035 - Domain Names
- Implementation and Specification, 1987.

[25] S. Nakamoto. Bitcoin : A Peer-to-Peer Electronic
Cash System. Technical report, bitcoin.org.

[26] V. Paxson. An analysis of using reflectors for
distributed denial-of-service attacks. SIGCOMM
Comput. Commun. Rev., 31(3):38–47, July 2001.

[27] A. Ramachandran, D. Dagon, and N. Feamster.
Can DNS-Based Blacklists Keep Up with Bots ?
In 3rd Conference on Email and Anti-Spam, 2006.

[28] A. Ramachandran, N. Feamster, and D. Dagon.
Revealing Botnet Membership Using DNSBL
Counter-Intelligence. In USENIX SRUTI 06,
2006.

[29] E. Sit, H. Balakrishnan, and R. Morris. DNS
performance and the effectiveness of caching.
IEEE/ACM Transactions on Networking,
10(5):589–603, Oct. 2002.

[30] U. Steinho, A. Wiesmaier, and R. Araújo. The
State of the Art in DNS Spoofing. In ACNS’06,
2006.

16

	1 Introduction
	2 The Domain Name System
	3 Timestamping using DNS
	3.1 Requesting a new timestamp
	3.2 Publishing the timestamp
	3.3 Verifying an existing timestamp

	4 Subtleties of the DNS
	4.1 Non-malicious uses and specificities
	4.2 Malicious uses and security issues
	4.3 Variants of DNStamp

	5 Security Analysis
	5.1 Adversary models
	5.2 Attacking the timestamping process
	5.3 Forward-dating and back-dating attacks
	5.4 The case of a very strong adversary
	5.5 Attacking the timestamping software
	5.6 Privacy considerations

	6 Measurements and Experiments
	6.1 Selecting domain names
	6.2 Load and delay considerations
	6.3 Selecting resolvers
	6.4 Retrieving a timestamp
	6.5 Overwriting an existing timestamp
	6.6 Timestamps having duration different than one day

	7 Related Work
	8 Conclusions
	9 References

