
Compressing IP Forwarding Tables
with Small Bounded Update Time

Yuanyuan Zhanga, Mingwei Xua,∗, Ning Wangb, Jun Lic, Penghan Chend, Fei
Liangd

aTsinghua National Laboratory for Information Science and Technology,
Department of Computer Science and Technology, Tsinghua University, China
bInstitute for Communication Systems, University of Surrey, United Kingdom

cDepartment of Computer and Information Science, University of Oregon, United States
dBroadband Network Research Center, Beijing University of Posts and Telecommunications,

China

Abstract

With the fast development of the Internet, the size of Forwarding Informa-

tion Base (FIB) maintained at backbone routers is experiencing an exponential

growth, making the storage support and lookup process of FIBs a severe chal-

lenge. One effective way to address the challenge is FIB compression, and

various solutions have been proposed in the literature. The main shortcom-

ing of FIB compression is the overhead of updating the compressed FIB when

routing update messages arrive. Only when the update time of FIB compres-

sion algorithms is small bounded can the probability of packet loss incurred by

FIB compression operations during update be completely avoided. However, no

prior FIB compression algorithm can achieve small bounded worst case update

time, and hence a mature solution with complete avoidance of packet loss is

still yet to be identified. To address this issue, we propose the Unite and Split

(US) compression algorithm to enable fast update with controlled worst case

update time. Further, we use the US algorithm to improve the performance

of a number of classic software and hardware lookup algorithms. Simulation

results show that the average update speed of the US algorithm is a little faster

∗Corresponding author: Mingwei Xu; Phone, 0086-(0)10-62781572; Email Address,
xmw@cernet.edu.cn

Email address: zhyyuan1019@gmail.com (Yuanyuan Zhang)

Preprint submitted to Computer Networks June 8, 2016

than that of the binary trie without any compression, while prior compression

algorithms inevitably seriously degrade the update performance. After applying

the US algorithm, the evaluated lookup algorithms exhibit significantly smaller

on-chip memory consumption with little additional update overhead.

Keywords: FIB Compression, FIB update, IP address lookup, tries, longest

prefix matching

1. Introduction

1.1. Background and Motivation

The size of Forwarding Information Bases (FIBs) of backbone routers in the

Internet has been increasing by around 15% every year [1]. The FIB (DFZ

entries) size exceeded 512K on August 13th in 2014, exceeding the hardware5

capacity of many legacy Cisco routers [2]. In addition, there were VPN routes

which could be as many as the DFZ entries. As a result, it took about a week

for these routers to upgrade their hardware capacity, and it has already been ob-

served that the web browsing and content downloading speed was slowed down

during the period. In the literature, technical schemes have already been pro-10

posed to solve such a problem, and among them FIB compression is a promising

way to alleviate the growth pressure of FIBs in the Internet.

In fact, even if the FIB size does not exceed the capacity of routers, FIB

compression is still beneficial for IP lookup. Generally, there are two kinds of

IP lookup solutions. The first kind is hardware-based solutions, such as TCAM-15

based solutions [3, 4, 5, 6] and FPGA-based solutions [7, 8, 9, 10]. For this kind

of IP lookup solutions, compressing the FIBs can significantly save hardware

cost and power consumption. The second kind is software-based solutions, such

as [11, 12, 13, 14]. For this kind of IP lookup solutions, compressing the FIB-

s reduces the probability of cache misses, and thereby achieves faster lookup20

speed.

As mentioned in BS [15], EAR [16], and FIFA [17], packet loss may happen

2

when the compression or update algorithm is too slow. The FIB after compres-

sion is stored and looked up in the data plane of a router. When a FIB update

message arrives, the router has to suspend the lookup process and buffer the25

incoming packets in a queue. The queue can only buffer finite packets, thus the

update of the compressed FIB should be as fast as possible. If the update time

is not small enough in the worst case, the buffer in the data plane may overflow

and packet loss may happen. This is the main reason why vendors and ISPs

are not willing to adopt FIB compression algorithms in real routers. Therefore,30

this paper targets at a practical FIB compression algorithm with small bounded

update time.

1.2. State-of-the-art and their Limitations

Due to the significance of FIB compression, various compression solutions

have been proposed, such as ORTC [18] and its successors [19, 20, 17], auto35

aggregation [21], 4-level [22], entropy compression [23], EAR[16], and NSFIB

compression [24], etc. Among them, ORTC constructs the optimal FIBs in

terms of the number of prefixes. Entropy compression pursues the optimal

compression algorithm in terms of information entropy, but the compression

results are no longer in the prefix format, thus cannot cooperate with existing40

IP lookup algorithms. NSFIB is an aggressive compression method which can

exceed the optimal compression ratio of ORTC at the cost of changing the

forwarding behavior. Although some classic compression algorithms (such as

SMALTA [19], EAR, 4-level, auto aggregation, etc.) claimed to support fast

update, no prior algorithm is able to achieve small bounded worst case update45

time. Only when the worst case of update time is small bounded, the risk of

packet loss during update can be fundamentally avoided.

1.3. Proposed Solution Overview

In this paper, we propose the Unite and Split (US) compression algorith-

m. The top level strategy of conventional FIB compression algorithms is to50

3

either make the best effort for compression ratio or to identify a trade-off be-

tween compression ratio and update speed, but it should be noted that no prior

compression algorithm has a reasonable worst case bound of update time. In

contrast, the objective of our US algorithm is to make the best effort for com-

pression ratio in the premise of small bounded update time.55

We use a trie1 structure to illustrate the key compression technique of our

proposed US algorithm. As shown in the first trie of Figure 2(a), it has three

nodes with non-empty next hops: q and its two child nodes q1 and q2. According

to the longest prefix matching rule, an IP address either matches q1 or q2. In

other words, there are at most two lookup results for any incoming IP packet.60

Therefore, we can replace this trie by one node with two next hops. In other

words, the two child nodes q1 and q2 can be compressed (united) into their

parent node q with two next hops, where the left next hop belongs to q1, and the

right next hop belongs to q2. Similarly, when two of the three nodes have non-

empty next hops (the middle three tries in Figure 2(a)), they can be compressed65

into one node with two next hops. However, we do not always perform such

compression because when only one of the three nodes has a next hop (such as

the three tries in Figure 2(b)), such compression does not reduce the number

of prefix nodes2, but brings additional update overhead. In this case, we split

the prefix node to guarantee that every node has either two next hops or none70

for the sake of storage and lookup efficiency. For each trie node, we use the

variable oldport to store the next hop before compression for the sake of correct

update, and use variables leftport and rightport to store the left next hop and

right next hop after compression respectively.

The US algorithm consists of two kinds of operations: unite and split, and it75

traverses the trie twice. In the first postorder traversal of the trie, we conduct the

unite operations to reduce the number of prefix nodes. In the second postorder

traversal of the trie, we conduct split operations on those nodes which do not

1Trie is a classic data structure to represent a FIB.
2Prefix nodes refer to the trie nodes with next hops.

4

participate in the unite operations. To bound the update time, it is guaranteed

that every trie node participates in at most one unite operation, and the nodes80

modified by each unite operation are confined in two adjacent levels. In this

way, at most 3 trie nodes need to be updated by any update message. The main

advantage of our algorithm is that the update speed is fast and the worst case of

update time is small bounded. Simulations using real-world FIBs (around 512K

entries) and updates on CPU platform with Intel(R) Core i7-3517U 1.9GHz &85

2.4GHz and 8GB RAM show that the update speed of US ranges from 2.16

Mups (Million updates per second) to 107.75 Mups with a mean of 18.64 Mups,

while the industry standard is only 100 Kups.

The cost of US is an additional step for the lookup. After looking up the

FIB compressed by US, suppose the length of the matched prefix is n, we check90

the n+ 1th bit in the incoming IP address: if it is 0, we report the leftport ; if it

is 1, we report the rightport.

US can work perfectly with existing FIB compression algorithms and IP

lookup algorithms. Simulation results show that about 7% of prefixes can be

reduced when applying US to the optimal compression algorithm ORTC. US95

alone can not compete with ORTC in terms of compression, but the combination

of US and ORTC can beat ORTC in compression (but the combination of US and

ORTC can not be updated easily). Around 35% on-chip memory can be saved

when applying US to existing well-known IP lookup algorithms. Although some

conventional compression algorithms can also be applied to existing IP lookup100

algorithms, the negative effect is that the update overhead will be aggravated

significantly after compression. In contrast, since the worst case of US update

is small bounded, the update complexity after US compression stays the same

as that before US compression.

1.4. Key Novelties105

FIB compression is a well studied field, and there have been various solutions

in the literature. It seems there is very limited room for further improvements.

Conventional FIB compression algorithms compress the prefix nodes with the

5

same next hops, and each prefix node is still related to one next hop after

compression. In contrast, we find a new way to compress the number of prefixes110

by allowing that each prefix node is related to two next hops. Specifically, we

change the conventional “one next hop per prefix node” structure into a “two

next hops per prefix node” structure. In other words, in our algorithm, the

prefix and next hop information of child nodes are united to their parent node.

With regard to update, given an update message, conventional compression115

algorithms often compress the sub-trie rooted at the updating node, and the

worst case is to re-compress the whole trie. In the US algorithm, we constrain

the unite operations in two adjacent levels of the trie. Thus, given any update

message, the worst case is to update three nodes.

