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Abstract

Scheduling wireless links for simultaneous activation in such a way that
all transmissions are successfully decoded at the receivers and moreover
network capacity is maximized is a computationally hard problem. Usu-
ally it is tackled by heuristics whose output is a sequence of time slots in
which every link appears in exactly one time slot. Such approaches can be
interpreted as the coloring of a graph’s vertices so that every vertex gets
exactly one color. Here we introduce a new approach that can be viewed
as assigning multiple colors to each vertex, so that, in the resulting sched-
ule, every link may appear more than once (though the same number of
times for all links). We report on extensive computational experiments,
under the physical interference model, revealing substantial gains for a
variety of randomly generated networks.
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1 Introduction

Let L be a set of wireless links, each link i ∈ L characterized by a sender
node si and a receiver node ri. Depending on the spatial disposition of such
nodes, activating more than one link simultaneously creates interference that
may hamper the receivers’ ability to decode what they receive. In the physical
interference model [1], the chief quantity governing receiver ri’s ability to decode
what it receives from si when all links of a set S containing link i are active is
the signal-to-interference-and-noise ratio (SINR), given by

SINR(ri, S) =
P/dαsiri

N +
∑

j∈S\{i} P/d
α
sjri

, (1)

where P is a sender’s transmission power (assumed the same for all senders),
N is the noise floor, dab is the Euclidean distance between nodes a and b, and
α > 2 determines the law of power decay with Euclidean distance. We say that
a nonempty subset S of L is feasible if no two of its members share a node (in
case |S| > 1) and moreover SINR(ri, S) ≥ β for all i ∈ S, where β is a parameter
related to a receiver’s decoding capabilities (assumed the same for all receivers)
and is chosen so that β > 1.

Several strategies have been devised to maximize network capacity, either
through the self-contained scheduling of the links in L for activation [2–15] or
by combining link scheduling with other techniques [16–22]. All these strate-
gies revolve around formulations as NP-hard optimization problems, so all rely
on some form of heuristic procedure drawing inspiration from various sources,
some merely intuitive, others more formally grounded on graph-theoretic no-
tions. Often the problem is formulated in a spatial time-division multiple access
(STDMA) framework, that is, assuming essentially that time is divided into
time slots, each one accommodating a certain number of simultaneous link ac-
tivations. In this case, the problem is to find T feasible subsets of L, here
denoted by S1, S2, . . . , ST , minimizing T while ensuring that every link appears
in exactly one of the T subsets.

There is a sense in which this formulation can be interpreted in the context
of coloring a graph’s vertices. Specifically, if we regard the links to be scheduled
as vertices in a graph, and furthermore say that no two vertices of a group are
neighbors of each other if the corresponding set of links is feasible, then the
schedule given by the sequence S1, S2, . . . , ST of feasible link sets establishes
a coloring of the graph’s vertices with T colors in which all vertices in Sk get
color k. This interpretation suggests a generalization of the above formulation
that requires every link to appear not in exactly one of the T subsets but in
any number q of subsets, provided this number is the same for all links. In
this generalized formulation, the goal is no longer to minimize T , but rather
to find the values of T and q that minimize the ratio T/q. Returning to the
vertex-coloring interpretation, now a vertex receives q (out of T ) distinct colors,
each relative to the time slot in which the corresponding link is scheduled to be
activated (i.e., q of the subsets S1, S2, . . . , ST ).
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The potential advantages of this multicoloring-based formulation are tanta-
lizing. If the original formulation leads to a number T of slots while the new
one leads to T ′ > T slots for some q > 1, the latter schedule is preferable to the
former, even though it requires more time slots, provided only that T ′/q < T
(or qT > T ′). To see that this is so, first note that the longer schedule promotes
an overall number of link activations given by q|L| in T ′ time slots. In order for
the shorter schedule to achieve this same number of activations, it would have
to be repeated q times in a row, taking up qT > T ′ time slots.

