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Abstract

The combined presence of Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) components in the

radio propagation environment can severely degrade the Ultra-Dense Networks (UDNs) performance.

Backed by a stochastic geometry model, we show that when the LOS/NLOS propagation components

are taken into account, and as the cell density increases, UDNs suffer from low coverage and the

Area Spectral Efficiency (ASE) grows sub-linearly. However, we show that this performance drop can

be compensated by increasing the frequency reuse factor or by steering the network into the partial

load regime, which occurs when the base stations outnumber the users. In the former, it emerges that

frequency reuse improves the ASE vs coverage trade-off of cell densification with respect to a traditional

full frequency reuse, provided there is a degree of freedom on the density of cells; in addition, this

trade-off improves with the frequency reuse factorN . Finally, we investigate the energy efficiency of

UDNs for which we show that, as a combined result of LOS/NLOS propagation and partial load regime,

up to two optimal base station densities exist. As a whole, our work provides novel insights on how

to overcome the limitations and to take advantage of extremecell densification in the upcoming 5G

wireless networks.

Index Terms

Ultra-dense, LOS/NLOS, Area Spectral Efficiency, partial load, energy efficiency, coverage.

I. INTRODUCTION

Ultra-Dense Networks are foreseen as a key enabler for the 5-th generation (5G) wireless

networks [1], [2], where a 1000-fold increase in data rates and a 10-fold increase in energy

efficiency are expected with respect to current 4G systems [3]. Although a concept rather



1

than a precise definition, the termUltra-Dense Networks(UDNs) is used to describe networks

characterized by a massive and dense deployment of small-cells, in which the density of Base

Stations (BSs) may exceed the density of user devices [4]. The degree of deployment density

can be used to classify UDNs into two regimes: (i)full load regime, i.e., networks in which

all the BSs are active; and (ii)partial load regime, i.e., networks in which some BSs might be

inactive, due to the BSs outnumbering the users.1

In [5] it was shown that the Area Spectral Efficiency (ASE) grows linearly with the BS

deployment density. This observation was the result of a simplified propagation model. Recent

works [6]–[9], which assume realistic propagation models,have shown more conservative ASE

gains. Furthermore, when the BS deployment density increases beyond the user density – the

network enters the partial load regime – the network will experience a coverage improvement

at the expense of reduced ASE gains [4], [10]. This trend implies that a larger density of BSs

will be required so to meet the targeted rates, translating on higher network infrastructures costs.

In this paper we show that this performance deterioration can be overcome by: (1) steering the

network into a partial load regime and (2) leveraging the network frequency reuse.

A. Related Work

In recent years, stochastic geometry has been gradually accepted as a mathematical tool for

performance assessment of wireless networks. In fact, the cornerstone of the cell densification

studies can be found in [5], where the authors proposed a stochastic geometry-based framework

to model single-tier cellular wireless networks. The simplifying assumption of a single slope

path loss model, has led the authors to conclude that the ASE has a linear dependence with

the cell deployment density. Yet, in subsequent studies, where multi-slope path loss models are

assumed [6]–[9], it was shown that the ASE exhibits instead anon-linear behavior with the

cell deployment density. This has been observed for both millimeter-wave [6], [11] and sub-6

GHz [8], [9] propagation models. In [6], the authors extended the stochastic geometry framework

in [5] to a multi-slope path loss model. The authors in [11] developed a stochastic geometry

framework for path-loss including Line-of-Sight (LOS) andNon-Line-of-Sight (NLOS). The

effect of NLOS propagation on the outage probability has been studied in [7], where the authors

1This can be the result of a reduced load in terms of users or of amassive deployment of BSs.
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propose a function that gives the LOS probability at a given point depending on the distance

from the source, the average size of the buildings and their deployment density. In our previous

work [8] and in [9], the performance of the network with a combined LOS/NLOS has been

modeled and evaluated.

All these studies assume that all base stations are active and have at least one user to serve,

which is not always the case in a ultra-dense network setting. In fact, some recent studies

indicate [4], [12] that the Base Station (BS) deployment density, in 5G wireless networks, is

expected to increase even beyond that of the users; implyingthat some BSs will have no users

to serve and will therefore remain inactive. Motivated by this, we broaden in this paper the body

of work on UDNs towards networks on apartial load regime.

Previous work on stochastic geometry for partially loaded networks has appeared in [4],

[10], [13], [14]. The authors in [13] studied the coverage insingle-tier networks, while multi-

tier networks are addressed in [14]. An analysis of the ASE ofpartially loaded networks has

been carried out in [4], while in [10] the authors have extended the stochastic geometry-based

model further to include multi-antenna transmission, and have also assessed the energy efficiency.

Overall, the authors in [10], [13], [14] have shown that the network coverage improves as the

BS deployment density increases beyond the user density; however, the ASE gain turns out to be

reduced and grows logarithmically with the BS deployment density. Nonetheless, the authors in

[10], [13], [14] modeled the propagation according to a single slope path-loss model and did not

investigate the effect of LOS/NLOS propagation when the network is in a partial load regime.

We reckon that the study of UDNs should not ignore the joint effects that both LOS/NLOS

propagation and partial load regime have on the network performance. This paper is to our

knowledge the first contribution that combines these two effects and provides a complete analysis

of its effect on the behavior of the ASE, coverage, and energyefficiency in a UDN setting.

B. Our Contribution

In this paper we investigate the cell densification process in UDNs and evaluate the effect of

LOS/NLOS propagation on the coverage, spectral efficiency,ASE, and energy efficiency. Overall,

the major contributions of our work can be summarized in the following points:

1) Stochastic geometry-based model for UDNs with LOS/NLOS propagation: The model

we propose allows us to study the Signal-to-Interference-plus-Noise-Ratio (SINR) distribution,
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the spectral efficiency and the ASE of UDNs with the LOS/NLOS propagation components.

Our model is suited to investigate the performance trend of network densification in 5G-like

scenarios, while modeling UDNs in both full and partial loadregimes2.

