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Abstract

The problem of finding a resource residing in a network node (the resource lo-
cation problem) is a challenge in complex networks due to aspects as network
size, unknown network topology, and network dynamics. The problem is es-
pecially difficult if no requirements on the resource placement strategy or the
network structure are to be imposed, assuming of course that keeping central-
ized resource information is not feasible or appropriate. Under these conditions,
random algorithms are useful to search the network. A possible strategy for
static networks, proposed in previous work, uses short random walks precom-
puted at each network node as partial walks to construct longer random walks
with associated resource information. In this work, we adapt the previous mech-
anisms to dynamic networks, where resource instances may appear in, and dis-
appear from, network nodes, and the nodes themselves may leave and join the
network, resembling realistic scenarios. We analyze the resulting resource loca-
tion mechanisms, providing expressions that accurately predict average search
lengths, which are validated using simulation experiments. Reduction of average
search lengths compared to simple random walk searches are found to be very
large, even in the face of high network volatility. We also study the cost of the
mechanisms, focusing on the overhead implied by the periodic recomputation
of partial walks to refresh the information on resources, concluding that the
proposed mechanisms behave efficiently and robustly in dynamic networks.
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1. Introduction

Random walks are network routing mechanisms which have been extensively
studied and used in a wide range of applications: physics, mathematics, popula-
tion dynamics, bioinformatics, etc. [11, 18, 24]. Roughly speaking, they choose,
at each point of the route, the next node uniformly at random among the neigh-
bors of the current node.

Among the advantages of random walks when applied to communication
networks is the fact they need only local information, avoiding the bandwidth
overhead necessary in other routing mechanisms to communicate with other
nodes. This is especially useful when there is no knowledge on the structure
of the whole network, or when the network structure changes frequently. For
these reasons, random walks have been proposed as a base mechanism for mul-
tiple network applications, including network sampling [9, 16], network resource
location [1, 10, 28, 33], network construction [5, 15, 19, 20, 21], and network
characterization [8, 29, 32].

The emergence of the peer-to-peer (P2P) architecture model has been proven
useful in many applications in recent years. While structured P2P systems (e.g.,
Chord [31], CAN [27] –Content-Addressable Network–, Kademlia [23], etc.) pro-
vide efficient search mechanisms, they introduce a significant management over-
head. In turn, unstructured systems have little management overhead and,
consequently, have been considered in several scenarios (e.g., Gnutella [5, 20],
CAP [14] –Cluster-based Architecture for P2P–, etc.). For such systems, search-
ing techniques based on flooding, supernodes and random walks have been used.
However, it is known that flooding mechanisms do not scale well [13], and su-
pernode systems are vulnerable to supernodes failures (technical problems, at-
tacks, censorship, etc.). Therefore, random walks have been used to search for
resources held in the nodes of a network (e.g., [5, 22]), a problem usually known
as resource location. The problem consists of finding a node that holds a given
resource, the target node, starting at some source node. The source node is
checked for the resource: if it is not found locally, the search hops to a random
neighbor, checking that node for the resource. The search proceeds through the
network in this way, until the target node is reached.

Nevertheless, by using random walks, some nodes may be (unnecessarily)
visited more than once, while other nodes may remain unvisited for a long time.
Avoiding this problem is the main objective of our study.

1.1. The Dynamic Resource Location Problem

In this work, we are concerned with the resource location problem in net-
works with dynamic behavior regarding both resources and nodes.

In particular, we consider scenarios in which resources are randomly placed
in the nodes across the network. Then, on the one hand, we consider scenarios
in which the instances of the resources may appear and disappear from a time
instant to another, maybe at different nodes. On the other hand, we also con-
sider scenarios in which the network nodes themselves may also leave and join
the network.
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In these scenarios, all the nodes of the network may launch independent
searches for different resources (e.g., files) at any time, without the help of a
centralized server, and we are interested in measuring the average performance
of searches between any pair of nodes.

Our assumptions regarding dynamicity cover a wide range of scenarios. For
instance, in P2P networks nodes represent users, which may leave and join
the network quite often. Also, resources represent the shared files, which may
appear and disappear from time to time.

1.2. Contributions

In this work, we use the technique of concatenating partial random walks
(PWs) to generalize the resource location mechanisms introduced in [17] for
static networks to the case of dynamic networks. In particular, this paper
provides new analytical models that predict the behavior of the resource location
mechanisms in scenarios with dynamic resources and in scenarios with dynamic
nodes, along with new simulation experiments to validate the analytical results.
In addition, a new analysis of the cost of the mechanisms in these scenarios is
provided. We consider the two versions of the mechanisms proposed in [17] and
adapt them to operate in the dynamic scenarios. In the first version, which we
refer as choose-first PW-RW, the search mechanism first chooses one of the PWs
at random and then checks its associated information for the desired resource. In
the second version, which we refer as check-first PW-RW, the search mechanism
first checks the associated resource information of all the PWs of the node, and
then randomly chooses among the PWs with a positive result. It is clear that
there are other choices regarding the search mechanisms that seem reasonable.
However, the ones considered in our study follow very different approaches (one
chooses first, and the other checks first). Therefore, that will allow us to check
the strength of our approach in very different circumstances.

Then, we have studied their performance, considering the following aspects:

• Dynamic Resources: We have developed an analytical mean-field model for
both mechanisms when resources are dynamic. Expressions are given for
the corresponding expected search length (i.e., the expected number of hops
taken to find the resource, averaged over all source nodes, target nodes,
and network topologies) of each mechanism. These expressions provide
predictions as a function of several parameters of the model, such as the
network structure (size and degree distribution), the resource dynamics,
and those of the mechanisms operation.

The predictions of the models are validated by simulation experiments in
three types of randomly built networks: regular, Erdős-Rényi, and scale-
free. These experiments are also used to compare the performance of both
mechanisms, and to investigate the influence of the resource dynamics. We
have compared the performance of the proposed search mechanisms with
respect to random walk searches. For the choose-first PW-RW mechanism
we have found a reduction in the average search length with respect to
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simple random walk ranging from around 57% to 88%. For the check-first
PW-RW mechanism such a reduction is even bigger, achieving reductions
above 90%.

• Dynamic Nodes: We have also considered the case where network nodes
may leave and join the network, and have provided both analytical and
experimental results. We have found a reduction in the average search
length with respect to simple random walks above 94% (using the check-
first PW-RW mechanism).

• Cost: Finally, we have analyzed the cost of the PW-RW mechanisms,
defined as the number of messages, taking into account the cost of searches
themselves and the cost of precomputing the PWs in each recomputation
interval. We have provided analytical expressions for the relation between
the cost and the length of the recomputation interval, as well as for the
interval length that minimizes this cost. We have found that the impact of
the precomputation of PWs on the cost is not significant in a wide range of
lengths of the precomputation interval depending on the dynamic behavior
of the network and on the dynamic behavior of searches.