Paper organization: the rest of the paper is organized as follows. Section120

2 introduces our proposed US algorithm. Section 3 describes the update and

lookup algorithm of US. Section 4 shows the application of US to FIB com-

pression and IP lookup algorithms. Section 5 evaluates the performance of US.

Section 6 discusses the related work. Finally, Section 7 concludes the paper.

2. Proposed Solution125

2.1. Background

FIB, trie and nodes: Given an incoming packet, the Forwarding Information

Base (FIB) is searched to decide which egress port (i.e., next hop) the packet

should be forwarded to. Each FIB entry includes at least two fields: prefix and

next hop. Binary trie [25] is a classic data structure to store a FIB. Each FIB130

entry is represented by a prefix node in the trie. The path from the root node

to the prefix node corresponds to the prefix, and the corresponding next hop is

stored in the prefix node. We call a node without a next hop an empty node.

We define the level of a node as its hop-count distance to the root node whose

level is 0. The level of a prefix node is equal to the length of the corresponding135

prefix. The nodes without child nodes are called leaf nodes, while others are

called internal nodes.

6

2.2. Rationale

There are mainly three metrics for FIB compression algorithms: compression

time, update cost, and memory usage. ORTC achieves the optimal compression140

ratio in terms of number of prefix nodes at the cost of complicated update and

long compression time. As mentioned above, when handling the updates, the

lookup process is forced to be suspended, and the incoming packets are buffered.

Only if the worst case of update time is small bounded, the risk of packet loss can

be eliminated fundamentally. Towards this goal, this paper manages to strike a145

good trade-off among compression time, update cost, and memory usage.

Conventional FIB compression algorithms are based on the following princi-

ple: when two sibling nodes have the same next hop h, they can be represented

and replaced by their parent node with next hop h. If all the prefix nodes in the

trie have different next hops, conventional algorithms can hardly achieve any150

compression effect.

In contrast to conventional compression algorithms, our US algorithm strives

to make compression even if all the prefix nodes have different next hops. Specif-

ically, given three nodes: q and q’s two child nodes (namely q1 and q2), we unite

q1 and q2 into their parent node q with two next hops. In this way, the number155

of prefixes is reduced to one. However, we do not perform such compression

when only one of the three nodes has a next hop, because the unite operation

only brings additional update overhead in this case. The essential difference be-

tween US and conventional FIB compression algorithms is that the compression

effectiveness of US no longer depends on the next hop similarity3. If all the pre-160

fixes have different next hops, compression algorithms such as ORTC can hardly

lead to any compression, while US can still compress the prefixes a lot. This

is a distinct feature which cannot be supported by any conventional approach-

es. Note that US can also be combined with various pre-processors to achieve

better compression performance (detailed in Section 4.1). In this situation, if165

3Next hop similarity means that in a small sub-trie, many prefix nodes share the same

next hops.

7

the pre-pocessor depends on next hop similarity, the compression performance

will vary in different scenarios (i.e., higher next hop similarity leads to better

compression ratio).

FIB with leftports,
rightports

RIB
Routing

Protocol

Routing

Updates

FIB Changes

Data

Packets

FIB

Updates

Data

Packets

Data

Packets

Line Card n

Line Card 2

Line Card 1

…

Control Plane

Data Plane

Queue

Queue

Queue

…

FIB with leftports,
rightports

FIB with leftports,
rightports

FIB with oldports,
leftports, rightports

US

Algorithm

Switch
Network

Figure 1: Router architecture.

2.3. Router Architecture

Before going to the details of the US algorithm, we first show how it operates170

in a real router. Figure 1 shows the architecture of a router. It consists of the

control plane and the data plane. The control plane stores the RIB (Routing

Information Base) containing all IP routing information. The prefixes and their

selected next hops (a subset of the RIB) constitute the original FIB. Then the

original FIB is compressed by US into a compressed FIB which is stored in the175

control plane. For the sake of fast update, the compressed FIB contains full

information (i.e., oldports, leftports, and rightports). In the data plane, each

line card has one copy of the compressed FIB which only contains leftports and

rightports. Given an incoming packet, the line card looks up the FIB, gets a

next hop, and then forwards it through the switch network. Each line card has180

a queue to buffer the incoming data packets.

As shown in Figure 1, when an update message arrives, first the RIB stored

in the control plane will be updated by the routing protocol. If this leads to

any FIB update, the update algorithm of US will be applied to the compressed

FIB containing full information stored in the control plane. This will result in185

8

changes of several prefix trie nodes. These changes are installed in the FIBs

(only with necessary information for lookup) stored in the line cards of the data

plane. During the installation process, the incoming data packets are buffered

in the queue and cannot be forwarded. If there are too many prefix changes to

handle per routing update, the FIBs in the line cards cannot be updated fast190

enough. In this case, the queues may overflow and packet loss may happen.

The superiority of US lies in that: it can make the FIB in the line card as small

as possible, while ensures fast update speed with controlled worst case update

time.

2.4. Unite and Split Algorithm195

The US algorithm traverses the trie two times. First US traverses the trie in

postorder and performs unite operations according to four unite models. After

the first traversal, there are two kinds of prefix nodes: the nodes with two next

hops and the nodes with only one next hop. The nodes with one next hop will

be split in the second traversal. We present the details of the four unite models200

and the split operation as follows.

1|23

1 2

2

1

1

2 1 2

qq q q q

q1 q1 q1 q1q2 q2 q2 q2 q1 q2

United nodes Participator nodes

(a) Unite models

3|3

1

3

21|1 2|2

B C

A

(b) Split models. Node A, B, and C are split nodes.

Figure 2: The models of the US algorithm.

9

2.4.1. Unite Models

As shown in Figure 2(a), given a node q, its left child node q1 and its right

child node q2, there are four unite models. First, q, q1 and q2 all have next

hops. Second, only q and q1 have next hops. Third, only q and q2 have next205

hops. Fourth, only q1 and q2 have next hops. These four models are united

into the same result: q1 and q2 have no next hops, and q has two next hops:

1|2, where “1” is the next hop of q1 (or q), and “2” is the next hop of q2 (or

q). After the unite operations, the nodes with two next hops are called united

nodes, and the nodes that participate in the unite operations other than the210

united nodes are called participator nodes. In Figure 2(a), the nodes marked

with dashed circles are united nodes, and the nodes marked with squares are

participator nodes. To control the update time, every trie node can participate

in at most one unite operation, and the nodes modified by each unite operation

are confined in two adjacent levels.215

2.4.2. Split Operation

As aforementioned, there are two kinds of prefix nodes after the first traver-

sal: united nodes and nodes with only one next hop. In the second traversal,

we conduct split operations on the nodes with only one next hop. The split

operation is very simple: just change the next hop h into two next hops h|h.220

The prefix nodes that are split are called split nodes. In Figure 2(b), we show

three cases of the split operations. Node A, B, and C are split nodes.

In summary, US performs unite operations in the first traversal, and performs

split operations in the second traversal. The pseudo codes of the unite and split

operations are shown in Algorithm 1 and Algorithm 2, respectively.225

2.4.3. Example

We now give an example of the US algorithm in Figure 3. It shows the

original trie and the trie after US compression. Specifically, during the first

traversal, node F and G are united into node D with two next hops 1|4; node H

and I are united into node E with two next hops 5|6; node A and B are united230

10

Algorithm 1: Unite(TrieNode * q)

1 if q is NULL then

2 return;

3 q1 = q→left;

4 q2 = q→right;

5 Unite(q1);

6 Unite(q2);

7 if two or three nodes of q, q1, q2 have next hops and are not united nodes

then

8 perform the unite operation according to the four unite models;

Algorithm 2: Split(TrieNode * q)

1 if q is NULL then

2 return;

3 Split(q →left);

4 Split(q →right);

5 if q is a prefix node with only one next hop then

6 split the next hop of q;

11

into node A with two next hops 2|1. After the first traversal, node K with next

hop 1 is left behind. During the second traversal, the next hop of node K is

split. As a result, node K has two next hops 1|1. In this example, the number

of prefixes is reduced from 8 to 4 after US compression.

1

2

3

65 141

1|4 5|6

2|1

1|1

Original Trie Using US
Prefix Next hop

*

0*

1

2

00*

000*

3

1

(a) The orignal Trie and FIB (b) the Trie and FIB after compressed by US

001*

010*

4

5

011*

111*

6

1

Prefix Next hop

*

00*

2|1

1|4

01*

111*

5|6

1|1

A

B

D

C

E

F G H I

J

K

D

K

E

C

F

A

B

F G H I

Figure 3: An example of US.

Note that in this example, the empty leaf nodes (F, G, H, and I) are not235

deleted in the control plane after compression for the sake of fast update, as

their oldports are not empty. The whole trie structure with oldports is kept in

the control plane so that we can know exactly what the trie before compression

looks like when handling an update message. In the data plane, we only store

the prefixes with leftports and rightports, while do not store the empty leaf240

nodes. In other words, we reduce the usage of fast memory in the data plane at

the cost of more usage of slow memory in the control plane.

Actually, our US algorithm can compress the FIBs without tries. One s-

traightforward way is to sort the prefixes, and then do compression for the

adjacent prefixes. However, this method will incur complicated update.245

3. Update and Lookup Algorithm of US

3.1. Update Algorithm of US

There are two kinds of update messages: announcement and withdrawal.