2) Investigation on the combined effect of LOS/NLOS propagation, partial load regime

and frequency reuse on UDNs performance:We show that the LOS/NLOS propagation affects

the UDNs’ key performance metrics negatively. Specifically, the ASE exhibits sub-linear gain and

a drastic coverage drop as the deployment density goes beyond 300 BSs/km2. This performance

deterioration can be circumvented by leveraging frequencyreuse and steering the UDN towards a

partial load regime. For instance, increasing the BS density beyond that of the users increases the

network coverage and negates the impact of LOS/NLOS propagation. Further, frequency reuse

achieves better ASE vs. coverage trade-offs as the frequency reuse factor increases, compared

to a reuse factor 1. Hence, we provide design guidelines on how to overcome the inherent

limitations and take advantage of extreme cell densification.

3) Investigation on the effect of LOS/NLOS path-loss on UDNsenergy efficiency:We show

that, as a consequence of the LOS/NLOS propagation, the energy efficiency has a maximum

value that occurs at a given base station density; beyond that density, the energy efficiency drops

considerably with respect to the case of single slope path-loss, making cell-densification costly

from an energetic stand-point. Further, we show that, in a partial load regime, a second local

maximum of the energy efficiency can be achieved, provided that the inactive base stations are

put into standby mode to save energy. In conclusion, our analysis provides insights on how to

optimize the BS deployment density so to achieve optimal energy efficiency.

C. Paper Structure

The remainder of this paper is organized as follows. In Section II we describe the system

model. We show our formulation for computing the SINR, SE andASE in Section III and we

address the energy efficiency in Section IV. In Section V we present and discuss the results

while the conclusions are drawn in Section VI.

II. SYSTEM MODEL

We assume a network of small-cell base stations deployed according to a homogeneous and

isotropic Spatial Poisson Point Process (SPPP), denoted asΦ ⊂ R
2, with intensityλ. Each BS

2The partial load regime has been identified as one of the typical scenarios in 5G wireless networks [4], [12].



4

transmits with an isotropic antenna and power,PTX; we focus our analysis on the downlink.

Let us note that, by definition of the SPPP, each point is independent of any other point of the

process and, as a result, base stations may turn out to be located either too close to or too far

from one another. This might not be in line with real deployments of cellular networks, where

base station locations tend to be planned in such a way to be equidistant from one another, so

as to provide uniform coverage. Despite this drawback, SPPPs have been shown to model the

network performance metrics with a good level of accuracy; more precisely, they provide a more

conservative prediction of the real network performance compared to the less tractable standard

hexagonal cell grid, which instead gives an overestimate ofit [5]. Thanks to its good trade-off

between the mathematical tractability and accuracy, we model the small-cell base station network

as an SPPP.

A. Channel model

In our analysis, we consider the following path loss model:

PL(d) =











KLd
−βL with probabilitypL(d),

KNLd
−βNL with probability1− pL(d),

(1)

whereβL and βNL are the path-loss exponents for LOS and NLOS propagation, respectively;

KL andKNL are the signal attenuations at distanced = 1 m for LOS and NLOS propagation,

respectively;pL(d) is the probability of having LOS as a function of the distanced. The model

given in (1) is recommended in 3GPP to model the LOS/NLOS propagation, for example, in

scenarios with Heterogeneous Networks [15, Table A.2.1.1.2-3]. The incorporation of the NLOS

component in the path loss model accounts for possible obstructions of the signal due to large

scale objects (e.g. buildings), which will result in a higher attenuation of the NLOS propagation

compared to the LOS path. A visualization of the LOS and NLOS propagation as a result of

the obstruction from buildings is given in Fig. 1.

We further assume that the propagation is affected by Rayleigh fading, which is exponentially

distributed∼ exp(µ). Although Ricean or Nakagami-m models would more accurately describe

the small-scale fading effect of the LOS propagation, Rayleigh model has the advantage of

being more tractable than the former ones from a mathematical point of view. In addition to

it, Rayleigh fading provides a conservative prediction of the system performance, as it gives a

lower bound of the SINR for system models with Nakagami-m fading [16].
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TABLE I

L IST OF NOTATIONS

Symbol Meaning

Φ, ΦL, ΦNL SPPP of base stations, of base stations in LOS with the user and of base stations in LOS with

the user, respectively

λ, λL(x), λNL(x) Density of BSs, of BSs in LOS with the user and of the BSs in LOS with the user, respectively

λA, λI, λU Density of active BSs, of the interfering BSs, and of the users, respectively

pL, pNL LOS and NLOS probability functions, respectively

KL, KNL, Keq Signal attenuation at distance 1 for LOS propagation, for NLOS propagation and for equivalent

model, respectively

βL, βNL, βeq Path-loss coefficients, for LOS propagation, for NLOS propagation and for equivalent model,

respectively

L LOS likelihood paramter

feq(x), deq(d) Equivalent point and equivalent distance, respectively, for the NLOS-to-LOS mapping

f−1
eq (x), d−1

eq (d) NLOS point and reversed distance, respectively, for the equivalent-to-NLOS mapping

α, β Asymptotical slope of ASE and of the transmit power, respectively, as functions of the cell density

PTX, PT Transmit power per base station (as a function of the cell density) and component (of the transmit

power per base station) independent of the cell density, respectively

PTOT, P0, PRF Total Transmit power of the network, fixed component of the BSpower consumption and power

consumption per BS due to emitted RF signal, respectively

KRF Power loss of the power amplifier

ρ Power saving factor of a base station in stand-by mode

γ, γth SINR and SINR threshold defining the network coverage, respectively

pA Probability of a base station being active

ηA, ηEE Area Spectral Efficiency (ASE) and Energy Efficiency, respectively

E[C] Average cell spectral efficiency or average typical user rate

BWA, BWU, N Available bandwidth, used bandwidth and frequency factor reuse, respectively

Regarding the shadow fading, it has been shown that in networks with a deterministic, either

regular or irregular, base station distribution affected by log-normal shadow fading, the statistic

of the propagation coefficients converges to that of a network with SPPP distribution as the

shadowing variance increases [17]. In other words, this SPPP intrinsically models the effect of

shadow fading.
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Fig. 1. Representation of the LOS and NLOS propagation in a urban scenario. LOS propagation occurs where there is clear

sight between the base station and the user, while NLOS occurs where some large scale objects like buildings are obstructing

the path between the transmitter and the receiver.