1.3. Related Work

Da Fontoura Costa and Travieso [6] study the network coverage of three
types of random walks: traditional, preferential to untracked edges, and prefer-
ential to unvisited nodes. Also, Yang [33] studies the search performance of five
random walk variations: no-back (NB), no-triangle-loop (NTL), no-quadrangle-
loop (NQL), self-avoiding (SA) and high-degree-preferential self-avoiding (PSA).
Self-avoiding walks (SAW) are those that try not to visit nodes that have al-
ready been visited. Several variations of this idea have been studied, differing
in the probability of revisiting a node. Some examples are: strict SAW, true
or myopic SAW, and weakly SAW [4, 30]. In [7], Das Sarma et al. propose
a distributed algorithm to obtain a random walk of a specified length ℓ in a
number of rounds1 proportional to

√
ℓ.

López Millán et al [17] propose a mechanism for resource location based on
building random walks connecting together partial walks (PW) previously com-
puted at each network node. However, the mechanisms in [17] are only valid
when both nodes and resources have a static behavior, contrary to the approach
we follow in this paper.

The remainder of this paper is arranged as follows. Sections 2 and 3 respec-
tively present the choose-first PW-RW and check-first PW-RW mechanisms in
scenarios with dynamic resources. Section 4 adapts the previous mechanisms

1A round is a unit of discrete time in which every node is allowed to send a message to one
of its neighbors. According to this definition, a simple random walk of length ℓ would then
take ℓ rounds to be computed.
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to scenarios with dynamic nodes. In Section 6, the cost of the mechanisms is
evaluated in dynamic scenarios. Finally, Section 7 concludes this paper and
provides some future work lines.

2. Choose-First PW-RW with Dynamic Resources

Consider a communication network (e.g., the Internet, a wireless ad-hoc
network, etc.) that provides full connectivity to the end system entities (e.g.,
computers, smartphones, etc.) connected to it. Next, consider a subset of N
end system entities which establish logical neighboring relations for some pur-
pose (a P2P file sharing system, a social network application, etc.). These end
system entities (as the nodes) and their neighboring relations (as the links) form
an overlay network on top of the underlying network.2 The resource location
mechanisms described in this paper apply to such an overlay network (referred
to simply as the network), and we will focus on searches for resources in the
end system entities (referred to as the nodes).

Each of the N nodes holds a set of resources. We focus on a given resource
of interest, of which initially there is a number of instances randomly placed in
many distinct network nodes. Our resource location problem is defined as find-
ing one of the nodes that hold the resource (the one we encounter first, called
the target node), starting by a certain node (the source node). We make no
assumption on the underlying communication network, focusing on the num-
ber of nodes of the overlay visited to find a resource, as a measure of search
performance.

In our analysis, for each search, we assume that the source node is uniformly
chosen at random among all nodes in the network. Likewise, we consider that
the instances of the resource have been randomly distributed throughout the
network. The probability that a given node holds an instance of the resource is
denoted by pres. The expected number of instances of the resource for a given
network is denoted by R = N · pres.

Resources have a dynamic behavior. If we compared two snapshots of the
network, one taken at time t = 0 and another taken at time t = T , we would
observe that some of the instances have disappeared while other new ones have
appeared (at different nodes, in general). More concretely, an instance present
in a node disappears with probability d. Conversely, an instance not initially
present in a node appears in that node with probability a. We will use d as an
input parameter to characterize resource dynamics. For a value of d, we will
set a so that expectation of the number of resources (R) remains unchanged.
This way, our results will isolate the impact of resource dynamics on the search
mechanism due only to the deterioration of information, discarding the effect
of a possible increase or decrease on the expected number of resource instances.

2Note that neighbors in the overlay are not in general neighbors in the underlying network.
Note also that the underlying communication network provides connectivity between any pair

of end system entities, even if they are not neighbors in the overlay.
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Figure 1: Example of the dynamic behavior of resources. The network is shown
at t= 0 (left hand side), when the PWs are precomputed, and at time t = T
(right hand side), the end of the PW recomputation interval. The resource
instances have changed during the interval.

Figure 1 provides an illustrative example of the dynamic behavior of the re-
sources.

The search mechanism. A search performs a walk from the source node to the
target node according to the mechanism that is defined below. The search
mechanism proposed in this paper, referred to as PW-RW, exploits the idea of
efficiently building total random walks from partial random walks available at
each node of the network. It comprises two stages:

1. Partial random walks construction: In an initial stage at time t=0, every
node i in the network precomputes a set Wi of w random walks before
the searches take place, with the initial distribution of resource instances
in the network. Each of these partial walks (PW) has length s, starting
at i and finishing at a node reached after s hops. Using the PW-RW
mechanisms, the PWs computed in this stage are simple random walks
(i.e., the next node to be visited is chosen uniformly at random among
the neighbors of the current node).
During the computation of each PW in Wi, node i registers the resources
held by the s first nodes in the PW (from i to the one before the last node).
The last node of the PW is excluded, being included in the PWs departing
from it. In particular, for each PW computed by i, this node keeps the
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Figure 2: An example search: total walk, partial walks, jumps and steps.

set of the identifiers of the resources held by the nodes in that PW. In
this set, there is no indication of the particular node or nodes holding
the resource. The registered information will be used by the searches in
stage 2, to decide whether to traverse that PW (if the resource looked for
is found in the set of identifiers), or to jump over it (if the resource is not
found).

2. The searches : During the interval 0 < t ≤ T , after the PWs are con-
structed, searches are performed in the network. We will consider the
system at t= T , in which, as stated above, the dynamic behavior of re-
source instances is characterized by d. Therefore, results obtained will
reflect the performance of the search mechanism in a worst case scenario,
since searches executed in t < T will see a probability that an instance
disappears less than or equal to d. There is no relation between the inter-
val T , measured in time units, and the hops of a search, other than the
assumption that T is much longer than the duration of a typical search,
as discussed later in this section in paragraph Resource dynamics.
A search can be qualitatively described as a sequence of jumps over PWs,
interleaved with some occassional unsuccessful PW traversals, and fin-
ished by the successful traversal of a PW until the target node is visited.
Unsuccessful PW traversals are caused by outdated resource information
associated to that PW, i.e., the resource was in the PW at t = 0 but it
has disappeared at the time of the search. The last PW traversal will be
incomplete in general, in the sense that its length will be less than or equal
to s, since the search stops when the resource is found.
We measure the length of searches in hops. Some of these hops are jumps
(over PWs), and other are steps (traversing PWs). We distinguish between
unnecessary steps (in unsuccessful PW traversals), and final steps (in the
last, successful, PW). The definition of the search mechanism and the
associated concepts are illustrated by the example in Figure 2, in which
PWs of length s = 6 are used.
At this point, we emphasize the difference between the search just de-
fined and the total walk that supports it. Indeed, the total walk consist of
the concatenation of partial walks as defined above. Searches are therefore

7



shorter in length than their corresponding total walks because of the num-
ber of steps saved in jumps over PWs in which we know that the resource
is not located, although these saving may be reduced by the unnecessary
steps due to outdated information within PWs.
More formally, we describe how searches are performed as follows. Let a
search start at a node A. A PW in WA is chosen uniformly at random.
Its associated resource information collected in stage 1 is then queried for
(any instance of) the desired resource.

• If the query result is negative (i.e., the resource is not in the set of
identifiers associated with that PW), the search jumps to node B,
the last node of that PW. Note that the current node and the node to
which the search jumps are not neighbors in the overlay network in
general. Jumps therefore make use of the underlying communication
network. The process is then repeated at B and the search keeps
jumping in this way while the results of the queries are negative.