Given an announcement message: [announce p: h], it means that we should

either insert a new prefix p with next hop h or change the next hop of the250

existing prefix p to h. Given a withdrawal message: [withdraw p], it means

12

we should delete the prefix p and its corresponding next hop. In practice, the

update operations are usually performed in the trie. In the following, we discuss

the incremental update algorithm of US for the announcement and withdrawal

messages separately.255

2

3 4

7 965

5|6 4|7

Original Trie Using US

A

B

D

C

E

G H I

F

K

D

K

E

C

F

A

B
0

0

3 4

2

0

9

G H I

5 6 7

Split nodes: C

United nodes: D, E, F

Participator nodes: G, H, I, J, K

Leaf-marked nodes: D, E, F

[announce 0*:1]

[announce 000*:1] 1|6

D

3
G

1

1|1

C

1

[announce 1*:1]

[announcement] 4 cases

[withdraw 01*] E

0

[withdraw 000*] 3|6

D

3
G

0
C

0

[withdraw 1*]

[withdrawal] 3 cases

Case I: united nodes.

Case IV: empty/new nodes.

Case II: participator nodes.

Case III: split nodes.

2|2

8|9

8

J J

8

C

A

B
0

1 2

1|2

[announce 01*:1] 1|7E

1
I

7|7

7

z

x|y
x: leftport

y: rightport

z: oldport

Figure 4: An example for US update. G and H are united into D, I is united

into E, J and K are united into F, C is split. For the sake of fast update, we do

not delete G, H, I, J, and K. For the sake of fast lookup, we mark node D, E

and F as leaf nodes. For each update message, we do not show the whole trie

after update, but only show the changed part in the right table.

3.1.1. Announcement Handling

To support update, we define three kinds of ports for every trie node: oldport,

leftport, and rightport, where oldport refers to the next hop before compression,

leftport and rightport are the two next hops after compression. The update

algorithm for an announcement message [announce p: h] proceeds in two260

steps: first, we set the oldport of np to h, where np refers to the corresponding

trie node of prefix p; second, we update the leftport and rightport fields according

to the node type (united nodes, split nodes, etc.) of np. Specifically, there are

four cases as follows.

• Case I: np is a united node. There are three situations: 1) when the two265

child nodes of np are both participator nodes, the leftport and rightport

of np keep unchanged; 2) when only the left child of np is a participator

13

node, the rightport of np is changed to h; 3) when only the right child of

np is a participator node, the leftport of np is changed to h.

• Case II: np is a participator node. Assume the parent node of np is pa(np).270

If np is the left child of pa(np), the leftport of pa(np) is set to h. If np is

the right child of pa(np), the rightport of pa(np) is set to h.

• Case III: np is a split node. In this case, both the leftport and rightport

of np are set to h.

• Case IV: np is an empty node or a new node. First, we need to check275

whether np can be united with its sibling or parent node. If np can be

united, the leftport and rightport of pa(np) are updated. In this situation,

pa(np) becomes a united node, and np becomes a participator node. Oth-

erwise, np should be split, and both the leftport and rightport of np are

set to h.280

Examples: In Figure 4, we show four examples which correspond to the

above four announcement cases, respectively. Example 1: [announce 01*:1]. It

means to change the next hop of united node E to 1. First we change E’s oldport

to 1. Since only the right child of E is a participate node, we just need to set

E’s leftport to 1. Example 2: [announce 000*:1]. It means to change the next285

hop of participator node G to 1. We set G’s oldport to 1. Since G is the left

child of D, we set D’s leftport to 1. Example 3: [announce 1*:1]. It means to

change the next hop of split node C to 1. In this case, we just set C’s oldport,

leftport and rightport to 1. Example 4: [announce 0*:1]. It means to change

the next hop of empty node B to 1. In this case, first we set B’s oldport to 1.290

Then we find that B’s sibling node is a split node, thus B and C can be united:

first set the leftport and rightport of both B and C to 0, then set A’s leftport to

1, and set A’s rightport to 2.

3.1.2. Withdrawal Handling

Given a withdrawal message: [withdraw p], the node np corresponding to295

p must be a prefix node and should be deleted from the trie. First, the oldport

14

of np is set to be empty. Then the leftport and rightport fields are updated

according to the node type of np. Specifically, there are three cases as follows.

• Case I: np is a united node. If both the two child nodes of np are par-

ticipator nodes, the leftport and rightport of np keep unchanged. In this300

situation, np is still a united node. If only one of the child of np is a

participator node, it can no longer be united to np. Thus, the child n-

ode needs to be split, and np becomes an empty node: the leftport and

rightport of np are set to be empty. Note that it is possible that the split

child node can be united with its child nodes, this unite operation is not305

performed in our incremental update algorithm in order to guarantee that

at most 3 nodes are changed for any update. In this way, the number of

prefixes cannot always stay optimal during the update, but the sacrificed

compression ratio is negligible. This conclusion is testified by Figure 11,

in which the size of the compressed FIB almost keeps unchanged during310

the one-day update.

• Case II: np is a participator node. There are two situations: 1) the sibling

of np is also a participator node; 2) the sibling of np is not a participator

node. In the first situation, if the oldport of the parent node pa(np) is not

empty, the sibling node can be united into pa(np); otherwise, the sibling315

node must be split, and pa(np) becomes an empty node. In the second

situation, the parent node pa(np) must be split. In both situations, np

becomes an empty node.

• Case III: np is a split node. In this case, both the leftport and rightport

of np are set to be empty, and np becomes an empty node.320

Example: In Figure 4, we show three examples which correspond to the

above three withdrawal cases, respectively. Example 1: [withdraw 01*]. It

means to delete the united node E. Because E has only one child node I which

is a participator node, I can no longer be united to E. Therefore, node I should

be split. Specifically, we set E’s oldport, leftport, and rightport to 0, and set I’s325

15

leftport and rightport to 7. Example 2: [withdraw 000*]. It means to delete

the participator node G. Note that for G’s parent node D, we keep its next

hop before compression in the variable oldport. Since G’s sibling H can still be

united into D, we set G’s oldport to 0, and set D’s leftport to D’s oldport 3.

Example 3: [withdraw 111*]. It means to delete the split node C. In this case,330

we set C’s oldport, leftport, and rightport to 0.

3.2. Update Performance Analysis

For US, when updating a node, at most three nodes need to be changed,

while other nodes are not affected. Therefore, the worst case of update time is

small bounded. It can be concluded that the update time complexity of US is335

O(W), where W is the maximum depth of the trie. We compare the update

complexity of US with several classic compression algorithms in Table 1. In the

sub-trie rooted at the updating node, we use n to represent the number of prefix

nodes, use m to represent the number of deleting nodes 4, and use c to represent

the number of distinct next hops. W is 32 for IPv4 FIBs, while n can be pretty340

large. In the worst case, n is the number of the prefix nodes in the whole trie

when the root node is updated. A detailed analysis of update complexity of

EAR and ORTC can be found in [16]. The 4-level algorithm needs to rebuild

the sub-trie rooted at the updating node, thus its time complexity is O(n).

The SMALTA [19] algorithm uses ORTC to take snapshots, thus it has the345

same compression complexity as ORTC. When inserting or deleting a prefix N ,

SMALTA restores all the compressed nodes in the sub-trie TN rooted at node N ,

so as to correctly perform update. Therefore, many prefix nodes in the sub-trie

TN are decompressed, incurring the trie to be not optimal. Although SMALTA

only needs to restore the compressed nodes, it needs to judge whether each node350

in the sub-trie TN is compressed or not. Therefore, it often needs to check all

the nodes in the sub-trie TN when updating node N . Furthermore, some prefix

4During the compression process of EAR, ORTC and SMALTA, some leaf nodes are delet-

ed, and they need to be restored during decompression. We call these nodes deleting nodes.

16

nodes in the sub-trie TN are deleted during compression, thus these deleting

nodes need to be re-created during update process. Therefore, the update

complexity of SMALTA is O(m+n). We conclude that the update performance355

of US is the same as that of the original binary trie, and significantly outperforms

other compression algorithms.

Table 1: Comparison on time complexities of update.

Solution Time complexity

Binary trie without compression O(W)

ORTC O(c ∗ (m + n))

EAR O(m + n), O(n)

4-level O(n)

SMALTA O(m + n)

US O(W)

3.3. US Lookup Algorithm and Complexity Analysis

The lookup of US abides by the Longest Prefix Matching (LPM) rule [25].

Different from the lookup of the original binary trie, US lookup needs to choose360

one of the two next hops for each prefix node. Specifically, the lookup of US

proceeds in the following steps.

Step I, initialization. Given an incoming IP address s, we define a variable

h to store the next hop. Initially, we assign the oldport of the root node to h.

Step II, we obtain the first bit of s, 1) if it is 1, we judge whether the rightport365

of the root node is not empty: if yes, we assign the rightport to h; otherwise,

go to step III. 2) if it is 0, we judge whether the leftport of the root node is not

empty: if yes, we assign the leftport to h; otherwise, go to step IV.

Step III, go to the right child node, then obtain the next bit of s, and perform

the procedure which is similar to step II. If the current node is a leaf node, the370

algorithm ends.

17

Step IV, go to the left child node, then obtain the next bit of s, and perform

the similar procedure of step II. If the current node is a leaf node, the algorithm

ends.

