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Abstract

Modern web services face an increasing number of new threats. Logs are
collected from almost all web servers, and for this reason analyzing them is
beneficial when trying to prevent intrusions. Intrusive behavior often differs
from the normal web traffic. This paper proposes a framework to find ab-
normal behavior from these logs. We compare random projection, principal
component analysis and diffusion map for anomaly detection. In addition,
the framework has online capabilities. The first two methods have intu-
itive extensions while diffusion map uses the Nyström extension. This fast
out-of-sample extension enables real-time analysis of web server traffic. The
framework is demonstrated using real-world network log data. Actual ab-
normalities are found from the dataset and the capabilities of the system are
evaluated and discussed. These results are useful when designing next gen-
eration intrusion detection systems. The presented approach finds intrusions
from high-dimensional datasets in real time.
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1. Introduction

Web applications and services have become more featured and therefore more
complex in recent years. At the same time, the number of different vulner-
abilities and intrusion attempts has become more and more common. For
detecting these attacks, intrusion detection systems (IDS) are used. There
are many different types of systems, and they can be divided according to,
e.g., detection principle, detection time and the system’s place in the net-
work or host. The attacks are changing over time, and therefore IDSs need
to adapt to new threats as well.

Intrusion detection systems can generally be divided into two categories
based on the detection principle: signature-based and anomaly-based detec-
tion [1, 2]. In signature-based systems, manually created rules are created
based on known attack patterns. Network behavior is then compared to
these rules, and alarm is created if there is a match. The advantages include
computational simplicity and being able to determine which type of attack
is taking place. However, only previously known attacks can be found using
this methodology, while unknown intrusions remain undetected. Another
option is to use anomaly-based detection, where any new behavior is com-
pared to the normal behavior patterns in the network. Alarms are created
if a deviation from the norm is found. Using this detection principle, it is
possible to detect new and unknown intrusion attempts and other anomalies.
On the other hand, the biggest possible problem with anomaly detection is
high number of false alarms. Intrusion detection systems can be implemented
using method based on different approaches, such as statistics, patterns or
rules [2].

Most of the traditional intrusion detection systems are based on signature
detection. Anomaly detection systems work best when used together with
traditional systems, not on their own. Figure 1 shows an example of the
placement of intrusion detection system components in a small network. One
option is to use anomaly detection to analyze potential intrusions that were
not detected by the signature-based system. This will improve the security
of critical infrastructure. The scenario represents the test setting used in this
research. There are of course many other options for the placement of the
anomaly detection system in the network.

In recent years, many machine learning methods have been used to facil-
itate anomaly detection. The challenge with this approach is that machine
learning methods are better at finding similarities than abnormalities. How-
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Figure 1: IDS topology.

ever, this does not mean that using machine learning is always unfeasible. To
overcome this problem, data selection must be performed with care so that
there is a clear context [3]. With careful data selection, preprocessing and
feature extraction it is possible to facilitate anomaly detection using machine
learning algorithms.

Intrusion detection systems can also be classified as either network-based
or host-based [1]. Network-based systems monitor certain parts of the net-
work and scan for suspicious activity from the network traffic. The best place
for network-based systems is at the boundary of different network segments.
On the other hand, host-based intrusion detection systems monitor a single
host. Different kinds of activity can be monitored from a single host, e.g.,
log files and application activity.

In addition, intrusion detection systems can operate in offline or online
mode [4]. Offline systems scan the network behavior periodically to find out
if intrusive traffic has occurred since previous scan. Online systems scan new
traffic as it arrives, essentially in real time.

A system using the anomaly detection principle was first introduced by
Denning [5]. Since then, there has been a lot of research and many different
methods and algorithms have been used to facilitate anomaly detection. Very
common approaches to intrusion detection in the literature include statistical
methods, machine learning and anomaly detection [6]. Examples of method-
ologies used in this context include neural networks [7, 8, 9], self-organizing
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maps (SOMs) [10] and support vector machines (SVMs) [11]. HTTP traffic
can be analyzed extracting certain features to build an anomaly-based in-
trusion system [12]. PCA methodology has been used even quite recently
for intrusion detection [13]. A recent study also modified PCA to be able
to analyze new data by using online updating technique [14]. This extends
the system to large-scale problems, the system does not apply any other
dimensionality reduction algorithms and might suffer from nonlinear data.
Many of the new research still focuses on intrusion detection using signatures.
Anomaly detection continues to be a challenging subject.