• If the query result is positive (i.e., the resource is in the set of identi-
fiers), the search traverses that PW looking for the resource. It starts
checking if the current node has the desired resource. If it does not,
the search takes a step to the next node of the PW, checking again
if it has the resource. The search proceeds through the PW in this
way until the resource is found or the PW is finished.

– If the resource is found, the search stops.

– Otherwise (i.e., the search reaches the last node of the PW with-
out having found the resource in the previous nodes), it means
that the information collected in stage 1 for that PW and the
resource of interest is no longer valid. The search considers that
the result is negative, and the search process is repeated at the
last node of the PW.

Resource dynamics. Regarding resource dynamics, we realize that searches are
executed based on information collected at t=0 that may be outdated during
the interval 0 < t ≤ T , when the queries are performed. The duration of the
interval (T ) is assumed to be much longer than the duration of a typical search,
since we are interested in using the PWs computed at t = 0 for as many searches
as possible, with an acceptable degradation of information associated with those
PWs.3 Therefore, most of the searches take place within the interval, and only
a few start in one interval and finish in the following interval. The part of
those searches in the following interval benefits from the newly computed PWs
of this interval. Our analysis will consider that all searches take place within
the interval, thus reflecting a worst case situation. Four cases arise when the
information associated with a PW is queried for the resource, as is shown in
Table 1 and illustrated by Figure 3.

3A discussion of the optimal duration of the interval is provided in Section 6.
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Resource present in PW

case t = 0 t = T query result
a) no no True Negative (TN)
b) yes yes True Positive (TP)
c) no yes False Negative (FN)
d) yes no False Positive (FP)

Table 1: Resource dynamics: query results.

A True Negative or TN (case a) occurs when no instances were present in
the PW at t=0, and the same holds at t=T . A True Positive or TP (case b)
occurs when one or more instances are present in the PW at t=0 and one or
more instances (not necessarily the same ones) are present at t=T . The impact
of resource dynamics on the performance of the search mechanism comes from
the False Negatives (FN) and the False Positives (FP). A FN (case c) occurs
when there were no instances in the PW at t= 0, but at least one instance is
present at t = T . It makes the search jump over that PW, ignoring the new
instance(s). An FP (case d) occurs when there were one or more instances in
that PW at t=0 but all of them are gone at t=T and there are no new instances
at t=T . It makes the search traverse a whole PW fruitlessly, since no instances
are currently in that PW. Note that the case when all instances disappear from
the PW, but some other instance(s) appears in that PW is included in the TP
case.

At this point, we note that the performance of the search mechanism can
be affected by the degradation of the information collected in the PWs. For
instance, if all the instances of a given resource disappear and new instances
appear in nodes that happen to be in PWs which did not have the resource at
t = 0, the resource would not be found, since searches would jump over those
PWs due to the (false) negative result of the queries. Therefore, in order to
keep their accuracy, PWs may need to be “refreshed”. Once the interval is
finished, PWs are recomputed at t= T to acquire fresh resource information,
and searches from t=T to t=2T will use the new PWs. In other words, stages
1 and 2 described above are repeated with a period T . In Section 6, we assess
the impact of this PW recomputation on the overall searches cost.

The search metrics. In this work, we are interested in the number of hops to find
a resource, which is defined as the search length. This search length is a random
variable that takes different values when independent searches are performed.
The search length distribution is defined as the probability distribution of the
search length random variable. So, the expected search length, derived from the
mentioned distribution, taken over all networks, all source nodes, and target
nodes, is an interesting performance measure of the searching mechanism in a
given network.

In the next section we provide an analytical model that gives an estimation
of the expected search length of the choose-first PW-RW mechanism. We use
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Figure 3: Resource dynamics: examples of results when a PW precomputed at
t=0 is queried at t=T .

a mean-field model and analysis. In this approach, instead of computing the
search length distribution for each network, source node and target node, and
then taking expectations, the analysis itself handles average values. Whereas
this approach may not accurately reflect some border cases (like some specific
network topologies), it captures rather accurately the general characteristics
and metrics of the mechanisms. This fact has been also confirmed by using
simulations.

2.1. Analysis

Since we have defined the expected search length for any pair of source and
target nodes, the expected length of the search from the source node is the
same as the expected search length from any subsequent node in the search.
This allows us to write a recursive expression for the expected search length.
Consider the search is at some node i, one of whose PWs is queried for the
resource. The expected search length from i can be written in terms of the
expected search length from the next node j that will be queried for the resource,
plus the number of hops taken from node i to node j. If the result of the query
at i was negative (either false or true), the search will jump from i to j, adding
1 hop to the search. If the result was a false positive, the search will traverse the
entire PW without finding the resource, adding s hops to the search. Finally, if
the result was a true positive, the search will traverse the PW until the resource
is found, adding a number of hops whose expected value we call F . These cases
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occur with probabilities that we call, respectively: Pn, Ptp, and Pfp. Denoting
the expected search length using PWs of length s by Ls, the resulting recursive
expression is then:

Ls = (Ls + 1) · Pn + (Ls + s) · Pfp + F · Ptp, (1)

where Pn, Ptp, and Pfp are the probabilities of choosing a partial walk (out of
the w PWs of the node) for which the query for the resource returns a negative
(either a TN or a FN, see Table 1), a TP, and an FP result, respectively, with
Pn+Ptp+Pfp = 1. F is the expectation of the number of final steps taken when
traversing the last PW, until an instance of the resource is found (TP). Solving
for Ls, we obtain:

Ls =
1

Ptp
· (Pn + s · Pfp) + F . (2)

The probabilities in Equation 2 are estimated with the following expressions:

Ptp =

w
∑

i=1

w−i
∑

j=0

P (i, j) ·
i

w
,

Pfp =

w−1
∑

i=0

w−i
∑

j=1

P (i, j) ·
j

w
,

Pn =
w−1
∑

i=0

w−i−1
∑

j=0

P (i, j) ·
w − (i + j)

w
= 1− Ptp − Pfp, (3)

where P (i, j) is the probability that, in the w PWs of a node, there are i PWs
whose queries return a TP result and j PWs that return an FP result:

P (i, j) = B(w, ptp, i) ·B(w − i, pfp, j), (4)

where

• B(m, q, n) is the coefficient of the binomial distribution

B(m, q, n) =

(

m
n

)

· qn · (1− q)(m−n), (5)

• ptp is the probability that a given PW at any node returns a TP result,4

• and pfp is the probability that a given PW at any node returns an FP
result, conditioned on the fact that it does not return a TP.