Algorithm 3: US Lookup (root, IP)

1 p = root;

2 i = 0;

3 while p 6= NULL and p.flag is not LEAF do

4 if IP<< i >> 31 then

5 if p→rightport> 0 then

6 h = p→rightport;

7 p = p→rchild;

8 else

9 if p→leftport> 0 then

10 h = p→leftport;

11 p = p→lchild;

12 i++;

13 return h;

The pseudo codes of the lookup algorithm of US are shown in Algorithm375

3. In the pseudo codes, root means the root node of the trie, IP means the

decimal value of the incoming IP address, and the lookup result is stored in h.

Obviously, the time complexity of US lookup in the worst case is O(W), which

is the same as that of the original binary trie lookup. Many prefix nodes are

united to their parent nodes after US compression, which leads to fewer memory380

accesses during lookup. Thus, the average lookup speed of US is faster than

that of the original binary trie. The simulation results are shown in Section 5.4.

18

4. Applications of US

4.1. Application to Existing FIB Compression Algorithms

In practice, US can be combined with many other FIB compression algo-385

rithms to achieve further enhanced compression performances. As analyzed

above, the update speed of US is fast and the worst case update time is small

bounded. Thus, applying US after other compression algorithms will bring little

and fixed extra update overhead. Among ORTC, 4 level[22], EAR [16], and auto

aggregation [21], ORTC [18] achieves the best compression ratio. Although NS-390

FIB [24] can achieve a better compression ratio than ORTC, the cost is changing

the forwarding behavior. Entropy compression [23] pursues to achieve the lower

bound of the information entropy, but the compressed result cannot work with

prior IP lookup algorithms. US can be applied to the above FIB compression

algorithms. Here we apply US to ORTC for the sake of efficiency and practical-395

ity. Given a FIB, we first construct a trie, and then compress it using ORTC

and get the resulting trie. We further compress the resulting trie using the US

algorithm, and get the final compression result. The related simulation results

are shown in Section 5.2.

Here we need to clarify why the compression ratio of ORTC can be further400

improved. Given the premise that one prefix can only have one next hop and no

changes of forwarding behavior happen during compression, ORTC compression

is optimal in terms of number of prefix nodes. Given the premise that one prefix

can have two next hops, the combination of ORTC and US can achieve a better

compression ratio in term of number of prefix nodes. The number of prefixes405

determines the on-chip memory usage of many IP lookup algorithms, thus we

use it as the metric.

4.2. Application to Classical IP Lookup Solutions

The US algorithm can also be used to reduce the on-chip memory usage of IP

lookup solutions with little additional update overhead. The on-chip memory410

is usually small, fast and expensive, thus reducing the on-chip memory usage

19

can significantly reduce the cost and improve the system efficiency. Generally,

IP lookup solutions can be divided into two categories: software based solutions

and hardware based solutions. Software based solutions include Lulea [14],

LC-trie [26], Tree Bitmap [27], and SAIL [11], etc. Hardware based solutions415

include using TCAM (such as coolcam [3], parallel TCAMs [5]), using FPGA

(such as [7]), using both TCAM and FPGA (such as hybrid lookup [28]), and

using Bloom filters (such as PBF [29], BF for IPv6 lookups [30]). Among these

solutions, we apply the US algorithm to three representative ones: PBF [29],

hybrid lookup [28], and SAIL [11]. After applying US, the lookup complexity of420

these fast lookup algorithms keeps unchanged, while the on-chip memory usage

is significantly reduced.

Applying US to PBF: for the prefix nodes at each level of the trie, PBF

builds one Bloom filter (BF) and one hash table. The BFs are small enough

to be stored in the on-chip memory of FPGA [31], while the hash tables are425

stored in the off-chip memory. Under a certain false positive probability, there

is a positive correlation between the size of a BF and the number of prefixes

inserted into the BF. By applying US compression, the on-chip memory usage

of BFs can be reduced because the number of prefixes is reduced. As for the

off-chip hash tables, after US compression, each hash bucket stores one prefix430

and two next hops. Since the number of hash buckets is reduced, the total size

of the off-chip hash tables is reduced. The related simulation results are shown

in Section 5.5.

Applying US to hybrid lookup: A trie can be partitioned into two parts -

the leaf nodes and the trimmed trie. The prefixes of the leaf nodes are stored in435

TCAM. The trimmed trie is stored in the SRAM-based pipeline of FPGA. After

compressing the trie using US, both the number of leaf nodes and the size of the

trimmed trie are significantly reduced, thus lead to less memory consumption

in both TCAM and FPGA. The related simulation results are shown in Section

5.6.440

Applying US to SAIL: SAIL includes four algorithms. SAIL B is the basic

lookup algorithm. For level i of the trie (0 ≤ i ≤ 24), SAIL B builds a bit map

20

with the length of 2i, and each prefix node at level i corresponds to a “1” bit in

the bit map. SAIL B stores the bitmaps at level 0∼24 in the on-chip memory,

and thus the upper bound of the on-chip memory usage is
∑24

i=0 2i = 225bit = 4445

MByte. Three optimizations based on SAIL B in terms of update, lookup, and

handling multiple FIBs are SAIL U, SAIL L, and SAIL M, respectively. After

using US, most prefix nodes at level 24 are united to level 23, thus we just need

to store the bitmaps at level 0∼23 in the on-chip memory, thus the on-chip

memory usage is reduced to a half. The worst case of on-chip memory usage of450

the four algorithms before and after using US is shown in Table 2.

Table 2: On-chip memory usage comparsion.

SAIL B SAIL U SAIL L SAIL M

before using US =4MB ≤2.03MB ≤2.13MB ≤2.13MB

after using US =2MB ≤1.016MB ≤ 1.07MB ≤1.07MB

Our algorithm can enhance the cache behavior during IP lookups. For ex-

ample, assume there are two prefix nodes A and B. As node A and B are often

stored separately, the traffic which hits prefix A or B probably does not have

good cache behavior. After using our US compression algorithm, node A and455

B are compressed into one node, and the next hops of A and B are stored adja-

cently. Therefore, the traffic which hits A or B will have better cache behavior.

4.3. Feasibility Analysis

Legacy routers usually use old TCAMs with small capacity. When the FIB

size is close to the TCAM capacity, the TCAM needs to be upgraded when460

using no compression algorithm. Fortunately, our US algorithm can be used to

reduce the memory usage of TCAM. After using our US algorithm, the number

of prefixes is compressed to about 65% of that of the original FIB. In other

words, there will be 35% available memory in the TCAM, and the lifetime of

legacy routers can be significantly extended.465

21

The cost of the US algorithm is that during lookup a second step is needed

to obtain the exact next hop for a particular packet, since one prefix is shared by

two next hops now. When the US algorithm is applied to hardware routers using

TCAMs, we can just use a TCAM chip to output the longest matched prefix

and a pointer to the corresponding next hop pair, and use FPGA to conduct470

the extra logic to choose one next hop. Since FPGA is often used in real routers

[32], there is no need to add new hardware for packets lookup. Specifically, we

store all the next hop pairs in the SRAM of the FPGA. The output pointer

of TCAM points to the corresponding next hop pair in FPGA. FPGA chooses

the correct next hop by reading an additional bit of the IP address. The extra475

logic in FPGA only needs one memory access of the SRAM. The lookup speed

of TCAM is slower than that of SRAM [29, 33, 34]. As mentioned in [33],

the maximum clock rates of SRAM and TCAM are 400 MHz and 266 MHz,

respectively. That’s to say, one memory access in SRAM only needs 2.5 ns,

while one clock cycle of TCAM needs 3.76 ns. With pipeline, adding the second480

step will increase the lookup latency. However, as the second step is faster than

looking up TCAM, the bottleneck of system throughput lies in the lookup of

TCAM. In other words, adding the second step increases the system latency,

but do not affect the system throughput.

As TCAMs are expensive and power-hungry, recent significant work, such as485

SAIL [11], DXR [35], and Poptrie [12] prefer to use software methods to conduct

IP lookup. For the software solutions, it is fairly easy and fast to implement the

second step: read one additional bit, and then choose one of the two next hops.

Section 5.4 shows that the lookup speed of the compressed trie is faster than

that of the original trie, since compression leads to shorter lookup path and490

better cache performance. Therefore, the US algorithm can be easily applied to

software routers, and can also be applied to hardware routers.

22

5. Evaluation

In this section, we first evaluate the compression performance of US and

its application to ORTC. Second, we compare the update performance of US495

with that of the original binary trie. Third, we evaluate the IP lookup speed

of the binary trie before and after US compression. Fourth, we show the on-

chip memory usage of PBF and hybrid lookup before and after applying the US

algorithm. As for SAIL, since there are four SAIL algorithms, we only show the

theoretical memory upper bounds in Table II.500

5.1. Simulation Setup

FIBs and Updates: We downloaded 11 BGP FIBs from the RIPE RIS

Project [36] at 8:00 AM on September 1st 2014. We name these FIBs as

FIBs2014. We downloaded 12-year FIBs of rrc00 at 8:005 AM on September

1st from 2003 to 2014, and name these FIBs as FIBs12years. We also down-505

loaded one-day update messages for rrc00, rrc01, and rrc03 starting from 8:00

AM September 1st 2014. Table III shows the collecting locations and the sizes

of FIBs2014.