B. LOS probability function

To ensure that our formulation and the outcomes of our study are general and not limited to a

specific LOS probability pattern, we consider two differentLOS probability functions. The first

one — which we refer to asLOS Case 1— is proposed by the 3GPP [15, Table A.2.1.1.2-3]

to assess the network performance in pico-cell scenarios; we provide its expression below:

pL,3G(d) = 0.5−min

(

0.5, 5 exp

[

−
d0
d

])

+min

(

0.5, 5 exp

[

−
d

d1

])

, (2)

whered0 andd1 are two parameters that allow (2) to match the measurement data. Unfortunately,

this function is not practical for an analytical formulation. Therefore, we chose to approximate

it with a more tractable one, namely:

pL(d) = exp
(

−(d/L)2
)

, (3)

whereL is a parameter that allows (3) to be tuned to match (2), as discussed in Section V (see

Table II). The second function— which we referred to asLOS Case 2— is also suggested by

the 3GPP [15, Table A.2.1.1.2-3] and is given below:

pL(d) = exp(−d/L). (4)
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From a physical stand point, the parameterL can be interpreted as the LOS likelihood of a given

propagation environment as a function of the distance.

C. User distribution, fully and partially loaded networks

In our model, we assume that: (i) the users are uniformly distributed according to a homoge-

neous SPPP of intensityλU and (ii) each user connects only to one base station, the one from

which the path-loss is the minimum. Whenever we consider a finite areaA, NU indicates the

average number of users in the network. We also assume the users are served with full buffer,

i.e., the base station has always data to transmit to the users and makes full use of the available

resources.

Depending on the ratio between the density of users and the density of basestations, we

distinguish two cases, namely,full load and partial load regime. By full load we refer to the

case where each BS has at least one user to serve. With reference to a real scenario, networks

in full load model the case where there are many more users than base stations, so that each

base station serves a non-empty set of users. However, when the density of users is comparable

or less than of the base stations; some base stations may not have any users to serve and will

become inactive (not transmitting nor generating interference). When this occurs, we say that the

network is in a partial load regime. The modeling of the network in this regime allows the study

of those scenarios characterized by high density of base stations and, in particular, scenarios

where the density of base stations exceeds the density of users, such as in UDNs.

To define formally the concepts of full and partial load regime, we start by introducing:

Definition 1 (Probability of a base station being active). The probability of a base station being

active, denoted aspA, is the probability that a base station has at least one user to serve. This

event implies that the base station is active and transmits to its users.

Definition 2 (Full load regime). The network is said to be in full load regime if each base station

has at least one user to serve; this is equivalent topA = 1.

Definition 3 (Partial load regime). The network is said to be in partial load regime ifpA < 1.

Remark 1. To ensurepA = 1, the density of usersλU should tend to infinity. But, as we will

discuss in Section III-E2, it is reasonable to assumepA = 1 whenλU ≫ λ.
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III. SINR, SPECTRAL EFFICIENCY ANDASE

In this section we develop the analytical model used to compute the SINR Complementary

Cumulative Distribution Function (CCDF), which will allowus to assess key performance metrics

such as coverage, spectral efficiency and ASE.

A. Procedure to compute the SINR CCDF

We compute the SINR tail distribution (i.e., the Complementary CDF), by extending the

analytical framework first proposed in [5] to include the LOSand NLOS components. From the

Slivnyak’s Theorem [18, Theorem 8.10], we consider thetypical useras the focus of our analysis,

which for convenience is assumed to be located at the origin.The procedure is composed of

two steps: (i) we compute the SINR CCDF for the typical user conditioned on the distance from

the user to the serving base station, denoted asr; (ii) using the PDF of the distance from the

closest BSfr(R), which corresponds to the serving BS, we can average the SINRCCDF over

all possible values of distancer.

Let us denote the SINR byγ; formally, the CCDF ofγ is computed as:

P [γ > y] = Er

[

P [γ > y|r]
]

=

∫ +∞

0

P [γ > y|r = R] fr(R)dR. (5)

The key elements of this procedure are the PDF of the distanceto the nearest base stationfr(R)

and the tail probability of the SINR conditioned onr, P [γ > y|r = R]. The methodology to

compute each of these elements and model the LOS/NLOS components will be exposed next.

B. SPPPs of base stations in LOS and in NLOS with the user

The set of the base stations locations originates an SPPP, which we denote byΦ = {xn}.3 As

a result of the propagation model we have adopted in our analysis (see Section II-A), the user

can either be in LOS or NLOS with any base stationxn of Φ. Now, we perform the following

mapping: we first define the set of LOS points, namelyΦL, and the set of NLOS points,ΦNL.

Then, each pointxn of Φ is mapped intoΦL if the base station at locationxn is in LOS with

the user, while it is mapped toΦNL if the base station at locationxn is in NLOS with the user.

Since the probability thatxn is in LOS with the user ispL(‖x‖), it follows that each pointxn

of Φ is mapped with probabilitypL(‖x‖) into ΦL and probabilitypNL(‖x‖) = 1− pL(‖x‖) into

3Whenever there is no chance of confusion, we drop the subscript n and usex and instead ofxn for convenience of notation.
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ΦNL. Given that this mapping is performed independently for each point in Φ, then from the

"Thinning Theorem" [18, Theorem 2.36] it follows that the processesΦL andΦNL are SPPPs

with densityλL(x) = λpL(‖x‖) andλNL(x) = λ (1− pL(‖x‖)), respectively. Note that, because

of the dependence ofλL(x) andλNL(x) on x, ΦL andΦNL are inhomogeneous SPPPs. Further,

we make the assumption thatΦL andΦNL are independent processes; the reasons of this choice

are given in the following. First, each point ofΦL is independent of each point ofΦNL, because

ΦL andΦNL are the result of an independent sampling from the processΦ, in which each point is

independent of one another. Second, the union of two independent SPPPs processes is an SPPP

of which the density is the sum of the densities of the individual SPPPs [19, Preposition 1.3.3],

the union ofΦL andΦNL is an SPPP of densityλL(x)+λNL(x) = λ, i.e., it is an SPPP with the

same density as that of the original processΦ. The validity of the assumption of independence

betweenΦL andΦNL is also supported by the close matching with simulation results, as shown

in our previous work [8].

C. Mapping the NLOS SPPP into an equivalent LOS SPPP

Given that we have two inhomogeneous SPPP processes, it is not trivial to obtain the distri-

bution of the minimum distance of the user to the serving basestation, which will be necessary

later on to compute the SINR CDF. In fact, assuming the user tobe in LOS with the serving

base station at a distanced1, there might be an interfering BS at a distanced2 < d1 which is

in NLOS with the user. This is possible because the NLOS propagation is affected by a higher

attenuation than the LOS propagation.

