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Abstract

In wireless access networks, one of the most recent chaleisgreducing the power consumption of the network,
while preserving the quality of service perceived by uséignce, mobile operators are rethinking their network
design by considering two objectives, hamely, saving pamerguaranteeing a satisfactory quality of service. Since
these objectives are conflicting, a tradeoff becomes iabldt We formulate a multi-objective optimization with &m

of minimizing the network power consumption and transnoissielay. Power saving is achieved by adjusting the
operation mode of the network base stations from high trénsouver levels to low transmit levels or even sleep
mode. Minimizing the transmission delay is achieved byailg the best user association with the network base
stations. In this article, we cover two different technidsy IEEE 802.11 and LTE. Our formulation captures the
specificity of each technology in terms of the power model eattio resource allocation. After exploring typical
multi-objective approaches, we resort to a weighted sunedirteger linear program. This enables us to efficiently
tune the impact of the power and delay objectives.

We provide extensive simulations for various preferenteénggs that enable to assess the tradeoff between power
and delay in IEEE 802.11 WLANSs and LTE networks. We show thataf@ower minimization setting, a WLAN
consumes up to 16% less power than legacy solutions. A tgbraunalysis of the optimization results reveals the
impact of the network topology, particularly the interialistance, on both objectives. For an LTE network, we assess
the impact of urban, rural and realistic deployments on théexable tradeoffs. The power savings mainly depend on
user distribution and the power consumption of the sleepan@dmpared with legacy solutions, we obtained power
savings of up to 22.3% in a realistic LTE networks. When adtjyauned, our optimization approach reduces the
transmission delay by up to 6% in a WLAN and 8% in an LTE network.

Keywords: Wireless access networks, Optimization, Power Consumplii@ansmission Delay, User Association.

1. Introduction

In recent years, green radio has been increasingly emgbfgiznot only ecological concerns but also for signif-
icant economic incentives. Information and Communicaliechnology (ICT) accounts for around 3% of the world’s
annual electrical energy consumption and 2% of total cadhuissions. Moreover, it is estimated that ICT energy
consumption is rising at 15 to 20 %, doubling every five yedis [n 2008 this corresponded to about 60 billion
kWh of electrical energy consumption and about 40 millionnngbns of CQ [2]. As a branch of the ICT sector,
mobile networks are responsible for 0.2% of these emisqg@jndn addition to the environmental impacts, mobile
operators are interested in reducing energy consumpti@cfmomic reasons, especially with increasing energycost
becoming a significant portion of mobile operator expenditioreover, the recent explosive growth of the number
of mobile devices and the consequent mobile internet traffiproduce continually high energy consumption. This
calls for green solutions to address the challenges in gredfigient communications. Operators have focused on
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technological developments in the past years to meet dgawd Quality of Service (QoS) demands for User Equip-
ment (UE). Pushed by the needs to reduce energy, mobiletopehave recently been rethinking network design for
optimizing energy efficiency and satisfying user QoS rezpuints.

Currently, over 80% of the power in mobile telecommuniaasits consumed by the radio access network, more
specifically at the base station (BS) level [4]. Hence, masgarch activities focus on improving the energy efficiency
of wireless access networks. In the following, we give amraiesv of these activities and classify them according to
different approaches that run at different timescales.

Planning and deploymentThe planning of energy-efficient wireless networks anddbployment of energy-
aware BSs deal with the problem of determining the positigrif BSs, the typeg(g, macro, micro, pico or femto)
and the number of BSs needed to be deployed. In this conteXind that heterogeneous networks have gained great
attention in current research. Precisely, deploying saradllow-power BSs co-localized with macro cells is believed
to decrease power consumption compared to high-power ni8so Moreover, it extends the coverage area of the
macro BS where signals fail to reach distant UEs. Furtheensmall cells increase the network capacity in areas with
very dense data usage. Planning and deployment tasks &oenped at very coarse temporal levels, ranging from a
few months to possibly years.

Cell sizing Also known as cell breathing, cell sizing is a well-knowmcept that enables balancing traffic load
in cellular telephony [5, 6]. When the cell becomes heavilyded, the cell zooms in to reduce its coverage area,
and the lightly loaded neighboring cells zoom out to accomate the extra traffic. Many state-of-the-art techniques
are used to implement cell sizing, such as adjusting thesnérpower of a BS, cooperating between multiple BSs,
and using relay stations and switching BSs for sleep/offendgell sizing is performed at medium temporal levels,
ranging from hours to days.

User AssociationUser association is the functionality devoted to decidimgBS (macro, micro, pico or femto)
with which a given user will be associated in a heterogenemiwork [7, 8]. The challenge is to optimize for
example the delay, throughput, or network cost. User aaoniis impacted by the cell sizing tasks: when an active
BS is switched off or changes its transmit power level in a bgemeous network, users may need to change their
associations. Many metrics are considered for selectiagéhving BS, such as the received signal quality (Signal-
to-Noise Ratio (SNR) or the corresponding achievable r#te)traffic load, or the distance between BS and UE, etc.
User association is performed at small temporal levelgirgifrom seconds to minutes.

Scheduling Scheduling algorithms allocate the radio resources ieless access networks, where the objectives
consist of improving the network throughput, satisfying telay constraints of real-time traffic, or achieving fair
resource distribution among users. Scheduling is perfdrat@ery short temporal levels of an order of few millisec-
onds. In Figure 1, we illustrate the different green apphneacstudied in the state-of-the art as well as their operatin
timescales.

Reducing power consumption in wireless networks is coupidid satisfying the QoS requirements (delay, block-

ing probability, etc.). As these objectives are conflictiagradeoff becomes ineluctable. Credral.[9] identified four
key tradeoffs of energy efficiency with network performangaleployment-energy efficiency to balance the deploy-
ment cost, throughput, and energy consumption in the n&ta®ea wholeji) spectrum-energy efficiency to balance
the achievable rate and energy consumption of the netviigrigandwidth-power to balance the utilized bandwidth
and the power needed for transmission; andielay-power to balance the average end-to-end servicg dethav-
erage power consumed in transmission.
The delay-power tradeoff has not been studied deeply inititvaiure except for in a few recent cases [10]. In this
article, we address the multi-objective optimization peaib of power saving and transmission delay minimization in
wireless access networks. Specifically, power saving igege by adjusting the operation mode of the network BSs
from high transmit power levels to low transmit power ley@iseven sleep mode. In this context, changing the op-
eration mode of the BSs is coupled with optimized user aatoai. Such coupling makes solving the problem more
challenging. Minimizing the transmission delay is achitby selecting the best user association with the network
BSs.

State-of-the-art power saving approaches studied cabalgerformed in Wireless Local Area Networks (WLANS).
Although power consumption of a cellular network BS is mudhkr than that of a WLAN Access Point (AP), the
large number of APs deployed in classrooms, offices, aspbdtels and malls, contributes to a rapid increase in the
power consumption in wireless access networks. Henceiggffimanagement of the power consumed by a WLAN is
an interesting challenge. In the present article, we caverdifferent wireless networks: WLANs with IEEE 802.11g
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Figure 1: Green approaches at different timescales.

technology and cellular networks with Long Term Evolutibi ) technology.

Our approach presents multiple novelties compared to #te-sf the art, and our main contributions are summa-

rized as follows:

* We formulate the multi-objective optimization problem mdwer saving and delay minimization in wireless
access networks, going beyond prior work which has focuseglther minimizing energy without considering
the delay minimization [4, 11, 12, 13, 14], or on delay analygithout accounting for energy minimization
[7, 8]. Hence, the novelty in our approach is that it does mby etrive to save energy by reducing the network
power consumption, but also considers the minimizatiotefttansmission delay.

Unlike most of the literature studies, we combine différgreen approaches (BS on/sleep mode, adjustment of
BS transmit power, user association) retaining advantafjeach approach to provide power savings.

* We cover IEEE 802.11 and LTE technologies. To the best oknawledge, our formulation is the first one that
captures the specificity of each technology in terms of thvegpanodel and radio resource allocation (fair-rate
sharing and fair-time sharing). In the WLAN scenario, coasitly the fair-rate scheduler, the delay model
provided is a unique feature of our work, and it is a realisticdel used in IEEE 802.11 WLAN [7, 8, 15]
compared to the pessimistic bound of the queuing delay mesia in the literature. In the LTE scenario, we
consider a flat channel model with the fair-time scheduler.

To solve the multi-objective optimization problem, weogso the weighted sum method by combining the
multiple objectives into a single objective scalar funotid his method allows us to investigate the power-delay
tradeoffs by tuning the weights associated with each olgct

Starting from a binary non-linear formulation of the prein, we provide a MILP formulation of our problem
that makes it computationally tractable. We obtain optirealilts for both WLAN and LTE scenarios.