Synthetic traffic traces: To evaluate the lookup speed of the binary trie

before and after US compression, we generate 10M traffic traces based on the510

simulation FIBs, and guarantee that each prefix is matched with the same prob-

ability by the synthetic trace.

Correctness test: We verify the correctness of US by comparing the lookup

results of the original FIB and the FIB after US compression using the 4G IPv4

address space. The results are exactly the same, hence our US algorithm passed515

this correctness test. The appendix contains a proof of the correctness of US

using the method proposed in [37].

Computer configuration: We conducted the simulations on a computer

with two Intel(R) Core i7-3517U 1.9GHz & 2.4GHz and 8GB RAM running

5There is no available FIB of rrc00 at 8:00 on September 1st 2004 on the website, thus we

use the FIB at 16:00 instead.

23

Table 3: FIBs used in the simulations.

Router ID Location # IPv4 prefixes

rrc00 RIPE NCC, Amsterdam 532766

rrc01 LINX, London 508889

rrc03 AMS-IX, Amsterdam 510680

rrc04 CIXP, Geneva 512893

rrc05 VIX, Vienna 507622

rrc10 Milan, Italy 507894

rrc11 New York, USA 509738

rrc12 Frankfurt, Germany 518739

rrc13 Moscow, Russia 552684

rrc14 Palo Alto, USA 514408

rrc15 Sao Paulo, Brazil 516721

Windows 7 operation system.520

5.2. Simulations on FIB compression

We evaluate the compression performance using two metrics: compression

ratio and compression time. Compression ratio is the ratio between the

number of prefixes after compression and that before compression. Smaller

compression ratio means more reduction of the FIB size. Compression time is525

the time used to compress the original FIB. Since ORTC achieves the optimal

compression ratio, here we evaluate the compression performance of US using

ORTC as a baseline.

5.2.1. Compression Ratio

Our simulation results show that US compresses the test FIBs by about 35%,530

and improves the compression ratio of ORTC by about 7% when applied to

ORTC. Figure 5 shows the compression ratio changes of US and ORTC on

FIB rrc00 over the last 12 years. As time goes by, the FIB size increases rapid-

ly, and the compression ratio of US gets better steadily. In contrast, ORTC

24

shows an unstable compression ratio. Figure 6 compares the compression ratio535

of US and ORTC on FIBs2014. US achieves an average compression ratio of

0.65, which means the compressed FIB size is about 65% of the original FIB

size. The average compression ratio of ORTC is 0.36. Figure 7 compares the

compression ratio of ORTC and ORTC+US on FIBs2014. Results show that

combining US and ORTC can reduce the compression ratio of ORTC by about540

7%. This does not mean the optimal compression ratio of ORTC is incorrect.

It means that the compression ratio can be further improved when one prefix

node stores two next hops. In sum, although ORTC achieves smaller compres-

sion ratios than US, the compression ratio of ORTC+US is smaller than that

of ORTC.545

2 0 0
3
2 0 0

4
2 0 0

5
2 0 0

6
2 0 0

7
2 0 0

8
2 0 0

9
2 0 1

0
2 0 1

1
2 0 1

2
2 0 1

3
2 0 1

40 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9

Co
mp

res
sio

n r
atio

Y e a r

 U S
 O R T C

Figure 5: Compression ratios of US and ORTC over the last 12 years.

r r c 0
0

r r c 0
1

r r c 0
3

r r c 0
4

r r c 0
5

r r c 1
0

r r c 1
1

r r c 1
2

r r c 1
3

r r c 1
4

r r c 1
50 . 0

0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8

Co
mp

res
sio

n r
atio

F I B

 U S
 O R T C

Figure 6: Compression ratios of US and ORTC for 11 FIBs in 2014.

25

r r c 0
0

r r c 0
1

r r c 0
3

r r c 0
4

r r c 0
5

r r c 1
0

r r c 1
1

r r c 1
2

r r c 1
3

r r c 1
4

r r c 1
5

0 . 2

0 . 3

0 . 4

0 . 5

Co
mp

res
sio

n r
atio

F I B

 O R T C
 O R T C + U S

Figure 7: Compression ratios of ORTC and ORTC+US for 11 FIBs in 2014.

5.2.2. Compression Time

Our simulation results show that US reduces the compression time by 72% ∼

77% comparing to ORTC, and the combination of US and ORTC adds little

extra compression time overhead. First, as shown in Figure 8, when using

FIBs12years, the compression time of US is 23% ∼ 27% of that of ORTC.550

As time goes by, the compression time increases with the growing size of FIB,

and the increase of the compression time of US is much slower than that of

ORTC. Second, as shown in Figure 9, when using FIBs2014, the compression

time of US is 25% ∼ 28% of that of ORTC. Third, as shown in Figure 10, when

using FIBs2014, the compression time of ORTC+US is only 1.13∼1.16 times555

of that of ORTC. Note that the compression time of ORTC+US is much less

than the sum of ORTC compression time and US compression time. This is

because after compressed by ORTC, the trie size is much smaller so that the

compression speed of US is faster.

For every trie node, ORTC needs to compute the intersection or union of560

two next hop sets, and to judge whether a next hop set is a subset of another

next hop set. These operations are time-consuming, especially for large FIBs.

In contrast, there are only simple assignment and judgment operations in the

US compression process. Therefore, the compression speed of US is much faster

than that of ORTC.565

The US algorithm can be applied to two scenarios. First, for routers with fre-

26

quent FIB updates, we can use only US algorithm to achieve a good compression

ratio with fast update. Second, for some routers with infrequent FIB updates

and limited fast memory, we can use ORTC+US to achieve better compression

ratio at the cost of slow update.570

2 0 0
3

2 0 0
4

2 0 0
5

2 0 0
6

2 0 0
7

2 0 0
8

2 0 0
9

2 0 1
0

2 0 1
1

2 0 1
2

2 0 1
3

2 0 1
40

2 0
4 0
6 0
8 0

1 0 0
1 2 0

Co
mp

res
sio

n t
im

e (
ms

)

Y e a r

 U S
 O R T C

Figure 8: Compression time of US and ORTC over the last 12 years.

r r c 0
0

r r c 0
1

r r c 0
3

r r c 0
4

r r c 0
5

r r c 1
0

r r c 1
1

r r c 1
2

r r c 1
3

r r c 1
4

r r c 1
50

2 0
4 0
6 0
8 0

1 0 0
1 2 0

Co
mp

res
sio

n t
im

e (
ms

)

F I B

 U S
 O R T C

Figure 9: Compression time of US and ORTC for 11 FIBs in 2014.

5.3. Simulations on Update

One key advantage of the US algorithm is the fast update with controlled

worst case update time. To evaluate the incremental update algorithm of US,

we compare the update performance of US with that of the original binary trie,

because the update speed of the binary trie without compression is much faster575

than that of the trie after applying FIB compression algorithms (see Table 1).

27

r r c 0
0

r r c 0
1

r r c 0
3

r r c 0
4

r r c 0
5

r r c 1
0

r r c 1
1

r r c 1
2

r r c 1
3

r r c 1
4

r r c 1
50

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0

Co
mp

res
sio

n t
im

e (
ms

)

F I B

 O R T C
 O R T C + U S

Figure 10: Compression time of ORTC and ORTC+US for 11 FIBs in 2014.

To evaluate the update overhead of applying US to ORTC, We also compare

the update speed of ORTC+US and ORTC in this section. We only show

the simulation results for the one-day update of rrc00 which contains 4906067

update messages. The simulation results for rrc01 and rrc03 are similar, thus580

are omitted due to space limitation.

The update algorithm of ORTC+US works as follows. Given a FIB com-

pressed by ORTC+US and an update message, first we locate the updating

node. Then the sub-trie T rooted at the updating node will be de-compressed

and updated. Next, we compress the sub-trie T first by ORTC and then by US.585

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 00
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0

p
ref

ixe
s (K

)

M i n u t e s

 O r i g i n a l t r i e
 U S

Figure 11: The growth of prefixes for one-day updates.

Our simulation results show that the incremental update of US produces

0.08% redundant prefix nodes in one day. Figure 11 shows how the number

28

of prefixes grows for one-day updates. The x-axes represents the passed min-

utes in a day. The number of prefixes in the original FIB increases from 532766590

to 532835 over one-day updates, and the number of prefixes in the compressed

FIB increases from 346464 to 346757. Both exhibit a very slow increase. Thus

we do not need to re-compress the FIB for a very long period of time.

Our simulation results show that the update overhead of the binary trie is

lower after US compression. Figure 12 shows the distribution of the number of595

memory accesses per update for one-day updates. For the original binary trie,

results show that 53% updates need 25 memory accesses, because the length

of most updating prefixes is 24 and accessing the root node also requires one

memory access. After US compression, 44% updates need 24 memory accesses.

This is because many prefix nodes at level 24 are united into their parent nodes600

at level 23.

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0 3 2
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

u
pda

tes
 (M

)

m e m o r y a c c e s s e s p e r u p d a t e

 O r i g i n a l t r i e
 U S

Figure 12: The distribution of the number of memory accesses per update for

one-day updates.

