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Abstract

We present a methodology based on matrix factorization and gradient descent to

predict the number of sessions established in the access points of a Wi-Fi network

according to the users’ behavior. As the network considered in this work is

monitored and controlled by software in order to manage users and resources in

real time, we may consider it as a cyber-physical system that interacts with the

physical world through access points, whose demands can be predicted according

to users’ activity. These predictions are useful for relocating or reinforcing some

access points according to the changing physical environment. In this work

we propose a prediction model based on machine learning techniques, which

is validated by comparing the prediction results with real user’s activity. Our

experiments collected the activity of 1,095 users demanding 26,673 network

sessions during one month in a Wi-Fi network composed of 10 access points,

and the results are qualitatively valid with regard to the previous knowledge.

We can conclude that our proposal is suitable for predicting the demand of

sessions in access points when some devices are removed taking into account

the usual activity of the network users.
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1. Introduction

Nowadays, Wi-Fi networks are irreplaceable infrastructures in university en-

vironments, where students, professors and employees interact with the network

for academic and research purposes. They are so important that institutions

invest heavily to improve coverage, bandwidth, latencies, security and energy5

consumptions, among other Quality-of-Service (QoS) parameters.

Wireless infrastructures are usually monitored and controlled by software

solutions in order to manage the users and the resources, such as wireless con-

trollers and intelligent Access Points (APs). In this sense, we can consider some

aspects of these infrastructures as Cyber-Physical Systems (CPS), since they are10

composed of physical elements whose operations are supervised by computing

and communication elements in smart spaces [1]. Thus, the wireless infrastruc-

ture considered in this work interacts with the physical world through hardware

devices (the APs), and is managed and audited from a web portal oriented to

both hardware resources and users, with the purpose of operating efficiently in15

real-time.

Optimal placement of APs is a key factor when it comes to planning the

network deployment, as these elements allow users to establish network sessions

and also transmit the data. An adequate deployment plan is needed because of

the hardware features of such devices, that limit their communication capacity20

and availability.

The physical context of wireless networks understood as communication de-

vices (APs, routers) results in network design efforts aimed at the optimal place-

ment of these elements, trying to maximize coverage and lifetime, as well as to

minimize operation costs and energy consumption. However, some aspects were25

less studied in network deployment, especially those not related to this physical

context. Among the possible context-aware aspects, human behavior could have

some influence in network improvement and maintenance, since the demand of
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APs based on users’ habits may suggest locating some elements of the physical

context consistently with usual paths, communication strengths, etc.30

Once a Wi-Fi network is deployed, and after a lapse of time, those APs with

the greatest workloads due to users’ demand can be identified. This informa-

tion is very useful for planning better network operation, as some areas can be

reinforced by adding new APs. Besides, knowledge based on the users’ behavior

is useful when it is necessary to relocate access points due to changing physical35

environments (spatial restructuring or expansion).

This is the starting point of our research proposal, which is composed of

two parts. Firstly, we register the users’ behavior in an academic context,

i.e., the number of sessions that each user establishes in the APs during a

certain time as the main measure of network demand. From this information,40

prediction models can be built assuming not the simple mathematical fitting,

but human behavior. Secondly, these prediction models are applied to some

cases of network infrastructure improvement, for example, when the physical

environment changes affecting partially relative to the initial AP placement, or

instead, when some APs should be reinforced by adding other devices in their45

proximity, because they support a high workload.

Prediction techniques based on human behavior can be applied for mainte-

nance and to improve the network infrastructure. Hence, for example, we can

simulate the network performance when the access point with the highest work-

load is removed, and predict how the users’s activity would move to other APs,50

as well as the increase (or decrease) of the workloads.

Summarizing, we want to predict the change of access point demand when

a specific AP is removed, taking into account the users’ behavior. For this

purpose, we apply prediction techniques based on Matrix Factorization (MF),

which was successfully applied to learning areas.55

The remainder of this paper is structured as follows. After going over some

related works in Section 2, Section 3 provides the model technique based on

matrix factorization for predicting wireless users’ performance. In Section 4, we

discuss the access points demand prediction, which is validated experimentally

3
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in Section 5. Finally, conclusions and future works are left for Section 6.60

2. Related Works

There are many aspects of wireless networks worthy of being predicted, es-

pecially when the prediction results can be applied to enhance the network

infrastructure and users’ experience: optimal location, throughput, traffic and

mobility, among others. Access points play an important role in these prediction65

tasks.