The possibility of multicoloring-based link scheduling in the physical inter-
ference model seems to have been overlooked so far, despite the recent demon-
stration of its success in the protocol-based interference model [22]. Here we
introduce a heuristic framework to obtain multicoloring-based schedules from
the single-color schedules produced by any rank-based heuristic (i.e., one that
decides the time slot in which to activate a given link based on how it ranks rela-
tive to the others with respect to some criterion). We use two iconic single-color
heuristics (GreedyPhysical [3], for its simplicity, and ApproxLogN [8, 15], for
its role in establishing new bounds on network capacity), as well as a third one
that we introduce in response to improvement opportunities that we perceived
in the former two. Incidentally, the latter heuristic, called MaxCRank, is found
to perform best both as a stand-alone, single-color strategy and as a base for
the multicoloring scheme.

2 Single-color schedules

Rank-based heuristics for single-color scheduling are usually monotonic, in the
sense that first S1 is determined, then S2 out of the set R of links that remain
to be scheduled, then S3 out of a smaller R, and so on, until R becomes empty.
Choosing a link to add to the current Sk depends on the feasibility of the
resulting set and also on a ranking criterion that is specific to each heuristic.
The ranking criterion establishes the order in which the links in R are to be
considered for inclusion in Sk.

The following is the general outline of such a heuristic.

1. Let k := 1, Sk := ∅, and R := L. Order R according to the ranking
criterion.

2. If a link i ∈ R exists such that Sk ∪ {i} is feasible, then move the top-
ranking such i from R to Sk and go to Step 3. If none exists, then let
k := k + 1, Sk := ∅, and go to Step 2.

3. If R 6= ∅, then reorder R according to the ranking criterion and go to
Step 2.

4. Let T := k and output S1, S2, . . . , ST .

Steps 1–4 amount to scanning the set R of unscheduled links and moving to the
current Sk (in Step 2) the top-ranking link i ∈ R whose inclusion in Sk preserves
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feasibility. Whenever such a move does occur, an opportunity is presented for
R to be reordered (in Step 3) according to the ranking criterion.

It is easy to see that both GreedyPhysical and ApproxLogN can be cast in
this sequence of steps in a straightforward manner. The ranking criterion for
GreedyPhysical is nonincreasing and refers, for link i, to the number of links
in L with which i can never share a time slot; that is, links j ∈ L such that
{i, j} is infeasible. It is then an immutable ranking criterion and consequently
the reordering in Step 3 is moot. As for ApproxLogN, its ranking criterion is
nondecreasing, but now refers to the Euclidean distance between the sender and
the receiver in each link. This criterion, too, is fixed and as such renders the
reordering in Step 3 once again moot.1

We now introduce a new heuristic that can also be viewed as instantiating
Steps 1–4, but with a ranking criterion that is both more stringent than the
two just described and also inherently dynamic, thus justifying the reordering
in Step 3. We call it MaxCRank to highlight its core principle, which is to
maximize the number of links in R that still have a chance of joining the current
Sk (i.e., remain “Candidates”) once a decision is made on which one of them,
say i, is to be moved from R to Sk. The corresponding ranking criterion is
nondecreasing and refers to the number of links j ∈ R \ {i} for which Sk ∪{i, j}
is infeasible.

3 Multicoloring-based schedules

The link sets S1, S2, . . . , ST output by Steps 1–4 of Section 2 promote a number
of link activations given by |L|, one activation per link. If this schedule were to
be repeated q times in a row for some q > 1, the total number of link activations
would grow by a factor of q and so would the number of time slots used. That
the same growth law should apply both to how many links are activated and
to how many time slots elapse indicates that the most basic scheduling unit is
S1, S2, . . . , ST itself, not any number of repetitions thereof.