Hence, to make our problem more tractable, we map the set of points of the processΦNL,

which corresponds to the NLOS base stations, into an equivalent LOS processΦeq; each point

x ∈ ΦNL located at distancedNL from the user is mapped to a pointxeq located at distancedeq

from the user, so that the BS located atxeq provides the same signal power to the user with

path-lossKLd
−βL
eq as if the base station were located atx with path-lossKNLd

−βNL

NL .

Definition 4 (Mapping functionfeq). We define the mapping functionfeq : ΦNL → Φeq as:

feq(x) =
x

‖x‖
deq (‖x‖) , (6)

deq(d) =

(

KL

KNL

)1/βL

dβNL/βL. (7)
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Definition 5 (Inverse mapping functiongeq). The inverse functiongeq = f−1
eq : Φeq → ΦNL is

defined as:

geq(x) =
x

‖x‖
d−1
eq (‖x‖) , (8)

d−1
eq (d) =

(

KNL

KL

)1/βNL

dβL/βNL = Keqd
βeq, (9)

whereKeq =
(

KNL

KL

)1/βNL

while βeq = βL/βNL.

Note that from the "Mapping Theorem" [18, Theorem 2.34],Φeq is still an SPPP.

D. PDF of the distance from the user to the serving BS

Using the mapping we introduced in Section III-C, we can compute the PDFfr(R) of the

minimum distancer between the user and the serving BS.To this end, we first compute the

probabilityP [r > R], which is the probability that the serving base station is located at a distance

larger thanR from the user;the PDF can be ultimately obtained from the derivative ofP [r > R]

as fr(R) = d
dR

(1 − P [r > R]). P [r > R] can be computed as the probability that no BS is

included within the radiusR —i.e., no point of the LOS processΦL and no LOS equivalent

point of the NLOS processΦL. In mathematical terms, letB(0, l) be the ball of radiusl centred

at the origin(0, 0). Moreover, we use the notationΦ(A) to refer to the number of pointsx ∈ Φ

contained inA [18]. Using the mapping we introduced in Section III-C the probabilityP [r > R]

can be found as:

P [r > R] = P [ΦL (B(0, R)) = 0 ∩ Φeq (B (0, R)) = 0]

(a)
= P

[

ΦL (B(0, R)) = 0 ∩ ΦNL

(

B
(

0, d−1
eq (R)

))

= 0
]

(b)
= P [ΦL (B(0, R)) = 0] · P

[

ΦNL

(

B
(

0, d−1
eq (R)

))

= 0
]

, (10)

where equality(a) comes from the mapping defined in (8) and in (9), while equality (b) comes

from the independence of the processesΦL andΦNL. By making use of the independence and

by applying the probability function of inhomogeneous SPPP[18, Definition 2.10]4 to each of

the factors in (10), we obtain the following,

P [r > R] = exp

(

−

∫

B(0,R)

λL(x)dx

)

exp

(

−

∫

B(0,d−1
eq (R))

λNL(x)dx

)

. (11)

4Given an inhomogeneous SPPPΦ of density λ(x), the probability of having no points within a compact setB is

P [Φ (B) = 0] = exp
(

−

∫

B
λ(x)dx

)
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From (11), we can obtainfr(R), first, by integrating and, second, by computing its first derivative

in R. The formulation in (11) is general and thus can be applied toseveral LOS probability

functionspL(d). Below, we provide the expression of the PDF of the distance from the UE to

the serving BS for the LOS functions (3) and (4), respectively.

Result 1. If the LOS probability function is as in(3) and if we denoted−1
eq (R) by Req, the PDF

of the distance to the serving BS is:

fr(R) = −

(

eπλL
2e

−
R2

L2

· e−πλL2e
−

R2
eq

L2

· e−πλR2
eq

)

(12)

(

−2πλRe−
R2

L2 πλK2
eq2βeqR

2βeq−1e−
−K2

eqR
2βeq

L2 − πλK2
eq2βeqR

2βeq−1

)

.

Result 2. If the LOS probability function is as in(4) and if we denoted−1
eq (R) by Req, the PDF

of the distance to the serving BS is:

fr(R) = −

(

e2πλL
2e−

R
L · e2πλLRe−

R
L · e−πλR2

eq · e−2πλL2e−
Req
L · e−2πλLReqe

−
Req
L

)

(13)

(

− 2πλLe−
R
L − 2πλ(L− R)e−

R
L − πλK2

eq2βeqR
2βeq−1

+2πλLKeqβeqR
βeqe−

KeqR
βeq

L + 2πλLKeqβeqR
βeq−1(KeqR

βeq − L)e−
KeqR

βeq

L

)

.

We refer to the Appendix for the details of thefr(R) we have given in (12) and in (13).

E. Spatial process of the interfering base stations and of the active base stations

The model we propose in this paper can be extended to the casesof partial load regime and of

frequency reuse, which herein we treat separately. In orderto do so, we first need to identify the

process of active base stationsand theprocess of the base stations interfering with the typical

user, which will be required to obtain the coverage and the area spectral efficiency. We define

the active base stations as those BSs having one or more usersto serve. A BS which is not

active does not transmit and, therefore, does not generate any interference. On the other hand,

an active BS can potentially, but not necessarily, be seen asan interferer by the typical user;

in particular, an active BS (excluding the one serving the user) acts as an interferer if that BS

transmits over the same band used to serve that user. In the following, we denote byΦA the set

of active BSs, while we denote byΦI the set of the interfering BSs.
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1) Frequency reuse:In this case we assume that all the BSs are active, but where each of

these only uses a portion of the spectrum, in order to reduce interference in the network. Since

all the BSs are active, the processΦA is the same asΦ. Further, we assume that each BS

selects a channel randomly [20]; using a frequency reuse factor of N , each BS uses1 out of

N channels, chosen independently of the other BSs. Hence, each BS interferes with a given

user with probability1/N ; this is equivalent to carrying out a thinning of the original process

Φ with probability 1/N ; from the Thinning Theorem [18, Theorem 2.36], we obtain that ΦI is

a homogeneous process with densityλI = λ/N .