The authors of this paper have previously explored network anomaly de-
tection using diffusion map methodology for mostly offline detection [15, 16,
17]. We have also applied a rule extraction algorithm to the framework to
create an online detection system [18]. This approach works independently
of the anomaly detection algorithms used. Random projection methodol-
ogy applied to web anomaly detection framework has also been used by the
authors [19].

Our new proposed system reads web server log files, extracts the features
from the raw logs and finds anomalies using several dimensionality reduction
techniques. In addition, we get visualizations that make in-depth analysis
easier. The system is capable of online detection when new data points are
dynamically added. We use three different dimensionality reduction tech-
niques, some of which are widely used in intrusion detection research, while
others are not as commonly applied in this context.

2. System architecture

At first, the system is trained using existing data. The system architec-
ture takes log data as input. These could theoretically be any structured
text files. The preprocessing part extracts n-gram features. The training
n-gram profile is saved for later. These features are then transformed to a
low-dimensional space. Machine learning training uses several dimensional-
ity reduction methods and produces a low-dimensional representation of the
data.

When new streaming data arrives, existing n-grams are counted and new
ones added to the profile. This way the n-gram dictionary stays up-to-date.
These features are then transformed again to the low-dimensional space cre-
ated in the previously explained machine learning training. The new data
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Figure 2: System architecture flow diagram.

points are classified either normal or anomalous in the low-dimensional space.
Afterwards, the detected anomalies are output to the user.

Refer to Figure 2 for flow diagram. The left column shows the training
and the right column shows new streaming data coming. The n-gram profiles
benefit the feature extraction on the right, and the low-dimensional model is
used when projecting new streaming data for anomaly detection.

3. Data acquisition and preprocessing

Data acquisition is crucially important for any IDS, because it is the first
phase of any intrusion detection framework. Different types of data can be
used. In this paper we focus on Hypertext Transfer Protocol (HTTP) log
data. It has become a universal transfer protocol and will also be heavily
used in the future [20]. After acquiring the data, they must be preprocessed
and features must be extracted to transform it into numerical form that can
be used for later analysis phases. The data and used preprocessing methods
are described in the following subsections.
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3.1. Data acquisition

The data used in this research are acquired from real-world company web
servers. The servers are running the widely-used Apache web server soft-
ware. The logs are in combined log format [21], which include different kinds
of information such as IP address, timestamp, the actual HTTP request,
Apache server response code and user agent header field. An example log
line is presented below:

127.0.0.1 - -

[01/January/2012:00:00:01 +0300]

"GET /resource.php?parameter1=value1&parameter2=value2

HTTP/1.1" 200 2680

"http://www.address.com/webpage.html"

"Mozilla/5.0 (SymbianOS/9.2;...)"

These logs might contain several actual intrusions, especially inside the
HTTP requests that are not static, i.e., they contain dynamic parameters
that depend on the user input. This is why we focus on analyzing the request
strings. Different kinds of attack attempts, such as SQL injections, can be
found from web server logs. Even though many intrusions cannot be found
without having access to the actual payload data, web server logs are widely
available and used by default in most web servers around the world, which
is a huge advantage.

3.2. Preprocessing

Acquired log files contain essentially strings describing requests sent from the
user to the server. In the preprocessing phase, textual logs are transformed
into numerical matrices to facilitate the subsequent analysis phases. In this
research, we use n-gram analysis for extracting meaningful features from the
data.

An n-gram can be defined as a consecutive sequence of n characters [22].
It could also be described as a substring with the length n. For example, the
string ababc contains unique 2-grams ab, ba and bc. The 2-gram ab appears
twice, thus having frequency of 2. A list of tokens of text can be represented
with a vector consisting of n-gram frequencies [22]. Feature vector describing
this string would be xababc = [2, 1, 1]. Similar feature vectors will form the
whole feature matrix.
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Here is an example of constructing the feature matrix using the n-gram
analysis process with two words, anomaly and analysis. From these words
we get the unique 2-grams an, no, om, ma, al, ly, na, ys, si and is. From
this information we can construct a matrix with the n-gram frequencies.

an no om ma al ly na ys si is
1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1

The feature matrix X is constructed in a similar way from the request
string n-gram frequencies. The occurrences of specific n-grams are summed
for each log line. In practice, n-gram tables generated from real-life log data
are very sparse, because most of the n-grams do not actually appear on all
the log lines. The n-grams that do not appear in the data at all as well as
the corresponding columns in the feature matrix can be excluded. This will
reduce the number of dimensions (columns) in the matrix.

