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Abstract

Malware is a major threat to security and privacy of network users. A large variety of malware is typically
spread over the Internet, hiding in benign traffic. New types of malware appear everyday, challenging both
the research community and security companies to improve malware identification techniques. In this paper
we present MAGMA, MultilAyer Graphs for MAlware detection, a novel malware behavioral classifier. Our
system is based on a Big Data methodology, driven by real-world data obtained from traffic traces collected in
an operational network. The methodology we propose automatically extracts patterns related to a specific
input event, i.e., a seed, from the enormous amount of events the network carries. By correlating such
activities over (i) time, (ii) space, and (iil) network protocols, we build a Network Connectivity Graph that
captures the overall “network behavior” of the seed. We next extract features from the Connectivity Graph
and design a supervised classifier. We run MAGMA on a large dataset collected from a commercial Internet
Provider where 20,000 Internet users generated more than 330 million events. Only 42,000 are flagged as
malicious by a commercial IDS, which we consider as an oracle. Using this dataset, we experimentally
evaluate MAGMA accuracy and robustness to parameter settings. Results indicate that MAGMA reaches
95% accuracy, with limited false positives. Furthermore, MAGMA proves able to identify suspicious network
events that the IDS ignored.

Keywords: Network traffic modeling; Malware characterization; Malicious behaviors detection; Graph
networks; Automatic classification

1. Introduction

Information security over the Internet remains
a primary concern for consumers, enterprise, and
government alike. Malware infiltrates and spreads
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measures. Recent industry reports disclose that
zero-day vulnerabilities have increased by 61% [2],
and existing antivirus software’s detection rate of a
newly created virus is less than 5% [3].

Different approaches have been taken by security
practitioners, ranging from instruction set and code
analysis, to traffic characterization of infected hosts
(see Sec. 2 for more details). Several methodologies
have been proposed, each targeting a specific family
of threats, e.g., botnets [4], click fraud [5, 6], exploit
kit [7], or drive-by downloads [8]. Often, the detec-
tor leverages specific features that, while effective
for the targeted malicious activity, become useless
when considering a different type of threat.

In this paper, we have at the ambitious goal of
designing a classifier that aims at detecting any
generic malicious pattern. We do not target a spe-
cific type of threats, but any family of malware. To
do so, we follow a data-driven approach. We con-
sider the actual traffic observed in a live network
where users access the Internet. From the packets
and flows, we extract and log events with the use
of a passive monitoring tool. An event could be a
HTTP request, a DNS response, or simply a TCP
flow going to a remote host using an unknown pro-
tocol. Millions of events are recorded per hour.

We consider a target event under analysis, that
we call the seed, and we build a classifier that has
to return a binary answer to the question: is the
seed part of a benign or a malicious activity? To
provide the answer, we adopt Big Data techniques
where correlation among events is extracted to pro-
duce an augmented summary of the overall activity
related to the presence of the seed. We represent
such summary as a Network Connectivity Graph,
i.e., a graph where nodes and edges model the sub-
set of events tightly correlated with the seed under
study. The purpose of the Network Connectivity
Graph is twofold. First, it provides a set of “foren-
sic” information for the security analyst to support
her in understanding the traffic involved in an acci-
dent. Second, using a supervised learning approach,
the Network Connectivity Graph is used to extract
a model of the typical behavior of malicious or be-
nign events.

The result is MAGMA, MultilAyer Graphs for
MAlware detection. MAGMA is a system able to
process the enormous amount of traffic coming from
operational large-scale networks, and to identify the
subset of relevant events belonging to the same ac-
tivity of the event under consideration.

MAGMA employs Big Data techniques based on

a filtering and enrichment processes that leverages
(i) temporal and (ii) spatial repetitiveness of events
generated over time by multiple hosts. MAGMA
looks for common patterns across different time
snapshots generated by hosts connected to the net-
work. Intuitively, it extracts those repetitive sub-
sets of events that appear in most of the observation
windows. In practice, as few as three observations
of a seed are enough to trigger the analysis.

We use a real traffic collected from an commer-
cial network where more than 20,000 households are
connected to the Internet. By using a commercial
Intrusion Detection System (IDS) as oracle, we ob-
tain a list of more than 42,000 malicious events that
belong to more than 150 different threats, including
exploit kits, Drive-by downloads, malicious toolbars
generating click-frauds, and hosts participating in
botnets. Each presents very different characteris-
tics. Out of those, about 40,000 (95%) meet the
repetitive properties required to extract the corre-
sponding Network Connectivity Graphs, which we
consider representative of malicious activities. Fol-
lowing the same approach, we select a subset of ran-
dom benign events and extract graphs representing
benign activities.

This forms a labeled dataset that we use to train
and test the performance of decision tree based
classifiers.!  We follow all the best practice dic-
tated by the machine learning community to run
a thorough evaluation. Despite the heterogeneity
of both malicious and benign patterns, MAGMA
achieves a classification accuracy higher than 95%.
In addition, our performance evaluation reveals
that MAGMA is very robust to parameter settings.

The contributions of our work, MAGMA, are as
follows:

e We propose a methodology that extracts and
represents the activity correlated with the oc-
currence of a seed, which allows the subsequent
identification of benign and malicious traffic.

e We train a classifier that explicitly targets
generic malware activity, and it is not tailored
to a specific threat or malware class.

e We provide augmented information to the se-
curity analyst to uncover hidden malware be-
haviour and provide forensic information.

IInterested researchers that would like to access the
dataset have to contact the authors and sign a Non-disclosure
agreement (NDA).



This work extends our preliminary analysis of
malware traffic that appeared in [9], where the Net-
work Connectivity Graph concept was introduced.
Here, we build upon it to engineer a behavioral
classifier whose performance are evaluated and dis-
cussed thoroughly.

The paper is organized as follows: Sec. 2 presents
the related works. Sec. 3 provides an overview of
the scenario in which we operate detailing the avail-
able dataset. Sec. 4 provides an introductory de-
scription of the intuitions behind MAGMA design.
Sec. 5 provides a formal description of the graph
construction processes. Sec. 6 details the charac-
teristics of the graphs, while Sec. 7 describes the
supervised classifier design. Results are discussed
in Sec. 8, before drawing conclusions in Sec. 9.

2. Related work

The increased popularity of the Internet and par-
ticularly the web to spread malware and infect com-
puters, has led to vast amounts of research that
attempt to identify malware using the traffic gener-
ated by such threats. The literature suggests for a
variety of techniques that can be employed in this
context. We focus our attention on three macro-
groups of malware traffic detection techniques, be-
ing those the most related to our work. We discuss
how previous works in the fields of graph-based de-
tection approaches, multi-protocol traffic correla-
tion, and infection phase identification relates to
our research.

Graph-based Malware Detection

Previous work has explored graph-based ap-
proaches to detect malware. In [10], the authors
build a bipartite graph consisting of domain names
of failed DNS queries and host issuing such queries.
Given this DNS failure graph, a graph decomposi-
tion algorithm is then applied to iteratively extract
dense subgraphs. The intuition is that host infected
by the same malware usually query for the same,
similar or correlated set of domain names. The sub-
graphs generated are further classified in different
categories and characterized by exploring their tem-
poral properties. Similarly, building a relationship
graph based on DNS historical data is proposed [11]
where suspicious structural networks are identified
based on two graph measures: graph density and
eigenvector centrality and ground truth labels. Re-
cently, a malicious domain detection system [12] is
proposed. It leverages homophilic properties and

ground truth labels to build a host-domain graph
and adapt the belief propagation to estimate an un-
known domain’s likelihood of being malicious. Sim-
ilarly, malicious hosts are detected using a semi-
supervised, score-propagation algorithm that uti-
lizes HTTP-communication graphs [13].

All these approaches restrict their efforts to a
specific protocol to identify the suspicious graph
entities. Often performance is assessed using syn-
thetic datasets or benchmarks which are now out-
dated. MAGMA instead uses the data gathered
from multiple protocols and from real traces to cre-
ate a model for generic malware patterns. More-
over, the model characterizes both benign and ma-
licious network activity and summarizes the com-
monalities exposed by the involved hosts.

Multi-protocol Traffic Correlation

Many efforts have focused on the analysis of a sin-
gle protocol to identify network traces and patterns
displayed by malware, while others have considered
a set of protocols to achieve the identification of
malware. In the first case, HTTP and DNS are
two of the most analyzed protocols among malware
threats to communicate with victims or between
malicious peers. Several detection techniques have
been proposed, exploring different ways to charac-
terize the behavior of different malware threats on
HTTP [12, 14, 15, 16] or DNS [11, 17, 18]. Ex-
amples of proposals following a multi-protocol ap-
proach, such as the one presented in MAGMA, in-
clude [19, 20, 21, 22].