The aim of the present paper is to study the different optition models for the joint Power-Delay minimization

problem in green wireless access networks. Such studysenglue to help in designing distributed solutions for
the joint problem of power saving and delay minimizationed®sely, the optimal solution of the problem allows for
an assessment and evaluation of any distributed soluticoreder, the proposed formulation allows investigating
the power-delay tradeoffs by tuning the weights associaiddthe power and delay objectives. This is an important
feature of our model allowing it to reflect various preferesdi.e., saving power, minimizing delay or balance the
tradeoff between minimizing power and delay). Thus, we otegirate the objective function of the joint Power-Delay
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minimization problem in any practical algorithm (based aown heuristic algorithms such as simulated annealing,
etc.) [16, 17].

The rest of the article is organized as follows. The perferogametrics in green wireless networks are provided in
Section 2. The different studied approaches to improvenbeyy efficiency of wireless access networks are presented
in Section 3. The definitions and notations, used througtieuarticle, are introduced in Section 4. The Power-Delay
multi-objective problem is formulated in Section 5. Thevmatk model is described in Section 6 with the models
adopted for traffic, perceived rates, delay and power in IBEE11 WLANs and LTE networks. The multi-objective
optimization approach for WLANs and LTE cases are presemtegection 7. The methods for solving the multi-
objective optimization problem are provided in Section &eThon-linear Power-Delay minimization problem is
formulated as a Mixed Integer Linear Programming (MILP)kgeon in Section 9. Reference models for power and
user association are introduced in Section 10.1. Extesginelation results for both IEEE 802.11 WLANs and LTE
scenarios are provided in Section 10. Finally, we concladesction 11.

2. Performance Metrics in Green Wireless Networks

The relevant state-of-the-art performance metrics aretieegy consumption metridhe QoS performance met-
rics and thetradeoff metrics Theenergy consumption metriese Power consumptio®® (W]), Energy consumption
(E [J]), and Area Power ConsumptioARC [W/n¥]). APC [4] is defined as the average power consumed in a cell
divided by the corresponding cell area. Reducing energgumiption in wireless networks is coupled with satisfy-
ing requiredQoS performance metric3 he differentQoS performance metriegge ThroughputTh [bit/s]), Delay or
Transmission Delay [s]), Blocking Probability BP [%]), Area ThroughputATh[bit/s/?]) [11], and Area Spectral
Efficiency (ASE[bit/s/Hz/?]). ASE [18] is defined as the summation of the spectral efficyeover a reference area.
Coverage Cov) and capacity Cap) are also used in the literature. For instance, when plgnamenergy-efficient
wireless network, the coverage constraint can be exprésgedms of the minimum achievable bit-rate at the cell
edge, and the capacity constraint can be expressed in téthesmaximum load at a BS. Finally, thedeoff metrics
are used to evaluate the tradeoff between energy consumgatich QoS performance and include Energy Efficiency
(EE [bit/Joule] or [bit/s/Watt]) and Area Energy EfficiencpEE [bit/Joulef?]). EE is defined as the average data
rate provided by the network over the power consumption efB8s. AEE [12] is defined as the EE over the area
covered by the network BSs.

3. Research Approaches in Green Wireless Networks

In this section, we provide different studies on cellulatwarks and WLANs according to the classification
presented in Section 1. We start with the planning and depéoy approaches. Then, we present studies on the cell
sizing approach coupled with the user association apprdéaohlly, we put forward the scheduling approach.

3.1. Planning and Deployment

In the planning and deployment approach, topology-spedégign perspectives and improved planning method-
ologies were developed to improve power efficiency. Diffiereetwork deployment strategies have been investigated
[4,12, 11]. The idea of deploying small, low-power micro Bffiengside with macro sites was exploited to reduce the
energy consumption of cellular radio networks[4, 12]. Sation results [4] showed that the power savings obtained
from such deployments depend strongly on the offset of siteep (both macro and micro). In fact, this offset ac-
counts for the power consumed in BSs independently of thegedransmit power. Traffic is assumed to be uniformly
distributed [4, 12]. Tombaet al.[11] introduced WLAN APs at the cell border and investigatee improvements in
energy efficiency improvements through different hetenegeis networks for both uniform and non-uniform traffic
distribution scenarios. Simulations showed that the bgmeous network composed of macro BSs and WLAN APs
gives the best energy efficiency results due to the low powasumption of APs. Moreover, an energy-efficient
deployment strategy highly depends on the area throughguadd. For instance, for a high area throughput target,
heterogeneous deployments are more energy efficient thatwank composed of only macro BSs.

However, in these deployment strategies, the network cargipn is fixed, even if the network may be composed
of various types of BS. Precisely, at the planning/deplayinséage of the network, cell size and capacity are usually
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fixed based on the estimation of peak traffic load. Howevaffit¢rload in wireless networks can have significant
spatial and temporal fluctuations due to user mobility ardhilrsty nature of mobile applications [19]. Therefore,
many studies have investigated the effects of switchingB&$ in consideration of traffic fluctuations in wireless
networks. Eunsunet al. [13] proposed a basic distributed algorithm for dynamicallitching off BSs to reduce
network energy consumption, considering the variatiorraffit characteristics over time. The results showed that
the energy saving not only depend on the traffic fluctuatibog,also on the BS density. Traffic is considered to
be homogeneous among all BSs. In another approach [14]otlerage planning in cellular networks was studied
while taking into account a sleep mode for saving energy. rékalts showed that for a careful design of the inter-
cell distance, the network energy consumption can be refluéde authors only took into account the coverage
constraints without capacity constraints. A joint desigd ananagement optimization approach of cellular networks
allowed for the adjustment of tradeoffs between the iretiah cost, operational cost, and connection quality cgst b
tuning weighting factors for each cost [20]. Moreover, B8ssawitched on and off to dynamically adapt the network
capacity to the traffic load without violating coverage doaisits. The results showed that including energy cost in
the operational cost and considering energy managematdgites at the design stages produce more energy-efficient
topologies than when only installation cost is considered.

3.2. Cell Sizing and User Association

The concept of cell sizing (zooming or breathing) by intéigghBS switching was introduced in [21]. The authors
proposed centralized and decentralized cell zooming ilhgos based on the transmission rate requirements of the
UEs and the capacity of the BSs. The results showed that glogithims save a large amount of energy when traffic
load is light, and they can leverage the tradeoff betweerggrmonsumption and outage probability. Bahilal.[22]
proposed cell breathing algorithms for WLANS that attemptgximize the overall system throughput where results
showed that this throughput is improved for both uniform aod uniform distribution.

Lorincz et al. [23] derived ILP models to minimize the network power congtion in WLANSs while ensuring cov-
erage of the active UEs and sufficient capacity for guarame®0S. The optimization consists of switching on/off
APs and adjusting their transmit power according to thditragttern during the day. Moreover, UEs are associated
with BSs according to bandwidth requirements. The reshitsved significant savings in the monthly network en-
ergy consumption when optimized network management basé&tEaactivity is implemented. By assuming that the
inter-cell interference is static, Sat al. [10] formulated a minimization problem that allows for a flae tradeoff
between flow-level performance and energy consumption.ad&associated with BSs so as to minimize the average
flow delay, and greedy algorithms were proposed for switghire network BSs on and off. The results showed that
the user association and greedy algorithms can reducetdietergy consumption, depending on the arrival rate of
the traffic and its spatial distribution and the density of &ployment. The case where BSs switch between on and
off modes without adjusting their transmit power was inigeged.

A distributed pricing-based algorithm was proposed thaigas UES to BSs and adjusts the transmission power in
a way that minimizes the network energy expenditure [24} frtain idea of the algorithm is to decrease the power
price until all of the UEs are associated with the network B¥ke algorithm provides significant energy savings
compared with a nearest-BS algorithm. For the LTE-Advarstaddard, a greedy heuristic algorithm was proposed
to switch off a BS according to the average distance of its,UBiss neglecting the actual traffic load [25]. The
algorithm minimizes the energy consumption of the netwoith@ut compromising the QoS referred by the outage
probability of the UEs.

An energy-efficient algorithm was proposed for cellulamaaks based on the principle of cooperation between BSs
[26]. In this algorithm, the BSs dynamically switch betwesstive/sleep modes depending on the traffic situation.
Another study [27] used deterministic patterns for switghBSs through mutual cooperation among BSs. QoS is
guaranteed by focusing on the worst-case transmissi@ptiea location of the UE situated in the switched-off cell.
Given the amount of time required to switch on/off a BS, fomas directed toward the design of base-station sleep
and wake-up transitions, which led to a progressive BS $wvattand on, respectively [28]. The results under realistic
test scenarios showed that these transitions are promptsated, allowing BSs to be switched on and off within a
short time.