Apache log files are ascii-coded, which means that 256 different unique
characters are possible. If we choose n = 1 for the n-gram analysis, we get
a simple character distribution with 256 theoretical maximum dimensions.
For this analysis, we choose n = 2, which means that the maximum number
of dimensions is 2562 = 65, 536. However, in a normal real-world situation
the actual number is much lower. With n = 3 or higher, the dimensionality
of the data is massively increased. Since the performance of many of the
algorithms used depend on the size of the individual feature vector, high
input dimensions would slow performance. With the chosen value n = 2, we
get a good balance between contained information and the size of the feature
matrix.

4. Dimensionality reduction

Dimensionality reduction methods try to map high-dimensional data to fewer
dimensions while retaining the internal structure of the data. Usually this
structure is defined by distances between the data points. Several mathe-
matical approaches can be found [23], three of which are presented in the
next three sections: random projection (RP), principal component analysis
(PCA) and diffusion maps (DM). Each section presents the training step and
the out-of-sample extension of new data points.
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RP Very fast, sometimes unstable,
cannot reduce dimensions very much, preserves distance

PCA Average speed, preserves variance,
cannot handle non-linear data

DM Slowest, can deal with non-linear data,
can facilitate spectral clustering

Table 1: Different dimensionality reduction methods in this paper.

D

N

k

N
dimensionality

reduction
X XDR

Figure 3: Dimensionality reduction reduces the number of variables describing the data
points while retaining most of the information.

These three algorithms perform the same reduction but from different
theoretical viewpoints. Even though they pursue the same goal, their perfor-
mances may differ. Table 1 briefly summarizes the differences between the
methods. Furthermore, various datasets exhibit behaviors that are appropri-
ate for only some of the methods.

The basic idea behind dimensionality reduction is expressed in Figure 3.
The data points on the rows of X are described by D dimensions, or fea-
tures on the columns. The dimensionality reduction algorithm reduces the
number of dimensions to k while retaining sufficient information in the new
dimensions. The most common information to preserve is the distance be-
tween different data points The most common information to preserve is the
distance between different data points.
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5. Random projection

5.1. Training

Random projection (RP) is a dimensionality reduction method based on
Johnson–Lindenstrauss lemma [24], for which a proof is available in the lit-
erature [25]. It states that if points in a vector space are projected onto
a randomly selected subspace with high-enough dimensions, the distances
between these points are preserved approximately provided that the vectors
have unit lengths. In other words, the goal is to use a randomly generated
matrix to lower the number of dimensions in the data.

Let us assume that we have the original data matrix X with N data
points and D dimensions. The number of dimensions in the low-dimensional
subspace is k so that k � D. The randomly generated matrix is Rk×D. The
matrix containing data points projected onto the low-dimensional subspace
is obtained with the following multiplication [26]:

Xk×N
RP = Rk×DXD×N .

Random projection is not actually a projection because the matrix R is
not strictly orthogonal [26]. In addition, orthogonalization of a matrix can
be computationally expensive. However, we can use the result by Hecht-
Nielsen [27]: “There exists a much larger number of almost orthogonal than
orthogonal directions in a high-dimensional space”. Therefore, RP is close to
a projection and can be used for practical applications.

We can use a very simple probability distribution for choosing the el-
ements rij or random matrix R. Using the following distribution, we get
sparse random projection as originally proposed by Achlioptas [28]:

rij =
√

3×


+1 with probability1

6

0 with probability2
3

−1 with probability1
6

.

Alternatively, we can use a more general distribution [29]:

rij =
√
s×


+1 with probability 1

2s

0 with probability1− 1
s

−1 with probability 1
2s

.
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If we choose s = 3, we get the original distribution for Achlioptas’ sparse
random projection. It is also possible to choose s � 3, which leads to very
sparse random projections [29].

In this case, given the original data matrix iX ∈ RN×D and random
matrix R ∈ RD×k, we can obtain the randomly projected matrix by [29]:

XRP =
1√
k

XR ∈ RN×k, k � min(N,D).

The main advantage of random projection methodology is its speed and
computational efficiency. Even though the method is very fast, it is accurate
enough not to create too much distortion in the data [26]. This makes it
usable for applications where computationally expensive algorithms are not
feasible.