4This probability ptp is not to be confused with Ptp (note the different case), defined above
as the probability of choosing a PW which returns a TP out of the w PWs of the current
node.
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Therefore, in order to evaluate the estimation of the expected search length
given by Equation 2, we need to obtain the values of ptp, pfp and F . Let us
provide them:

1. The variable ptp has been defined as the probability that a given PW at any
node returns a TP result. This probability can be easily estimated if we
condition it on the fact that the PW (of length s) had exactly r instances
of the resource at t=0. Defining Ppw(r) as the probability that a PW has
r instances of the resource, and recalling that R is the expectation of the
number of instances of the resource in the network, we can write:

ptp =

min{s,R}
∑

r=1

Ppw(r) ·
[

(1 − dr) + dr ·
(

1− (1 − a)s−r
)]

, (6)

where the brackets contain the probability that not all the r instances
present at t=0 have disappeared (with probability d) at t=T or, if they
did disappear, at least one instance appeared (with probability a) in some
of the s− r remaining nodes in that interval.
An estimation for Ppw(r) can be obtained using the random properties
of a random walk in networks built randomly. In particular, we consider
that the next hop of a random RW can take it to any of the endpoints
in the network (except the endpoints of the current node since we do not
allow self-loops). Then we estimate Ppw(r) as B(s, prw, r), where prw is
the probability that the RW visits a node with an instance of the resource
in the next hop. In turn, we estimate this probability as:

prw =
R · k

S − krw
·
krw − 1

krw
. (7)

The first fraction in Equation 7 is the ratio of positive endpoints (the ones
connected to the R nodes that have an instance of the resource) and all
endpoints in the network (S =

∑

k k nk) except those of the current node.
We use the average degree of the network (k =

∑

k k nk/N) as an estima-
tion of the degree of a node that holds the resource (which is assigned or
not with uniform probability pres across the network). Similarly, we use
the expectation of the degree of a node visited by a random walk as an
estimation of the degree of the current node:

krw =
∑

k

k ·
k · nk

S
=

1

S
·
∑

k

k2 · nk. (8)

The second fraction in Equation 7 corrects the previous ratio taking into
account that, when at a node of a given degree, the probability of not
going backwards (and therefore having the chance to find the resource) is
the probability of selecting any of its endpoints but the one that connects
it with the node just visited by the walk. With this, the estimation of
Ppw(r) is:
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Ppw(r) =

(

s
r

)

· (prw)r · (1− prw)
s−r. (9)

2. We have defined pfp as the probability that a given PW at any node returns
an FP result, conditioned on the fact that it does not return a TP. This
conditioning comes from the second binomial coefficient in this equation,
which we restrict to the w−i PWs which we know that do not return a TP,
since the ones that do are accounted for in the first binomial coefficient. In
other words, the second binomial coefficient includes the PWs that return
a TN, a FN or an FP result, and pfp is the probability that it returns an
FP conditioned on that. We can then easily write an estimation of pfp as:

pfp =
1

1− ptp
(1− Ppw(0)− ptp) , (10)

where we are substracting Ppw(0) (the probability of cases TN and FN in
Table 1), and ptp (the probability of case TP).

3. An expression for F , the expectation of the number of final steps taken
when traversing the last PW until an instance of the resource is found,
is still needed to be finally able to estimate the average search length in
Equation 2. For this we rely on F (r), the expectation of that variable
conditioned on there being r instances of the resource in the PW. Then:

F =
1

1− Ppw(0)
·
min{s,R}
∑

r=1

F (r) · Ppw(r). (11)

Note that F is in fact conditioned on there being at least one instance of
the resource in the PW, since it corresponds to a TP (see Equation 1). This
is the reason of the fraction multiplying the summation in Equation 11.
Now we provide an expression for F (r) as the expectation of the position
of the first resource in the PW (conditioned on there being r instances of
the resource in the PW):

F (r) =

s−r
∑

i=0



i ·





i−1
∏

j=0

(

1−
r

s− j

)



 ·
(

r

s− i

)



 . (12)

Each factor in the product of Equation 12 is the probability that there is
no instance in the jth position of the PW, conditioned on that there is no
instance in the previous position. The final factor outside the product is
the probability that there is an instance in the ith position conditioned on
there are no instances in the previous positions.

2.2. Performance Evaluation

In this section, we apply the model presented in the previous section to
real networks, and we also validate its predictions with data obtained from
simulations. Three types of networks have been chosen for the experiments:
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regular networks (constant node degree), Erdős-Rényi (ER) networks and scale-
free networks (with power law on the node degree). These topologies cover a
wide variety of real networks [3], ranging from communication networks [2] to
Internet [26] and P2P networks [12].

A network of each type and size N = 104 has been randomly built with
the method proposed by Newman et al. [25] for networks with arbitrary degree
distribution, setting their average node degree to k = 10. Each network is
constructed in three steps: (1) a preliminary network is constructed according
to its type; (2) its degree distribution is extracted, and (3) the final network is
obtained feeding the referenced method with that degree distribution. For each
experiment, 106 searches have been performed. In every search, the source node
has been chosen uniformly at random, and every node in the network has been
assigned an instance of the resource looked for with probability pres = 10−2

at t= 0. Therefore, the expected number of resource instances present in the
network at t=0 for all searches is R = N · pres = 100.

We show the results for scale-free networks, which are especially interest-
ing since this type of degree distribution is frequently found in real networks.
Results for regular and ER networks, which do not differ significantly from scale-
free results, are included in the Appendix for the interested reader.

2.2.1. Expected search length vs. PW length

Figure 4 shows the expected search length in a scale-free network for several
values of d (i.e., the resource dynamics). The number of PWs per node is set
to w = 5, although the performance of the PW-RW mechanism is independent
from this parameter,5 since only one PW is used to locate the resource. Model
predictions (Section 2.1) are plotted with lines and simulation results are shown
as points. It can be seen that the model provides an accurate correspondence
with the real data, with larger error for higher values of d and s. These devia-
tions are discussed further in Section 2.2.3.

All curves show a minimum point, which marks the optimal PW length (sopt)
and the corresponding optimal expected search length (Lopt). Interestingly, the
values of sopt are small and do not depend heavily on d. According to the ana-
lytic data, sopt ranges between 13 and 15 for all shown curves.

2.2.2. Reduction of the expected search length

We have compared the performance of the proposed search mechanism for
Lopt with searches based on simple random walks (RW searches), finding large
reductions in the average search lengths. Table 2 shows the relative reductions

5 The extreme case of having just one PW is to be avoided because it yields many unfinished
searches, since it is relatively easy to build walks that are loops that do not cover the network.
Indeed, if the last node of a PW is a node whose (only) PW has been already used in that
total walk, it will take the search to the same place again, resulting in a never-ending loop.
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Figure 4: Choose-first PW-RW with dynamic resources: expected search length
Ls vs. PW length s for several d in a scale-free network.

search length
d reduction (%)
0.0 88.28
0.1 86.37
0.3 81.23
0.5 72.94
0.7 57.26

Table 2: Choose-first PW-RW with dynamic resources: reduction of the ex-
pected search lengths relative to RW searches for several d.

(%) for several values of d. We can see that the reductions that choose-first
PW-RW achieves with respect to RW searches are lower for higher d, ranging
from around 88% in the case when d = 0 to 57% when d = 0.7.

2.2.3. Deviations of the predictions of the analytical model

It can be concluded from Figure 4 that the proposed analytical model suc-
ceeds in capturing the general behavior of the search mechanism observed in
the simulations. There are, however, significant deviations that deserve further
evaluation and discussion. We look first at the region of the graphic correspond-
ing to interesting practical scenarios, i.e., values of s close to sopt. For s = 20,
relative deviations range between 2.9% (d = 0.0) and 7.9% (d = 0.7). We now
look at the region for large s, to explore the dependency of the deviation on the
length of the PWs. For s = 300, relative deviations are slightly larger, ranging
between 3.6% and 8.2%.