Our simulation results show that the update speed of US is a little faster than

that of the original binary trie, and much faster than that of ORTC. Figure 13

shows the update speed of the original binary trie, US, ORTC and ORTC+US

on one-day update messages. Assume x Mups means x million updates are605

processed per second. The update speed of the original binary trie ranges from

2.06 Mups to 94.17 Mups with a mean of 18.59 Mups. The update speed of US

ranges from 2.16 Mups to 107.75 Mups with a mean of 18.64 Mups. The update

29

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0

Up
dat

e s
pee

d (
Mu

ps)

M i n u t e s

 O r i g i n a l t r i e U S
 O R T C + U S O R T C

Figure 13: The update speed for one-day updates.

speed of ORTC ranges from 0.35∼ 1.63 Mups with a mean of 1.08 Mups, while

the update speed of ORTC+US ranges from 0.33 Mups to 1.60 Mups with a610

mean of 1.01 Mups. This indicates that when applying US to ORTC, the update

speed remains almost unchanged comparing to that of ORTC. In other words,

applying US to ORTC can improve the compression ratio with little additional

update overhead.

5.4. Simulations on IP Lookup615

2 0 0
3

2 0 0
4

2 0 0
5

2 0 0
6

2 0 0
7

2 0 0
8

2 0 0
9

2 0 1
0

2 0 1
1

2 0 1
2

2 0 1
3

2 0 1
41 1

1 2
1 3
1 4
1 5
1 6

Lo
oku

p s
pee

d (
Mp

ps)

Y e a r

 O r i g i n a l t r i e
 U S

Figure 14: The lookup speed for rrc00 over the last 12 years.

The worst case lookup complexities of the binary trie before and after US

compression are both O(W), where W is the maximum depth of the binary

trie. In practice, after using US, the lookup speed is faster because the average

number of memory accesses per lookup is reduced after compression. To verify

30

r r c 0
0

r r c 0
1

r r c 0
3

r r c 0
4

r r c 0
5

r r c 1
0

r r c 1
1

r r c 1
2

r r c 1
3

r r c 1
4

r r c 1
51 1

1 2
1 3
1 4
1 5
1 6

Lo
oku

p s
pee

d (
Mp

ps)

F I B

 O r i g i n a l t r i e
 U S

Figure 15: The lookup speed for 11 FIBs in 2014.

this conclusion, we conduct simulations to evaluate the lookup speed of the620

binary trie before and after using US.

Our simulation results show that the lookup speed of the binary trie is faster

after US compression. First, we lookup FIB12years using the corresponding

synthetic traffic traces, and the results are shown in Figure 14. The lookup

speed after using US ranges from 13.9 to 14.8 Mpps (Million packets per second),625

which is 1.17∼1.22 times faster than the lookup speed of the original binary trie.

Second, we conduct similar simulations on FIB2014, and the results are shown

in Figure 15 . It shows that the lookup speed after US compression is 1.18∼1.21

times faster than that of the original binary trie.

5.5. Simulations on PBF630

In this section, we evaluate the memory usage of PBF before and after using

US. We set the number of hash functions of all the Bloom filters to 8, and the

sum of the sizes of all the Bloom filters is the on-chip memory usage.

5.5.1. On-chip memory usage

Our simulation results show that the on-chip memory usage of PBF is re-635

duced by about 35% after US compression. The on-chip memory usage for

FIBs12years is shown in Figure 16. The on-chip memory usage grows year

by year because the number of prefixes increases. The on-chip memory usage

of PBF before US compression ranges from 1.5 Mb to 6.2 Mb. When using

31

US, the on-chip memory usage of PBF is reduced to 1.1∼4.0 Mb, which is640

64.5% ∼ 73.3% of the on-chip memory usage before using US. We conduct sim-

ilar simulations using FIBs2014, and the results are shown in Figure 17. The

on-chip memory usage of PBF after using US ranges from 3.81 Mb to 4.16 Mb,

and is 64.8% ∼ 65.2% of the on-chip memory usage before using US.

2 0 0
3

2 0 0
4

2 0 0
5

2 0 0
6

2 0 0
7

2 0 0
8

2 0 0
9

2 0 1
0

2 0 1
1

2 0 1
2

2 0 1
3

2 0 1
4

1
2
3
4
5
6

Me
mo

ry
usa

ge
(M

b)

Y e a r

 P B F
 P B F u s i n g U S

Figure 16: On-chip memory usage of rrc00 over the last 12 years.

r r c 0
0

r r c 0
1

r r c 0
3

r r c 0
4

r r c 0
5

r r c 1
0

r r c 1
1

r r c 1
2

r r c 1
3

r r c 1
4

r r c 1
52

3
4
5
6
7

Me
mo

ry
usa

ge
(M

b)

F I B

 P B F
 P B F u s i n g U S

Figure 17: On-chip memory usage for 11 FIBs in 2014.

5.5.2. Off-chip memory usage645

Our simulation results show that the off-chip memory usage of PBF is re-

duced by 21.8% ∼ 22.2% after US compression. PBF uses hash tables in the

off-chip memory. The size of a hash table is proportional to the number of pre-

fixes stored in it. After using US, each hash bucket stores one prefix and two

next hops, and the total number of prefixes is reduced. We compare the total650

32

size of hash tables before and after US compression using FIBs2014.

5.6. Simulations on Hybrid Lookup

In this section, we evaluate the memory usage of hybrid lookup before and

after using US. The update of hybrid lookup includes two parts: updating the

trie structure, and updating TCAM or FPGA. The main advantage of hybrid655

lookup is the O(1) update complexity when the update of the trie is not consid-

ered, because updating the trie do not interrupt lookup. The update complexity

is still O(1) when applying US to hybrid lookup, because at most three nodes

need to be changed for any update of US. The cost and power consumption of

the hybrid lookup algorithm increases linearly with the growth of the number660

of prefixes stored in FGPA and TCAM. Therefore, we can use US to reduce the

number of prefixes while keeping the O(1) update performance.

2 0 0
3

2 0 0
4

2 0 0
5

2 0 0
6

2 0 0
7

2 0 0
8

2 0 0
9

2 0 1
0

2 0 1
1

2 0 1
2

2 0 1
3

2 0 1
45 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0
5 0 0

T
CA

M
ent

rie
s (K

)

Y e a r

 H y b r i d l o o k u p
 H y b r i d l o o k u p u s i n g U S

Figure 18: # prefixes stored in TCAM for rrc00 over the last 12 years.

r r c 0
0

r r c 0
1

r r c 0
3

r r c 0
4

r r c 0
5

r r c 1
0

r r c 1
1

r r c 1
2

r r c 1
3

r r c 1
4

r r c 1
50

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0

T
CA

M
ent

rie
s (K

)

F I B

 H y b r i d l o o k u p
 H y b r i d l o o k u p u s i n g U S

Figure 19: # prefixes stored in TCAM for 11 FIBs in 2014.

33

5.6.1. TCAM usage

Our simulation results show that the number of TCAM entries is reduced by

about 35% after US compression. We evaluate the TCAM usage (the number665

of prefixes stored in TCAM), which is also the number of leaf nodes in a trie.

Figure 18 shows the simulation results on FIBs12years. It can be observed that

the number of TCAM entries is reduced to 65% ∼ 74% after using US. We

conduct similar simulations on FIB2014, and the results are shown in Figure

19. The number of TCAM entries is reduced to 65% ∼ 66% after using US. Note670

that each prefix (i.e., TCAM entry) corresponds to two next hops, and the next

hops are stored in the associated SRAM. Simulation results show that the SRAM

usage is 0.45 ∼ 0.49 MB before US compression, and becomes 0.64 ∼ 0.66 MB

after US compression. Such small overhead is negligible.

5.6.2. FPGA usage675

2 0 0
3

2 0 0
4

2 0 0
5

2 0 0
6

2 0 0
7

2 0 0
8

2 0 0
9

2 0 1
0

2 0 1
1

2 0 1
2

2 0 1
3

2 0 1
4

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0

n
ode

s o
f th

e tr
im

me
d t

rie
 (K

)

Y e a r

 H y b r i d l o o k u p
 H y b r i d l o o k u p u s i n g U S

Figure 20: # trimmed trie nodes stored in FPGA for rrc00 over the last 12

years.

Our simulation results show that the memory usage of FPGA (FPGA usage)

is reduced to 71.0% ∼ 72.0% after US compression. We evaluate the number

of the trimmed trie nodes stored in FPGA. When using FIBs12years, as shown

in Figure 20, the number of trimmed trie nodes is reduced to 64% ∼ 74% after

using US. When using FIBs2014, as shown in Figure 21, the number of trimmed680

trie nodes is reduced to 63.9% ∼ 64.8%. We also evaluate the on-chip memory

usage of FPGA for FIBs2014. Simulation results show that the memory usage

34

r r c 0
0

r r c 0
1

r r c 0
3

r r c 0
4

r r c 0
5

r r c 1
0

r r c 1
1

r r c 1
2

r r c 1
3

r r c 1
4

r r c 1
5

2 04 06 08 01 0 01 2 01 4 01 6 01 8 02 0 02 2 0

n
ode

s o
f th

e tr
im

me
d t

rie
 (K

)

F I B

 H y b r i d l o o k u p
 H y b r i d l o o k u p u s i n g U S

Figure 21: # trimmed trie nodes stored in FPGA for 11 FIBs in 2014.

of the trimmed trie after US compression is reduced to 71.0% ∼ 72.0%.

6. Related Work

FIB compression is a well studied and important issue due to the significance685

of FIBs in router design. In this paper, we classify FIB compression algorithms

into four categories.