It is important to note that in this case “training” simply means the
generation of the random matrix. The matrix R does not depend on the
used training data. However, random projection contains a parameter ε so
that 0 < ε < 1. Using this, the minimum number of dimensions for the
projection can be calculated for the chosen value of ε using the Johnson–
Lindenstrauss lemma. This can be considered a training stage, since we are
making sure that the dimensionality is not reduced too much for the given
dataset, so that the distances are still approximately preserved.

5.2. Out-of-sample extension

In this context, out-of-sample extension means projecting any new data
points to the same subspace as all the points in the data matrix X. Since
generation of the random matrix R does not depend on data points in the
matrix X, projecting any new data points does not require any special steps
other than matrix multiplication. If we get a new preprocessed data vec-
tor yi, projecting it onto the low-dimensional subspace can simply be done
performing the following:

yRP = yiR

This will give us the original data vector projected to the subspace. As
can be seen, random projection facilitates out-of-sample extension, making
it feasible for online anomaly detection systems due to it’s simplicity and
speed.
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6. Principal component analysis

6.1. Training

Principal component analysis is probably the most popular dimensionality
reduction technique. The goal is to represent the information included in the
original correlated variables using a smaller number of independent variable
called principal components. The principal components are linear combina-
tions of the original variables [30].

To perform PCA for the original data matrix X, the matrix is first cen-
tered to form the matrix Xc. Covariance matrix C is then calculated from
the centered data. From this, we can use the following decomposition for
real-valued matrices:

C = UΛUᵀ.

Now we can obtain the eigenvectors in the matrix U. To map the data
points into the low-dimensional subspace we only need to perform the mul-
tiplication

XPCA = XU.

The new principal components are in the direction of most variance in the
data and thus represent the most differentiating combination of features [23,
30, 31]. Normally the principal components containing 95% of the variance
are selected and the rest dropped out because they do not include much
information. In an optimal situation, the first few components are enough.

The principal components are linear combinations, and PCA can only
find linear dependencies in the data. It has initial assumptions that restrict
its use for latent variable separation and nonlinear dimensionality reduction
[23].

The calculation of covariance matrix C and the subsequent calculation
of U can be considered the training stage, since both of these need some
original data to be calculated. If we want to retrain the algorithm with new
data, these have to be calculated again unless some more complicated update
algorithm is used. It might also be sufficient to recalculate PCA periodically.

6.2. Out-of-sample extension

When the system gets new data points, using the same projection as used in
the training stage is very simple, as it requires only a multiplication operation.
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Given a new data point yi, we can project it into the same subspace as other
points by doing the following:

yPCA = yiU

With this multiplication we get the new projected data point yPCA.

7. Diffusion maps

7.1. Training

Diffusion map is a function from multi-dimensional space to a space with
lower dimensions while the information content is only slightly distorted. It
can be described using the taxonomy of dimensionality reduction methods
as a nonlinear geometric method that preserves the diffusion distance as Eu-
clidean distance in the lower dimensions [23, 32]. The underlying assumption
in such manifold learning methods is that the data is situated on a manifold
that is embedded to the ambient space [33].

Recall that the measurements xi ∈ RD, i = 1 . . . N lie on a D-dimensional
space, where N is the number of measurements and D is the number of
measured variables. The measurements should be normalized in order to
make the variables comparable. One way of doing this is simply taking the
logarithm of each value in the data matrix.

In the diffusion map method, at first, the pairwise distances between the
data points are calculated. These distances are exaggerated using a kernel
function. Here, the Gaussian kernel is used with Euclidean distance measure:

Wij = exp

(
−||xi − xj||2

ε

)
.

The degree of each point can be calculated from W by summing the
weights that connect them to the other points. This means that the kernel
matrix rows are summed: Dii =

∑N
j=1 Wij. The rows of W are normalized

by the row sums: P = D−1W. Matrix P can now be understood as contain-
ing the transition probabilities between the data points. Symmetric matrix
P̃D

1
2 PD− 1

2 is simplified by substituting the original P with its definition:

P̃ = D− 1
2 WD− 1

2 .

The decomposition of this real-valued normal matrix is expressed as
P̃ = UΛUᵀ. Singular value decomposition (SVD) performs the operation,
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resulting in matrix U that contains eigenvectors on its columns and the di-
agonal of Λ contains the corresponding eigenvalues of P̃. However, the real
interest is in the eigenvectors of the transition matrix P. Those eigenval-
ues of the two matrices are the same, but the eigenvectors are obtained by
calculating the right eigenvectors:

V = D− 1
2 U.