These deviations may be explained by one aspect of the construction of PWs
that is not captured by our analytical model: revisits within a PW. That is,
when constructing a PW, the next node visited by the random walk can be one

15



already in that PW. This will in general happen for several nodes of the PW,
with increasing probability for longer PWs (larger s). Now consider a search
traversing a PW with revisited nodes. In the calculation of the probability
that a PW contains the resource, our analysis considers each node of the PW
independent from the others, which is clearly not true for a revisited node
(which appears more than once in the PW but is in fact the same node). This
makes our model slightly optimistic because it overestimates the probability of
a PW containing the resource, and therefore underestimates the probability of
a query to that PW resulting in a false positive when resources disappear. This
means that there will actually be more PW traversals caused by false positives
than expected, increasing the average search length in simulations. This effect
is larger for higher d when more resources disappear and therefore more than
expected PWs cause false positive queries, which is in accordance with Figure 4.

3. Check-first PW-RW with Dynamic Resources

This section describes a variation of the mechanism presented in Section 2.
Suppose the search is currently in a node and it needs to pick one of the PWs
in that node to decide whether to traverse it or to jump over it. Recall from
stage 2 under paragraph “The search mechanism” that the original mechanism
first chooses one of the PWs at random, and then checks its associated infor-
mation for the desired resource, resembling the behavior of a random walk. The
proposed variation, on the other hand, reverses the order of these tasks. It first
checks the associated resource information of all the PWs of the node, and then
randomly chooses among the PWs with a positive result, if any (otherwise, it
chooses among all PWs of the node, as the original version). This check-first
PW-RW mechanism improves the performance of the original (or choose-first
PW-RW ) since the probability of choosing a PW with the resource increases,
with no extra storage space cost.

There is another, less important, difference between the algorithms. In the
original version, the nodes whose resources were registered in the information
associated to the PW ranged between the current node and the one before
the last node. In the check-first version, the resource information is registered
from the first node (the next to the current node) to the last node in the
PW. This change slightly improves the performance of the new version, since
the probability of choosing a PW with the resource increases also in the cases
where the resource is held by the last node of the PW. The rest of the operation
of the mechanism remains the same.

3.1. Analysis

Most of the analysis provided in Section 2.1 is still valid for check-first PW-
RW. We present here the equations that need to be modified to reflect the new
behavior. That is the case of Equations 3 for the probabilities of choosing a
PW with a TP, FP and negative result, respectively. Their counterparts follow.
Remember that i and j represent the number of PWs of the node that return a
TP result and an FP result, respectively:
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Ptp =

w
∑

i=1

w−i
∑

j=0

P (i, j) ·
i

i+ j
,

Pfp =

w−1
∑

i=0

w−i
∑

j=1

P (i, j) ·
j

i+ j
,

Pn = P (0, 0) = 1− Ptp − Pfp, (13)

The expression for the expectation of the number of final steps taken when
traversing the last PW until the resource is found (Equation 11) is still valid.
It uses F (r), the expectation of the position of the first resource in the PW,
conditioned on there being r instances of the resource in the PW. Its expression
(Equation 12) needs to be modified, since the range of nodes whose resources
are associated with the PW has changed from [0, s − 1] to [1, s]. The indexes
limits and their use in the expression have been updated as necessary in the new
expression, which completes the analysis of the check-first PW-RW mechanism:

F (r) =
s−r+1
∑

i=1



i ·





i−1
∏

j=1

(

1−
r

s− j + 1

)



 ·
(

r

s− i+ 1

)



 . (14)

3.2. Performance Evaluation

For the performance evaluation of the check-first PW-RW, we use the same
scenarios used in the performance evaluation of the choose-first PW-RW. As
earlier, the corresponding figures for regular and ER networks can be found in
the Appendix.

3.2.1. Expected search length vs. PW length

Figure 5 shows the expected search length in a scale-free network for several
values of d, and for w = 5. The shape of the curves is the same as that for the
original mechanism (Figure 4), and the discussion on the observed deviations of
the analytical results given in Section 2.2.3 is also applicable to this case.

A substantial decrease in the optimal search length (Lopt) for check-first
PW-RW is observed. For example, for d = 0.3, Lopt is around 11, while it was
about 21 for the choose-first PW-RW mechanism. The optimal PW length also
diminishes, from about 14 to 6 in that case. The expected search length decrease
is due to the fact that the new mechanism checks all the PWs in the node for the
resource and then chooses one only among those with positive result, increasing
the probability of choosing a PW that currently holds the resource. Following
this reasoning, the more PWs in the node, the higher this probability. It is
therefore interesting to explore the dependency of L and sopt with w.

Figure 6 shows the expected search length of the check-first PW-RW mecha-
nism, for w = 2, 5 and 10 with d = 0.3. To make the comparison of performance
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Figure 5: Check-first PW-RW (w = 5) with dynamic resources: expected search
length Ls vs. PW length s for several d in a scale-free network.

between both mechanisms easier, a curve corresponding to choose-first PW-RW
has been added to the graph. As explained above, the performance of the latter
is independent from w, but it plays a central role in the check-first PW-RW.
The range of the axes of this graph has been restricted to focus on the area
around sopt. For higher s, the curves for the several w converge. As expected,
it is observed that higher w yields lower Lopt, with a value about 8 for w = 10.
Another interesting observation is that sopt also diminishes for higher w, falling
to 4 in this case.

These values mean a reduction of about 92% in the expected search length
of simple random walks, with 10 precomputed PWs of just 4 nodes. Higher
reductions can be achieved, at the expense of increasing the cost of the compu-
tation of the PWs, as analyzed in Section 6.

3.2.2. Reduction of the expected search length

Table 3 is provided as a reference, presenting the reductions achieved by
check-first PW-RW with respect to random walk searches for w = 5 and several
d. We see that reductions range between 94% and 78%, while those of choose-
first PW-RW ranged between 88% and 57%. That is an additional reduction
of about 50%.