The location of communication elements in wireless networks, such as APs,

or relay nodes in Wireless Sensor Networks (WSN), is a widely studied research

area under the optimization point of view [2]. Following this trend, many param-

eters involved in the physical context of the wireless networks were optimized,70

either separately or in combination, trying to maximize coverage [3] and life-

time [4], as well as minimize operation costs (number of devices) and energy

consumption [5]. These optimization approaches consider outdoor and indoor

environments, as well as many possible constraints, such as, for instance, con-

sidering that some locations may be prohibited, or that the number of available75

resources is limited. Therefore, there are many and assorted optimization ap-

proaches, classified as mono-objective or multi-objective optimization problems,

and that apply many heuristics and meta-heuristics [6, 7, 8]. Specifically, we can

find AP location optimization problems; in this line, [9] solves a problem for in-

door WLAN environments using two evolutionary algorithms: Particle Swarm80

Optimization (PSO) and Ant Colony Optimization (ACO). Moreover, users’

locations are studied in [10], where a location prediction method based on non-

linear time series analysis of the arrival and residence times of users in relevant

places is applied to guess their future locations and geographical profiles.

Data throughput and traffic are interesting features to be predicted. Hence,85

[11] proposes a method that considers terminal distribution to predict the through-

put of an AP in a multi-rate, simulated environment. Although traffic demand

is usually assumed as static and known a priori, in fact it is really highly dy-
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namic and hardly predictable, even when aggregated at APs. This dynamic

and unpredictable nature of wireless traffic demand should be taken into ac-90

count when applying optimization-based routing solutions. Thus, [12] presents

an integrated framework for wireless mesh network routing under dynamic traf-

fic demand, where a traffic estimation method predicts the demand by studying

the traces collected at APs using time-series analysis.

Among other network features to be predicted in wireless networks we can95

find mobility and services. Mobility through a wireless network can be described

by the mobile node’s next AP. This is the case of [13], that studies prediction

agents related to an AP considering real traces of a large Wi-Fi network. In

addition, there are cases where the demand of different network elements or

services can be predicted for network optimization tasks. Such is the case of [14],100

that analyzes the application workloads in enterprise environments considering

performance modeling and capacity planning, and that predicts future demands

based on workload demand patterns in order to build a workload placement

recommendation service.

There are many other approaches to human behavior for designing wireless105

networks. For example, distributed computing in large-scale networked sensor

systems are analyzed in the context of human behavior understanding in [15],

including a broad range of applications. Closer to our research, the structure of

wireless user behavior is characterized in [16] in order to design efficient mobile

networks; to this end, this work proposes a similarity metric based on a matrix110

representation of mobility preferences and its decomposition.

In this work we consider APs as the main elements to predict network ses-

sions according to user behavior. Nevertheless, APs are also interesting for many

prediction purposes in the design, deployment, management or maintenance of

Wi-Fi networks. For example, estimating the density of nearby APs and the115

traffic load of the associated Wi-Fi networks [17] facilitate the coexistence be-

tween cellular and Wi-Fi networks while sharing the same unlicensed spectrum

[18]. On the other hand, studying the users’ behavior while interacting with the

APs constitutes a new focus of research that allows multiple lines of work. In

5
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this line, the data quota that users manage can be included in a redistribution120

market in order to build an Internet ecosystem where data pricing plays an im-

portant role [19]. Other approaches focused on user behavior may be directed

to predict the demand for access points, which is our current research interest.

The methodology we followed in our research (modeling, prediction and

validation) is similar to that used in other works, where different aspects of the125

Wi-Fi networks are studied. For example, in [20] a common modeling framework

for the number of simultaneously present customers of a nationwide network

was developed; by combining statistical methods, this model predicts traffic

volumes and patterns, which are compared against test data. Besides statistical

methods, learning-based solutions are used for prediction purposes, as in [21],130

where collaborative filter modeling is applied for portable database workload

performance prediction.

3. Prediction Models

Since the activity of the APs is strongly related to the users’ behavior, we

can apply to our problem those algorithm techniques that have demonstrated135

good prediction results with systems where the users’ preferences and behavior

have a great influence. This is the case of the Recommender Systems (RS) [22]

and the Predicting Student Performance (PSP) problem [23].