The low-dimensional coordinates can now be formed by multiplying each
eigenvector column with the corresponding eigenvalue. The resulting matrix
contains N rows, each corresponding to the data points, and k columns, each
representing the new dimensions.

XDM = VΛ

Only some of these coordinates are needed to represent the data to a
certain degree of error [34]. The data can be reconstructed using only some
of the eigenpairs while the error stays small enough. Due to the graph theo-
retical calculations, the first eigenvector is constant, so it is not used.

7.2. Nyström extension

Nyström extension takes new points data points and extends them to the low-
dimensional space mapped earlier by diffusion map. The goal is to interpolate
the coordinates of unknown points based on the coordinate mapping of the
training data. With this kind of projection, the new points can be compared
with the training dataset. Many dimensionality reduction methods can use
the general Nyström extension framework for out-of-sample extension [35,
36, 37]. The same features are used as the ones used during the training,
with the same normalization.

Let us assume that a new data point yj ∈ RD is extended. The distances
between the data point and the training points are collected to W̄ , which is
defined as

W̄ij = exp

(
−||xi − yj||2

ε

)
.

Similarly to the training, diagonal matrix of D̄ii =
∑N

i=1 W̄ij contains
the column sums of W̄. The transition probabilities are then calculated with

B = W̄D̄−1.
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Now, the eigenvectors in the columns of V̄ can be found:

V̄ = BᵀVΛ−1

The eigenvalues Λ are the same as in the training. The low-dimensional
coordinates for the new points can be found with Ȳ = V̄Λ, and the last two
steps are combined as

ȲDM = BᵀV.

Matrix ȲDM now contains the extended coordinate approximations in its
columns for the new points yj.

8. Anomaly detection

Anomaly detection is performed using statistical analysis. We assume that
the data follows a Gaussian distribution. We calculate the mean point from
the training data. The average distance of training points from the mean
point is µtrain, which is used as an estimate for µtest for the testing data.
We use a simple anomaly detection method, where any data points with a
distance greater than nσ from µtest will be classified as an anomaly with the
anomaly indicator function

g(y) =

{
1, if nσ < ‖y − µtest‖.
0, otherwise.

Here y is the low-dimensional representation of a data point and σ is the
standard deviation of the training data points from the mean. The choice of
n is not trivial, but a common option is n = 3 [33]. In practice, with large
or non-Gaussian datasets a different threshold should be selected.

9. Results

The proposed framework is tested using several different datasets received
from companies. The logs contain simulated test data as well as real-life
network logs from actual production web servers. All of the files include only
HTTP server access logs. This is feasible because most or all of the traffic
will be encrypted in the near future, making it very difficult to analyze the
payload. The header information is still going to be available. The format
and contained information is introduced in Section 3.1. It is important to

14



note that we did not get access to payloads of the packets, just the header
information contained in normal HTTP log files.

9.1. Simulated test data

For the first initial experiment, we received two datasets with simulated test
traffic and manually injected intrusion attempts. The intrusions fall under
two general categories. Firstly, some attacks try to access vital files in the
server, e.g., the file /etc/passwd on a Linux server. Secondly, some cross-site
scripting (XSS) attacks have been injected. These attacks attempt to execute
malicious foreign scripts when the user visits a web page. These are especially
difficult, since these attacks do not contain many uncommon or encoded
characters, and are difficult to find with access logs alone. In addition, all
of the analysis phases are done using a normal laptop computer, and the
execution times are presented so the efficiency of different methodologies can
be compared. In an actual scenario with finished software, the analysis can
be performed on a specialized server with multiple cores, making the analysis
dozens of times faster. More accurate analysis of the execution times and
scalability can be found below in Section 9.2.

The first and smaller log contains only a few intrusions, and mostly con-
sists of normal traffic. It contains 2,693 lines. RP methodology analyzes
the data in 2.4 seconds, finds two actual intrusions and gives one false alarm.
PCA-based analysis finds the same two intrusions with no false positives, and
takes 11.2 seconds. Using DM, we discover the same two attacks plus one
extra intrusion which was not found using the other methods. This analysis
takes considerably longer, 196.6 seconds. A low-dimensional representation
of the data using DM can be seen from Figure 4. In this case RP is fast and
efficient, PCA is quite fast and more precise, and DM is the most accurate
but also the slowest. An example plot of the anomaly levels is presented in
Figure 5.