4. Choose-First and Check-First PW-RW with Dynamic Nodes

So far we have analyzed the performance of PW-RW when resource instances
dynamically appear in, and disappear from, network nodes. In this section, we
explore the case where network nodes themselves leave and join the network. In
our model, we assume that at time t=T , some nodes have left the network and
others have joined it (recall that PWs were computed initially at time t= 0).
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Figure 6: PW-RW with dynamic resources: expected search length Ls vs. PW
length s for choose-first PW-RW and check-first PW-RW (w = 2, 5, 10) in a
scale-free network with d = 0.3.

search length
d reduction (%)
0.0 94.29 %
0.1 93.44 %
0.3 91.04 %
0.5 86.91 %
0.7 78.68 %

Table 3: Check-first PW-RW (w = 5) with dynamic resources: reduction of the
expected search lengths relative to RW searches for several d.
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Nodes that have left the network have a double impact on PW-RW: (1) their
resource instances are no longer available, so the information on the resources
in a PW is degraded, and (2) searches will not be able to visit them when
following their PWs. On the other hand, new nodes have no impact on PW-
RW: since they are not in the previously computed PWs, they will not be used
by searches, even if they hold instances of the resource looked for.6 Therefore, a
single parameter l, the probability that a node present at t=0 has left at t=T ,
is enough to evaluate the impact on PW-RW performance at t = T . At this
time, the expected number of resource instances is Npres(1 − l), in a network
with expected size N(1− l). This implies that the expected number of resource
instances per node is still pres, which allows a fair comparison with the baseline
(static) case. The algorithm for the PW-RW mechanisms needs to be adapted
for the dynamic nodes scenario. We call nodes that remain in the network at
t= T active nodes. When traversing a PW, the walk will visit the first active
node at each hop. Similarly, when jumping over a PW, the walk will hop to the
last active node in the PW. If no active nodes remain in the PW, the search will
proceed visiting any active neighbor or will stop if there are none (only searches
that find the resource are included in the performance evaluation results shown
later).

4.1. Analysis

The analytical models in Sections 2 and 3 are modified for the dynamic nodes
scenario as follows. The expected length of a PW is now s(1 − l). Therefore,
Equation 2 becomes:

Ls =
1

Ptp
· (Pn + s(1− l) · Pfp) + F. (15)

Equations 3 for choose-first PW-RW are still valid, and so are their counterpart
Equations 13 for check-first PW-RW. We need to provide a new version of ptp
in Equation 4, since the reason of information degradation is now the dynamics
of nodes:

ptp =

min{s,R}
∑

r=1

Ppw(r) · (1− lr), (16)

with Ppw(r) given by the original Equation 9, which relied on Equations 7 and 8.
Equation 10 for pfp can still be used, with the new definition of ptp above. Finally,
a new expression for F is needed, since it depends on the number of active nodes
u in the last PW, which is now a random variable:

F =
s

∑

u=1

F (u) · Ppw(u), (17)

6New nodes with fresh resource instances will become useful from the searches point of
view when PWs are recomputed at t=T .
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where F (u) is the expected number of final steps conditioned on there being u
active nodes in the PW, and Ppw(u) is the probability that the PW has u active
nodes. To obtain the former we rely on F (u, r), the expected number of final
steps conditioned on there being r instances of the resource in a PW with u
active nodes:

F (u) =
1

1− Ppw(u, 0)
·
min{u,R}

∑

r=1

F (u, r) · Ppw(u, r), (18)

where Ppw(u, r) is the probability of a PWwith u active nodes having r instances
of the resource. Now, an estimation for F (u, r) can be obtained reasoning as
for Equation 12:

F (u, r) =
u−r
∑

i=0



i ·





i−1
∏

j=0

(

1−
r

u− j

)



 ·
(

r

u− i

)



 . (19)

The expression for Ppw(u) can be obtained as in Equation 9:

Ppw(u) =

(

s
u

)

· (prw,a)
u · (1− prw,a)

s−u, (20)

where prw,a, the probability that a node visited by a RW is active, is:

prw,a =
N(1− l) · k
S − krw

. (21)

Likewise, the expression for Ppw(u, r) is:

Ppw(u, r) =

(

u
r

)

· (prw)r · (1− prw)
u−r , (22)

where prw is given by Equation 7.

4.2. Performance Evaluation

We look now at the performance of the PW-RW mechanisms in networks
with dynamic nodes, that operate according to the model described in the pre-
vious section. As earlier, the corresponding figures for regular and ER networks
can be found in the Appendix.

4.2.1. Expected search length vs. PW length

Figure 7 shows results for choose-first PW-RW in a scale-free network for
several values of l, the probability of a node leaving the network. Predictions of
the analytical model in Section 4, plotted as lines, provide accurate estimations
for experimental results, shown as points. The observed deviations are discussed
in Section 4.2.3.
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Figure 7: Choose-first PW-RW with dynamic nodes: expected search length Ls

vs. PW length s for several l in a scale-free network.

search length
d reduction (%)
0.0 88.28 %
0.1 87.08 %
0.3 84.21 %
0.5 80.21 %
0.7 73.58 %

Table 4: Choose-first PW-RW with dynamic nodes: reduction of the expected
search lengths relative to RW searches for several l.

The effect of node dynamics is in general very similar to that of resource
dynamics (see Figure 4). We note, however, that sopt slightly increases with l
in Figure 7, while it slightly decreased for larger d (the probability of a resource
instance disappearing) in Figure 4. In addition, we see that Lopt remains lower
in the dynamic nodes case as l grows, compared to the dynamic resources case
for the same values of d. Both effects have their origin in the fact that PWs are
effectively shorter in the dynamic nodes case, since some of their nodes are no
longer in the network when searches are performed. This contributes to shorten
the searches, obtaining the optimal lengths with originally longer PWs.

Table 4 shows the reductions in expected search length achieved by choose-
first PW-RW relative to RW searches in scale-free networks with dynamic nodes.
As for the dynamic resources case (Table 2), reductions are similar, ranging in
this case between 73% and 88%. Reductions for large l are significantly higher
than those for large d in the dynamic resources case (about 73% for l = 0.7 vs.
about 57% for d = 0.7). This is explained as above by the effectively shorter
PWs in the dynamic nodes case.

Figure 8 shows the results for the check-first PW-RW mechanism in a scale-
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Figure 8: Check-first PW-RW (w = 5) with dynamic nodes: expected search
length Ls vs. PW length s for several l in a scale-free network.

search length
d reduction (%)
0.0 94.29 %
0.1 93.76 %
0.3 92.48 %
0.5 90.68 %
0.7 87.73 %

Table 5: Check-first PW-RW (w = 5) with dynamic nodes: reduction of the
expected search lengths relative to RW searches for several l.

free network with dynamic nodes. As in the dynamic resources case (see Fig-
ure 5), both sopt and Lopt decrease with respect to the choose-first mechanism,
since the algorithm checks all PWs available at the node for the resource, in-
creasing the probability of finding it. Figure 9 shows that both Lopt and sopt
decrease for larger w (the number of PWs per node), as observed also for the
dynamic resources case (see Figure 6).

4.2.2. Reduction of the expected search length

Finally, Table 5 shows the reductions in expected search length of check-first
PW-RW compared to RW searches. Reduction values range between 87% and
94%. Again, reductions for high l are larger than in the dynamic resources case
for large d (around 87% for l = 0.7 vs. 77% for d = 0.7). Reductions relative
to choose-first PW-RW are above 51%, slightly larger than for the dynamic
resource case.
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Figure 9: PW-RW with dynamic nodes: expected search length Ls vs. PW
length s for choose-first PW-RW and check-first PW-RW (w = 2, 5, 10) in a
scale-free network with d = 0.3.

4.2.3. Deviations of the predictions of the analytical model

Figures 7 and 8 show deviations of the proposed analytical model with re-
spect to simulation results. These deviations are very similar to those for the
dynamic resources scenario, discussed in Section 2.2.3. For example, deviations
of the analytical model for choose-first PW-RW with dynamic nodes range from
3.2% (l = 0.0) to 9.4% (l = 0.7) when s = 20, and from 3.7% to 10.3% when
s = 300. As for the dynamic resources case, these deviations may be caused by
revisits within PWs. Our analytical models do not take this effect into account,
resulting in optimistic predictions (see Section 2.2.3).