The PSP approach may fit our problem thanks to the similarities of predict-

ing students’ performance on particular tasks and predicting wireless network140

users’ performance, considering the usual activity levels of the users when they

demand access points in an academic environment. We have adapted the ap-

proach of the PSP problem to predict the performance (or activity) p – such

as the number of sessions established – of user s at a particular access point i.

The mapping of these two prediction problems is shown in Figure 1.145

We have chosen the number of sessions as the parameter that best represents

users’ behavior regarding the use of the network infrastructure. On the contrary,

other parameters such as traffic data reflect elements outside of the AP demand,

6
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Figure 1: Relationship between PSP and predicting access points demand according to user

behavior problems.

as could be those software applications related to social or academic habits of the

user, and the mobile technologies that allow different speeds and bandwidths.150

The main terms used in the prediction technique are: users set (S), APs

set (I), performance values (P ), known performances (Dknw), unknown perfor-

mances (Dunk), observed or training performances (Dtrain), test performances

(Dtest), and performance predictions (P̂ ).

Dtrain is a subset of Dknw used to train the model, which would help predict155

the unknown performance. The more training values – i.e. observed data – that

we use, the better the model we would get. On the other hand, Dtest are known

values chosen to validate the mathematical model using a particular criterion.

Dtest is usually much smaller than Dtrain, and it is used for the performance

predictions: P̂ = p̂1, p̂2, ..., p̂|Dtest|.160

3.1. Solving the Prediction Problem by Matrix Factorization

Our goal consists in finding the best model that generates P̂ . This model

can be obtained through Matrix Factorization (MF) [24, 25] if we consider only

one relationship between network users and APs, such as “user – demands –

access point” (Figure 1). This method is very useful for prediction purposes in165

recommender systems. Since our mathematical model is very similar to RS, we

will use this method to build our prediction proposal.

The prediction model based on matrix factorization considers the number of

latent factors, K, which are implicit in the relation “user – demands – access

7
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point”. This model is implicitly able to encode latent factors of users and APs.170

The intuition behind using MF is that there should be some latent features that

determine how a user interacts with an AP, but it is difficult to establish the

proper number of such latent factors. Some suitable factors could be “successful

login” and “wrong login”, as well as others as “connection time” and “signal

strength”. Hence, we could make an approximation of the correct number of175

latent factors studying in depth the wireless environment in relation to the user’s

context. Anyway, K is not expected to be very high.

Matrix factorization approaches the prediction as a linear combination of

factors, which provides good scalability and also allows the use of several algo-

rithm techniques, such as neural networks [26].180

This method estimates matrix P as the product of two smaller matrices W1

and W2 (P ≈ W1W
T
2 ) of sizes S ×K and I ×K, respectively, where S is the

number of users, K is the number of latent factors that describe the user and

the access point, and I is the number of APs. Thus,the performance, ps,i, that

corresponds to user s at access point i is predicted by p̂s,i according to this185

approach (1).

p̂s,i =

K∑

k=1

(w
(1)
s,kw

(2)
i,k ) = (W1W

T
2 )s,i (1)

In order to make a prediction model, we first find the best parameters for

W1 and W2 during the learning phase, that uses Dtrain. Then, the optimal

parameters are calculated measuring the differences between real and predicted

values using gradient descent. Once the model is obtained, we check its fitness190

degree using it to predict the values for Dtest, and measuring the differences with

the real values using the Root Mean Squared Error criterion (RMSE ) (2). Last,

the optimal model is used to calculate the unknown values of the performance

matrix.

RMSE =

√∑
s,i∈Dtest (ps,i − p̂s,i)2

|Dtest| (2)

8
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3.2. Learning Phase195

The learning stage finds the optimal values forW1 andW2, given a fixed value

of K. First, both matrices are initialized with random values – e.g. positive real

numbers drawn from the normal distribution N(0, σ2)) with standard deviation

σ2 = 0.01. Then, we calculate the global error (3) from the errors between real

and predicted values (4).200

err =
∑

(s,i)∈Dtrain

e2s,i (3)

e2s,i = (ps,i − p̂s,i)2 + λ(||W1||2 + ||W2||2) (4)

The matrix factorization may be an overfit for users with little activity (i.e.

few performance): assuming that the vectors of the APs accessed by the user

are linearly independent and that W2 does not change, there exists a vector in

W1 with zero training error. Thus, there is a potential for overfitting, if both the

learning rate, β, and the extent of the change in W2 are small. Regularization205

factors are often used by machine learning to avoid overfitting [26]. Therefore,

e2s,i includes the regularization factor, λ, that controls the sizes of the factor

vectors, so that W1 and W2 would give a good approach to P avoiding large

values.