The popularity of HTTP on the web has made it
the preferred protocol for malware creators and as
such, the target for researchers to analyze and de-
tect malware. [14] presents a system to identify ma-
licious drive-by download activities by exposing the
distribution networks necessary to distribute mal-
ware thru HTTP. Similarly, [12] and [15] propose
classifiers based on features from web domains and
URLs to detect malware activity. [16] proposes the
use of n-gram techniques to filter out the majority
of benign HTTP traffic and detect malicious HTTP
transactions to be processed with more costly tech-
niques. Systems that analyze the DNS protocol,
usually look at failed DNS queries [17, 11], as this
activity can lead to the existence of malware using
domain generated algorithms (DGA). Other sys-
tems analyze the flow-level information from the
DNS traffic and look for statistical patterns [18].
The problem with systems relying on a single pro-
tocol is their limited scope, as malware can switch



from protocols, and the required semantic under-
standing of the particular protocol considered.

In comparison, other approaches have evaluated
multiple protocols to detect malicious activity. A
seminal work in this area is [19], where the lifecycle
of botnets is modeled according to a set of phases,
with different application protocols involved. An
interesting approach is used in [20, 21, 22], where
traffic information is presented through generic
packet information such as length sequences and
encoding differences, allowing then to represent the
malware activity observed in different protocols.
All of these multi-protocol approaches have the lim-
itation of targetting specific type of malware. Our
approach is designed to target any malware type,
whose model is extracted from actual traces rather
than synthetic datasets.

Infection Phase Identification

Several types of malware usually exhibit specific
phases during the infection process. For example,
botnets are commonly used to distribute malware
and involved several phases, including redirection
of webpages and communicating to a command and
control server. Multiple approaches have looked for
specific phases of the infection lifecycle, in order to
detect the existence of malware. Examples include
DNS queries failures [17, 11, 10], HTTP connec-
tions to domains [23, 24] and command-and-control
(C&C) communication [18, 25, 20]. As many mal-
ware nowadays constantly change its behavior, re-
lying on a single phase presents a strong limitation
for detection systems. In contrast, MAGMA is ag-
nostic about possible phases exhibit by malware, by
inspecting all alerts presented by a detection system
and looking for common and repetitive patterns.
In common with this body of work, we use traffic
traces collected in the wild to obtain realistic cases
of actual malware.

In summary, the consideration of a single proto-
col or malicious threat, as well as a single phase of
the threat, presents challenges and demands for a
different approach. We fill this gap by designing
a flexible method that considers multiple types of
threats and leverages the analysis of actual traces,
to provide accurate detection along with detailed
information of the malicious activity.

3. Scenario and Dataset

In this section we provide an overview of the sce-
nario we face, detailing the actual data the system

is offered and characterizing the malicious fraction
of traffic.

3.1. Scenario

We consider a scenario in which a sniffer passively
monitors the traffic generated by a large group of
hosts, e.g., hosts in an enterprise network, or house-
holds connected to a Point-of-Presence (POP) of
an Internet Service Provider (ISP). The sniffer ex-
tracts information from the packets and logs them
in a file where each row corresponds to a different
event. We assume that, for each TCP and UDP
connection, the sniffer logs the flow identifier (i.e., a
tuple made by source and destination IP addresses,
source and destination ports, and protocol type),
the timestamp of the first packet, the flow duration,
the number of exchanged packets and bytes, etc.
For some protocols, the monitor provides multiple
events with detailed information. For instance, it
annotates each HTTP request/response with the
requested URL, user-agent, content-type, server re-
sponse status code, etc. A DNS event exposes the
requested hostnames along with all returned IP ad-
dresses by the resolver. We assume that an ora-
cle (e.g., an Intrusion Detection System — IDS) has
processed the traffic to label malicious events.

Consider the timeline generated by a single host
reported in Fig. 1. It details the events generated by
Internet applications. DNS and HTTP events are
reported using specific markers, while other proto-
cols are reported as generic TCP/UDP events. The
user is visiting some web pages (e.g., acme.org),
while an email client is polling a mail server for new
messages. Benign events are reported in the bot-
tom part of the timeline. Unfortunately, acme.org
is hosting a Drive-by download page. Events on
the upper part are due to the malicious activity
in which the host is unknowingly fooled to down-
load a malware from a malicious JavaScript con-
tained in the web page. We observe the download
of the JavaScript object, followed by the download
of the malware executable. Once running on the
host, the malware periodically contacts (via HTTP
in our example) a Command and Control (C&C)
server whose name is rotated among random gener-
ated names [26]. The periodic polling is visible as
a sequence of failed and successful DNS requests,
and some HTTP traffic to the C&C node.

The challenge is how to isolate the events that are
possibly correlated with a specific malicious/benign
activity from the “background” noise caused by
other events. All the events are indeed exposed by
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Figure 1: Example of events generated by a host as seen
from the network.

the system, and, as we will see in the next section,
only a handful of them are actually malicious.

3.2. Awailable Dataset

We consider a vantage point located in a com-
mercial ISP where approximately 20,000 customers
are connected. Most of them are residential cus-
tomers, connected via ADSL modems to the mon-
itored point. Each customer’s modem is given a
static IP address, which is used to identify the traf-
fic generated /directed to all active terminals in the
household. In the following, we use the term “user”
to refer to traffic exchanged by a single household
(IP address).?

We leverage a traffic trace obtained during one
entire day in April 2012. A commercial monitoring
tool processes the packets in real time, and extracts
a text log file in which each TCP and UDP flow is
logged. For each flow, a record is stored detail-
ing the network flow identifier (i.e., a tuple made
by source and destination IP addresses, source and
destination ports, and protocol type), the times-
tamp of the first packet, the total number of pack-
ets and bytes sent and received, and the application
protocol used (e.g., HTTP, BitTorrent, etc.).

In case the application protocol is HTTP, the
record further reports the server hostname, ob-
ject path, user-agent, content-type, response sta-
tus, and content-length directly extracted from the
HTTP header [27]. In case multiple HTTP trans-
actions are present in the same TCP flow (e.g.,
due to HTTP-persistent option), multiple records
are logged. Similarly, for each DNS transaction,
the tool logs the requested hostname, the set of
IP addresses returned by the resolver, or the re-
sponse code in case of an error (e.g., Non-Existent

2Given the popularity of NAT (Network Address Transla-
tion) at home, the ADSL modem IP address identifies traffic
exchanged by all devices accessing the Internet at each cus-
tomer household.

Table 1: Dataset summary.

All Traffic Flagged Traffic
Class Users (%) ‘ Records (%) Users ‘ Records
HTTP 16,217 (79.1)| 39.7 M (11.8)|| 1,308 42,007
Email 3,640 (17.7)| 880.7k (0.2) -
Chat 3,045 (14.8)| 100.8 k (0.03) 7 1,467
P2P 3,163 (15.4)| 17.1M (5.05) - -
OthTCP | 18806 (91.8)| 22.7M (6.7)| 24 76
DNS 15,164 (74.1)] 307 M (9.9 - -
VolIP 8,371 (40.8)] 805k (0.02) . .
OthUDP | 17,664 (86.2)| 224.6 M (66.8) . .

[ Total | 20486 [ 336.1M [ 1,321 | 43,550 |

P2P = (eMule, BitTorrent),
Email = (SMTP, POP3, IMAP),
Chat = (XMPP, YahooMsg, MSN, TRC)

Domain) [28]. TP addresses of customers are
anonymized using irreversible hashing functions,
and we adopt the best practices to remove any sen-
sitive information for the current legislation.

While a characterization of the overall traffic is
out of the scope of this work, we provide some
statistics to show the huge volume, heterogeneity
and complexity of the data that the system has to
face. More details can be found in our previous
work [29]. Table 1 provides a summary. Focus-
ing on the first three columns, we observe a total of
20,486 users generating about 336 million flows over
the whole day. About 20% of those are related to
HTTP and DNS records, with a large majority clas-
sified as “Other TCP” due to TLS/SSL (HTTPS)
traffic, and “Other UDP” due to and Peer-to-Peer
applications.

Some traffic is machine generated, e.g., keep-alive
messages, software updates, or cloud-based applica-
tions synchronizing their status. Some use propri-
etary protocols and generate little traffic. Other ex-
change information frequently inflating the number
of events. Considering user-generated traffic, we
observe some heavy users that generate thousands
of HTTP requests, run P2P applications, play on-
line games, and use multiple devices at the same
time. Other users, instead, just have their mobile
phone periodically checking the email.

3.3. Traffic Volume of Malicious Activities

In parallel to the monitoring tool, a commercial
IDS processes the packets producing alerts if a net-
work activity matches any rule in its database. For
each alert, the IDS specifies the network flow iden-
tifier it relates to and a threat-ID, i.e., a numerical
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Figure 2: CDF of the total number of records per user.

code that identifies a particular threat. For some
threat-IDs, a name and description of the malicious
activity is available, detailing the severity of the
threat and which component of the host is vulner-
able, e.g., browser, operating system, etc. Other
threat-IDs are instead little documented. The IDS
is very conservative in triggering alerts, and hence
it possible that some malicious event do not trigger
any alerts (i.e., false negative). Conversely, every
alert raised is related to malicious activities.? In
the following, we use the IDS as oracle, i.e., events
are labeled as benign or malicious according to the
IDS labels.