5. Robustness of PW-RW to parameter perturbations

In this section, we assess the robustness of the proposed mechanisms to vari-
ations of some of the parameters, relative both to the network and to the mech-
anisms themselves. For this, we use the analytical models defined and validated
against simulation results in the previous sections. The PW-RW mechanisms
have two parameters: the length of the PWs (s) and the number of PWs per
node (w). The impact of variations of s on the expected search length has al-
ready been shown in Figures 4 to 9, revealing the existence of an optimal length
for PWs (sopt), which achieves minimum expected search length. As for w, it
is only relevant for check-first PW-RW, since all the PWs available in the node
are checked for the resource. Figures 6 and 9 show that the minimum expected
search length (and also sopt) decreases as w is increased, as expected.

Regarding network parameters, we have already studied the impact of the
dynamics of resources (through d, the probability that a resource disappears
from a node) and of the dynamics of nodes (through l, the probability that a
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node leaves the network), observing that the minimum expected search lengths
remain reasonably low even for high volatility probabilities (see Figures 4 to 9).

We now investigate the effect of pres, the probability that a node has an
instance of the resource looked for, which in turn determines the average number
of instances in the network. We write pres as a function of a multiplicative
perturbation factor c for the chosen baseline value (0.01), i.e., pres = 0.01 ·
c. Then we vary c in the range [0.1, 2] and observe the performance of the
mechamisms in a scale-free network with dynamic resources (d = 0.3). We have
found that the value of sopt itself varies when pres is perturbed, ranging from
44 to 10 for choose-first and from 19 to 4 for check-first. We are presented with
two options here: calculate the expected search lengths with s fixed to the sopt
corresponding to the baseline pres (14 for choose-first and 6 for check-first),
or use the actual sopt for each value of pres (in a hypothetical adaptive PW-
RW). Figure 10 compares both cases for choose-first PW-RW (upper curves)
and check-first PW-RW (lower curves). Expected search lengths grow for c < 1
(as the number of resources decreases below the baseline), and diminish for
c > 1 (as the number of resources increases over the baseline), as expected.
More interesting is the fact that the proposed mechanisms (with fixed s) and
the hypothetical adaptive versions achieve very similar expected search lengths
in a wide range of c. This suggests that the PW-RW mechanisms are robust to
variations of pres, with little performance degradation due to the suboptimality
of s when pres varies around a baseline value. Results are similar for networks
with dynamic nodes, and are not shown here.

Finally, we have checked that the expected search lengths (and also sopt)
do not depend on the network size (N), as long as pres and the average degree
of the network remain unchanged. This is as expected, since fixing pres means
that the number of resource instances is proportional to the network size, and
fixing the average degree means that the number of choices of a random walk
to visit any endpoint in the network (the expected number of neighbors of the
current node) remains the same.

6. Cost of the PW-RW mechanisms

In our proposed searching mechanisms, we assumed that at some initial time
all network nodes compute a number w of PWs that are used for an interval
of time of length T . After that, the searches performed in this interval use
these PWs, and thus the cost of their computation must be added to the cost
of the searches themselves. In this section we show that such an increase is not
relevant in the average cost per search, regardless of the value of T .

First, we observe that since the information associated with those initial
PWs is degraded due to the network dynamics, new PWs are computed at
t=T to capture the current network state. These new PWs are then used for
another interval of length T , and so on. The election of the length of the PW
recomputation interval T influences the total cost with two opposite effects.
For longer intervals, more searches share the cost of the computation of PWs,
lowering the cost per search. However, the information associated with the PWs
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Figure 10: PW-RW with dynamic resources: expected search length Ls vs. c,
the perturbation of pres in a scale-free network with d = 0.3.

gets more degraded for longer intervals, causing longer searches. This suggests
the existence of some optimal Topt that minimizes the total cost per search.

To investigate this we use Ct, the average total cost per search for interval
length T , as defined in [17] for the static network case, as the goodness metric to
optimize. This total cost, defined as the number of messages, takes into account
the cost of the average search (Ls messages plus one to notify the source) and
the cost of the computation of each of the w PWs of a node (s messages plus
one to notify the node), divided by the number of searches b performed per node
in the interval:

Ct = (Ls + 1) +
w

b
(s+ 1). (23)

In dynamic networks, however, Ls varies with time during the interval as in-
formation progresively degrades, so it needs to be averaged over T . In addition,
since we intend to study the average total cost as a function of T , the number
of searches per node in the interval depends on T as b = λT , if we assume that
the number of searches per node per time unit is a constant that we denote λ.
The previous equation then becomes:

Ct(T ) =
1

T

∫ T

0

(Ls(t) + 1) · dt+
w

λT
(s+ 1). (24)

Ls(t) is determined by the stochastic process of deaths that is governed by
µk, the rate of departures of resource instances or nodes when the system is
in state k (the number of instances or nodes). A rigorous approach to this
problem would require a complete stochastic characterization of the behavior of
a system with a large number of states, and is out of the scope of this work. For
our purpose, we will focus on intervals of length T in which a relatively small
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Figure 11: Choose-first and check-first PW-RW in dynamic networks: relative
increment of the expected search length Ls vs. (left) the fraction d of resource
instances d that disappear, and (right) the fraction l of nodes that leave the
network, in a scale-free network.

fraction of resources or nodes leave the system, so that the expected search
length does not overly increase. For these intervals, we will assume that µ
remains constant. This is cleary just an approximation to the behavior of a
real system, but it greatly simplifies the analysis allowing us to draw interesting
practical conclusions.

To obtain an estimation of Ls(t) under these assumptions, we first seek
Ls(d), the relation between the expected search length and the fraction d of
resource instances that disappear. Similarly, we need to find Ls(l) for networks
with dynamic nodes. The following discussion focuses on the dynamic resources
case for conciseness. To find Ls(d), which we note is independent from time, we
use the analysis of the PW-RW mechanisms presented in the previous sections.

Figure 11 shows the increments in the expected search length for the choose-
first and check-first PW-RW mechanisms in a scale-free network with dynamic
resources (left) and dynamic nodes (right). Increments are obtained relative to
the expected search length for the static case (e.g., (Ls(d)−Ls(0))/Ls(0)). We
observe that these dependencies are approximately linear, with a slope α ≈ 2
for dynamic resources and α ≈ 1 for dynamic nodes. We can then write Ls(t) ≈
Ls(0)(1+αd(t)). Now, if µ is the departure rate of resource instances (or nodes),
and assuming it constant for the intervals of interest, we obtain an estimation
for the fraction of instances that have disappeared at time t as d(t) ≈ µt/N .
With all the above we can rewrite Equation 24 as:

Ct(T ) =
1

T

∫ T

0

(

Ls(0) · (1 + α
µ

N
t) + 1

)

· dt+
w

λT
(s+ 1)

=
(

Ls(0) + 1
)

+
Ls(0) · αµ

2N
T +

w(s+ 1)

λ

1

T
. (25)
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T , in a scale-free network.