The next step minimizes the global error repeatedly updating W1 and W2 by210

means of the Gradient Descent (GD) method [27], which is very efficient with

large data sets [28].

In order to apply GD, first, we need to know the gradient of e2s,i (5)(6) for

each value in the dataset, so that we can update w
(1)
s,k and w

(2)
i,k in the direction

opposite to the gradient (7)(8).215

∂

∂w
(1)
s,k

e2s,i = −2es,iw
(2)
i,k + λw

(1)
s,k (5)

∂

∂w
(2)
i,k

e2s,i = −2es,iw
(1)
s,k + λw

(2)
i,k (6)

9
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w
(1)′

s,k = w
(1)
s,k − β

∂

∂w
(1)
s,k

e2s,i = w
(1)
s,k + β(2es,iw

(2)
i,k − λw

(1)
s,k) (7)

w
(2)′

i,k = w
(2)
i,k − β

∂

∂w
(2)
i,k

e2s,i = w
(2)
i,k + β(2es,iw

(1)
s,k − λw

(2)
i,k ) (8)

W1 and W2 are updated repeatedly until some termination criterion is met

in order to guarantee, for example, that the error converges to a minimum,

or that a preset number of iterations has been accomplished. We have chosen

the first option because it provides higher accuracy, although sometimes at the

cost of higher computing latencies. Moreover, we have checked that the error220

converges to a global minimum value, rather than to a local one.

The selection of a good learning rate, β, is a key matter that affects the

convergence of the GD algorithm. There are several sophisticated techniques

to set that value adaptively [29] [30]. In addition, β may be automatically

adjusted between iterations if the algorithm does not converge (i.e. the cost225

function increases), or in order to accelerate the convergence (i.e. changing β

results in a lower value of the cost function).

Finally, the quality of the model is calculated by means of the RMSE crite-

rion on Dtest, in order to obtain a measure of its fitness degree.

We consider that each experiment is composed of several runs of the same230

configuration, since the initialization phase contains random values. Hence, for

a particular configuration, we can choose the model from the best run. The

values of both the learning rate and the regularization term were constant and

empirically tuned.

3.3. Prediction Phase235

Once W1 and W2 are available, the users’ performance for the access point i

is predicted by (1). The purpose of this prediction is twofold. On the one hand,

we can predict unknown values; for example, if an AP has not registered the

users’ demands during a time. On the other hand, we can recommend access

10
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to specific APs according to the users’ behavior. From this knowledge, some240

application possibilities may be explored.

4. Predicting Access Point Demand

We can tackle the problem of predicting the AP’s demand according to users’

behavior through matrix factorization and gradient descent. If we can predict

the number of sessions that the users of the network would establish at the245

APs, then we will be able to estimate the expected demand at each AP by the

accumulation of the expected demands of the users. This information could

be very useful for improving the wireless network infrastructure by reinforcing

those APs with higher workloads or relocating particular APs, among other

possibilities.250

4.1. Access Point Infrastructure

The wireless infrastructure considered in our work is based on an open-

source distributed solution for managing users and resources of the wireless

network (RINUEX) of the University of Extremadura (UEX), in Spain. This

architecture was built to satisfy the demand of a large campus disseminated in255

a wide geographical area (almost 30,000 km2).

The implementation of this wireless network involves wireless controllers

based on open software and intelligent APs, which makes the network indepen-

dent from technological or commercial aspects, allowing placing the controllers

near different campus locations, as well as managing and auditing the network260

from a web portal, that is oriented to both users and hardware resources.

The current wireless infrastructure is composed of 9 network servers, 686

APs, 28 wireless areas and 68 buildings, involving more than 5,000,000 annual

sessions, 20,000 users and 42,000 different devices. For this research, we have

considered a local network composed of a few APs placed in several rooms of a265

library building, and collected data about the number of sessions (understanding

them as roamings) that each user establishes at each AP during a determined

time frame.

11
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AP1 APi API
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Figure 2: Performance matrix: users, access points and performance (number of sessions),

and accumulated performance by access point.

Figure 3: Performance matrix, P .