We consider each record in the log file as a differ-
ent event. By matching the flow identifiers, alerts
are linked to records, so that records can be flagged
as malicious. We refer to a flag as a log record
for which the IDS triggered an alert, and to a
flagged user as a user exhibiting at least one flagged
record. A non-flagged user is instead a user for
which no alerts are risen in the whole day. Right-
most columns in Table 1 details the flagged events.
Among all users, 1308 (6.4%) of them exhibit some
malicious activity, with more than 150 different
threat-IDs being reported. Only 43,550 flags are
raised by the IDS. That translates to a negligible
0.013% of all traffic. Most of these records corre-
spond to HTTP traffic, with the exception of some
IRC (Internet Relay Chat) and RPC (Remote Pro-
cedure Call) activities, which are known to be com-
monly abused by malicious adversaries. This high-
lights the very stealthy and low rate activity that
malware is typically generating, and also confirms
the conservative design of the IDS.

We dig into more details to observe if it is pos-
sible to pinpoint differences between flagged users

3In general, we cannot exclude that some few false posi-
tives are present. However, those appear to be marginal.
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Figure 4: Overall threats statistics.

and non-flagged users. Specifically, we investigate
on the occurrences at which flagged events appear.
The intuition is that the more flagged events occur,
the easier it should be to spot them in the traffic
aggregate. Fig. 2 shows the Cumulative Distribu-
tion Function (CDF) of the amount of total records
logged for all users, and for the subset of flagged
users. Results show that the flagged users generate
much more traffic than the rest of the population.
One would think this is due to the extra traffic gen-
erated by the malicious application running at the
infected client. However, flagged users present a
very small number of flags. This is detailed in Fig. 3
that reports the number of flags per flagged user.
We find that 75% (92%) of the users show less than
3 (10) flags in the whole day, and only two users
show more than 1,000 flags. As such, while mali-
cious activities can inflate traffic volume, in general
the rate of malicious records is very limited.

3.4. Threat diversity

To investigate the threats diversity and the traf-
fic they generate, Fig. 4 reports different statistics
on the alarms raised by the IDS. Consider first the
shaded histogram. It shows the number of users
affected by each threat. Threats are sorted by pop-
ularity on the x-axis. Overall, the IDS detects 151



distinct threats. Their popularity is highly skewed,
with the most popular affecting about 800 (61%)
flagged users, and 129 threats affecting less than 10
users each. Despite the limited number of alerts,
this highlights a very diversified scenario of mali-
cious activities.

Next, consider the red dashed line of Fig. 4. It
reports the CDF of the number of flagged records
contributed by each threat. As expected, the ma-
jority of these records are related to the most pop-
ular threats. However, the distribution has several
steps, indicating that some are more “chatty” than
others and produce many alarms even when only
few users are involved. This is the case of Con-
ficker [30], which infects only two users, yet it con-
tributes to 23.3% of all flagged records. Note that
Conficker is a worm that was first detected in 2008
but is still one of the most popular threats [31].

The solid line in Fig. 4 shows the CDF of the
number of distinct users involved in each threat.
In other words, we progressively add the fraction
of new users that were not affected by previously
considered threats. Notice how the distribution
presents several “plateaus”, indicating that all in-
volved users were already accounted by previous
threats. We find that 23% of users are flagged with
multiple threats. This is due to users being infected
by different malware.

To give more insights about how diverse and het-
erogeneous the malicious events are in the wild,
Tab. 2 offers a deeper characterization of the 15
most popular threats. It details the popularity
ranking of the threat, the number of infected users
and the number of flagged records it generates. For
some threat-1Ds, the IDS provides limited informa-
tion on the malicious activity and hence we adopt
generic names, e.g., Threat-A. Notice how some
threats presents a type. This corresponds to the
ability of the IDS to identify different variant of
the network traffic of the same threat.

Some examples of threats include Drive-by down-
loads and Exploit Kits (EKs), which are among the
most popular threats. The DynDNS activity corre-
sponds to traffic toward hostnames registered with
DynDNS services that hide control messages (e.g.,
periodic communications to check network connec-
tivity). Skintrim and Tidserv are two popular tro-
jans that can trigger the download of other mal-
wares through backdoors. Toolbar activity threats
are related to the Ask.com toolbar that are trig-
gered by the download of unwanted advertisement
objects or perform iframe injections in the browser.

Table 2: Most Popular Threats.

‘ # ‘ Name ‘ Users  Flags
1 | Drive-by download [typel] 781 1427
2 | DynDNS activity [typel] 266 26270
3 | Blackhole EK [typel] 127 158
4 | Skintrim [type2] 56 301
5 | Skintrim [type3] 56 301
6 | Facebook plugin attack 30 31
7 | Threat-A 25 27
8 | Blackhole EK [type2] 25 25
9 | Toolbar activity [typel] 21 105
10 | Threat-B 21 23
11 | Threat-C 21 22
12 | Toolbar activity [type2] 17 19
13 | Drive-by download [type2] 15 33
14 | Tidserv 14 228
15 | Threat-D 14 470

3.5. Events Popularity and Whitelisting

Fig. 5 shows the HTTP event popularity,
i.e., the fraction of hosts that accessed a given
URL (with stripped parameters). Note the log
scale on x-axis. Fig. 5 shows the classic heavy
tailed popularity. Top URLs are clearly very
common among most of the hosts. Those include
social network buttons (e.g., www.facebook.
com/plugins/like.php), analytics services (e.g.,
www.google-analytics.com/ga. js), software up-
date check (e.g., download.windowsupdate.com/
v9/windowsupdate/redir/muv4wuredir. cab),
etc. Red triangles highlight those events that are
considered malicious by the oracle. The most
diffused type of attack — a Drive-by Download
threat — infects about 800 hosts (3.8% of hosts).
The huge tail confirms the intuition that most of
URLs are accessed by few hosts only.

Leveraging the stealthy nature of malicious traf-
fic, and thanks to the fact that few users are
actually infected by a given malware, we adopt
whitelisting as a common technique used to both
reduce the amount of information to process, and to
discard data that would possibly pollute the anal-
ysis. We built a whitelist that targets very popular
events, which add little information or create noise.
Instead of creating a manual list of popular and
benign events, we opt for a dynamic and context-
aware approach. MAGMA builds a whitelist based
on events popularity among clients, and selects the
top-k elements to be ignored during the processing.
We whitelist single HT'TP events and not the entire
websites, as it is known that malware can be hosted
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Figure 5: Popularity of HT'TP objects.

and distributed also from benign services. We pick
top most popular 100 HTTP events (highlighted in
Fig. 5), i.e., we filter those events that are common
to more than 23% of users. This is equivalent to as-
sume that the most popular malware has infected
less than 23% of population.

4. Methodology overview

Before presenting the details of MAGMA, we pro-
vide an overview on the adopted methodology and
the intuitions behind its design. Through a high-
level description of the overall workflow, we aim
at defining conventional names that we use in the
forthcoming sections of the paper. We follow a
data-driven approach, where filtering and correla-
tion phases allow us to extract information from the
huge amount of data at our disposal, as is common
practice in a Big Data scenario.

4.1. Single Host Connectivity Graph

Consider Fig. 6. It depicts the procedure used
to extract the Host Connectivity Graph (Host-CG)
from those hosts presenting the seed among the
events they generate. We refer to the seed as the
event we want to classify as benign or malicious.

Three steps are executed: (i) Snapshots extrac-
tion, (ii) Per-layer common patterns mining, and
(iii) Host-CG creation.

Snapshots Extraction. Consider the seed event,
and the timeline around it. Intuitively, events
close-in-time with the seed are likely to be related
to it (e.g., a DNS request followed by several
HTTP transactions could be identified as a typical
pattern). For each instance of the seed, we extract
a snapshot defined as the ordered set of events
occurring in the temporal window centered on the

Host Connectivity
Observation Snapshots Common Patterns Graph (Host-CG)
Extraction ini Creation
6€e¢ seed /
Host A A
traffic time

iEge ‘)o
snapshot snapshot -

Figure 6: Host Connectivity Graph generation.

seed.

Common Patterns Mining. We then look for
common patterns across snapshots. A pattern
is defined as the unordered set of events that
appear across multiple snapshots. We extract
separate common patterns by processing the host
traffic considering layers in isolation. The traffic
generated on each layer corresponds to all events of
a specific protocol so that HT'TP, DNS, other-TCP
(i.e., all TCP communications except HTTP on
port 80), and other-UDP (i.e., all UDP commu-
nication except DNS traffic) events are separately
analyzed. The choice of separately analyzing layers
originates from the fact that each protocol has
some peculiarities that we would leverage. For
instance, in the HTTP layer, we are looking for
common and repetitive patterns. On the DNS
layer instead, failed DNS requests may be more
interesting than successful DNS requests.