The first category compresses a FIB into a smaller one and does not change

the forwarding behavior, such as auto aggregation [21], ORTC [18], EAR [16],

and wild-card compression [38]. The auto aggregation algorithm [21] only com-690

presses the sibling prefix nodes with the same next hop. This compression

algorithm is simple and fast, but its compression ratio is not attractive and the

update time is not small bounded. ORTC [18] achieves the theoretical opti-

mal compression ratio in terms of the number of prefixes. It traverses the trie

three passes to complete the compression. Generally speaking, the update of695

one prefix can be implemented by re-constructing the sub-trie rooted at the

updating trie node using the same compression algorithm. However, optimal

compression is complicated and slow, thus leads to complicated and slow up-

date. The authors in [18] did not present the update algorithm of ORTC. To

address the update problem, Liu et al. proposed two incremental update algo-700

rithms in [20] for ORTC, and also proposed FIFA-S, FIFA-A and FIFA-H in [17]

to further improve the update performance. Uzmi et al. [19] also proposed an

35

update algorithm for ORTC. The main idea is to only update the nodes which

are affected, so as to accelerate the update speed. The key reason of slow update

is due to optimal compression. Thus sub-optimal compression with fast update705

becomes an appealing alternative choice. Yang et al. proposed two sub-optimal

compression algorithms, EAR slow and EAR fast [16]. Compared with ORTC,

EAR fast can reduce the compression time to around 1/10 at the cost of a little

compression ratio loss. Although EAR fast can achieve fast update speed, the

worst case update time is still not small bounded. LFA [39] and BLOCK [40]710

optimize the update performance by leveraging the temporal and spatial locality

of udpates. The basic idea of these two algorithms is similar: only the sub-tries

which are not updated for a preset period of time are compressed. If an update

occurs in a compressed sub-trie, the compressed sub-trie will be forced to be

de-compressed/split and then be updated. For the update complexity, the best715

case of these two algorithms is O(W), and the worst case is O(n), where W

is the maximum depth of the trie, and n is the number of nodes in the sub-

trie. Different from above compression methods based on binary trie, wild-card

compression [38] compresses the prefixes into new ones, and each bit has three

states: 0, 1, and don’t care. Thus it can only be applied to TCAM-based IP720

lookup solutions. What is more, its update is really complicated and slow. In

summary, the worst case update of all the above FIB compression and update

algorithms is to update the whole sub-trie rooted at the updating node. US also

belongs to this category, but only needs to change at most three nodes in the

worst case of update. The update complexity of US is always O(W).725

The second category aims at achieving a better compression ratio at the cost

of changing the forwarding behavior, such as NSFIB [24] and 4-level [22]. NSFIB

can achieve a much better compression ratio than ORTC by taking advantage of

multiple next hops. The 4-level algorithm defines four levels of FIB compression.

The first two levels are simple, but the compression is not sufficient. The last two730

levels achieve better compression ratios at the cost of forwarding some packets

which should have been dropped.

The third category focuses on compressing the FIB towards the information

36

entropy bounds, and the compressed result is represented by bits rather than

prefixes. Rétvári et al. [23] introduced the information entropy of tries for the735

first time, and there are two successors. Rottenstreich et al. [41] proposed an

encoding scheme to achieve sub-optimal memory requirement, and Korosi et al.

[42] focused on improving the lookup speed. The common disadvantage of this

category is the complicated and slow update performance.

The above three categories are purely local solutions, and do not affect neigh-740

boring routers. The fourth category requires the coordination between routers

or between switches and controllers. In [43], three route aggregation strategies

are proposed to compress the FIBs. These strategies either require coordination

between the ASes or need to change the way routers build their FIBs. A recent

work [44] focuses on minimizing the number of updates sent from the controller745

to the compressed FIBs stored in switches.

7. Conclusion

With the rapid growth of FIB size in backbone routers, FIB compression

becomes a hot topic in recent years, and various FIB compression algorithms

have been proposed. The update performance will inevitably be degraded if a750

FIB is compressed. Only when the worst case of update time is small bounded,

the risk of packet loss during updates can ultimately be avoided. Towards this

goal, we propose the Unite and Split (US) compression algorithm in this paper

to achieve fast update with small bounded worst case (i.e., at most three nodes

need to be changed per update). Further, we use the US algorithm to improve755

the performance of several classic software and hardware lookup algorithms.

Simulation results on real-world FIBs show that the compression ratio of US is

about 65% with fast compression time (only about 28.5 ms), and the update

speed of US is fast. In addition, the on-chip memory usage of several classic

lookup algorithms is significantly reduced after applying US. To enable others760

to replicate the simulations, we released the source code of our US algorithm

and related data set at Github [45].

37

Acknowledgements

The research is supported by the National Basic Research Program of Chi-

na (973 Program) under Grant 2012CB315806, the National Natural Science765

Foundation of China under Grant 61133015, and Specialized Research Fund for

the Doctoral Program of Higher Education under Grant 20120002110060.

References

[1] BGP routing table analysis reports, http://bgp.potaroo.net/.

[2] 512k bug [on line], Available: http://www.theinquirer.net/inquirer/news/2360306/512k-770

routing-bug-might-kill-the-internet-but-probably-wont.

[3] F. Zane, G. Narlikar, A. Basu, Coolcams: Power-efficient TCAMs for for-

warding engines, in: Proc. IEEE INFOCOM, Vol. 1, IEEE, 2003, pp. 42–52.

[4] T. Yang, R. Duan, J. Lu, S. Zhang, H. Dai, B. Liu, Clue: achieving fast

update over compressed table for parallel lookup with reduced dynamic775

redundancy, in: Proc. IEEE ICDCS, 2012, pp. 678–687.

[5] K. Zheng, C. Hu, H. Lu, B. Liu, A TCAM-based distributed parallel IP

lookup scheme and performance analysis, Networking, IEEE/ACM Trans-

actions on 14 (4) (2006) 863–875.

[6] V. Ravikumar, R. N. Mahapatra, L. N. Bhuyan, Easecam: An energy and780

storage efficient tcam-based router architecture for ip lookup, Computers,

IEEE Transactions on 54 (5) (2005) 521–533.

[7] H. Le, W. Jiang, V. K. Prasanna, A SRAM-based architecture for trie-based

IP lookup using FPGA, in: Proc. IEEE FCCM, IEEE, 2008, pp. 33–42.

[8] H. Le, W. Jiang, V. K. Prasanna, A sram-based architecture for trie-based785

ip lookup using fpga, in: Field-Programmable Custom Computing Ma-

chines, 2008. FCCM’08. 16th International Symposium on, IEEE, 2008,

pp. 33–42.

38

[9] H. Le, V. K. Prasanna, Scalable high throughput and power efficient ip-

lookup on fpga, in: Field Programmable Custom Computing Machines,790

2009. FCCM’09. 17th IEEE Symposium on, IEEE, 2009, pp. 167–174.

[10] W. Jiang, V. K. Prasanna, A memory-balanced linear pipeline architecture

for trie-based ip lookup, in: High-Performance Interconnects, 2007. HOTI

2007. 15th Annual IEEE Symposium on, IEEE, 2007, pp. 83–90.

[11] T. Yang, G. Xie, Y. Li, Q. Fu, A. X. Liu, Q. Li, L. Mathy, Guarantee IP795

lookup performance with FIB explosion, in: Proc. ACM SIGCOMM, 2014,

pp. 39–50.

[12] H. Asai, Y. Ohara, Poptrie: A compressed trie with population count for

fast and scalable software IP routing table lookup, in: Proc. ACM SIG-

COMM, 2015.800

[13] S. Nilsson, G. Karlsson, Ip-address lookup using lc-tries, Selected Areas in

Communications, IEEE journal on 17 (6) (1999) 1083–1092.

[14] M. Degermark, A. Brodnik, S. Carlsson, S. Pink, Small forwarding tables

for fast routing lookups, Vol. 27, ACM, 1997.

[15] T. Yang, Z. Mi, R. Duan, X. Guo, J. Lu, S. Zhang, X. Sun, B. Liu, An ultra-805

fast universal incremental update algorithm for trie-based routing lookup,

in: Proc. IEEE/ACM ICNP, 2012.

[16] T. Yang, B. Yuan, S. Zhang, T. Zhang, R. Duan, Y. Wang, B. Liu, Ap-

proaching optimal compression with fast update for large scale routing

tables, in: Proc. IEEE IWQoS, 2012, p. 32.810

[17] Y. Liu, B. Zhang, L. Wang, FIFA: Fast incremental FIB aggregation, in:

Proc. IEEE INFOCOM, 2013.

[18] R. P. Draves, C. King, S. Venkatachary, B. D. Zill, Constructing optimal

IP routing tables, in: Proc. IEEE INFOCOM, 1999.

39

[19] Z. A. Uzmi, M. Nebel, A. Tariq, S. Jawad, R. Chen, A. Shaikh, J. Wang,815

P. Francis, SMALTA: practical and near-optimal FIB aggregation, in: Proc.

ACM CoNEXT, ACM, 2011, p. 29.

[20] Y. Liu, X. Zhao, K. Nam, L. Wang, B. Zhang, Incremental forwarding table

aggregation, in: Proc. IEEE GLOBECOM, 2010.

[21] B. Cain, Auto aggregation method for IP prefix/length pairs, uS Patent820

6,401,130 (Jun. 4 2002).