4.2. Performance Matrix and Experimental Framework

Given a wireless network, we collect data about the number of sessions that270

each user establishes at each AP, during a determined time frame, and build the

corresponding performance matrix P (Fig. 2) of S rows and I columns, where S

is the number of network users (us) and I is the number of access points (APi).

For testing purposes, we considered a data set of 1,517 users and 37 APs

of the wireless network at the Polytechnic School of UEX during one month275

(October 2015). From this data set, we derivea performance matrix, P , with I

= 37 rows and S = 1,517 columns, whose values are represented in Figure 3.

It is important to know the current and predicted workloads at each AP

according to the users’ behavior in order to make easier the analysis and planning

12
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Figure 4: Percentages ofaccumulated performances by access point.

for improving the wireless infrastructure. The workload is understood here as280

the demand or as thenumber of sessions established by the users. Hence, we

calculate the sum, SPi (Figure 2), of the sessions (9) for each APi.

SPi =

∑S
s=1 ps,i∑I

i=1

∑S
s=1 ps,i

× 100 (%) (9)

There is an important consideration to take into account when using MF: all

the values in the performance matrix are known. If a performance value is 0, it

does not mean that the data is unknown, but that the user has not established285

any session at the access point during the considered time.

4.3. Current Network Analysis

We calculate the percentages of the network use from the data collected by

the APs as a first evidence of users’ behavior. This analysis is useful for finding

those APs with the highest and the lowest demands, so that we can compare290

them with the predicted demand and, then, analyze the impact that removing

a particular AP has on the network usage.

Figure 4 shows the percentages of accumulated performance according to

(9). We can see that AP10 has the highest demand.

4.4. Prediction Model and Parameter Tuning295

The prediction model for the wireless network based on users’ behavior is

built from matrix factorization and gradient descent, using the performance

13
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matrix and considering RMSE as the fitness metric. The goal is to predict

the network behavior when a specific AP is removed, in order to improve the

network through a good deployment or maintenance.300

The main parameters of the system prediction model are: number of latent

factors, learning rate β, regularization factor λ, and number of runs of each

experiment.

The number of latent factors has to do with the factors related to the network

context and users’ behavior. This number is not known and is difficult to iden-305

tify, although it might be not very high. We performed a previous experiment

where, under the same framework, K was selected from many possible values

and the corresponding predictions were calculated. We realized that higher K

values caused worse predictions. Therefore, taking into account that the num-

ber of possible latent factors should not be very high, we selected K=4 as a310

reasonable value to be applied in the future experiments.

5. Prediction Model Validation

The prediction method described above has to be validated in order to use

it for planning the network infrastructure according to the AP demand based

on users’ behavior. Pursuing this goal, we follow a methodology composed of315

three consecutive phases (Figure 5). The first phase (“collecting data”) begins

with the monitoring of the whole network during a determined time in order to

collect real data about sessions established by users in APs. Next, we repeat the

process during the same time but after removing a particular AP. The second

phase (“prediction”) predicts the behavior for the incomplete network with a320

performance matrix built using the real data of the entire network, where the

performance corresponding to the removed AP are set to zero. Finally, the third

phase (“validation”) validates the quality of the predictions by comparing them

with the real performance of the incomplete network.

14
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Figure 6: Deployment of 10 access points in the Wi-Fi network of the Library two-story

building at the UEX Campus. The access point removed for the empirical validation of the

prediction is labeled as AP8.

5.1. Experimental Framework325

We have chosen a Wi-Fi network with high activity: the campus library

(Figure 6). This network has 10 access points (AP1 to AP10) and registers the

activity of more than two thousand users a day.

The data collected for the empirical validation of the prediction model rep-

resent 1,717 different users during April 2016. This month was split into two330

halves, where the first half (1Q) keeps the entire network infrastructure un-

touched, and the second one (2Q) analyzes the same network after switching off

one AP (AP8). This resulted in 1,095 users that showed activity in both of the

halves (12,798 and 13,875 sessions, respectively).

5.2. Network Monitoring335

Initially, we collect data of the network with all its APs operational during

the first half. With these real data we generate the performance matrix P1Q.

The line P1Q in Figure 7 shows the percentages of the accumulated perfor-

mances in each AP with regard to the total accumulated performance. In the

middle of the month, AP8 is switched off and the network is monitored again340

during the second half. Then, the performance matrix P2Q is built, also from

real data.
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Figure 7: Real and predicted performances for the experimental case β = 0.01, λ = 0.01, and

K = 4.