However, activating the links in S1 the second time around does not neces-
sarily have to be restricted to time slot T + 1. Instead, it may be possible to
take advantage of some room left in previous time slots for at least one of the
links in S1. With this type of precaution in mind, advancing link activations in
such a manner might result in a sequence of link sets S1, S2, . . . , ST ′ containing
exactly q activations of every link in L for some q > 1 but with T < T ′ < qT .
Clearly, in this case the most basic scheduling unit would be S1, S2, . . . , ST ′ ,
not S1, S2, . . . , ST any more. Not only this, but the new basic scheduling unit
would be preferable to the previous one, since a total of q|L| link activations
would be attainable in fewer time slots (T ′ rather than qT ).

A heuristic to find the greatest q > 1 for which T ′ < qT , if any exists, is
simply to wrap Steps 1–4 in an outer loop that iterates along with q = 1, 2, . . .

1ApproxLogN replaces the requirement of feasibility in Step 2 by conditions that are suf-
ficient for it to be satisfied. This is done to make sure that certain algorithmic performance
guarantees hold, but that is of no concern to us here.
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while preventing Sk from being reset to ∅ any later than the first time it is
considered. At the end of each iteration, say the qth, the value of T ′ is updated
(to the number of time slots elapsed since the beginning) and the ratio T ′/q
is computed. The iterations continue while this ratio is strictly decreasing. At
the end of the first iteration we get T ′ = T , but successful further iterations
will produce a sequence of strictly decreasing T ′/q values. A new quantity of
interest is then the gain G incurred by the resulting heuristic, that is, the ratio
of T to the last T ′/q, hence G = qT/T ′. The least possible value of G, of course,
is G = 1, which corresponds to the case in which the iterations fail already for
q = 2.

4 Experimental setup

We give results for two families of randomly generated networks, henceforth
referred to as type-I and type-II networks. As will become apparent, type-I
networks are more realistic. We use type-II networks as well because they were
used in the performance evaluation of ApproxLogN [8, 15] and thus provide a
more direct basis for comparison. A network’s number of nodes is henceforth
denoted by n.

A type-I network is generated by first placing all n nodes inside a square
of side ℓ uniformly at random. A node’s neighbors are then determined as a
function of the value of dsiri for which SINR(ri, {i}) = β. Denoting such a
distance by ρ yields ρ = (P/βN)1/α, so a node’s neighbor set is the set of nodes
to which the Euclidean distance does not surpass ρ. Any two nodes that are
neighbors of each other become a link in L, sender and receiver being decided
uniformly at random (so that a node may, e.g., be the sender in a link and the
receiver in another). For fixed n, increasing ℓ causes the number of links, |L|,
to decrease precipitously, though in the heavy-tailed manner of an approximate
power law (Fig. 1). It also causes the network’s number of connected components
to increase from about 1 to nearly n (a component per node) through a sharp
transition in between (Fig. 2).

In a type-II network, the number n of nodes is necessarily even. Of these,
n/2 are senders and n/2 are receivers. A type-II network is generated by first
placing the receivers uniformly at random inside a square of side ℓ and then,
for each receiver, placing the corresponding sender inside a circle of radius ρ
centered at it, also uniformly at random. A type-II network has n/2 links and
connected components. Varying ℓ affects interference only.

5 Results

We give results for all three single-color heuristics mentioned in Section 2,
namely GreedyPhysical, ApproxLogN, andMaxCRank, and also for their multicoloring-
based versions, obtained as explained in Section 3. These results are given as
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Figure 1: Average number of links in type-I networks as a function of the square
side ℓ for n = 100. All data points are averages over 1 000 network instances.
Additional relevant parameters are P = 300 mW, N ≈ 8 × 10−14 W (for a
bandwidth of 20 MHz at room temperature), α = 4, and β = 25 dB.
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Figure 2: Average number of connected components in type-I networks as a
function of the square side ℓ for n = 100. All data points are averages over
1 000 network instances. Additional relevant parameters are P = 300 mW,
N ≈ 8 × 10−14 W (for a bandwidth of 20 MHz at room temperature), α = 4,
and β = 25 dB.
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T/|L| in the former case (the normalized schedule length, since |L| is a clear
upper bound on T ), and as the gain G in the latter.