3.3. Scheduling

In the scheduling approach, energy-efficient schedulers developed to reduce the network energy consumption
while maintaining a satisfactory service for the end UEsleViet al.[29] developed a scheduler with aims of solving
the problem of energy-efficient resource allocation in Ognal Frequency Division Multiple Access (OFDMA)
cellular systems. The results showed that energy savimgadnieved with no detriment to UE satisfaction in terms
of achieved data rate. Chenal. [30] proposed an energy-efficient coordinated scheduliegiranism to reduce the
energy consumption in cellular networks. This is done byadgitally switching off the component carrier feature
specified in LTE-A systems and BSs according to load vanatiavhile the maintaining service continuity of UEs.

Tables 1 and 2 show a survey of recent papers that studiediggeapproaches and algorithms in wireless net-
works, with focus on the metrics used for energy consum@imhQoS performance.

Table 1: Classification of approaches in green wireless orisya)

Richter | Wang | Tombaz | Eun-| Wu | Boiardi | Niu | Lorincz
sung
etal. | etal etal. etal. | etal. | etal. | etal.| etal
[4] [12] [11] (13] | [14] | [20] | [21] | [23]
Green Planning - - - - v v - -
Approaches Deployment
(Macro and micro, micro,
micro, pico, or AP) | micro | pico | pico, AP - - pico - -
BS On/Sleep/Off - - - v v v v v
Adjustment of
BS transmit power - - - - v v v v
CoMP - - - - - - - -
User association - v v - - v v v
Scheduling - - - - - - -
Metrics Energy Consumptior
E, Por APC APC | APC APC E | APC E E E,P
QoS Performance
Th, D, BP, ATh, ASE ASE - ATh BP - - BP -
Covor v v v v v v v
Cap(cf. Section 2) v v v v - v v v
Tradeoffs EE,
EE or AEE - AEE - - - - - -
Solution Optimization - - - v v v - v
Approach Heuristic - - - v v - v -
Analytic - - - - v - - -
Network Cellular v v v v v v v -
and LTE or LTE-A v v - - - - - -
Technology WIMAX - - - - - - - -
Application 2G/3G - - 3G - - GSM - -
WLAN - - - - - - - v

4. Definitions and Notations

Let us introduce some definitions to formally characterim®@es concepts used in this article.
Thetransmission delagf a given UE is defined as the inverse of the throughput pexdddy this UE.
The peak rateof a given UE is defined as the throughput experienced by thevhién served alone in the cell. The
peak rate of each UE depends on its received SNR from thengeB%. The latter depend on many factors such as
the transmit power of the serving BS, the pathloss modehémelwidth, etc.
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Table 2: Classification of approaches in green wireless orisyb)

Son | Yildiz | Bousia| Hossain| Han | Videv | Chen
etal. | etal. | etal. etal. | etal.| etal etal.
[10] | [24] | [29] [26] | [27] | [29] [30]
Green Planning - - - - - - -
Approaches Deployment
(Macro and micro - - - - - -
micro, pico, or AP)
BS On/Sleep/Off v v v v v - v
Adjustment of
BS transmit power - v v v v v v
CoMP - - - v v - -
User association v v v - v v v
Scheduling - - - - - v v
Metrics Energy Consumptior
E, Por APC P P P - P P
QoS Performance
Th, D, BP, ATh, ASE D - BP - BP Th | Th, ASE
Covor v v v - v v v
Cap(cf. Section 2) v v - v - v v
Tradeoffs
EE or AEE - - EE - - EE
Solution Optimization v - - - - - -
Approach Heuristic v v v v v v v
Analytic v - - - - - -
Network Cellular v v v v v v v
and LTE or LTE-A - - - - - v v
Technology WIMAX v - - - - - -
Application 2G/3G - - - - - - -
WLAN - - - - - - -

The coverage areaf a given BS is defined as the geographical area where thvedc®NR of each UE is above a
given minimum threshold. As the peak rate perceived by angi¥€ depends on its SNR, we thus consider that a UE
is covered if it perceives a peak rate, from at least one Bffidnithan a given peak rate thresholghtshold-

We consider a wireless access network Wity BSs. we assume that each BS operates in two modes: active mode
and sleep modeN, denotes the number of transmit power levels of a BS. Tratisigiat different power levels leads
to different coverage area sizes. The indexesl = {1,...,Nys}, andj € J ={1,..., N}, are used throughout the
paper to designate a given BS and its transmit power levagbeaively. Note that fof = 1, we consider that the BS
transmits at the highest power level, and for N, the BS is in sleep mode. We term kye K = {1,..., N}, the
index of a given UE wherd, is the total number of UEs in the network. L&t x denote the transmission delay of UE
k associated with BStransmitting at levej. Let y; j« denote the peak rate perceived by Kfom BSi transmitting
at levelj.

5. Multi-objective Optimization Formulation

Our approach is formulated as an optimization problem tbasists of minimizing the power consumption of
the network and the sum of the transmission delays of all WEkey tradeoff in our problem is between these two
objectives. On the one hand, reducing the transmit powelt Ethe BSs or switching them to sleep mode to save
energy, may result in increasing the transmission delagciBely, if there are no coverage constraints, then all BSs
could be in sleep mode, no UE is served, and the transmissiay decomes infinite. On the other hand, to minimize
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the transmission delay, each BS should transmit at the &ighmver level possible. We thus formulate the joint
Power-Delay minimization problem that enables tuning tfeglpminance of each objective. The design variables in
our Power-Delay minimization problem are as follows:

» The operation mode of the network BSs (on/sleep) and thesgponding transmit power level for active BSs.
» The users association with the network BSs.

Let A be a matrix, with elements ;, defining the operation mode of the network BSs; apdbe a binary variable
that indicates whether or not B$ransmits at leve|.

~_]1 ifBSitransmits at power levgl
"7 10 otherwise

Let ® be a matrix, with element;, defining the users association with the network BSs;éanlde a binary variable
that indicates whether or not a U@Es associated with B&

1 if UE kis associated with B§
ik = )
0 otherwise

The constraints on the decision variables are:

Z/li,j=l, Viel, 1)
jed
Z k=1 VkekK, )
i€l
AinGk=0, Viel VkeK, 3)
Aij€{0,1}, Viel,Vjel (4)
6ik€{0,1}, Viel,VkeK. (5)

Constraints (1) state that each BS transmits at only one iplewel. Constraints (2) ensure that a given UE is associ-
ated with only one BS. In practice, when BSs are in sleep mswlae UEs will be out of coverage. Thus, to prevent
UEs from being associated with a BS in sleep mode, we addredmist (3). These equations ensure that andé; x

are not both equal to one. Indeed, wheniBSin sleep modey; \, is equal to one, s x of all UEs cannot be equal
to one. Constraints (4) and (5) are the integrality constseor the decision variablel ; andg .

To eliminate some trivial cases that must not be includetiénsblution, we add the following constraints:

« If UE kis not covered by BStransmitting at the first (highest) power level, then
Ok =0. (6)

The equation (6) prevents a given UE from being associatddaMBS if that UE is not in the BS's first power
level coverage area.

« If UE kis not covered by BStransmitting at power leve, j € {2,..,N, — 1}, then
Aij6ix =0, Vief{2,.,N -1} )

Equations (7) ensure that; andd; are not both equal to one, which prevents a given UE from bessgciated
with a BS if the former is not in the BS'E" power level coverage area.

The goal of our approach is to jointly minimize the total netlwpower and the total network delay. Thus, the
two objectives are:



1. Thetotal network poweis defined as the total power consumption of active BSs in éterark. p; j denotes
the average power consumed periB&nsmitting at power levegl. Thus, the total network power, denoted by
Cyp, is given by:

Co(A) = D pij i (8)
iel, jed
The minimization of the total network power aims at redugdogver consumption of the network.

2. Thetotal network delays defined as the sum of transmission delays (cf. Section 4)l &fEs in the network.
Ti.jx being the transmission delay of IEassociated with BStransmitting at level, the total network delay,
denoted byCy, is thus given by:

Ca(A,B) = Z Ti,j,k Aij Bik- (9)
iel, jeJ keK
The minimization of the total network delay aims at selegtine best user association that incurs the lowest
sum of data unit transmission delays.

The proposed multi-objective optimization problem deddby Multiobj-Power-Delay-Min aims at computing
the transmit power level of the BSs deployed in the netwonwels as associating UEs with these BSs in a way that
jointly minimizes the total network power and the total netlwdelay. Therefore, Multiobj-Power-Delay-Min is given
by:

mlrjxlrglze Co(A),

Cd(A, 0),
subjectto (1)to(7)

6. Network Model

In this section, we investigate the problem of joint Poweddy minimization for two types of networks. Firstly,
we study the case of an IEEE 802.11g WLAN, where we considédr-gai® sharing scheme because it is the resource
sharing model that stems from the Carrier Sense MultipleeBs{CSMA) protocol adopted in WLANSs. Secondly,
we study the case of an LTE network, where we consider théifa@ sharing scheme as it corresponds to the widely
used OFDMA in LTE with a round robin scheduler.