We can see in Figure 7 that plots P1Q and P2Q are obviously quite different

for AP8, whereas they are similar for the other APs’ performance. This tells

us that users’ behavior pattern is not too different in both halves, because a345

user often demands network access following similar habits during the month.

Nevertheless, the accesses to AP8 during the first half can influence the remain-

ing APs during the second half (some users of AP8 could require access now to

other APs), hence the increase of demanding some APs in second half can be

due to the AP8 removal.350

Our prediction proposal allows us to identify the change of AP use when we

measure the difference between the rates of AP demand after removing AP8.

Figure 8 shows the differences of rates between accumulated performance during

both the second (P2Q) and the first (P1Q) halves. These differences show the

trend of AP demand when AP8 is removed. We can see that the demand355

increases, although in different amounts, for almost all the APs, as former AP8

users now demand access through other APs. However, this increase may also

represent changes in the users’ behavior during the second half. Anyway, we

can identify the influence of AP8 removal in the higher demand increases and

decreases of the different APs.360

Analyzing the plots corresponding to both halves, we can reach some con-

17



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 8: Difference of the percentages of accumulated real performances between the second

(P2Q) and the first half (P1Q), showing the trends of APs demand when removing AP8.

Table 1: Real demand variation of the APs after removing AP8.

APs with increases: (x > 2%) AP2, AP3, AP9

APs almost unaltered: (-2% < x < 2%) AP1, AP4, AP5, AP6, AP7, AP10

APs with decreases: (-2% < x) AP8

clusions about the behavior of real users when AP8 is removed. Figure 8 shows

that the demand changes at some APs after removing AP8. If we would not

have removed AP8 in the second half and all the users demanded the same APs

with unaltered habits, all the columns in the graph would have had zero heights.365

Nevertheless, those users that demanded AP8 during the first half would have to

demand other APs after removing it, and that is represented by higher columns

in the figure. This way, column heights in Figure 8 inevitably reflect the human

behavior in both halves with regard to the transfer of users from AP8 to other

APs. Certainly, this is not a conclusion, but a valid assumption.370

Trying to find the reason for the increased height in each column, we can

establish the following reasonable hypothesis for analyzing the data: if users

show similar behaviors in both halves, the greatest part of the variation in the

APs demand is due to AP8 removal. In addition, the longer the time we collect

data, the more similar the behavior will be. According to this hypothesis, we375

identify the more significant variations in the APs in Figure 8, and classify them

as shown in Table 1.
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This study was accomplished using a real framework with and without AP8

(both halves), but we want to find out whether it is possible to predict variations

such as those shown in Table 1 from only the full network real data (first half).380

5.3. Network Prediction

Our prediction proposal consists of three steps, as Figure 5 shows in the

“Prediction framework” box. First (step #1), we consider the AP removal

in the performance matrix P1Q by setting to zero the corresponding column,

generating the performance matrix P , needed for the prediction. Hence, once385

the performances corresponding to AP8 are set to zero, the rates of AP demand

are recalculated; this is the reason why plot P is slightly different from plot

P1Q in Figure 7 (obviously, they meet at access point AP8).

The second step selects data from P , which would be considered as “un-

known” performance for the predictions. These data are selected by choosing390

one performance value for each user in the matrix, covering the different APs

consecutively. This method tries to obtain sufficient representative performance

to achieve the prediction, allowing P to keep enough real performance values to

retain a certain “memory” of the users’ behavior pattern.

The third step applies matrix factorization to P and generates the predic-395

tion matrix PP . This matrix shares the same values as P , except those corre-

sponding with the unknown data set, which are replaced by the performances

predicted through the matrix factorization model. This way, the goal is to make

PP similar to P2Q; in other words, PP tries to predict P2QS from the infor-

mation provided by P1Q (which is always available). Note that P2QS contains400

unknown values when we apply this prediction methodology to any problem,

but that those values are known for the empirical validation. We can see in Fig-

ure 7 that the plot line that represents PP is quite similar to P2Q. This plot

has been generated for an experimental case with K = 4, λ = 0.01, β = 0.01,

and 1,000 iterations. Obviously, different values of the parameters would result405

in different plots of PP .
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5.4. Prediction Validation

In order to validate the prediction, we use a method for qualitative confirma-

tion and consider a metric for parameter tuning. Qualitative confirmation tries

to measure the difference of the accumulated performances PP -P1Q and check410

if the increase/decrease trends of the APs demand match the corresponding

trends for the difference P2Q-P1Q (shown by Figure 8).