2) Partial and full load regime:In the partial load regime, we recall from Section II-C that a

fraction of the base stations might be inactive and will not generate interference. Assuming all

the BSs transmit over the same band, then only the BSs active will generate interference to the

users – with the exception of the serving BS. Thus, we can write ΦI = ΦA \ x0, wherex0 is the

serving base station; moreover, from the Palm Theorem [18],ΦI andΦA have the same density.

To obtain the process of active BSsΦA from the original processΦ, we first assume that each

user deployed in the network connects to the BS with the minimum path-loss; finally, only the

BSs which are assigned one or more users will be picked to formthe setΦA. However, the fact

that a BS is picked to be part ofΦA depends on the positions of the neighboring BSs, which

implies that the BSs belonging toΦA are not picked independently of one another [13].

As the independence among the points of a process is a necessary condition in order to

have an SPPP, it follows thatΦA cannot be formally regarded as such; to circumvent this issue

and makeΦA more mathematically tractable, in some previous work [10],[13] the authors

proposed to approximateΦA with an SPPP. Specifically, the authors in [13] have shown that;

(i) the probabilitypA of a base station to be active (i.e., to have users to serve) can be well

approximated once the density of usersλU and density of base stationsλ are know; and (ii) the

processΦA of active base stations can be well approximated by an SPPP, obtained through the

thinning the original processΦ with probability pA, which is given below [13]:

pA = 1−

(

1 +
λU

3.5λ

)−3.5

. (14)

Although (14) has been proved to be a valid approximation forsingle slope path-loss models—

for which the user association to the BS is based on the minimum distance—we extend the
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use of this approximation to the LOS/NLOS path-loss model given in (1).5 Hence we model the

process of active BSs as an SPPP, which, based on the ThinningTheorem, has densityλA = pAλ;

moreover, as mentioned in Section III-E2,ΦA andΦI have the same density, i.e.,λI = λA. Fig. 2

shows how the probabilitypA and theλI vary as functions of the ratioλ/λU.

Remark 2. Based on Fig. 2, we consider fully loaded networks as a special case of partially

loaded networks when the density of usersλU is greater than10λ, for which the approximation

pA = 1 holds. For fully loaded network, the processes of the activebase stations and of interfering

base stations have densitiesλA = λ andλI = λ, respectively.
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Fig. 2. Probability of a BS being activePA and density of interfering BSλI vs BS density for partially loaded networks. The

probability pA drops as the ratioλ/λU is close to or greater than 1, i.e., asλ approachesλU. As a result of this, the density

of active BSs as well as the density of interfering BSs converge toλU asλ approaches or overcomesλU.

F. SINR complementary cumulative distribution function

The probabilityP [γ > y|r = R] can be computed as in [5, Theorem 1]; we skip the details

and provide the general formulation:

P [γ > y|r = R] = P

[

gKLR
−βL

σ2 + IR
> y

]

= e−µyK−1
L

RβLσ2

LIR(µyK
−1
L RβL), (15)

whereg is the Rayleigh fading, which we assume to be an exponential random variable∼ exp(µ);

σ2 is the variance of the additive white Gaussian noise normalized with the respect to the transmit

5We refer the reader to Appendix B for the numerical validation of (14) in a LOS/NLOS path-loss model.
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power; IR is the interference conditioned on distanceR of the user to the serving BS and can

be computed as the sum of the interference from the BSs in LOS with the user and of the

interference from the BSs in NLOS with the user, i.e.,

IR =
∑

{i: xi∈ΦL∩ΦA, ‖xi‖>R}

giKL‖xi‖
−βL +

∑

{j: feq(xj)∈ΦNL∩ΦA, ‖feq(xj)‖>R}

gjKL‖xj‖
−βL, (16)

where gi and gj are independent and identically distributed∼ exp(µ) fading coefficients.To

ensure that the serving BS is excluded from the interferers in (16), IR accounts only for the

LOS BSs (i.e.,{i : xi ∈ ΦL ∩ ΦA, ‖xi‖ > R}) and for the LOS-equivalent points (i.e.,

{j : feq(xj) ∈ ΦNL ∩ ΦA, ‖feq(xj)‖ > R}) whose distance from the user is greater than

R; note that only the active base stations are included among the interferers. By applying the

inverse mapping introduced in Definition 5 to the second termof the sum in (16), we obtain:

IR =
∑

{i: xi∈ΦL∩ΦA, ‖xi‖>R}

giKL‖xi‖
−βL +

∑

{j: xj∈ΦNL∩ΦA, ‖xj‖>d−1
eq (R)}

gjKNL‖xj‖
−βNL (17)

The Laplace transformLIR(s) if the interferenceIR can be written as follows:

LIR(s) = EIR[exp(−sIR)]

= EΦL∩ΦA,ΦNL∩ΦA,gi,gj

[

exp

(

− s
∑

{i: xi∈ΦL∩ΦA, ‖xi‖>‖x0|}

giKL‖xi‖
−βL

)

exp

(

− s
∑

{j: xj∈ΦNL∩ΦA, ‖xj‖>d−1
eq (R)}

gjKNL‖xj‖
−βNL

)]

.

Given thatΦL andΦNL are two independent SPPP, we can separate the expectation toobtain:

LIR(s) = EΦL∩ΦA,gi

[

exp

(

− s
∑

{i: xi∈ΦL∩ΦA, ‖xi‖>R}

giKL‖xi‖
−βL

)]

(18)

EΦNL∩ΦA,gj

[

exp

(

− s
∑

{j: xj∈ΦNL∩ΦA, ‖xj‖>d−1
eq (R)}

gjKNL‖xj‖
−βNL

)]

.

By applying the Probability Generating Functional (PGFL) for SPPP6 (which holds also in case

of inhomogeneous SPPP [18]) to (18) and after some symbolic manipulation, we obtain the

following result:

6Given an SPPPΦ and a functionf(x), the Probability Generating Functional allows us to compute the expectation of the

product, i.e.,E[
∏

x∈Φ
] = exp(−λ

∫

R2(1− f(x))dx).
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Result 3. The Laplace transformLIR(s) for LOS/NLOS propagation with model given in(1) is:

LIR(s) = exp

(

− 2πλI

+∞
∫

R

[

sKLv
−βL

sKLv−βL + µ

]

pL(v)vdv

)

exp

(

− 2πλI

+∞
∫

d−1
eq (R)

[

sKNLv
−βL

sKNLv−βNL + µ

]

pNL(v)vdv

)

. (19)

The Laplace transform in (19) along with (11) and (A.4) can beplugged in (5) to obtain the

SINR CCDF through numerical integration.