6.1. Traffic and Delay Model

As the current downlink traffic on mobile networks is stilveeal orders higher than the uplink traffic, we only
consider the downlink traffic [31]. Moreover, elastic traffiurrently constitutes the majority of Internet traffic [32
33]. We thus consider an elastic traffic model. Furthermaeeassume that:

» The network is in a static state where users are stationary.

» The network is in a saturation state. A saturation statewsst-case scenario where every BS has persistent
traffic toward UEs.

+ For the WLAN case, the inter-cell interference is mitigabgcassigning adjacent WLAN BSso the different
IEEE 802.11 channels [34]. Particularly, in IEEE 802.1%, 2 GHz band consists of 14 overlapping channels,
each occupying a bandwidth of 22 MHz. The three non-oven@pphannels (channels 1, 6, and 11) are
commonly used when designing a WLAN. Thus, one can assignfadhese three frequencies to each network
BS in a way that minimizes co-channel overlap. Assignmenfrefuencies is essentially a map coloring
problem with three colors [35].

1For the case of WLANS, we use the term BS in this paper to deigimaaccess point.



* In LTE networks, OFDMA is adopted as the downlink accesshmetwhich allows multiple UEs to transmit
simultaneously on different subcarriers. As subcarrieegthogonal, intra-cell interference is highly reduced.
However, inter-cell interference is a key issue in OFDMAw@ks that greatly limits the network performance,
especially for users located at the cell edge. One of thedumatal techniques to deal with the inter-cell
interference problem is to control the use of frequencies tive various channels in the network [36]. There
are three major frequency reuse patterns for mitigatingriogéll interference: hard frequency reuse (such as
frequency reuse 1 and 3) , fractional frequency reuse andrsqgfiency reuse fractional [37]. Hard frequency
reuse splits the system bandwidth into a number of distinlotts|ands according to a chosen reuse factor and
neighboring cells transmit on different sub-bands. Faiainee, Frequency Reuse 3 scheme consists of dividing
the frequency band into three sub-bands and allocating amdysub-band to a given cell, in such a way that
the adjacent cells use different frequency bands. Compaitbdrequency reuse 1, this scheme leads to low
interference with at the cost of a capacity loss becauseardthird of the resources are used in each cell [38].

6.1.1. Data Rate Model in IEEE 802.11 WLANs

With IEEE 802.11, neglecting the uplink traffic leads to a tgcess scheme on the downlink channel. Accord-
ingly, when a low-rate UE captures the channel, this UE welhglize the high-rate UEs. This also reduces the fair
access strategy to a case of fair rate sharing of the radimnelhamong UEs [15] with the assumption of neglecting
the 802.11 waiting times.¢., DIFS?, SIFS). Thus, all UEs will have the same mean throughput. WhenkU&
associated with B$transmitting at levej, its mean throughplf@{‘]{k depends on its peak ratg;x and the peak rates

of other UEs associated with this same Bgi(, k' # K). R"ﬁ{,k is given by [7, 8]

1 (10)

W
Ri,j,k

F 3 G
k=Lk#k xi 0

whereg, i is the binary variable indicating whether or not WHs associated with B&

6.1.2. Data Rate Model in LTE

In OFDMA, the system spectrum is divided into a number of ecnsive orthogonal OFDM subcarriers. The
Resource Block (RB) is the smallest resource unit that caicheduled. The RB consists of 12 consecutive subcarriers
for one slot (0.5 msec) in duration. In this paper, we considitat channel model where each UE has similar radio
conditions on all the RBs. Moreover, we consider a fair-tsharing model where RBs are assigned with equal time
to UEs within a given cell. These UEs are given the same chimaecess the RBs. Based on these considerations
and on UEs being stationary, the scheduler is equivaleméctmat allocates periodically all RBs to each UE at each
scheduling epoch. Hence, when WIS associated with BStransmitting at levej, its mean throughputh,j,k depends

on its peak ratg; jx and on the number of UEs associated with the sameﬂ%%is given by [8]:
Xi,jk
RiL,j,k é’ (11)
1+ Zk'—1 k’¢k

whereg, i is the binary variable indicating whether or not WHs associated with BE

6.1.3. Delay Model in IEEE 802.11 WLANs and in LTE
TWk andT « denote the transmission delay of WErom BSi transmitting at levej in the case of a WLAN and
an LTE network respectively. As mentioned in Section 4 tthasmission delay for a given UE is the inverse of the

throughput perceived by this UE. Thus, for the WLAN{,‘J{k is given by:
& Gk

, (12)
Xijk o ZTR ek ATk

2DIFS: Distributed Coordination Function Interframe Space
3SIFS: Short Interframe Space
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and for the LTE networkT};, is given by:

Ny :
TL _ 1+ Zk’:l,k’¢k Hl,k’
ik — - :
Xi,jk

In fact, in our model, the transmission delay of a given usées on the peak rate perceived by this user. The
peak rate of each UE depends on its received SNR from thengeBS as mentioned in Section 4.

(13)

6.2. Power Consumption Model
6.2.1. Power Consumption Model in IEEE 802.11 WLANs

We consider the power consumption of an IEEE 802.11g WLANRh\BiISs working in infrastructure mode. In
practice, the transmission power of a WLAN BS is discrete dmdmaximum number of transmit power levels is
equal to 5 or 6 depending on the BS manufacturer. Followiegrbdel proposed in [11], the power consumption of
a WLAN BS is modeled as a linear function of the average trangavier:

p! = L (ar]" + b), (14)

wherep}{\]( andn‘j’v denote the average consumed power per WLAN BRd the transmit power at levgtespectively.
The coefficienta accounts for the power consumption that scales with thestn#&npower due to radio frequency
amplifier and feeder losses. The coefficibmiodels the power consumed independently of the transmiépdue to
signal processing, power supply consumption and coolirgalRthat forj = 1, we consider that the BS transmits at
the highest power level, and fgr= N;, the BS is in sleep modé reflects the activity level of the WLAN BSs. Since
we assume that the network is in a saturation state equal to onee.g, each active WLAN BS has at least one UE
requesting data and to which all resources are being atidddt 11].

6.2.2. Power Consumption Model in LTE
Following the model proposed in the Energy Aware Radio aridvwoek tecHnologies (EARTH) project [39], the
power consumption of an LTE BS is also modeled as a lineattifiumof the average transmit power:

L ) L Lo _ 1y
viel’ph:{NTRx(Vﬂj+WJ), O<mr <P, j=1...,(N - 1)

NTRXWNp ﬂ:-\h =0.
where piL’j andzt denote the average consumed power per LTE BBd the transmit power at levglrespectively.
For j = 1, we consider that the BS transmits at the highest powel, land for j = N;, the BS is in sleep mode. The
coefficientv is the slope of the load-dependent power consumption arctdumts for the power consumption that
scales with the transmit power due to radio frequency arepkind feeder losses. The coefficiemgj = 1,.., (N, -
1)) represent the power consumption at zero output powes @ctually estimated using the power consumption
calculated at a reasonably low output power, assumed to tm‘b% These coefficients model the power consumed
independently of the transmit power due to signal procegsgaower supply consumption and coolingv, is a
coefficient that represents the sleep mode power consumptigx is the number of BS transceivers.

(15)

7. Optimization Approach in WLANs and LTE Scenarios

In this section we present the multi-objective optimizatapproach for WLANs and LTE cases. For WLANS,
the proposed multi-objective optimization problem deddtg Multiobj-Power-Delay-Min-WLAN is thus obtained
from the problem Multiobj-Power-Delay-Min by replacing; and T; jx by the expressions qj)}"J’ and TLV]{k. Let
C‘F’,V and Cg" denote the total network power and the total network delayHis case, respectively. Therefore, the
Multiobj-Power-Delay-Min-WLAN problem is given by:

minimize cl(A) = Z (ar}’ +b) A, (16)
? iel,jed
Aij 6 N A bik Gk
CZV(A,Q) _ Z ( i,j Yik + i,j Yik Uik
el jedkek ALIK TR ALiK

): 17

subjectto: (1)to(7)
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For LTE, the proposed multi-objective optimization prabldenoted by Multiobj-Power-Delay-Min-LTE is thus
obtained from the problem Multiobj-Power-Delay-Min by feging p; ; andT; j« by the expressions cp‘,-J andTi',-j,k.
Let C;'3 andcg denote the total network power and the total network delayhis case, respectively. Therefore, the
Multiobj-Power-Delay-Min-LTE problem is given by:

_ Lyas . N
mwqu(])nze Cp(A)—_Z NTRX(Vﬂ'J- + W) A j, (18)
iel,jed
Aj Ok + 2N e A Ok bike
cha@) = ) LRI Skt K 19)
iel,jelkeK Xi.jk

subjectto: (1)to(7)

8. From Multi-objective Optimization to Single-objective Optimization

Solving a multi-objective optimization problem is a veryalenging task. In this section, we provide two solu-
tion methods to multi-objective optimization: tleeconstraints method and the weighted sum method. Using thes
techniques, we obtain new optimization problems with alsifpjective function, which are easier to solve than the
original problems.