Host Connectivity Graph. For each layer, we
represent the common pattern as a graph, where
nodes and edges are defined considering specific
layer properties. For instance, focusing on the
HTTP layer, URLs are represented by separating
server hostnames and object paths using two nodes.
An edge between the hostname and the path rep-
resent a URL. The resulting graph captures the
website structure. Similarly, in the DNS layer, re-
quested hostnames are linked to the server IP ad-
dress(es) returned by the resolver. As the last step,
we collapse the per-layer graphs into a single Host
Connectivity Graph. This is done by linking com-
mon nodes in multiple layers. For instance, the
hostname in the HTTP layer is linked to the host-
name node in the DNS layer graph.

4.2. Seed Connectivity Graph

We now leverage the fact that the same seed can
be present in the timeline of multiple hosts. We ex-
ploit this to gain a broader view of the common ac-



tivity using the “spatial” diversity provided by mul-
tiple hosts. To do so, we merge multiple Host-CGs
into a single Seed Connectivity Graph (Seed-CG).
This can be done by taking the union, the inter-
section (or implementing more complex strategies
between these two extremes) of all nodes from Host-
CGs. The process of generating the Seed-CG aims
at creating a rich but compact representation of the
common events generated by multiple hosts, i.e.,
combining common patterns across distinct users.
A Seed-CG is thus a summary of events correlated
with the seed.

4.8. MAGMA supervised classifier

Consider now Fig. 7. It shows the processes
needed to train a classifier able to distinguish be-
tween malicious a benign Seed-CGs. As first step,
we use the alarms raised by the commercial IDS to
build two distinct sets of Seed-CGs, one contain-
ing CGs generated by malicious seeds, the other
containing CGs of benign seeds. We then lever-
age the descriptiveness of Seed-CGs to define a
set of features with which the classifier can be
trained and tested. These include: (i) Graph
topology properties (e.g., number of nodes, node
degrees); (ii) HTTP header parameters (e.g., re-
sponse status, distinct user-agents, content-type);
(iii) Syntax properties extracted from the names
(e.g., string length, number of subdomains, digit—
characters ratio); and (iv) Occurrence properties
(e.g., minimum, maximum, average recurrence of
specific events). Some of these features are driven
by the domain knowledge, while others are generic
and considered to avoid biasing towards a specific
threat. The complete set of features is described in
App. Appendix A.

As last step, we run an exhaustive set of experi-
ments to assess the accuracy of the classifier under
a variety of conditions, and its sensitivity to param-
eter setting. The results is MAGMA, a behavioral
classifier able to label Seed-CGs as malicious or be-
nign with high accuracy.

5. Building the Connectivity Graph

This section discusses the design choices taken
and the parameters to control when creating a Net-
work Connectivity Graph. The pseudo-code in
Alg. 1 details the overall approach.
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Figure 7: MAGMA classifier overview.

Algorithm 1 Create Network Connectivity Graph.

input args  s: seed

H: set of hosts

A: snapshot duration
output Seed Connectivity Graph

1: procedure graphLayer (s, S, layer):
2: P = findCommonPattern (s, S, layer)
3:  return fromPatternsToGraph (P, layer)

4: procedure hostConnectivityGraph (s, h, A):

5: S = getSnapshots (s, h, A)

6:  Surrp = graphLayer(s, S, 'HTTP’)

7. gpns = graphLayer(s, S, 'DNS’)

8  gpop = graphLayer(s, S, "TCP’)

9:  gypp = graphLayer(s, S, "UDP’)

10: return connectLayers (gHTTP, 8oNs) Brops

8upp)

11: procedure seedConnectivityGraph (s, H, A):
12: Gy =10

13: foreach h € H:

14: Gs < hostConnectivityGraph (s, h, A)

15:  return fuseGraphs(Gs)

5.1. Snapshots Extraction

The first step to process the traffic generated by
each host (h) among the set of hosts (H) exhibiting
the seed (s) is to extract an observation snapshot for
each occurrence of the seed. We define the param-
eter A that controls the duration of the snapshots.
In particular, a snapshot is composed by all events
occurring in the interval £A /2 centered around the
seed. In case consecutive snapshots overlap, we ap-
ply two strategies depicted in Fig. 8 to solve the
conflict. If the overlapping window lasts for less
than A/2, the two snapshots are merged. Other-
wise, the overlap is split into two halves, each as-
sociated to a different snapshot. These operations
are executed by getSnapshots() (Alg. 1 line:5) that
receives the seed (s), a host (h) presenting at least
one instance of s, and the snapshot duration (A) as
inputs. It returns the set of snapshots found (S).
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Figure 8: Snapshots creation when consecutive snapshots
overlap.

Different values of A can lead to different results.
In particular, the larger the A (e.g., hours), the
more the snapshots will merge. This results in less
snapshots on which perform pattern mining, pro-
ducing “noisy” data since not many events are fil-
tered. Conversely, a small value of A (e.g., seconds)
might be too conservative. In the following, we set
A = 30 minutes. A complete sensitivity analysis is
reported in Sec. 8.

5.2. Patterns Mining

We use the frequent itemset mining technique
to extract common patters [32]. This technique
works on unordered sets of simple objects (e.g.,
strings). Snapshots however, correspond to ordered
sequences of events that may appear multiple times.
We thus map each event to an item based on the
event properties. Specifically,

e A HTTP item is represented by HT'TP URLs,
e.g., http://domain.com/path/file.ext.

e A DNS item combines the requested hostname,
and either the list of returned IP addresses or
the query response error code, e.g., DoesNo-
tExists.com — NXDomain.

e TCP and UDP items are represented by the
server IP address and the server port being
contacted, e.g., 10.20.30.40:443.

For each snapshot, we create a transaction con-
taining the set of distinct items. We look for com-
mon itemsets, i.e., sets of items common across
multiple transactions. A support value is computed
for each itemset and indicates the fraction of trans-
actions containing the specific itemset. For a given
support value, the itemset presenting the highest
number of items is said to be closed. The closed at-
tribute implies that there is no other itemset made
by more items with the same support. An itemset
is “frequent” if its support is greater than or equal
to MinSup.
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Itemsets with a number of items smaller than
MinLen could be discarded. By setting MinLen=1,
frequent itemsets are equivalent to simple frequent
items. For MinlLen=2, at least pairs of items
are considered. For instance, consider acme.org/
index.html and acme.org/logo.png that appear
in 70% and 45% of snapshots, respectively. The
itemset (acme.org/index.html, acme.org/logo.
png) may appear from 15% to 45% of snapshots.

Looking for all itemsets is a #P-hard prob-
lem [33], but well-known algorithms efficiently com-
pute frequent closed itemsets. Among those, we
rely on the Carpenter algorithm [34], which is
specifically designed for datasets made of few trans-
actions (i.e., snapshots) that have a huge number of
items (i.e., events). A MapReduce implementation
is available [35].

MAGMA looks for frequent closed itemsets that,
for simplicity, we call patterns. Patterns are ex-
tracted by findCommonPatterns() (Alg. 1 line:2),
that receives the seed (s), the set of snapshots (S)
and the layer (layer) to process. It returns the pat-
tern (P). The pattern extraction process is guided
by the definition of the value of MinSup: all events
that do not appear with frequency at least Min-
Sup are discarded. We set MinSup = 1/2, i.e., for
each host, we discard all events not appearing in at
least half of the snapshots. Sensitivity analysis in
detailed in Sec. 8.

5.83. Host Connectivity Graph

As previously discussed, we individually pro-
cess each layer to create separate graphs. The
graphLayer() (Alg. 1 line:1) extracts patterns for
a specific layer and maps them into a graph. This
mapping exploits a subset of the events properties,
as follows:

e The HTTP layer has two types of nodes: host-
names and object paths. An edge connects the

hostname and the object path to compose a
URL.

e The DNS layer has three types of nodes: server
hostnames, server IP addresses, and DNS er-
ror codes. An edge connects the hostname to
either the IP addresses returned by a DNS re-
sponse, or to an error code.

e The TCP and UDP layers have two types of
nodes: server IP addresses and server ports.
An edge connects the two to represent a TCP
or UDP connection.
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Different graph layers are combined in a sin-
gle Host-CG using hostConnectivityGraph() (Alg. 1
line:4). The function starts by extracting the snap-
shots (S) related to the seed. The shapshots are
then processed to extract the graph layers (g7 ps
gpNss Erops Supp) through calls to graphLayer().
The separate graph layers are finally integrated to
form the Host-CG using the collectLayers() func-
tion, which looks for common nodes across the lay-
ers and links them as represented in Fig. 9. Notice
that each graph layers contains the host (h) IP ad-
dress by construction.