G. Average Spectral Efficiency and Area Spectral Efficiency

First, we define the ASE over a given areaA as the overall network throughput normalized

over the area and the available bandwidth, i.e.,

ηA(A) ,
T

A · BWA
=

E[C] · BWU ·M

A · BWA
, (20)

whereT is the throughput of the network,BWA is the available bandwidth,BWU is the used

bandwidth,E[C] is the average cell spectral efficiency,7 M is the number of active BSs operating

within A. The ASE of the network can be written as a function of the BS density and of the

average spectral efficiency as follows:

ηA , lim
A→∞

ηA(A)
(a)
= lim

A→∞

E[C] · BWU ·M

A · BWA

(b)
=

λA · E[C]

N
, (21)

where equality(a) is obtained by replacingλA = limA→∞
M
A

, while equality(b) follows from

the definition of frequency reuse factorN = BWA

BWU
. Similarly to [5, Section IV], the average rate

E[C] can be computed as:

E[C] = E [log2(1 + γ)] =

∫ +∞

0

P [log2(1 + γ) > u] du

=

∫ +∞

0

∫ +∞

0

P [log2(1 + γ) > u|r = R] fr(R)dRdu

=

∫ +∞

0

∫ +∞

0

e−µ(2u−1)K−1
L

RβLσ2

LIR

(

µ(2u − 1)K−1
L RβL

)

fr(R)dRdu (22)

whereLIR(s) is given in (19). Similarly to the SINR CCDF, (22) can be evaluated numerically.

7In the system model we assume in this paper, the average cell spectral efficiency is the rate of a typical mobile user.
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IV. ENERGY EFFICIENCY WITH LOS/NLOS PROPAGATION

A. Computing the transmit power per base station

We start by evaluating the BSs transmission power, in order to be able to compute the overall

power consumption of the network. Ideally, thePTX should be set in order to guarantee operation

within the interference-limited regime,8 i.e. the transmit power should be high enough so that

the thermal noise power at the user receiver can be neglectedwith respect to the interference

power at the receiver. In fact, when the network is in the interference-limited regime, the transmit

power is high enough that any further increase of it would be pointless in terms of enhancing the

SINR, since the receive power increment is balanced by the exact same interference increment.

In practice, the outage probabilityθ = P [γ ≤ γth] is used to constraint the power necessary to

operate within the interference limited regime. When the TXpower is low, small increments of

PTX yields large improvements of the outageθ; however, asPTX increases, the corresponding

outage gain reduces, untilθ eventually converges to its optimal valueθ∗, which is reached in

absence of thermal noise. It is reasonable to assume that thenetwork is the interference-limited

regime when the following condition is met:

|θ∗ − θ| ≤ ∆θ, (23)

where∆θ is a tolerance measure setting the constraint in terms of themaximum deviation ofθ

from the optimal valueθ∗. Eq. (23) provides us with a metric to compute the transmit power, but

does not give us any indication on how to findPTX as a function of the densityλ. Unfortunately,

we cannot derive a closed-form expression for the transmit power that satisfies (23), as we do

not have any closed-form solution for the outage probability θ = P [γ ≤ γth]. We then take a

different approach to calculate the minimum transmit power.

In Alg. 1 we propose an iterative algorithm that finds the minimum transmit power satisfying

(23) by using the numerical integration of (5). This algorithm computes the outage probability

corresponding to a givenPTX; starting from a low value of power, it gradually increasesPTX

by a power step∆P , until (23) is satisfied. To speed up this procedure, the stepgranularity is

adjusted from a coarse stepP1 up to the finest stepPNp
, which represents the precision of the

power value returned by Alg. 1.

8This guarantees that the network performance is not limitedby the transmitted power.
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Algorithm 1 Steps to compute the transmit power.
INPUTS:

1) Vector of the power steps in dBmp = [P1, · · · PNp
], Np is the length of vectorp;

2) Outage SINR thresholdγth and outage tolerance∆θ;

Initialize variables:

1) Pcurr = PN0
, wherePN0

is the AWGN power in dBm over the bandwidthBWU

2) Pfin = Pcurr

Find optimal outageθ∗ = P [γ ≤ γth] by integrating (5) with parameterσ2 = 0

for k = 1, · · · , Np do

Find θ(Pcurr) = P [γ ≤ γth] by integrating (5) with parameterσ2 = 10−
Pcurr

10

Set granularity of the power step∆P = pk

while |θ∗ − θ(Pcurr)| > ∆θ do

Increase the current power with step∆P , i.e, Pcurr = Pcurr +∆P

Find θ(Pcurr) = P [γ ≤ γth] by integrating (5) with parameterσ2 = 10−
Pcurr

10

Update the final value of power, i.e.,Pfin = Pcurr

Remove the last power increment before increasing the granularity, i.e.,Pcurr = Pcurr −∆P

OUTPUT:Pfin is the power in dBm s.t. (23) is satisfied.

B. Energy efficiency

We now characterize the energy efficiency of the network as a function of the BS densityλ

to identify the trade-off between the ASE and the power consumed by network. We define the

energy efficiencyas the ratio between the overall throughput delivered by thenetwork and the

total power consumed by the wireless network, i.e., we definethe energy efficiency as follows:

ηEE(λ) ,
T (λ)

PTOT(λ)
, (24)

whereT (λ) is the network throughput, given asT (λ) = A ·BW · ηA(λ), with BW denoting the

bandwidth andηA(λ) denoting the ASE;PTOT is the total power consumption of the network.