8.1. e-Constraint Method

The e-constraint method is based on minimizing one objectivection and considering the other objectives as
constraints bound by some allowable leggl Hence, a single objective minimization is carried out sabjo addi-
tional constraints on the other objective functions. In owiti-objective optimization, since we have two objective
functions, this method may be formulated in two variantspneed in the following.

Power Minimization subject to Delay Constraints problefirhe power minimization subject to delay constraints
problem, denoted by Power-Min-Delay-Const, is given by:

miniAmize Cp(A), (20)

Ca(A,0) < &, (21)
subjectto: (1)to(7)

€1 is a value of the total network delay which we do not wish toeedt: The Power-Min-Delay-Const problem can be
literally expressed as: given some delay bound (constf2ir)), is there a BS operation mode and a user association
satisfying constraints (1) to (7) such that the total neknmwerC, is minimized?

Delay Minimization subject to Power Constraints problefirhe delay minimization subject to power constraints
problem, denoted by Delay-Min-Power-Const is given by:

mir)\irgize Cd(A, 9), (22)
Co(AN) < e, (23)
subjectto: (1)to(7)
e is a value of the total network power which we do not wish toeext In other words, the aforementioned problem
can be expressed as: given some power bound (constraifti@8)ere a BS operation mode and a user association
satisfying constraints (1) to (7) such that the total nelwdelay isCq is minimized?

The major drawback of such problems is that the decision m@kethe network operator) cannot estimate the total
network delay or the total network power. Thus, it is hardhoase the adequate bounds on the delay or the power.
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8.2. Weighted Sum Method

The weighted sum method consists of summing the objectimetitns combined with different weighting co-
efficients. The multi-objective optimization problem iartisformed into a scalar optimization problem, denoted by
Weighted-Sum-Power-Delay-Min:

minimize ~ Ci(A., ©) = aCy(A) +55'Cq(A. ©), (24)
subjectto: (1)to(7)

whereC; denotes théotal network costlefined as the weighted sum of the total network power andbtaértetwork
delay. 8’ is a normalization factor that will scale the two objectiyesperly. « andg are the weighting coefficients
representing the relative importance of the two objectiltds usually assumed that+ 8 = 1 and thatr andg < [0,1].
In particular, wherny equals 1 ang equals 0, we only focus on the power saving. cAdecreases anglincreases
more importance is given to minimizing the delay. By tunihg tveighting coefficients, we obtain different points
located on the Pareto frontier presenting all the compresiigtween the two objectives. The weighting coefficients
are also called tuning factors, as decision makers use théimettune the model to reflect their decision preferences.
In this article, we choose the weighted sum method in ordstudy the tradeoffs between minimizing the power
consumption of the network and minimizing the sum of UE traission delays in the network for the WLAN and LTE
cases. Let Weighted-Sum-Power-Delay-Min-WLAN and Weidkseim-Power-Delay-Min-LTE denote the scalar
optimization problems for the considered cases, respdgtiConsequently, the objective functions of these prolsle
are obtained by replacing, andCy by C}/ andCY’ for the WLAN case and byC; andCy for the LTE case,
respectively. LeC!¥ andC} denote the total network cost for WLAN and LTE cases, respelgti
Therefore, the objective function of the Weighted-Sum-Beivelay-Min-WLAN problem is given by:

N
- Djbik & A Ok B
minimize CV(A, ®) = a Z (ar +b) Ay + BB’ Z (i, i OO

e iel,jed iel,jeJkeK Xi.jk k=LK %k Xijk

); (25)

and the objective function of the Weighted-Sum-Power-p&n-LTE problem is given by:

Aij Ok + Z’l:fu:l,k'ik Aij bk bix (26)

minimize C-(A, ©) = a Z Nrrx (V5 +wj) i + BB’ Z =
A8 iel,jed iel,jeJkeK Xijk

The scalar optimization problems are binary non-lineachSuoblems can be optimally solved using an exhaustive
search algorithm [40]. However, the complexity of searghanly for the operation mode of the BS is(DrQN,N"S). This
makes the exhaustive search very computational interesieerapidly becomes intractable for modest sized networks.
Thus, in the next section we convert the optimization pnoislénto MILP problems to make them computationally
tractable.

9. Mixed Integer Linear Programming Formulation

In this section, we explain how to convert our non-linearimation problems Weighted-Sum-Power-Delay-
Min-WLAN and Weighted-Sum-Power-Delay-Min-LTE into MILR-@gblems. A MILP problem consists of a linear
objective function, a set of linear equality and inequatibnstraints and a set of variables with integer restristion
The number of constraints and variables are important faethen estimating if a problem is tractable. Generally,
MILP problems are solved using a linear-programming basaddh-and-bound approach. The idea of this approach
is to solve Linear Program (LP) relaxations of the MILP anbbtak for an integer solution by branching and bounding
on the decision variables provided by the LP relaxationsisThn a branch-and-bound approach the number of integer
variables determines the size of the search tree and inigeghe running time of the algorithm.

Based on our work [41], to linearize the non-linear optirtimaproblems we replace the non-linear terms by new
variables and additional inequality constraints whichueaghat the new variables behave according to the nonflinea
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terms they are replacing. Particularly, in the objectivections ((25) and (26)), we replace each quadratic tgJm; «
by a new linear variablg ;x and add the following three inequalities to the set of casts:

Vijk—Aij <0, Viel,VjeJVkeK, 27)
Viik—6ik<0, Viel,VjelVkeKkK, (28)
Aj+Oix-Yijks<sl Viel,VjelVkeK (29)

The inequalities (27) and (28) ensure thigl equals zero when eithdr; or 6;x equals zero, while the inequalities
(29) forcey; j« to be equal to one if both; ; andé; x equal one. Moreover, constraints (3) and (7) will be replace
respectively by (30) and (31):

yink =0, Viel,VkeK, (30)

Viik=0, Yiel,Vje {2 ..,N -1}, Yk e K/xijk < Xthreshold (31)

Similarly, we replace each ter; 6, 6, in the objective functions ((25) and (26)) by a new variahle, and add
the following inequalities to the set of constraints:

Zijkk —Aij <0, Yiel,Vje J¥k<k €K, (32)
Zjkk —0ik<0, Viel,VjeJVk<kK eK, (33)
Zjkk — O <0, Yiel,Vje JVk<Kk €K, (34)

/li,j + gi,k + Qi,kr —Zjkk < 2, VYie |,Vj e JVvk<k eK, (35)
Zijkk —Zjkk=0, Viel,VjeJVk<k eK (36)

The inequalities (32), (33) and (34) ensure thgk is equal to zero when eithe¥; j or 6 or 6;, equals zero,
while the inequalities (35) forcg; jx to be equal to one iftj, 6 and ;) are equal to one. Furthermore, as
Aij Ok B = Aij Gy 6k constraints (36) force jxi to be equal ta ji x. In addition, we give the bound con-
straints for the variableg ;k andz jx as follows:

0<yijk<l Viel,VjelJVkeK, (37)
0<zjxw <1 Viel,VjeJVk<K eK. (38)
The MILP Weighted-Sum-Power-Delay-Min-WLAN problem is givby:

Yi.ik Z jkk
JhiK Sk

minimize CY(A.X.2)=a ) (ar’ +b) 4 +p8 > ( ), (39)

iel,jed iel,jeJkeK Xijk k'eK k' #k Xijk
subjectto: (1)to (7)and (27)to (38);

wherey; jx andz jx are respectively the elements of the matriveandZ. Similarly, the MILP Weighted-Sum-
Power-Delay-Min-LTE problem is given by:

ik T Zkek o2k Z.jkk

minimize CH(A.Y.Z)=a ) (Nrex (vaj + W) ij +48 D ). (40)

iel,jed iel,jeJkeK Xi.jk
subjectto: (1) and (2§4)to (6) and (27)to (38);

The main notations used in our paper are reported in Table 3.
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Table 3: Notation Summary

Notation | Definition

I Set of network BSs

J Set of transmit power levels of a given BS

K Set of UEs in the network

Nbs The total number of BSs

N, The total number of transmit power levels

Ny The total number of UEs

Pij The average consumed power periB&nsmitting at power level

iy The transmit power at levglfor LTE BSs

n‘j"’ The transmit power at levglfor WLAN BSs

Xiik The peak rate perceived by UWHrom BSi transmitting at levej

Tijk The transmission delay of UEassociated with BStransmitting at levej

ik A binary variable that indicates if UEis associated with BE

Aij A binary variable that indicates if B&ransmits at power levgl

Yijik A real variable that indicates if UEis associated with B&
transmitting at power level

Z jkk A real variable that indicates if UEand UEK’ are associated with BiS
transmitting at power level

Table 4: Five studied settings for WLAN and LTE scenarios

Settings| Weighting coefficients value Description
S1 a =0.99,5=0.01 Preference is given to saving power
S2 a =0.75,4=0.25
S3 a=0.5,5=0.5 Balance the tradeoff between minimizing power and delay
S4 a =0.25,8=0.75
S5 a =0.01,5=0.99 Preference is given to minimizing delay

10. Performance Evaluation

To study the tradeoff between minimizing the power consimnpdf the network and minimizing the sum of UE
transmission delays in the network, we tune the values ofvifightsae andg (in (39) and (40)) associated with the
total network power and total network delay respectivatyl mvestigate the obtained solutions for WLANs and LTE
networks. We consider five settings illustrated in Table éttiBgs S1 and S2 match the case where preference is
given to power saving. Setting S3 matches the case whereter@nd delay are equally important. Settings S4 and
S5 match the case where preference is given to minimizireydel

Moreover, the normalization factgf is calculated in each simulation so as to scale the totalor&tpower and the
total network delay [42]. Furthermore, we adopt the Monté&method by generating 50 snapshots with different
random uniform UE distribution. After doing the calculat®for all the snapshots, we provide the 95% Confidence
Interval (CI) for each simulation result. In the simulati@sults, the optimal solutions are provided for the diffiere
settings (S1, S2, S3, S4, S5).