5.4. Seed Connectivity Graph

To provide the global view of the common behav-
ior gained by observing multiple hosts, we combine
all Host-CGs. This operation is performed by the
seedConnectivityGraph() (Alg. 1 line:11) function.
For each host (h) among the subset presenting the
seed (H), the function creates the Host-CG calling
hostConnectivityGraph(). All the output graph are
collected into the set Gposts-

The graphs are finally merged using fuseG-
raphs().  This operation can consider different
strategies. For instance, applying a strict inter-
section would retain only nodes appearing in all
Host-CGs. In the worst case, this results in a Seed-
CG containing only the original seed. More com-
plex strategies can instead compute node and link
frequency or popularity among hosts, and discard
those below a given threshold of MinPopularity.

In the following, we consider the strict intersec-
tion across Host-CGs as the default choice, i.e.,
MinPopularity=1. A detailed discussion about the
impact of this choice is deferred to Sec. 8.
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6. CG Characterization

We next evaluate the benefits and properties of
CGs created by MAGMA. First, we identify the
amount of events eligible of becoming seeds. Re-
call that MAGMA’s CG construction requires a re-
currence of seed events over time and user popu-
lation. The presence of recurrent events matches
the basic properties of malicious activities, such as
periodic reporting to the Command and Control
center, or recurrent attempts to identify new vic-
tims. We also expect that malware creators would
try to disguise such repetitiveness as much as pos-
sible. In our data, indeed, we found 820 malicious
hosts that had only one flagged event. If analyzed
in isolation (on per host basis), these events would
evade MAGMA'’s detection by not having any re-
currence. Yet, by looking at correlation among dif-
ferent hosts, MAGMA is able to find commonalities
between these events and tie them to a common
malicious activity.

Fig. 10 reports the number of snapshots that can
be associated to each unique malicious event. By
considering 1,783 unique malicious events, we found
that 236 events can be uniquely associated to at
least three independent snapshots. Setting min-
Snapshots=3, these events become fully characteri-
zable by MAGMA. In fact, looking at the absolute
numbers, MAGMA can provide insights in 95% of
malicious snapshots in our dataset (40k out of 42k
flagged records, cfr. Table 1). We also emphasize
the diversity of MAGMA'’s characterization capa-
bilities, noting that the events in scope correspond
to 60 different types of threats.

In summary, Table 3 details the amount of events
eligible to be seeds for both benign and malicious
events when minSnapshots=3. We observe that only
509,700 (8.3%) benign events are repetitive enough
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Figure 11: Examples of Network Connectivity Graphs.

of these clients. First, the clients access three Ls
Table 3: Eligible seeds with minSnapshots = 3. ’ UR

Unique seeds Threat.IDs (blue hexagons) hosted by three hostnames (orange
All Elig. (%) | Al Elig. (%) circles) - all of which now become an indication of a
Benign | 6,111k 509,700  (8.9) - _ suspicious infrastructure. Next, two servers use the
Malicious | 1,783 236 (13.2) | 151 60 (89.7) same IP address (gray diamonds) suggesting a po-
tential obfuscation by hostname flipping. The third
host is distributed over several mirrors whose IP ad-
to be considered by our system. This is largely ex- dresses belong to very different subnets, a hint of
pected: benign traffic is mostly related to activities non-structured infrastructure or zombies that were
of human users, and would not access identical ob- previously infected. Finally, the rightmost part of
jects as recurrently as malware. To test our system, the graph shows another layer of information, in-
we next use all 236 malicious seeds and combine dicating multiple failures of DNS queries (purple
them with 664 randomly selected benign seeds. boxes). This reaffirms our suspiciousness.
Apart from providing more context for the mali-
6.1. Ezamples of CGs cious activities, MAGMA also discovers new ma-
In Fig. 11, we show and example of the corre- licious objects and improves the flagging consis-
sponding CGs that MAGMA produces. Fig. 11(a) tency of our oracle. For example, referring to
is an effective input element to the CG creation. Fig. 11(b), MAGMA consistently includes the ob-
It represents all the events present in a single 30 Ject bluberrymo.com/volvo.php in the malicious
minute snapshot around the malicious seed http: graph, while the IDS occasionally missed it. Since
//jockesnotliked.com/mybach.php. Obviously, we set MinPopularity=1, all the events are com-
this graph is very difficult to interpret since the mon to the three hosts, strengthening the cor-
malicious activity is mixed with ordinary user- relation with the seed and providing to the se-
generated events due to web surfing. curity analysis a richer context to investigate on

Fig. 11(b) depicts the final Seed-CG generated the incident. MAGMA also discovered a new ob-

by MAGMA after the filtering and enrichment ject rivergrape.com/world. php for which we con-
process. Note the original malicious seed on the firmed its maliciousness across several other secu-
. . 4

leftmost part of the graph. The final picture is rity tools such as VirusTotal [36].

much clearer, identifying three suspicious clients
(red markers). Red edges highlight the events that
are malicious ac?o?dlr%g t.O our oracle. The rich- to detect malicious URLs. VirusTotal is not a defense tool
ness of MAGMA'’s indications stems from the aug- per se, but it leverages threat definitions of more than 65
mented context that we provide about the activity commercially available antiviruses and IDS suites.
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4VirusTotal is a free service that scans submitted URLs



As second example of representative CG related
to a malicious seeds, Fig. 11(c) details the results
for */1logo.png, which is linked to the Cycbot bot-
net. Cycbot is a backdoor trojan that allows cyber-
criminals to access infected computers remotely.
This causes victims’ hosts to be exploited by mali-
cious adversaries for large-scale attacks, and to po-
tential leakage of personal information. The CG in
Fig. 11(c) offers interesting insights. For instance,
more than 80 hostnames serve the malicious file
logo.png (cloud of orange circles in bottom left part
of the graph). All those hostnames have random
strings that are made of both characters and num-
bers, and are hard to code with regular expressions.
This technique, known as fast-flux, allows attackers
to hide malicious infrastructures by generating ran-
dom hostnames. Those are registered to the DNS
and lately removed with a high frequency. This
makes the detection harder, circumvents blacklist-
ing, and guarantees a longer lifetime to the infras-
tructure. Considering only second-level domains,
they present appealing names acting as a lure
for potential victims, e.g., faststorageonline.
com, phonegamescatalog.com, wwwmp3archives.
com, etc. The entire set of domain names is hosted
on 5 IP addresses. Those addresses are not orga-
nized in a structured CDN (e.g., they do not belong
to the same subnet), suggesting for the usage of in-
fected servers acting as C&C nodes.

Moving to the right part of Fig. 11(c), we observe
some benign objects. Those are indeed perfectly le-
gitimate services, and thus any IDS would not block
them. However, those are contacted as part of the
malicious activity of the infected hosts. First, look
at the bottom-right part of the CG and observe how
the malware is checking victim’s Internet connec-
tivity by visiting the www.google.com homepage.
This is a first test to gather connectivity properties
of the victim. Look now at the top right URLs.
Contacted websites host services aimed at the dis-
covery of the public IP address of the host, and
the malware is abusing of these legitimate services
for its goals. Such behavior is coherent considering
the intent of the malware we are facing. Being a
backdoor trojan, the infected clients form a botnet.
They have to be reachable by the cyber-criminals
to control them. Eventual reachability issues, e.g.,
NATS or firewalls, might preclude the access to the
host. Thus the malware tests connectivity abusing
of the above mentioned services.

For comparison, graphs related to benign seeds
(not reported here due to lack of space) look radi-
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cally different: they typically show legitimate CDNs
(many IP addresses belong to only three subnets),
and legitimate websites (many objects hosted on
the same domain), no failed DNS events, etc.

6.2. Owverall analysis of the CGs

We now offer a thorough analysis of URLs
MAGMA identified as belonging to Connectivity
Graphs. In particular, for each of the 236 malicious
seeds, we extract the corresponding CG. Overall,
5213 unique items appear, out of which 2393 are
HTTP requests that the IDS oracle does not flag.
For each of these requests, we investigate if they are
malicious or benign. For this purpose we use again
the online service VirusTotal. In addition, we also
double check each of them using Snort [37]. Results
show that 1580 (66%) of the discovered items are
labeled as malicious by either VirusTotal or Snort,
thus confirming the items in the CGs generated by
MAGMA form a better and more complete picture
than the one originally offered by the oracle.

CGs also include 1114 benign objects that no IDS
or antivirus flags. While these may seem false pos-
itives, it is often not the case. For instance, we
have seen perfectly legitimate URLs being included
in a malicious graph. We have already verified that
benign URLs are indeed part of malicious activi-
ties that run checks (e.g., the www.google.com or
whatismyip.org for the Cycbot case, Fig. 11(c)).
Furthermore, infected hosts often contact legiti-
mate servers to run DDoS attacks, or to gener-
ate fake clicks on advertisements, or in general to
spread the malware and run attacks. IDSes cannot
flag these events as malicious, since the correspond-
ing services are not malicous. In contrast, MAGMA
is capable of discovering such interactions between
malicious and legitimate infrastructures, and to ex-
pose them to the security analyst.