The second simulated log contains 5,369 lines and contains the two differ-
ent attack types mentioned above. RP analysis takes 4.7 seconds, and it finds
62 attacks trying to access important server files. PCA takes 25 seconds, and
only finds 51 of these attack attempts. Both of these methods give zero false
positives, but completely fail to detect the XSS attacks. The actual contents
of the scripts are not present in the log files, making them difficult to be
detected. However, DM analysis finds 141 lines of XSS attacks , as well as
47 of the other types of attacks. The execution time is 285 seconds in this
experiment. RP finds the first type of attacks better and faster than others,
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Figure 4: Low-dimensional points and anomalies using DM. Red stars are the anomalies,
while blue dots are normal HTTP requests.

but once again DM is more accurate at finding difficult intrusion attempts
that cannot be detected using the other methodologies. Figure 6 shows the
normal points as well as the two main attack types in a low-dimensional
visualization created using DM.

While these manually created logs are useful for initial testing, they are
much too small for more practical testing. Therefore, more testing data is
analyzed in the next section.

9.2. Speed and scalability tests using real-world log data

This dataset contains HTTP queries to a real web server. In this log there
is much more traffic. Various subsets of the data are used to test the speed
and especially the scalability of the three different methodologies to compare
the efficiency on larger datasets. The variability of this kind of real data is
higher than in the simulated case. For more accurate and realistic results, it
would be essential to have better log data. However, the size of the data is
big enough to test the scalability aspects. We tested up to 300,000 log lines
since that provided enough evidence in terms of linear scalability. All of the
methods find actual intrusions attempts from the data, but it is impossible
to say how many potential intrusions are left undetected, since the test is
completely unsupervised.
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Figure 5: Anomaly levels for test3 log file with RP.

Figure 7 shows the speed and scalability using different sizes of data.
There are two main things to note here. Firstly, all of the methods scale
linearly. This is because the training phase is done using a limited number of
log lines, and analyzing new streaming data is a linear operation. Secondly,
the differences in scaling between the methods are massive. As expected, RP
can analyzed much more data than other methods. The processing time in-
creases rapidly when using DM. It seems that RP works well when analyzing
bigger datasets, and DM can be used for more accurate analysis on smaller
sets of data, since the experiments in Section 9.1 showed that DM can find
some intrusions more accurately.

Another real-world dataset is used for testing RP methodology. Figure
8 shows the computation time against log file size. The test was run on
two Intel R© CoreTM i5-2520M CPU @ 2.50 GHz cores using hyper-threading.
As expected, the time taken by online anomaly classification is linearly de-
pendent on the size of data with this data as well. The 300 MB dataset
corresponds to the amount of daily traffic of a small web service. It happens
acceptably fast even on a very low-powered computer used in this experi-
ment. Using more cores will significantly speed up the processing. The most
important thing to note here is the linear scaling of the system.
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10. Conclusion

Web log analysis can be done with anomaly detection. This paper presents
results from three methods that can be used for dimensionality reduction
before anomaly detection: random projection, principal component analysis
and diffusion maps. These results show that web attacks can be captured
using this type of framework.

The results suggest that an ensemble system could be built upon the
methodologies described. Based on the experimental results, we propose that
RP and DM should be used together. RP methodology is efficient for daily
analysis of huge amounts of traffic, while DM produces better visualizations
and more accurate analysis of smaller amounts of data when needed. PCA
falls in between of the other methods, but does not seem to offer any major
advantages in our experiments.

These results are relevant to new intrusion detection services for web
servers. Moreover, analyzing any log files produced by various applications
should be easier using dimensionality reduction. The usefulness of anomaly
detection in any text mining task is also obvious. The results show that new
data point extension happens in linear time. The analysis can be performed
in sufficient time on huge volumes of data.
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Figure 7: Computational times for RP, PCA and DM.

One important question is sampling the data for training. The data
sampling should strive to represent the variability in the dataset but with
a limited number of samples. It is not trivial to choose the right training
data size. In addition, the selection of anomaly threshold can be challenging.
More robust automatic parameter selection must be developed.

For future research, larger volumes of data must be analyzed to ensure
that the scaling is efficient. It is possible that the system will be throttled by
memory or I/O instead of CPU, which will create new challenges. In addition,
it would be useful to try different formats of data to test the feasibility of the
framework more generally. Furthermore, some optimization could be made
to the implementation to ensure a better performance in a realistic network
application.
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