10.1. Power and User Association Reference Models

In legacy WLANS or cellular networks, BSs transmit at a fixeavpolevel, and UEs are associated with the BS
delivering the highest SNR [12, 43]. Based on these legatyarks, we devise a reference model composail thie
Highest Power Level (HPL) as the reference power model, kvhgsumes that all BSs transmit at the highest power
level, andii) the Power-based User Association (Po-UA) as the referesmeassociation model, which associates a
UE with the BS where it obtains the highest SNR. In what folpwe denote the reference model by Po-UA/HPL.
The total network power and the total network delay of thidelawill serve as reference values for comparison of
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Table 5: Covering BSs per UE vs. inter-cell distance in WLANIsrios.

Inter-cell distance [m] 120.8| 134.2| 147.6| 161.1| 1745| 187.9| 201.3| 214.8
Number of covering BSs per UE| 2.02 | 1.76 | 1.53 | 1.38 | 1.25 | 1.15 | 1.05 | 1.00

the results. In the following, we present the evaluationhmétand the simulation results for the WLAN and LTE
scenarios.

10.2. IEEE 802.11g WLAN Scenarios

10.2.1. Evaluation Method

To evaluate the tradeoff between power and delay in WLANS, @rapute the optimal solution of our MILP
Weighted-Sum-Power-Delay-Min-WLAN problem with the GLP&NU Linear Programming Kit) solver [44] over
a network topology composed of nine celld,{ = 9) using the IEEE 802.11g technology and six UEs in each cell
(Ny = 9= 6 = 54). The positioning of the WLAN BSs in the network is perfodifellowing a grid structure and the
positioning of UEs is generated randomly following a unifiodistribution.

In the BS power model, for simplicity, we set the number ohsmit power levels to threeN(=3). Precisely,
an active BS is able to transmit at two different power levated when the power level equals = 3, the BS is in
sleep mode. For the WLAN, we consider that when the BS is irpsheede, it consumes only power due to signal
processing neglecting the cooling. It is estimated thaptheer consumption of signal processing circuits accounts
for only 10% of the total consumed power [45]. Therefore, weume that in sleep mode, the WLAN BS power
consumption is negligible, and it is considered to be switebff. We aim to compute the optimal solution of the
MILP problem. Thus, if we increadd,, the granularity will be finer but the problem becomes intate. The input
parameters of the power consumption model in (14) are asAfslli) as proposed in [11], the values@andb used
in this paper ara = 3.2 andb = 10.2;ii) as proposed in [46], the transmit power at levels one andSwﬁ F0.03W
andn‘z’v =0.015 W, respectively. Hence, the average power consuere8Si € | at the first, second and third power
levels is given bypi 1 = 10.296 W,p;» = 10.248 W, andp; 3=0, respectively.

Peak rate and coverage area computatidn.NS2 [47], we implement a benchmark scenario that enahkesam-
putation of the peak rate perceived by the UE from the BS aadctiverage area of the WLAN BS. Particularly,
the benchmark scenario consists of a free propagation nwdéhracterize the WLAN radio environment, an IEEE
8021.11g BS working at 2.4 GHz, and a single UE at differessitmns. This UE receives Constant Bit Rate (CBR)
traffic from the BS with a packet size of 1000 bytes and an {ateval time of 0.4 ms corresponding to a rate of
20 Mbit/s. This leads to a saturation state of the networlo@ting to the assumption presented in section 6.1. In
these conditions, the throughput experienced by the sloglés the maximum achievable throughput (peak rate) for
the current SNR. We run this scenario for each BS transmitepdevel ¢r; = 0.03 W andr, = 0.015 W) to obtain
Xxiik andyi 2k, respectively, for the corresponding UE. Figure 2 showspiak rate perceived by the UE from the
BS, transmitting at the first and the second power level, ametibn of the distance. In addition, the coverage ra-
dius for the first and second power levels &e= 107,4 m andR, = 75,8 m, respectively. These radii correspond
to an SNR threshold that equals -0.5 dB at the cell boundanijs $NR is the minimum value to be maintained in
order to consider that a given UE is covered by a BS. It comedp to a cell edge peak rate that equals 1 Mbit/s
(xthreshoie1 Mbit/s) on the downlink. We note that, considering a maa&listic propagation model will only affect
the values of the user peak rate. The considered peak rdtbeMibwer than that considering a Free propagation
model.

In the following, the simulation results are plotted as action of the inter-cell distanc®. Particularly, this
parameter has a large impact on not only the computatiomaptaxity of the algorithm but also on the quality of
the solution. For small inter-cell distances, we obtain msgecoverage area, while large inter-cell distances peduc
a sparse coverage area. Table 5 shows the average numberedahgdBSs per UE as a function of the inter-cell
distance. FoD = 120.8 m, we obtain a dense coverage area where the averadenaf covering BSs per UE is
2.02. AsD increases, the average number of covering BSs per UE desréabe equal to one when there is no
overlap between celld) = 2R;). Figure 3 shows an example of the network topology with derinell distance
equals 120.8 m.
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Figure 4: Power saving for the considered settings in WLAN sceFigure 5: Total network delay for the considered settings fan
narios. Po-UA/HPL in WLAN scenarios.

10.2.2. Simulation Results
Let us start by examining the power saving achieved for tleedbnsidered settings, which is computed as follows:

total network power for the considered setaing

100x (1 -
( total network power for Po-UA/HPL model’

(41)

where the total network power is computed according to theevaf C}’)V in (16). Recall that in the Po-UA/HPL
reference model, all BSs transmit at the highest power level
Figure 4 plots the percentage of power saving for the fiveidensd settings as a function of the inter-cell distance
D. S1 and S2 have the highest percentage of power savingyalsuccessively by S3 then S4 fdrranging from
120.8 m to 161.1 m, while no power saving is obtaineddor 161.1 m. For instance, whdh= 120.8 m, we obtain
power saving of up to 16% in S1 and S2, followed by S3 at 12.2G8tdy S4 at 1.33%. S5 has no power saving for
any distance. In other words, in S5, we obtain a BS operatiotienmvhere all BSs transmit at the highest power level
(similar to the Po-UA/HPL model). Precisely, in this seftioreference is given to minimizing the sum of UE delays,
so when all BSs transmit at the highest level, UEs experitower delays in comparison with the case where some
of the BSs transmit at the second power level or are switckfed o

In order to examine the cause of significant power savingsitings S1, S2 and S3, we plot Fig. 6, which
illustrates the percentage of the BS operation mode®faanging from 120.8 m to 161.1 m. We see that S1 has
the highest percentages of BSs transmitting at the secomndrdevel and switched-off, followed by S2 then by S3
for the different values oD. Moreover, for these three settings, we note that wldencreases, the percentage of
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Figure 6: Percentage of BS operation modes in settings SIn&3&in WLAN scenarios.

switched-off BSs decreases, and the percentage of BS#nitting at the second power level increases. On the one
hand, this explains the decreasing curves for the correlipginter-cell distances in Fig. 4. On the other hand, for
low values ofD (i.e., 120.8 m), this behavior is due to the relatively high numifezovering BSs per UE €., 2.02

as shown in Tab. 5). Thus, the possibility of switching o 8S or transmitting at low power level is high. However,
for large D values, the number of covering BSs per UE decreases, andhthysossibility to switch off a BS or to
transmit at low power level decreases due to the coveragsredmts.