When we compute the power consumption of each BS, we need to take into account that a

fraction of the BSs may be inactive and model the power consumption accordingly. For active

BSs, we model the power consumptionPBS,A of the BS assuming thatPBS,A is the sum of two

components, i.e.,PBS,A = P0 + PRF: (i) The first, denoted byP0, takes into account the energy

necessary for signal processing and to power up the base station circuitry. This powerP0 is

modelled as a component being independent of the transmit power and of the BS load [21];
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(ii) The second component, denoted byPRF, takes into account the power fed into the power

amplifier before the signal is transmitted. The powerPRF is assumed to be proportional to the

power transmitted by the BS; we can thus writePRF = KRFPTX, whereKRF takes into account

the losses of the power amplifier (i.e., we assumeKRF to be the inverse of the power amplifier

efficiency). In the case of inactive base stations, we assumethat the BS switches to a standby

state for energy saving purposes [22], in which it does not transmit (i.e.,PRF = 0) and reduces

the circuitry power consumption. Therefore, the power required to maintain the standby state

can be modelled asPBS,S = ρP0, whereρ is a power saving factor that reproduces the relative

power consumption of the circuitry with respect to the active case; note that0 < ρ < 1. Finally,

the total power consumption due to both active and inactive BS can be expressed as follows:

PTOT = AλAPBS,A + A(λ− λA)PBS,S = AλAP0 + AλAPTXKRF + A(λ− λA)ρP0 (25)

The energy efficiency for the full and partial load regimes isaddressed in the next sub-sections.

C. Energy efficiency in full load regime

We now study the energy efficiencyηEE(λ) trend as a function ofλ; we focus on the full

load regime, i.e.,pA = 1 andλA = λ. Unfortunately, the analysis of the derivative ofηEE is not

straightforward, as we have a closed-form solution neitherfor the throughputT (λ) nor for the

transmit powerPTX(λ). One feasible way to get around this burden is to approximateT (λ) and

PTX(λ) with functions in the form:

f(z) = azb. (26)

The model in (26) has two advantages: (i) it can be differentiated and, thus, is apt to investigate

the existence of optima; (ii) it is well suited to fit the non-linear behaviour of ASE and TX

power. In fact, we have shown in our previous work [23] that both T (λ) andPTX(λ) can be

approximated with a piece-wise function in the form (26); this approximation holds for both

single-slope and LOS/NLOS model (1) for path-loss. Once thecurvesT (λ) andPTX(λ) have

been computed using numerical integration, according to (21) and Algorithm 1, respectively,

the parametersa and b can be obtained, for instance, by linear regression in the logarithmic

domain for a given range of values ofλ.
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We approximate the throughput asT (λ) = AT0λ
α and the transmit power asPTX(λ) = PTλ

δ,

within a given interval ofλ [23]. Under these assumptions, the energy efficiency becomes:

ηEE(λ) =
T0λ

α

λP0 + λKRFPTλδ
=

T0λ
α−1

P0 +KRFPTλδ
. (27)

The derivative ofηEE(λ) is given below:

dηEE(λ)

dλ
=

T0P0(α− 1)λα−2 + T0KRFPT(α− δ − 1)λα+δ−2

(P0 +KRFPTλδ)2
. (28)

Let us note thatT0, P0, KRF and PT are positive; moreover it is reasonable to assume that

α > 0 (i.e., the ASE is an increasing function of the density) and that δ < 0, i.e., the transmit

power per BS is a decreasing function of the density. In the following paragraphs, we study

the behaviour of the energy efficiency as function of the density λ by analyzing the derivative

η′EE(λ). We distinguish the following three cases:

1) The energy efficiency is a monotonically increasing function: This occurs if the ASE growth

is linear or superlinear, i.e., ifα ≥ 1. It follows that α ≥ 1 > 1 + δ holds true; in this case,

η′EE(λ) is strictly positive, meaning that the energy efficiency increases with the density.

2) The energy efficiency is a monotonically decreasing function: This occurs if the ASE

growth is sublinear, i.e., ifα < 1, and, in addition,α < 1 + δ. Then,η′EE(λ) is strictly negative

and so the energy efficiency is a monotonically decreasing function of the densityλ.

3) The energy efficiency exhibits an optimum point:If ASE gain is sublinear (i.e.α < 1)

but grows with a slopeα sufficiently high, (i.e.,α > 1 + δ), then we obtain that the derivative

η′EE(λ) nulls for

λ0 =

(

P0 (1− α)

KRFPT (α− δ − 1)

)1/δ

, (29)

is positive forλ < λ0 and is negative forλ > λ0; and whereλ0 is a global maximum ofηEE(λ).

As a whole, the behavior of the spectral efficiency is due to how the growths of the ASE

and the TX power relate among each other asλ increases. If the ASE grows rapidly enough to

counterbalance the total power increase of the network given by the addition of new BSs, then

theηEE(λ) increases with the BS density; this means that adding extra BSs is profitable in terms

of ηEE(λ); else, adding BSs turns not to be profitable from theηEE(λ) point of view.
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D. Energy efficiency in partial load regime

In this regime, we only analyze the case whereλ > λU, as the opposite case ofλ < λU

leads back to the full load regime. By using L’Hôpital’s rule, one can show that (14) can be

approximated bypA ∼= λUλ
−1, for λ sufficiently greater thanλU. By applying this approximation

to (25), we obtain:

PTOT = λUP0(1− ρ) + λρP0 + λUKRFPTλ
δ. (30)

It is known from [21] that, as the BS density increases, the main contribution to the total power

consumption is due to the circuitry powerP0, while the transmit power becomes negligible

for the overall power balance. Therefore, to make the problem more tractable, we can further

approximate the total power in (30) asPTOT
∼= λUP0(1 − ρ) + λρP0. From (24), by using the

approximationT (λ) = AT0λ
α for the throughput andPTOT

∼= λUP0(1−ρ)+λρP0 for the power,

we obtain the following expression for the energy efficiency:

ηEE(λ) ∼=
T0λ

α−1

λUP0(1− ρ) + λρP0
. (31)

To analyze the behaviour of the energy efficiency as a function of λ, we follow the same approach

as in Section IV-C and we compute the derivative ofηEE(λ), which is given below:

dηEE(λ)

dλ
=

T0λ
α−1 (λρ(α− 1) + αλU(1− ρ))

(λUP0(1− ρ) + λρP0)
2 . (32)

As the ASE (and so the throughput) is known to be sub-linear inthe partial load regime [4],

[10], we assume0 < α < 1; moreover, the power saving factorρ satisfies0 < ρ < 1. Therefore,

the derivativeη′EE nulls for:
λ∗ =

αλU(1− ρ)

ρ(1− α)
, (33)

is positive forλ < λ∗ and negative forλ > λ∗. Hence,λ∗ is a local maximum of the energy

efficiency for the partial load regime and the energy efficiency decreases for densitiesλ > λ∗.