In summary, GCs offer expressive information to
characterize and understand activities related to
malicious events. While this is useful for the an-
alyst to understand an accident, the information
they provide can be used to train classifiers and to
extract signatures to spot new malicious activities.

6.3. Impact of Pattern Filtering

Before training the classifier, we first study the
volume of information that Seed-CG creation pro-
cess extracts from single seeds - malicious or benign.
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Table 4: Average number of nodes of different types among
Seed-CG for malicious and benign seeds.

Malicious Benign
‘ Type cl ‘ c2 ‘ c3 cl ‘ c2 ‘ c3
Object-path | 6.6 | 149 [ 23514 [ 185 | 56.3 | 3320.1
Hostname 70| 168 | 6915 | 81| 289 | 7812
Server IP 19.9 | 95.9 | 3423.0 || 39.0 | 161.2 | 6260.2
Dst-port TCP | 02| 0.6 | 799 || 08| 41| 1942
Dst-port UDP | 2.0 | 27.8 | 1335.1 || 2.8 | 42.2 | 31295
DNS error 03] 24| 404 02| 06 194
[ Total [ 36.0 [ 158.4 [ 79215 [[ 69.4 [ 293.3 | 13704.6 ]

¢l = minSup=1, minPopularity=1
¢2 = minSup=0.5, minPopularity=1
¢3 = minSup=0, minPopularity=0

We later use some of these indications to create fea-
tures that distinguish maliciousness. Table 4 shows
the average number of nodes included in the final
CGs for benign and malicious seeds, and for each
node type.

Three sets of parameters are considered. cl, a
very selective type, sets filtering parameters to min-
Sup=1 and minPopularity=1, resulting in the selec-
tion of objects that appear in all snapshots and for
all hosts. ¢3, with minSup=0 and minPopularity=0,
instead merges and fuses all patterns independently
of their support and popularity. Finally c¢2, with
minSup=0.5 and minPopularity=1, is the default pa-
rameter setting. It selects all events appearing in at
least half of the snapshots generated by each host
involved in the seed activity, and retains only those
common to all hosts.

Results clearly show that MAGMA builds graphs
with hundreds of nodes. Note that malicious Seed-
CGs generally have fewer nodes, except for the
nodes that represent DNS errors (last row of Ta-
ble 4). For ¢2, the number of common object-paths
found in benign CG is approximately four times
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larger than in malicious CG, suggesting that be-
nign web pages are more complicated than mali-
cious HTTP patterns. Note also that the number
of elements in the graph grows very large for c3,
where no item is discarded and several thousands
of nodes are retained. This could undermine the
supervised classifier accuracy (see Sec. 8), and it
definitively hurts the amount of information offered
to the security analyst (see Fig. 11(a) for instance).
c2 offers a good trade-off between descriptiveness
and richness of the final CG.

In summary, CGs are focused and descriptive
characterization of common activities. Benign and
malicious graphs look different, suggesting that a
supervised classifier would be able to model them
and distinguish between the two categories.

7. MAGMA Classifier and Features

We now design a supervised classifier and train
it using the labeled dataset of graphs obtained con-
sidering malicious and benign seeds. We consider
different decision tree classifiers: (i) the original J48
(an open source implementation of the C4.5 deci-
sion tree); (ii) Bagging coupled with J48; and (iii)
Random Forest (RF). Decision trees are known for
being scalable and offering a interpretative classifi-
cation models [32]. In a decision tree, internal nodes
represent tests on individual features, each branch
is an outcome of the tests, and each leaf node repre-
sents a decision, i.e., a class label. The paths from
the root to a leaf represent classification rules. Bag-
ging is a process that improves stability and accu-
racy by training m decision trees on m independent
samples of the training set. The m models are com-
bined by voting at the end. Random Forest is an
extension of the bagging process such that, at each
candidate branch in the learning process, a random



subset of the features are selected to avoid strong
features from biasing the construction of trees.
Since MAGMA aims at the classification of ma-
licious patterns in general and does not target spe-
cific class of malicious behaviors, we define an ex-
tensive set of features and extract them from Seed-
CGs. Four different domains are covered: (i) graph
topology (e.g., the number of distinct nodes for each
type, min/max/avg/std of in-degree and out-degree
for each node type, graph giant connection ratio,
etc.); (ii) HTTP (e.g., the number of GET/POST
events, min/max/avg/std of the length of user-
agent string, etc.); (iii) URL syntaz (e.g., the num-
ber of hostname accessed directly using the IP
address, or starting with www, etc.); and (iv) oc-
curences (i.e., min/max/avg/std of the number of
events for each node type). The choice of features
is partly driven by domain knowledge or has been
previously used in the literature. Some features
are instead generic, but could be useful in making
the distinction. In total, 111 features are extracted
from each CG, as detailed in App. Appendix A.
In the following, we consider the classifiers
trained using (i) all; (ii) only HTTP; (iii) only
Topology; and (iv) only Syntax features. We do
this in order to compare against the previous works
in which only HTTP or syntax has been used to tar-
get a specific malware. For comparison, we consider
the subset of features suggested by the Minimum-
redundancy-maximum-relevance (mRMR) feature
selection algorithm [38] (the selected features are
reported in bold in App. Appendix A). Note that
mRMR selects features from all four of our domains.

7.1. Feature Characterization

Table 4 hints that CGs obtained from malicious
and benign seeds contain a different amount of
nodes and edges. Here, we briefly illustrate the
extent of feature differences extracted from CGs.
Fig. 12 compares the number of occurrences of three
features in individual CGs: (i) number of distinct
User-Agents; (ii) number of object-paths; and (iii)
number of DNS failures. Two benign and two ma-
licious seeds are highlighted for comparison.

Consider first the number of distinct User-
Agents.  The intuition is that malware could
abuse the semantic associated to the User-Agent
information and generate a large number of
semi-random strings. This is what happens with
http://badidnet.no-ip.org/realtime.xmltmp
(red square), which is a malware that gen-
erates click-fraud and “impersonates” differ-
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Figure 13: Comparison of MAGMA'’s accuracy for different
classifiers and set of features.

ent browsers. Surprisingly, benign applica-
tions also abuse the User-Agent field, e.g.,
liveupdate.symantecliveupdate.com (blu trian-
gle) encodes the update versions in user agents,
generating more than 200 different agents.

Looking at the number of HTTP objects,
Fig. 12(b) confirms the intuition that benign pat-
terns include more objects. Yet, there are some
malicious patterns that have a large number of ob-
jects, and a lot of benign CG have few HTTP ob-
jects. This is the case of the previously investigated
seed in Fig. 12(a) (black diamond and green star).
Finally, look at Fig. 12(c), which represent the num-
ber of DNS failures. Also in this case we expect a
high number of failing DNS requests to be a charac-
teristic of malicious activity. But there are a lot of
benign CGs that exhibit a number of DNS failures
very similar to benign patterns.

Two conclusions can be drawn from these exam-
ples. First, the 60 threats in the dataset that we
use exhibit a wide range of patterns. Second, there
are no easy means to separate malicious and benign
CGs using some simple heuristic. A state-of-the-art
classifier is needed to combine different planes of in-
formation and make the distinction.

8. Classification Results

To assess the performance of MAGMA, we follow
best practices suggested by the machine learning
community. We consider a labeled dataset, where
ground truth labels are provided by the oracle, i.e.,
the IDS, and then we train and test performance
using this labeled dataset.

8.1. Cross-validation and Performance Metrics
We split the labeled dataset of N eligible seeds
in two parts, one for training the classifier, and the



Table 5: Confusion matrix for Random Forest and all fea-
tures.

Predicted Class

Malicious | Benign
Malicious 218 18
Benign 21 643

other for testing its performance.

We employ several validation methodologies: (i)
66% split; (i) k-fold cross-validation; and (iii)
leave-one-out cross-validation methodologies. In
the first methodology, we run a single experiment
using 66% of our dataset for training and the re-
maining 33% for testing. k-fold cross validation
generalizes this such that k equal size subsets are
randomly generated. Then, k experiments are run,
where k& — 1 subsets are used for training, and the
remaining 1 is used for testing. The results are com-
puted over all k runs. Finally, “leave-one-out” is an
exhaustive cross-validation methodology in which,
for each of the N elements in the labeled dataset,
N — 1 are used for training, and 1 is used for test-
ing. The results are then computed over N inde-
pendent experiments. Exhaustive cross-validation
methods are preferred since they learn and test on
all possible ways to divide the original sample into
a training and a validation set. They are considered
to be the most accurate means of testing a classi-
fier, but they require a very large number of tests.
For N =~ 900, we could afford the complexity of the
leave-one-out in the following.