We now investigate the total network delay for the considesettings compared to the Po-UA/HPL model while
varying the inter-cell distancd). The total network delay is computed according to the vaﬁié‘é" in (17). For the
comparison of the five settings, Fig. 5 shows that S5 has thedptotal network delay, followed successively by S4,
S3, S2, and finally S1. Particularly, in S5, more weight isegivo minimizing the delaysE0.99), thus we obtain a
network operation mode where all BSs transmit at the high@ser level (as shown in Fig. 4). The problem becomes
a user association problem that aims to minimize the sumtefaork UE transmission delays. With the decreasg,of
more BSs are switched off or transmit at the second powel (@seshown in Fig. 6), and thereby UEs will experience
higher delay. Compared to the Po-UA/HPL model, we obtainlaydesduction for all the inter-cell distances in S4
and S5. For instance, the delay reduction is 4.5% and 6.64%4 Bnd S5, respectively, f@=120.8 m. However, we
obtain a higher total network delay compared to Po-UA/HPLab D in S1, S2 and S3. Further, we see that in S4
and S5, the total network delay has an increasing curveidetgcfor a given UE distribution, wheb increases, the
SNR of the UE will decrease, causing the delay to increassil&@ly, we also see thatin S2 and S3, the total network
delay has an increasing curve but with lower slope at theifitst-cell distances. In S1, the total network delay has
a decreasing curve fdd between 120.8 m and 161.1 m and then it increaseBferl61.1 m. In particular, fob
between 120.8 m and 161.1 m, more BSs transmit at either te$ii power level or the second power level (Fig.
6(a)). UEs will thereby experience a lower delay. Note thiaha curves converge to the same point. Indeed, when
D increases, the cell overlap decreases, and thus, the dgbiation for the five settings turns on the BSs to achieve
a point where all the BSs transmit at the highest power IeMebrefore, the problem boils down to a user association
problem that minimizes the sum of UE delays.

In Fig. 7, we plot the power-delay tradeoff curves for difiet inter-cell distanceB ranging from 120.8 m to
161.1 m. The five points of the illustrated curves are obthibg plotting the values of the 95% CI of the total
network power as a function of the 95% CI of the total netwazlag for the five considered settings. For all the inter-
cell distances, we obtain a reduction in the network powesamption at the cost of delay increase. In particular,
for D=120.8 m, in S5 = 0.013=0.99), we obtain the solution with the lowest total netwdefay (6.88x 107° s)
and the highest total network power (92.664 Watt); while In(& = 0.998=0.01), we obtain the solution with the
lowest total network power (77.62 W) and the highest totavoet delay (10.90< 10°° s). Moreover, we note that
when D increases, the tradeoff curves become flat. For instancé)$461.1 m, we obtain similar total network
power in the five settings. Indeed, for sparse coverage treg@roblem in the five settings becomes similar to a user
association problem where there is no longer an interegiinger-delay tradeoff. In fact, these curves represent the
Pareto frontier at different inter-cell distances. Hereceetwork operator has the option to choose the operatian poi
of the network. For instance, the operator can choose thimabinter-cell distance of his network. Moreover, the
operator has the choice to privilege power saving, minirdday, or balance the tradeoff between the two objectives.
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Figure 7: Pareto frontier at different inter-cell distas@e WLAN scenarios.

10.3. Computational complexity

In order to assess the computational complexity of the agtsulution, we calculate in the following its compu-
tation time and the number of binary integer variables. Alge compute the number of non-zero elements of the
matrix defining the constraints of the minimization problefigure 8 shows the 95% CI of the computational com-
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Figure 8: Optimal solution computational complexity measuremen

plexity measurements as a function of the inter-cell dista@®). We note that the computation time of the optimal
solution decreases whéhincreases as shown in Fig. 8(a). Precisely, wbhéncreases, the number of binary integer
variables and non-zero elements decreases as shown in(Bjagr&l Fig. 8(c). In fact, when the inter-cell distance
increases, the number of UEs covered by each BS decreadesatlikes the related solution space (for selecting the
BS transmit power level, and the user association) to belsifiaéreby, this decreases the number of binary integer
variables and non-zero elements. Moreover, we note thataweat obtain solutions for very dense networé&sy(

D < 1208 m), as the problem becomes intractable. Therefore, in oodevércome such issue, we introduce in [16] a
heuristic algorithm that computes satisfactory solutimmghe problem while keeping low computation complexity.

10.4. LTE Scenario

10.4.1. Evaluation Method

To evaluate the tradeoff between power and delay in LTE, wepete the optimal solution of our MILP Weighted-
Sum-Power-Delay-Min-LTE problem using the CPLEX solveB][4The input data for the CPLEX solver are gen-
erated using MATLAB [49]. Thus, in MATLAB, we implement an ETnetwork topology where the LTE BSs are
transmitting using omni-directional antennas in threel@gpent cases: urban, rural and realistic LTE deployment.
For both cases (urban and rural deployment), the networkagy is composed of nine celldlfs = 9) and the posi-
tioning of the LTE BSs in the network is performed followinggad structure. For the realistic LTE deployment, we
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Table 6: Simulation parameters for LTE

Parameter Value
Input parameters of power consumption modeélirgx=1,v = 4.7,w; = wp = 130 Wwz = 75 W
Transmit power m1=10 W, m5=5 W m3=0
Average power consumed per BS Pi.1=177 W, pi 2=153.5 W,pi3=75W ( € I)
Transmit antenna gain 15 dBi
Receiver antenna gain 0
Coverage radius for the first R; =500 m
and the second power levels R, =250 m
Inter-cell distance Urban: 700 m
Rural: 900 m
Pathloss model Cost 231 extended Hata model
Shadowing standard deviation 10dB
Carrier frequency 2000 MHz
Bandwidth 5 MHz
Frequency Reuse scheme 3
Number of RB per cell 8
Bandwidth per RB 180 KHz
Traffic model Full buffer
Noise figure 9dB
Thermal noise density -174 dBm/Hz
Thermal noise power -103.4 dBm

consider the positioning of the LTE network BS for théMdistrict of Paris-France, where the network topology is

composed of 18 cellfNys = 18).

The simulated LTE system bandwidth is 5 MHz. Therefore weeh2ly RBs available in each cell. We assume a
frequency reuse 3 scheme in the network to mitigate the-ggkinterference. Thus, the system bandwidth is divided

into three equal sub-bands, each of these sub-bands iat@itbto cells in a manner that no other surrounding cell is
using the same sub-band. Consequently, we have eight RBstdean each cell. The fair-time sharing model is used,

and the scheduler allocates periodically all RBs to each ti#aeh scheduling epoch as explained in Section 6.1.2.
Moreover, we assume a full buffer traffic model. The simolatparameters and the pathloss model follow those in
[39, 50, 51], which are summarized in Tab. 6.

Propagation model.The Cost 231 extended Hata model is used for modeling the @ddinnel of the LTE BS in
urban [51] and rural [50] environments, with a carrier fregoy f of 2000 MHz. The shadowing is represented by
a random variable following a normal distribution with a mesd 0 dB and a standard deviation of 10 dB. For urban
deployment cases, the antenna helgh¢quals 30 m, the UE height, equals 1.5 m, the area type correction factor
Cm equals 3 dBm, and the UE-BS separation is denoted [lBym]. Therefore, the urban path logs is given by:

L, = 46.3+339xlo0g;((f)-13.82%x100;4(ha) —a+ (44.9-6.55x10g10(hy,)) x l0g;,(d) + Cry + shadowing[d B]; (42)

wherea = (1.1 x log;o(f) — 0.7) x hy — (1.56 x log;o(f) — 0.8).
For rural deployment cases, the antenna height equals 4henefbre, the rural path loss is given by:

L, = 6955+ 26.16 x log () — 13.82x log;¢(ha) + (44.9 — 6.55 x l0g;(ha)) X l0g;4(d)

—-4.78x% (Ioglo(f))2 + 1833 x log () — 40.94 + shadowing[dB]; (43)

Peak rate computationKnowing the path loss, the signal strenghy received by UEK from BSi transmitting at
power levelj is calculated according to:
Sijk =10x |Oglo(7r'j‘ x 1000)- (PathLoss- TransmitAntennaGair ReceiverAntennaGain[dBm. (44)
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The SNR detected by UEfrom BSi transmitting at power levelis thus given by:
SNRjk = Si jk — ThermalNoisePowefdB], (45)
where the thermal noise power is given by:

ThermalNoisePowet 10x log,;;(1000x T hermalNoiseDensity BandwidthperRB

x NumberofRBperCélk NoiseFigure[dBm. (46)

Knowing the SNR, the spectral efficiency (in bit/s/Hz) is qarted according to Fig. 9 in the 3GPP TR 36.942 [51].
As mentioned earlier, the scheduler allocates all RBs tofhat each scheduling epoch. Therefore, to compute the
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o

Figure 9: Spectral efficiency in LTE as a function of SNR [51].

peak ratey; jx perceived by UK from BSi transmitting at power levelin bit/s, we multiply the value obtained from
Fig. 9 by the bandwidth per RB and by the number of RBs per bldkt, we consider urban and rural deployments,
and assess the impact of the end UEs position in the cell oacthievable tradeoffs.