[22] X. Zhao, Y. Liu, L. Wang, B. Zhang, On the aggregatability of router

forwarding tables, in: Proc. IEEE INFOCOM, 2010.

[23] G. Rétvári, J. Tapolcai, A. Kőrösi, A. Majdán, Z. Heszberger, Compressing

IP forwarding tables: Towards entropy bounds and beyond, in: Proc. ACM825

SIGCOMM, 2013.

[24] Q. Li, D. Wang, M. Xu, J. Yang, On the scalability of router forwarding

tables: Nexthop-selectable FIB aggregation, in: Proc. IEEE INFOCOM,

IEEE, 2011, pp. 321–325.

[25] M. A. Ruiz-Sanchez, E. W. Biersack, W. Dabbous, Survey and taxonomy830

of IP address lookup algorithms, Network, IEEE 15 (2) (2001) 8–23.

[26] S. Nilsson, G. Karlsson, IP-address lookup using LC-tries, Selected Areas

in Communications, IEEE Journal on 17 (6) (1999) 1083–1092.

[27] W. Eatherton, G. Varghese, Z. Dittia, Tree bitmap: hardware/software IP

lookups with incremental updates, ACM SIGCOMM Computer Communi-835

cation Review 34 (2) (2004) 97–122.

[28] L. Luo, G. Xie, Y. Xie, L. Mathy, K. Salamatian, A hybrid IP lookup

architecture with fast updates, in: Proc. IEEE INFOCOM, 2012.

[29] S. Dharmapurikar, P. Krishnamurthy, D. E. Taylor, Longest prefix match-

ing using bloom filters, in: Proc. ACM SIGCOMM, 2003.840

40

[30] H. Song, F. Hao, M. Kodialam, T. Lakshman, IPv6 lookups using distribut-

ed and load balanced bloom filters for 100gbps core router line cards, in:

Proc. IEEE INFOCOM, IEEE, 2009, pp. 2518–2526.

[31] FPGA data sheet [on line], Available: http://www.xilinx.com.

[32] Cisco website, http://www.cisco.com/c/en/us/td/docs/routers/845

asr1000/install/guide/asr1routers/asr1higV8/asr1_hw2.html.

[33] H. Le, W. Jiang, V. K. Prasanna, Scalable high-throughput sram-based

architecture for ip-lookup using fpga, in: Field Programmable Logic and

Applications, IEEE, 2008, pp. 137–142.

[34] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodol-850

molky, S. Uhlig, Software-defined networking: A comprehensive survey, Pro-

ceedings of the IEEE 103 (1) (2015) 14–76.

[35] M. Zec, L. Rizzo, M. Mikuc, Dxr: towards a billion routing lookups per

second in software, ACM SIGCOMM Computer Communication Review

42 (5) (2012) 29–36.855

[36] RIPE network coordination centre [on line], Available:

http://www.ripe.net/data-tools/stats/ris/ris-raw-data.

[37] T. Yang, G. Xie, et al., A fresh look at forwarding information base com-

pression via mathematical analysis, in: Network Operations and Manage-

ment Symposium (NOMS), IEEE, 2014, pp. 1–4.860

[38] H. Yu, A memory-and time-efficient on-chip TCAM minimizer for IP

lookup, in: Proc. IEEE DATE, 2010.

[39] N. Sarrar, R. Wuttke, S. Schmid, M. Bienkowski, S. Uhlig, Leveraging lo-

cality for fib aggregation, in: Global Communications Conference (GLOBE-

COM), 2014 IEEE, IEEE, 2014, pp. 1930–1935.865

41

http://www.cisco.com/c/en/us/td/docs/routers/asr1000/install/guide/asr1routers/asr1higV8/asr1_hw2.html
http://www.cisco.com/c/en/us/td/docs/routers/asr1000/install/guide/asr1routers/asr1higV8/asr1_hw2.html
http://www.cisco.com/c/en/us/td/docs/routers/asr1000/install/guide/asr1routers/asr1higV8/asr1_hw2.html

[40] M. Bienkowski, S. Schmid, Competitive fib aggregation for independent

prefixes: Online ski rental on the trie, in: Structural Information and Com-

munication Complexity, Springer, 2013, pp. 92–103.

[41] O. Rottenstreich, M. Radan, Y. Cassuto, I. Keslassy, C. Arad, T. Mizrahi,

Y. Revah, A. Hassidim, Compressing forwarding tables, in: Proc. IEEE870

INFOCOM, IEEE, 2013, pp. 1231–1239.

[42] A. Korosi, J. Tapolcai, B. Mihálka, G. Mészáros, G. Rétvári, Compressing

IP forwarding tables: Realizing information-theoretical space bounds and

fast lookups simultaneously, in: IEEE ICNP, 2014.

[43] J. L. Sobrinho, F. Le, A fresh look at inter-domain route aggregation, in:875

Proc. IEEE INFOCOM, IEEE, 2012, pp. 2556–2560.

[44] M. Bienkowski, N. Sarrar, S. Schmid, S. Uhlig, Competitive FIB aggrega-

tion without update churn, in: Proc. IEEE ICDCS, 2014.

[45] Source code of US [on line], Available: https://github.com/ussource.

Appendix880

The authors of [37] proposed a universal method to prove the correctness of

FIB compression algorithms. We use this method to prove the correctness of the

US algorithm below. First, as mentioned in [37], the prefixes are represented by

regular expression syntax, and the symbols used are defined as follows.

• q is a node in the trie, and (q) represents the corresponding prefix of node885

q. Prefix nodes have next-hops, while empty nodes don’t.

• (q1q2) represents the bit string of the path between prefix nodes q1 and

q2, where no prefix nodes appear in the path.

• L(q) represents the prefix length of node q.

• P represents a trie and (q) represents a prefix, then P (q) means the next-890

hop of prefix (q) in trie P .

42

• (q) represents a prefix with the same length of (q), but it is different from

(q). P (q) means the next hop of prefix (q) in trie P .

• (a|b) represents a prefix with two next hops. Its leftport is a, and rightport

is b. Given one more bit 0 or 1, there is (a|b)0 = a and (a|b)1 = b.895

The operation of XOR is defined as follows:

∀x, y ∈ G

x⊕ y =


x + y, xy(x + y) = 0

y, x > 0, y > 0

meaningless, otherwise

∀ IP address R, R=[0,1]{32}, suppose the match result of the most significant

i bits is Si, then the next-hop of R is P (R) = S1 ⊕ S2 ⊕ . . . S32 = ⊕32
i=1Si.

Due to space limitation, we only show the proof of the first model (see Figure900

22) of our US algorithm. The proof of other models is similar.

1|23

1 2

qq

q1 q2 q1 q2
United nodes

Participator nodes

Figure 22: The first model of US.

Proof. ∀ IP address R, obviously, L(R) = K,R = [0, 1]K. Suppose R = [0, 1]L(q)[0, 1][0, 1]{K−

L(q)− 1}.

Step1: matching [0, 1]{L(q)}

[0, 1]{L(q)} = (q)⇒

P1([0, 1]{L(q)}) = 3

P2([0, 1]{L(q)}) = (1|2)

[0, 1]{L(q)} 6= (q)⇒ P1 = P2

P1(q) = P2(q)


⇒ Only considering [0, 1]{L(q)} =905

(q)

43

Step2: when [0,1]{L(q)}=(q), matching [0, 1]

[0, 1] = 0, or 1⇒

P1(0) = P1(q1) = 3⊕ 1 = 1

P1(1) = P1(q2) = 3⊕ 2 = 2

P2(0) = (1|2)0 = 1

P2(1) = (1|2)1 = 2


⇒ P1([0, 1]) = P2([0, 1])

At this stage,910

P1([0, 1]{L(q)})[0, 1]) = P1([0, 1]{L(q)}))⊕ P1([0, 1]) = P1([0, 1])

P2([0, 1]{L(q)})[0, 1]) = P2([0, 1]{L(q)}))⊕ P2([0, 1]) = P2([0, 1])

Thus, P1([0, 1]{L(q)})[0, 1]) = P2([0, 1]{L(q)})[0, 1]).

For P1 and P2, they have the same rest parts. In other words, when matching

[0, 1]{K − L(q)− 1}, P1 and P2 will report the same results.915

According to step1 and step2, P1⇔ P2.

44

	Introduction
	Background and Motivation
	State-of-the-art and their Limitations
	Proposed Solution Overview
	Key Novelties

	Proposed Solution
	Background
	Rationale
	Router Architecture
	Unite and Split Algorithm
	Unite Models
	Split Operation
	Example

	Update and Lookup Algorithm of US
	Update Algorithm of US
	Announcement Handling
	Withdrawal Handling

	Update Performance Analysis
	US Lookup Algorithm and Complexity Analysis

	Applications of US
	Application to Existing FIB Compression Algorithms
	Application to Classical IP Lookup Solutions
	Feasibility Analysis

	Evaluation
	Simulation Setup
	Simulations on FIB compression
	greenerCompression Ratio
	greenerCompression Time

	Simulations on Update
	Simulations on IP Lookup
	Simulations on PBF
	greenerOn-chip memory usage
	greenerOff-chip memory usage

	Simulations on Hybrid Lookup
	greenerTCAM usage
	greenerFPGA usage

	Related Work
	Conclusion