We measure the performance in terms of accu-
racy, i.e., the fraction of valid results over the num-
ber of tests. We also report the confusion matrix
which details the number of true positives and false
negatives for each class, i.e., for malicious (benign)
seeds, it shows the number of events that were cor-
rectly classified as malicious (benign), and the num-
ber of events that were erroneously classified as be-
nign (malicious).

8.2. Classifier and Feature Impact

We start by evaluating MAGMA with the default
parameters setting, i.e., A = 30 min, MinSup=0.5,
and MinPopularity=1. Fig. 13 reports the classifi-
cation accuracy for the three classifiers, considering
different sets of features (see Tab. A.6 in Appendix).
Observe how Random Forest consistently provides
the best results, with J48 providing the worst. Ac-
curacy is higher when all features are used, with all
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Figure 14: Classifier accuracy depending on the observation
snapshot duration A with Random Forest classifier and dif-
ferent feature combinations.

subsets contributing to improve performance. The
two observations confirm the richness of informa-
tion offered by Seed-CGs, as well as the need to
consider a wide range of generic features that do not
focus on particular types of malware. We also con-
firm this reasoning via mRMR checks, where only
few features are selected, but all of them are always
from different domains.

When all features are offered to the Random
Forest classifier, accuracy reaches more than 95%.
This is an excellent result in general, which is con-
firmed by the confusion matrix reported in Ta-
ble 5. The rows of the matrix specify the ground
truth class, while the columns indicate the pre-
dicted class. Cells on the diagonal represent the
number of true positives, while cells outside rep-
resent the false positives (or false negatives). The
results confirm that the recall and precision in pat-
tern classification is very high for both classes.

8.3. Parameter Sensitivity

We now focus on the impact of parameters set-
tings. Fig. 14 shows the impact of the choice of A,
which we vary from 1 s to 60 min. It considers only
the Random Forest, with MinSup=0.5, and MinPop-
ularity=1. The experiments are repeated for differ-
ent feature combinations. Results show that A has
a limited impact. The intuition is that typical ac-
tivity related to an event lasts few seconds during
which the application running at the host generates
a burst of events. Only for very small values of A
indeed it is possible to appreciate a generic decrease
of accuracy due to a limited number of events that
fall within the snapshots. Interestingly, we observe
that HT'TP features tend to be more significant for
small values of A, while graph topology features



gains of importance for larger values of A. The
drop of accuracy for a HTTP only based classifier
is due to noise infiltrating into the benign graphs
when large snapshots are considered. At the same
time, the rich graphs are better characterized by
topology features. Notice how the classifier trained
considering all features is able to trade the drop
of HTTP feature information with the increase of
information offered by other features.

With A = 30 min, we change the MinSup, and
MinPopularity parameters. In Sec. 7 we already de-
tailed how a different choice of parameters induces
on the filtering and enrichment process, crf. Ta-
ble 4. We now compare the impact on classification
accuracy. Recall, that the number of snapshots and
of hosts presenting a seed is rather limited. As such,
we can only coarsely choose the parameters. Fig. 15
reports results. We observe that also in this case the
impact of parameter settings is not crucial. How-
ever, by applying a too selective choice, e.g., Min-
Sup=1, and MinPopularity=1, or a too permissive
filter, e.g., MinSup=0, and MinPopularity=0, the ac-
curacy tends to decrease. In the first case, too few
events are left in the common pattern extraction.
In the second case, too many events are instead
accepted so that CGs appear to be noisy. Trad-
ing between minimum frequency in snapshot and
minimum frequency among hosts provides a good
trade-off.

Notice that the choice of MinSup, MinPopularity
impacts also the number of events that appear in
the Seed-CG, which is then offered to the security
analyst in case he/she likes to investigate a decision
returned by MAGMA. The more restrictive they
are, the smaller the number of events. The choice
of MinSup=0.5, and MinPopularity=1 results in a
good balance between accuracy and richness of the
graph, as depicted in Fig. 11.

8.4. Additional Experiment

We now aim at assessing the usage of MAGMA in
the wild. To this extent, we run an experiment on
a separate trace which includes only traffic from 15
hosts monitored for one day. The IDS does not flag
any of the events appearing in the traffic, therefore
these hosts should be considered as not infected by
any malware. Overall, 43,000 distinct HTTP events
are collected, of which 1868 are seen at least 3 times,
and thus are valid seeds.

For each seed, we extract the CG, and run it
through the MAGMA classifier that we previously
trained. We let then MAGMA classify each of the
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Figure 15: Sensitivity analysis on MinSup and MinPopular-
ity with Random Forest classifier, all and mRMR features,
A = 30 min.

CGs. It returns 1852 benign tests, and only 16 ma-
licious tests. By considering the oracle labels, the
former have to be considered as true negatives (i.e.,
benign events classified as not malicious). The lat-
ter instead have to be considered as false positives
(i.e., benign events misclassified as malicious). This
corresponds to 99.14% of accuracy, with a mere
0.86% of false positive.

We further investigate the 16 misclassified cases
using again Snort and VirusTotal. Snort detects 10
malicious events out of the 16 misclassified cases,
while VirusTotal raises 4 warnings for events that
were already flagged by Snort. Cross-checking
VirusTotal threat descriptions and Snort detection-
rules documentation, it appears that the detected
events are related to Simbar Spyware, a redirecting
toolbar affecting Internet Explorer, Sgrunt Dialer,
a Trojan virus that limits the access to files and
programs, and AskSearch Toolbar that is responsi-
ble for inflating clicks on advertisement to monetize
traffic. In a nutshell, MAGMA identified 10 threats
that the oracle ignored (but other tools have signa-
tures for). This reduces the false positive to only 6
cases over 1868 tests (0.3%).

9. Conclusions

We presented MAGMA, a classifier for malicious
network activity identification. It leverages simple
events collected from the network vantage point,
where both the spatial and temporal recurrences of
events allow MAGMA to capture a detailed picture
of the activity involved in a malicious or benign ac-
tivity using Big Data approaches. MAGMA models
this by means of Network Connectivity Graphs, in
which multiple graphs model the common events



found by separately analyzing different protocols,
and then fusing them in a single graph. A decision
tree classifier is trained on a dataset where mali-
cious and benign graphs are labeled by an oracle,
which exposed a very heterogeneous set of malicious
and benign activities. MAGMA thus results in a
general purpose malware classifier, able to leverage
common features that characterize several different
families and variations of malware. We presented a
performance evaluation using a real traffic trace ob-
tained from a large ISP. MAGMA accuracy is over
95%, and its performance shows little sensitivity to
parameter settings.

MAGMA model is based on the extraction of re-
current events from the traffic surrounding a given
seed. We acknowledge that MAGMA applicabil-
ity is limited to only those threat families that ex-
hibit recurrent patterns over time and over multiple
hosts. MAGMA is intended to facilitate the iden-
tification of previously unknown malware and to
support the forensic activity of a security analyst.
We have shown that the MAGMA Network Con-
nectivity Graph provides a rich and interpretable
characterization of the malicious activity.

[1] Kaspersky Lab, “Global corporate it security
risks: 2013,” http://media.kaspersky.com/en/
business-security /Kaspersky_Global IT _Security_
Risks_Survey_report_Eng_final.pdf, 2013.
Symantec, “2014 internet security threat report,”
http://www.symantec.com/security_response/
publications/threatreport.jsp, 2014.
iMPERVA, “Assessing the effectiveness of an-
tivirus  solutions,”  http://www.imperva.com/docs/
HII_Assessing_the_Effectiveness_of _Antivirus_Solutions.
pdf, 2012.
M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis,
“A multifaceted approach to understanding the botnet
phenomenon,” in Proceedings of the 6th ACM
SIGCOMM Conference on Internet Measurement, ser.
IMC ’06. ACM, 2006, pp. 41-52. [Online|. Available:
http://doi.acm.org/10.1145/1177080.1177086
L. Zhang and Y. Guan, “Detecting click fraud in pay-
per-click streams of online advertising networks,” in
Distributed Computing Systems, 2008. ICDCS ’08. The
28th International Conference on, June 2008, pp. 77—
84.
N. Kshetri, “The economics of click fraud,” IEEE Se-
curity & Privacy, vol. 8, no. 3, pp. 45-53, May 2010.
C. Grier et al., “Manufacturing compromise: The
emergence of exploit-as-a-service,” in Proceedings
of the 2012 ACM Conference on Computer and
Communications Security, ser. CCS ’12. New York,
NY, USA: ACM, 2012, pp. 821-832. [Online|. Available:
http://doi.acm.org/10.1145/2382196.2382283
M. Cova, C. Kruegel, and G. Vigna, “Detection and
analysis of drive-by-download attacks and malicious
javascript code,” in Proc. of WWW, 2010.
[9] E. Bocchi, L. Grimaudo, M. Mellia, E. Baralis, S. Saha,
S. Miskovic, G. Modelo-Howard, and S.-J. Lee, “Net-

2]

3

(4]

(]

(6]
(7]

(8]

18

(10]

(11]

(12]

(13]

[14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

(22]

23]

work connectivity graph for malicious traffic dissec-
tion,” in Conference on Computer Communications
and Networks (ICCCN), 2015 24th International, Aug
2015.