Prediction results depend on the correct selection of the main parameters (β

and λ), so a metric for tuning them is needed to guarantee optimal predictions.

The best values would be those that minimize the difference between predicted415

performance (PP ) and real performance in the second half (P2Q). Thus, the

set of values that minimize the cost function Fval (10) is considered as the

optimal set, this function being defined as the absolute difference between the

accumulated performances SPP (11) and SP2Q (12), by AP.

Fval = |
I∑

i=1

SPPi −
I∑

i=1

SP2Qi| (10)

SPPi =

∑S
s=1 pps,i∑I

i=1

∑S
s=1 pps,i

× 100 (%) (11)

SP2Qi =

∑S
s=1 p2qs,i∑I

i=1

∑S
s=1 p2qs,i

× 100 (%) (12)

Since the learning rate is crucial for the convergence, and the regularization420

factor affects the accuracy of Fval, we have tackled a set of prediction experi-

ments, where Fval was calculated considering the same set of values for both

β and λ: 100, 75, 50, 25, 10, 5, 2.5, 1, 0.5, 0.1, 0.05, 0.01, and 0.005. Based on

previous experiments, we considered K = 4 latent factors and 100 runs for each

experiment, and found out that β = 1 and λ = 75 minimize Fval (see Figure425

9).

After selecting theoptimal values, we analyze the predictions in order to

qualitatively validate the trend of APs demand. Hence, we plot the difference

of the accumulated performances, PP -P1Q, and check whether this trend is
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Figure 9: Graphical view of Fval values obtained from predictions for different β and λ values.

There is a global minimum (12.923) corresponding with β = 1 and λ = 75.

Figure 10: Difference of the percentages of accumulated performances between behavior pre-

dicted in the second half (PP ) and real behavior in the first half (P1Q), showing the predicted

trends of AP demand when removing AP8.

similar to the P2QS-P1QS trend shown by Figure 8. Thus, Figure 10 shows430

the comparison between predicted data when AP8 was removed, and real data

from the whole network. From this figure we have built Table 2 in order to

analyze the trend after removing AP8.

Comparing both Table 1 and Table 2, we can conclude that the prediction

is close to the real behavior. The prediction has identified the two access points435

with the highest increase of demand (AP2 and AP3) as well as a very similar

decrease for AP8. The remaining APs present short differences with regard to

the real behavior. These results support the idea that a prediction method
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Table 2: Predicted demand variation of APs after removing AP8.

APs with increases: (x > 2%) AP2, AP3

APs almost unaltered: (-2% < x < 2%) AP1, AP4, AP5, AP6, AP7, AP9, AP10

APs with decreases: (-2% < x) AP8

based on matrix factorization and gradient descent can be successfully applied

to the analysis of access point demand according to user’s behavior. Moreover,440

the results in the prediction validation have shown an additional detail: the

existence of a global minimum when searching for the best values of the couple

(β, λ). Applying the learning phase to the model means finding the optimal

matrices W1 and W2 (solutions) for a particular value of K, once the values of

β and λ have been chosen. After performing an exhaustive search experiment445

where β and λ were selected from a wide range, we checked that the optimal

solution is a global optimal too. This result is important because it opens a new

research line where optimization algorithms based on evolutionary computing

could be used to speed-up the search for optimal solutions.

6. Conclusions and Future Works450

This work explores the application of prediction techniques based on matrix

factorization and gradient descent to determine the access point demands in

Wi-Fi infrastructures according to users’ behavior. From real and predicted

data in a university environment, the results of the experiments indicate, from a

qualitative point of view, that it is possible to obtain consistent, valid approaches455

to be applied to wireless networks taking into account the users’ preferences

in their usual activities. For example, the access point workload prediction

could be used in order to achieve a more efficient deployment (placing the APs

where the users can get more benefit), or to maintain the wireless network

infrastructure by adding or reinforcing the corresponding hardware devices.460

Another research line should take into account larger time frames for col-

lecting data, because of the stochastic nature of user behavior. In addition,
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collecting data during different time periods would allow analyzing the impact

of time domain in the prediction. Finally, we would like to explore self-tuning

methods for the learning rate and regularization factor in order to improve the465

prediction accuracy.
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