A simple calculation on the previous equation allows us to obtain an expres-
sion for the interval Topt that minimizes the average total cost per search:

Topt =

√

2Nw(s+ 1)

Ls(0) · αµλ
. (26)

Figures 12 and 13 show plots of the average total cost per search Ct(T ) for
the choose-first and check-first PW-RW mechanisms in networks with dynamic
resources and with dynamic nodes, respectively, for several values of µ and
λ. All curves have a linear behavior for large T (where cost is dominated by
longer searches), and a rapid increase for small T (where cost is dominated by
PW computation). The minimum cost, marked with a dot, can be found in the
region in between. Interestingly, this intermediate region is observed to be quite
flat, which allows to reduce the interval T below Topt with no relevant increase
in the average cost per search, but with significant reductions in the expected
search length (see Figure 11). This also means that the PW-RWmechanisms are
not very sensitive to the election of the length T of the recomputation interval,
given that the system remains in the intermediate region. Finally, the plots of
Ct(T ) also show that the cost increases for more volatile networks (higher µ)
and decreases for more frequent searches (higher λ), as it was expected.

7. Conclusions

We have proposed a mechanism to locate a desired resource in randomly
built networks with dynamic resource behavior (resource instances can appear
and disappear) or dynamic node behavior (nodes can join and leave the net-
work). The mechanism is based on building a total walk with partial walks
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that are precomputed as random walks and available at each network node.
When precomputing each partial walk, information on the resources held by its
nodes is stored and associated to it. This information is used by the searches,
so that they can jump over partial walks in which the desired resource is not
located. Two versions of the mechanism have been described. In the choose-first
version, one of the partial walks at the current node is randomly chosen, and
then checked for the desired resource. In the check-first version, all the partial
walks of the node are checked for the resource, and then one is randomly chosen
among those in which the resource was found. We have presented an analytical
model that predicts the expected search length achieved by the two versions of
the mechanism. Simulation experiments have been used to validate the model
and to assess the effect of resource and node dynamics. We have found that
the choose-first version achieves large reductions of the average search length
in relation to searches based on simple random walks. These reductions remain
significant even in the face of high volatility of resources or nodes. The check-
first version produces larger reductions as we increase the number of partial
walks precomputed at each node (at the corresponding extra cost). Results
have been found to be very similar for networks with different degree distri-
butions (k-regular, Erdős-Rényi and scale-free). Finally, we have analyzed the
cost of the PW-RW mechanisms, concluding that the choice of the length of the
PW precomputation interval does not have a significant impact on the cost in
a wide range of interval lengths.

An interesting future work line for this study is to measure the improvement
in the search length that can be obtained by using different strategies to choose
one of the partial walks available in a node. Another possibility to shorten
search lengths is to use more intelligent (and more costly) variations of random
walks instead of simple random walks.
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This Appendix contains results for regular and ER networks that comple-
ment those given for scale-free networks in the main text, as well as some addi-
tional results. Results for the three network types are very similar in all cases.

Appendix A. Choose-First PW-RW with Dynamic Resources

Figures A.14 and A.15 show experimental and analytical results for the ex-
pected search length achieved by choose-first PW-RW in regular and ER net-
works with dynamic resources, respectively, for several values of p, the proba-
bility of a resource disappearing from a node.
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Figure A.14: Choose-first PW-RW with dynamic resources: expected search
length Ls vs. PW length s for several d in a regular network.
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Figure A.15: Choose-first PW-RW with dynamic resources: expected search
length Ls vs. PW length s for several d in a ER network.
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• Length Distributions and Dispersion:

The use of partial walks also affects the shape of the probabilistic distri-
bution of search lengths. Figures A.16 and A.17 show the distributions for
simple random walks (RW) searches and for PW-RW searches, for s = 10
and for several values of d, obtained from the experiments with regular
and ER networks with dynamic resources. Instead of the slowly decay-
ing distribution of RWs, the proposed mechanism exhibits search length
distributions that show a maximum frequency for a small search length
and then decay much faster than the random walk distribution. We also
note that the search length for the maximum frequency (9 in this case)
is independent from the dynamic behaviour of resources (d). The search
length distributions of PW-RW have therefore lower standard deviation
than random walk searches. For d = 0.3, for instance, the standard devia-
tion in regular, ER and scale-free networks are, respectively, 21.06, 21.34
and 21.58. Correspondingly, the mean search lengths are 23.56, 23.72 and
23.81. As a reference for comparison, random walk searches on the scale-
free network registered a standard deviation and mean of search lengths
of 116.48 and 113.56.
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Figure A.16: Choose-first PW-RW with dynamic resources: search length dis-
tributions for RW searches and for PW-RW searches, in a regular network with
s = 10 and several d.

Appendix B. Check-First PW-RW with Dynamic Resources

Figures B.18 and B.19 show the expected search lengths achieved by check-
first PW-RW in regular and ER networks with dynamic resources, respectively,
for several values of p.

In addition, Figure B.20 shows the dependency between the expected search
lengths achieved by check-first PW-RW and the number of PWs per node (w),
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Figure A.17: Choose-first PW-RW with dynamic resources: search length dis-
tributions for RW searches and for PW-RW searches, in a ER network with
s = 10 and several d.

in a regular network with dynamic resources. Results for ER networks are very
similar.

Appendix C. Choose-First PW-RW with Dynamic Nodes

Figures C.21 and C.22 show the expected search lengths achieved by choose-
first PW-RW in regular and ER networks with dynamic nodes, respectively, for
several values of l, the probability of a node leaving the network.

Appendix D. Check-First PW-RW with Dynamic Nodes

Figures D.23 and D.24 show the expected search lengths achieved by check-
first PW-RW in regular and ER networks with dynamic nodes, respectively, for
several values of l.

Finally, Figure D.25 shows the dependency between the expected search
lengths achieved by check-first PW-RW and the number of PWs per node (w),
in a regular network with dynamic nodes. Results for ER networks are very
similar.
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Figure B.18: Check-first PW-RW (w = 5) with dynamic resources: expected
search length Ls vs. PW length s for several d in a regular network.
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Figure B.19: Check-first PW-RW (w = 5) with dynamic resources: expected
search length Ls vs. PW length s for several d in a ER network.
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Figure B.20: PW-RW with dynamic resources: expected search length Ls vs.
PW length s for choose-first PW-RW and check-first PW-RW (w = 2, 5, 10) in
a regular network with d = 0.3.
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Figure C.21: Choose-first PW-RW with dynamic nodes: expected search length
Ls vs. PW length s for several d in a regular network.
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Figure C.22: Choose-first PW-RW with dynamic nodes: expected search length
Ls vs. PW length s for several d in a ER network.
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Figure D.23: Check-first PW-RW (w = 5) with dynamic nodes: expected search
length Ls vs. PW length s for several d in a regular network.
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Figure D.24: Check-first PW-RW (w = 5) with dynamic nodes: expected search
length Ls vs. PW length s for several d in a ER network.
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Figure D.25: PW-RW with dynamic nodes: expected search length Ls vs. PW
length s for choose-first PW-RW and check-first PW-RW (w = 2, 5, 10) in a
regular network with d = 0.3.
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