N. Jiang, J. Cao, Y. Jin, L. Li, and Z.-L. Zhang, “Identi-
fying Suspicious Activities Through DNS Failure Graph
Analysis,” in Network Protocols (ICNP), 2010 18th
IEEE International Conference on. IEEE, 2010, pp.
144-153.

Y. Nadji, M. Antonakakis, R. Perdisci, and W. Lee,
“Connected colors: Unveiling the structure of criminal
networks,” in Research in Attacks, Intrusions, and De-
fenses. Springer, 2013, pp. 390-410.

P. K. Manadhata, S. Yadav, P. Rao, and W. Horne,
“Detecting malicious domains via graph inference,” in
ESORICS 2014. Springer, 2014, pp. 1-18.

L. Liu, S. Saha, R. Torres, J. Xu, P.-N. Tan, A. Nucci,
and M. Mellia, “Detecting Malicious Clients in ISP Net-
works Using HTTP Connectivity Graph and Flow In-
formation,” in Advances in Social Networks Analysis
and Mining (ASONAM), 2014 IEEE/ACM Interna-
tional Conference on. IEEE, 2014, pp. 150-157.

L. Invernizzi, S. Miskovic, R. Torres, S. Saha, S.-J. Lee,
C. Kruegel, and G. Vigna, “Nazca: Detecting Malware
Distribution in Large-Scale Networks,” in Proceedings
of the ISOC Network and Distributed System Security
Symposium (NDSS ’14), Feb 2014.

A. Le, A. Markopoulou, and M. Faloutsos, “PhishDef:
URL names say it all,” in Proc. of the 30th IEEFE Int’l
Conference on Computer Communications, 2011, pp.
191-195.

A. Oza, K. Ross, R. M. Low, and M. Stamp, “Http
attack detection using n-gram analysis,” FElsevier
Computers & Security, vol. 45, pp. 242-254, 2014.
[Online]. Available:  http://www.sciencedirect.com/
science/article/pii/S0167404814000959

M. Antonakakis, R. Perdisci, Y. Nadji, N. V. II, S. Abu-
Nimeh, W. Lee, and D. Dagon, “From throw-away traf-
fic to bots: Detecting the rise of DGA-based malware,”
in Proc. of USENIX Security Symposium, 2012, pp.
491-506.

G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer:
Clustering analysis of network traffic for protocol- and
structure-independent botnet detection,” in Proceed-
ings of the 17th USENIX Conference on Security Sym-
posium, ser. SS’08, 2008, pp. 139-154.

G. Gu, P. Porras, V. Yegneswaran, M. Fong, and
W. Lee, “Bothunter: detecting malware infection
through IDS-driven dialog correlation,” in Proc. of the
16th USENIX Security Symposium, 2007, pp. 12:1-
12:16.

C. J. Dietrich, C. Rossow, and N. Pohlmann, “Co-
cospot: Clustering and recognizing botnet command
and control channels using traffic analysis,” Computer
Networks, vol. 57, no. 2, pp. 475-486, 2013.

J. Francois, S. Wang, R. State, and T. Engel, “Bot-
track: tracking botnets using netflow and pagerank,”
in NETWORKING 2011. Springer, 2011, pp. 1-14.
H. Hang, X. Wei, M. Faloutsos, and T. Eliassi-Rad,
“Entelecheia: Detecting P2P botnets in their waiting
stage,” in IFIP Networking Conference, 2013, 2013, pp.
1-9.

J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Be-
yond blacklists: learning to detect malicious web sites
from suspicious URLSs,” in Proc. of the ACM SIGKDD,



[24]

[25]

[26]

27]

(28]

29]

(30]

(31]

(32]

33]

34]

35]

2009, pp. 1245-1254.

J. Zhang, C. Seifert, J. W. Stokes, and W. Lee, “Arrow:
Generating signatures to detect drive-by downloads,” in
Proc. of the 20th Int’l Conference on World Wide Web,
2011, pp. 187-196.

G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detecting
botnet command and control channels in network traf-
fic,” in Proc. of the Network and Distributed System
Security Symposium, 2008.

R. Perdisci, I. Corona, D. Dagon, and W. Lee, “De-
tecting malicious flux service networks through passive
analysis of recursive DNS traces,” in Computer Security
Applications Conference, 2009. ACSAC ’09. Annual,
2009, pp. 311-320.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masin-
ter, P. Leach, and T. Berners-Lee, “Hypertext transfer
protocol-http/1.1, 1999,” RFC 2616, 2006.

P. Mockapetris, “RFC 1034: Domain names: con-
cepts and facilities (november 1987),” Status: Standard,
2003.

A. Finamore, S. Saha, G. Modelo-Howard, S.-J. Lee,
E. Bocchi, L. Grimaudo, M. Mellia, and E. Baralis,
“Macroscopic view of malware in home networks,” in
Consumer Communications and Networking Confer-
ence (CCNC), 2015 12th Annual IEEE, Jan 2015, pp.
262-266.

P. Porras, “Inside risks: Reflections on conficker,” Com-
munications of ACM, vol. 52, no. 10, Oct. 2009.

L. Seltzer, “Conficker: Still  spamming  af-
ter all these years,”  http://www.zdnet.com/

conficker-still-spamming- after-all- these-years-7000031206/,

2014.

P.-N. Tan, M. Steinbach, and V. Kumar, Introduction
to Data Mining, 2nd ed. Addison-Wesley, 2013.

D. Gunopulos, R. Khardon, H. Mannila, S. Saluja,
H. Toivonen, and R. S. Sharma, “Discovering all most
specific sentences,” ACM Transactions on Database
Systems (TODS), vol. 28, no. 2, pp. 140-174, 2003.

F. Pan, G. Cong, A. K. Tung, J. Yang, and M. J. Zaki,
“Carpenter: Finding closed patterns in long biological
datasets,” in Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and
data mining. ACM, 2003, pp. 637-642.

D. Apiletti, E. Baralis, T. Cerquitelli, S. Chiusano, and
L. Grimaudo, “Searum: A cloud-based service for as-
sociation rule mining,” in Trust, Security and Privacy
in Computing and Communications (TrustCom), 2013
12th IEEE International Conference on, July 2013, pp.
1283-1290.

“VirusTotal,” https://www.virustotal.com/.

“Snort,” https://www.snort.org/.

H. Peng, F. Long, and C. Ding, “Feature selection based
on mutual information criteria of max-dependency,
max-relevance, and min-redundancy,” Pattern Analy-
sts and Machine Intelligence, IEEE Transactions on,
vol. 27, no. 8, pp. 1226-1238, 2005.

Appendix A. Classification Features

Table A.6 list all features extracted from Seed-
CGs divided by categories. Most of them are self ex-
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planatory. The CDN hostname ratio takes into ac-
count the presence of CDN in nowadays webpages.
We assume that if a hostname is linked to more
than 3 distinct IP addresses, the content it refers
to is hosted on a CDN. We define such hostname a
CDN hostname.

Table A.6: Full list of features extracted from Seed-CGs.
Underlined features are selected by mRMR.

Topology

min/max/avg/std
min/max/avg/std
min/max/avg/std
min/max/avg/std
min/max/avg/std

num. of total number of nodes

num. of total number of edges

num. of failed DNS queries events

num. of object-path nodes

num. of hostname nodes

num. of serverIP nodes

num. of UDP-ports nodes

num. of TCP-ports nodes

num. of DNS error types

num. of nodes with single edge
min/max/avg/std  in-degree object-path nodes

in-degree hostname nodes
in-degree serverIP nodes
out-degree object-path nodes
out-degree hostname nodes
out-degree serverIP nodes

min/max/avg/std

ratio giant connection ratio
ratio ratio num. of CDN hostnames’ over total
hostnames (CDN hostname ratio)
HTTP
num. of requests per each method [GET, POST, oth-
ers|
num. of replies per each response status [20x, 30x, 40x,
50x]
num. of replies per each content-type [text, image, ap-
plication, binary, multipart, multimedial
num. of distinct user-agent strings
min/max/avg/std  user-agent strings length

requests per distinct user-agent string

min/max/avg/std
min/max/avg/std
min/max/avg/std

min/max/avg/std  user-agent strings blank chars
Syntax
num. of hostname nodes being IP addresses
num. of hostname starting with www

hostname string length

hostname digits and alphabetic chars ratio
for hostname up to 2nd LD, num. of distinct
3rd LD

min/max/avg/std
min/max/avg/std
min/max/avg/std
min/max/avg/std
min/max/avg/std
min/max/avg/std

Occurrences

object-path nodes events
hostname nodes events
DNS fail nodes events

DNS succeed nodes events
TCP port nodes events
UDP port nodes events