10.4.2. Simulation Results for a Urban Deployment
For the urban deployment, we consider an inter-cell digai@00 m, and we provide simulation results for both
uniform and non-uniform UE distributions.

Uniform Distribution of UEs. We consider six UEs in each cell, and a total of 54 UBs£ 9x6 = 54) in the network.
The positioning of UEs is generated randomly following afamn distribution. In the present urban deployment, the
number of covering BSs per UE equal$.1 As illustrated in Tab. 4, we recall that settings S1 and $2cmthe
case where preference is given to power saving. Setting $&hemthe case where the power and delay are equally
important. Settings S4 and S5 match the case where preéeiggiven to minimizing delay.

We illustrate in Fig. 10 the percentage of power saving ferdbnsidered settings, which is computed as follows:

total network power for the considered setting
total network power for Po-UA/HPL model’

100x (1 - (47)

where the total network power is replaced by the expressﬁ@tdn (18). Figure 10 shows that settings S1 and S2
exhibit the highest percentage of power saving at 3.5%oviedtl by S3 at 2% and by S4 and S5 at 0.4%. In order to
examine the cause of power savings in settings S1, S2 andesgravide the percentage of the operation modes of
the BSs in Tab. 7. S1 has the highest percentages of BSs itingrat the second power level and in sleep mode,
followed by S2 and S3.

The percentage of power saving is relatively low. This isause the power consumption of sleep mode (75 W)
constitutes 42% of the power consumption of the highest ptavel (177 W).
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Table 7: Percentage of the BS operation modes [%]

First power level| Second power level Sleep
S1 82 15.33 2.67
S2 82.44 14.89 2.67
S3 88.89 9.78 1.33
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Figure 13: Total network delay for setting S3 and for Po-URIH
for non-uniform UEs distribution in LTE scenario for a urbaer
ployment.

Figure 12: Power saving for setting S3 for non-uniform UEs di
tribution in LTE scenario for a urban deployment.

Let us investigate the total network delay for the considesettings compared to the Po-UA/HPL model. The
total network delay is computed according to the expresefcmg given in (19). Figure 11 shows that S5 has the
lowest total network delay, followed successively by S4, 83, and S1. Particularly, in S5 preference is given to
minimizing the delay£=0.99). As for scenarios with decreasing valueg,ahore BSs transmit at the second power
level or are in sleep mode (as shown in Tab. 7). Thus, UEs euer higher delays. Compared with the Po-UA/HPL
model, we obtain a reduction in the total network delay tlyateds 3.6% in S3, while in S4 and S5, the delay reduction
equals 8.1%.

Non-Uniform Distribution of UEs.In this case, the positioning of the UEs is generated in tHdallowing a Gaus-

sian distribution centered at the BS positioning with a m@an and a standard deviation of 200 m. The simulated
results are plotted as a function of the number of UEs per(egjl we consider the cases of 6, 8, 10 and 20 UEs per
cell), and we only study the performance of setting S3. In ER) the percentage of power saving decreases as the
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number of UEs per cell increases. Precisely, with the irsred the number of UEs per cell, the BS cannot operate
at low power level or sleep mode due to the coverage contrdtoreover, considering the case of six UEs per cell,
the percentage of power saving for non-uniform UE distidou{4.3%) is higher than that of the uniform distribution
for the same setting S3 (2%, as shown in Fig. 10). This is ksxdn the former case UEs are located near the BS,
the BS can lower its transmit power level.

Fig. 13 shows that the total network delay increases as tmbauof UEs per cell increases. Precisely, the transmis-
sion delay of a UE associated with a given BS is proportiom#hé number of UEs associated with the same BS (as
given in (13)). Moreover, the obtained total network dekjoiwver than in the Po-UA/HPL case.

The percentage of power saving for both uniform and noneamifdistributions is relatively low. In fact, the power
saving depends on the power consumption of sleep mode atn@ gotver consumption of the second transmit power
level. Particularly, in the case studied, the former (75 Wyresents 42% of the power consumption at the highest
power level (177 W), and the latter (153.5 W) represents 86.fftegpower consumption at the highest level.

10.5. Simulation Results for a Rural Deployment

For the rural deployment, we consider an inter-cell distawf®@00 m. Moreover, we consider six UEs in each cell,
and a total of 54 UEs in the network. The positioning of UEsdeerated randomly following a uniform distribution.
In this rural deployment, the number of covering BSs per Uiaésj11. The simulation results show that we obtain
no power saving for any studied setting. Moreover, we olttaérsame average total network delayl@&9x 10-°) for
the considered settings, with a delay reduction of 0.01%jpaoed to Po-UA/HPL. Therefore, in rural environments,
where UEs are usually covered by one BS, there is no sulatgaiin compared with a reference model, and thus
power saving and delay reduction are superfluous. TableBsstiw total network delay for the considered settings
and for Po-UA/HPL in a rural environment.

Table 8: Total network delay [s] for the considered settiagd for Po-UA/HPL in a rural environment

Po-UA/HPL Mean 5.2027x107°
95% CI| [5.186x107°,5.218x107]
Settings S1to S5 Mean 5.1439x107°
95% CI | [6.1357x107°, 5.1522x107°]

10.6. Simulation Results for a Realistic LTE Deployment

We consider the realistic positioning of the LTE network BSthe 14" district of Paris-France [52]. The network
topology is composed of 18 cellfgs=18) and the positioning of UEs follows a random uniform dligttion, as
shown in Fig. 14. We only study the performance of setting $&ne preference is given to saving power. The

A Active BS First power « UE
35001 level coverage

3000
2500
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1500
1000

500

-500 . . . . . .
-500 0 500 1000 1500 2000 2500 3000

Figure 14: LTE network topology of the ¥district of Paris.

simulated results are plotted as a function of the numberkd per cell. Due to the large scale test scenario, the
memory space limitation and the high computational compledf the considered problem, we only consider the
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cases of 6, 8, 10 and 20 UEs per cell. Fig. 15 shows that weroptaver saving up to 22.3% compared with legacy
solution. Moreover, the percentage of power saving deesas the number of UEs per cell increases. Precisely,
with the increase of the number of UEs per cell, the BS canpetaie at low power level or sleep mode due to the
coverage constraints. Fig. 16 shows that the obtainednietalork delay is close to the Po-UA/HPL case. Moreover,
the total network delay increases as the number of UEs pkincetases. Precisely, the transmission delay of a UE
associated with a given BS is proportional to the number of B&sociated with the same BS (as given in (13)). We
note that the obtained results are similar to the one olddaméhe case of urban deployment (as shown in Fig. 12),
but with a higher percentage of power saving. In fact, in tfesent case, we consider setting S1 where preference is
given to power saving.

11. Conclusion

In this paper, we considered the joint optimization probk#nsaving power and minimizing transmission delay
in wireless access networks. We formulated a multi-objeatiptimization problem that consists of finding a trade-
off between reducing the network power consumption anccBetgthe best user association that incurs the lowest
transmission delay. Our formulation was studied for IEER.&Qg and LTE technologies. We presented different
approaches to multi-objective optimization and used thiglted sum method to solve the problem. We provided a
MILP formulation of the problem to make it computationaltgdtable. Moreover, different settings reflecting various
preferences were carried out by tuning the weights of thegp@nd delay objectives. Simulation results showed that
for a power reduction setting, we obtained significant posestings of up to 16% in WLANs compared with legacy
solutions. Moreover, our optimization results revealeslithpact of the network topology, particularly the intettce
distance, on both objectives. In an LTE network, we studieditnpact of urban, rural and realistic deployments on
the achievable tradeoffs. The power savings mainly depandser distribution and on the power consumption of the
sleep mode. Compared with legacy solutions, we obtainecgpsavings of up to 22.3% in a realistic LTE network
in Paris-France. Finally, our optimization approach rexdlihe transmission delay by 6% in a WLAN and 8% in an
LTE network when adequately tuned.

The MILP formulation cannot deliver solutions in a reasdaamount of time due to computational complex-
ity issues. In our work [16, 17], we propose heuristic altyoris for the joint Power-Delay minimization problem
that overcome such issues. The heuristic algorithms caengatisfactory solutions for the problem while keeping
the computation complexity suitably low for practical irapientations. Therefore, in the aforementioned papers, a
detailed comparison between the analytical models andehastics is provided. However, the aim of the present
paper is to study only the different optimization modelstfar joint Power-Delay minimization problem.

For future work, we plan to extend our model to take into actdhe inter-cell interference as it will make
transmitting at the highest power level less attractivesi@es, the expected percentage of power saving and delay
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reduction will be more interesting. Another interestinggpective is to study the dynamics of the network and its
impact on power saving and delay minimization. In particulg need to take into consideration the mobility of UEs,
the arrival and departure of the UEs in the network.
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