The data in Fig. 3 refer to type-I networks and as such are given as a func-
tion of the square side ℓ. The number of nodes is fixed throughout (at n = 100),
so the networks get sparser (fewer links, more connected components) as ℓ is
increased. In the single-color cases (panel (a) of the figure), all three heuris-
tics start out with T = |L| for the very dense networks (very small ℓ), but
smaller densities quickly reduce interference so that T falls significantly below
|L|. MaxCRank is the best performer throughout, followed by GreedyPhysical
and ApproxLogN. As for the heuristics’ multicoloring-based versions (panel (b)),
there is practically no gain for the densest networks, but again this is reversed
as interference abates with increasing ℓ. MaxCRank is still the top performer
and ApproxLogN the bottom one (in fact, the only of the three heuristics for
which G = 1 is sometimes attained).

The results for type-II networks, given in Fig. 4, are presented as a function of
|L| = n/2, the number of links. Because ℓ is fixed throughout (at ℓ = 1 000 m),
increasing |L| causes the impact of accumulated interference to be felt more
severely. One consequence of this is that, for the single-color heuristics (panel (a)
of the figure), T increases almost linearly with |L|. Another consequence, now
related to the multicoloring-based versions of the heuristics (panel (b)), is that
gains above 1 are increasingly hard to come by as |L| is increased. MaxCRank
continues to be the top performer in all cases, followed by GreedyPhysical, then
by ApproxLogN.

6 Discussion

Although it may at first seem striking that ApproxLogN has performed so poorly
across most of our experiments, it should be kept in mind that this heuristic,
in all likelihood, was never meant as a serious contender for single-color link
scheduling. In fact, and as noted in Section 2, ApproxLogN approaches the
checking of feasibility rather indirectly, verifying sufficient conditions for feasi-
bility to hold instead of the property itself. This is bound to prevent Approx-
LogN from scheduling links for activation when they could be scheduled. What
must be kept in mind, then, is that the use of such indirect conditions has led to
important performance and capacity bounds. ApproxLogN, therefore, remains
an important contribution despite its performance in more practical settings.

What really is striking in our results, though, is the appearance of greater-
than-1 gains practically across the board, particularly for MaxCRank or Greedy-
Physical as the base, single-color heuristic. Link schedules, once determined,
are meant to be used repetitively, so every link is already meant to be sched-
uled for activation over and over again, indefinitely. Conceptually, what our
multicoloring-based wrapping of single-color heuristics tries to do is to inter-
twine some number of repetitions of a single-color schedule, taking up fewer
time slots than the straightforward juxtaposition of the same number of rep-
etitions of that schedule. By doing so, more link activations can be packed
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Figure 3: Performance of GreedyPhysical, ApproxLogN, and MaxCRank on
type-I networks. Data are given for the heuristics’ single-color versions (a) and
for their multicoloring-based versions (b). All data points are averages over
1 000 network instances. Confidence intervals are less than 1% of the mean at
the 95% level, so error bars are omitted. All networks have n = 100 nodes.
Additional relevant parameters are P = 300 mW, N ≈ 8 × 10−14 W (for a
bandwidth of 20 MHz at room temperature), α = 4, and β = 25 dB.
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Additional relevant parameters are P = 300 mW, N ≈ 8 × 10−14 W (for a
bandwidth of 20 MHz at room temperature), α = 4, and β = 25 dB.

9



together in earlier time slots. As a consequence, the basic schedule to be used
for indefinite repetition is now one that leads to higher network capacity and
possibly higher throughput.

As we mentioned earlier, multicoloring-based link scheduling of the sort we
have demonstrated has roots in the multicoloring of a graph’s vertices (as well
as edges, in many cases). As such, a rich body of material, relating both to
computational-complexity difficulties and to workarounds in important cases,
is available. Further developments should draw on such knowledge, aiming to
obtain more principled, and perhaps even better performing, heuristics.
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