Note that, this result holds forλ sufficiently greater thanλU.

V. RESULTS

In this section we present and discuss the results we obtained by integrating numerically the

expressions of outage probability, of the Spectral Efficiency (SE), and of the ASE. In Section

V-A, V-C and V-D we assume the network to be interference-limited, while the noise is taken into

account in Section V-E and V-F.In regards to the validation of the analytical model presented
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in Section III, we benchmarked it with simulation results. In particular, in the simulation we

reproduced the same system model as described in Section II,with only a couple of differences

with respect to the analytical one, namely:

(i) For LOS Case 1, the LOS probability function is modelled as (2) in the simulations, while

we used (3) for the mathematical framework. For LOS Case 2, the same LOS probability

function (i.e., (4)) is used for both analytical and simulated models;

(ii) the average number of BSs deployed within the network is infinite for the analytical model,

while it is limited to 105 for the simulated one.

Let us note that we set the parameterL for the LOS probability function in (3) so as to

make it reproduce as closely as possible the function (2) with the related values recommended

by the 3GPP standard [15]; we adopted the same value ofL for (4) as well. These details

along with the remaining parameter settings we used to obtain the results are specified in

Table II. Both numerical integrations and simulations havebeen carried out using Matlab; in

regards to the simulations, the network performance have been obtained, first, by deploying

a network of users and base stations with the specified probability distributions and, second,

by evaluating the SINR and spectral efficiency — aslog2(1 + SINR) — of the users. Since

the whole mathematical framework is based on the evaluationof the SINR, we carried out the

benchmark by computing the empirical SINR from the simulations and, then, by comparing the

coverage probabilities (i.e.,P [SINR ≤ Threshold]) obtained from the numerical integrations and

the simulations, respectively.

A. Spectral efficiency, outage probability and ASE

In this subsection we assume the network to be in the full loadregime and with frequency

reuse 1. We compared the results for two LOS probability functions, namely (3) and (4); we also

compared the results for LOS/NLOS propagation with those obtained with a the single slope

path-loss model. We first analyze the outage probability (defined asθ = P [γ ≤ γth]) results,

which have been obtained by numerical integration of (5).

We show the outage probability results in Fig. 3a, where we also compare the analytical results

with those obtained through simulations. In this plot, we can see the impact of the LOS/NLOS

propagation with respect to the single slope Path-Loss (PL). With single-slope PL, the outage

is constant with the BS density. In contrast, with LOS/NLOS propagation, there is a minimum
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TABLE II

PARAMETERS FOR RESULT SECTION

Parameter Value

Path-loss - Single slope PLSL(dkm) = 140.7 + 36.7 log(dkm), β = 3.67, KSL = 10−14.07 [15], for both

analytical and simulated model

Path-loss - Combined LOS/NLOS Eq. (1) withd in km, KL = 10−10.38 , βL = 2.09, KNL = 10−14.54 , βNL = 3.75

LOS function for LOS Case 1: Eq. (3) for the analytical model;Eq. (2) with d0 =

0.156km, d1 = 0.03km [15] for the simulated model

LOS function for LOS Case 2: Eq. (4) for both analytical and simulated models

ParameterL for eq. (3) and (4) 82.5m, set so that (2) and (3) intersect at the point corresponding to probability 0.5.

BandwidthBW 10 MHz centered at 2 GHz

Noise Additive White Gaussian Noise (AWGN) with -174 dBm/Hz PowerSpectral Density

Noise Figure 9 dB

Antenna at BS and UE Omni-directional with 0 dBi gain

SINR threshold γth = −8dB

Number of simulation snapshots 105

KRF 10 [21]

P0 10W [21]

in the outage curves, which is achieved for densityλ = 50-100BSs/km2, depending on the LOS

probability function. Within this range of densities, the user is likely to be in LOS with the

serving BS and in NLOS with most of the interfering BS, meaning that the interference power

is lower than the received power.

At densitiesλ greater than 200BSs/km2, the outage starts growing drastically and, depending

on the LOS probability function, can reach 38-40%. This is due to an increase on the likelihood

of the interfering BSs entering the LOS region, causing an overall interference growth and thus

a reduction of the SIR. At densitiesλ smaller than 100BSs/km2, the serving BS as well as the

interfering BSs are likely to be in NLOS with the user. Because of this, both the receive power

and the overall interference increase at the same pace9 and, as a consequence, the SIR remains

constant, and so does the outage. Let us note that, the LOS probability function affects the

outage curves at intermediate values of the BS density (e.g.10-300 BSs/km2). At low densities,

9If both serving BS and interfering BS are in NLOS with the user, the path-loss exponents of the serving BS-to-user channel

and of the interfering BS-to-user channels are the same and,therefore, the power or the interference and of the receivedsignal

varies with the same slope as a function of the density.
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Fig. 3. (a) Outage probability and (b) ASE vs base station density for different LOS probability function. In (a), the analytical

results are shown to match those obtained through simulations, with only a small deviation for blue curve, which is due tothe

approximation of the LOS probability function (2) with (3).

all the BSs are likely to be in NLOS with the user, while at highdensities the serving BS and

the strongest interferers are likely to be in LOS with the user.

The results of the ASE are shown in Fig. 3b. Compared to the single-slope PL, which shows

a linear growth of the ASE with the densityλ, with the LOS/NLOS propagation we observe a

different behaviour of the ASE. In particular, we observe a lower steepness of the ASE curve

at high BS densities, which is due to the effect of the interfering BSs entering the LOS region

and, thus, increasing the total interference power.

To assess steepness of the ASE, we can use linear regression to interpolate the ASE curve

with the model given in (26). In particular, we can approximate the ASEηA(λ) with a piece-wise

function of the kindηA(λ) = ηA,0λ
α, whereηA,0 andα are given for given intervals ofλ. We

specifically focus onα, which gives the steepness of the ASE curve. With reference to the ASE

curve (solid-blue curve in Fig. 3b) obtained with (3) as a LOSprobability function, the value

of the parameterα turns to be 1.15 within the range ofλ 1-50 BSs/km2, 0.48 within the range

50-500 BSs/km2 and 0.81 within the range 500-10000 BSs/km2.
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Fig. 4. Spectral efficiency vs base station density for fully loadednetworks. These curves have been obtained using (3) as

LOS probability function, for which we used three differentvalues of the LOS likelihood parameterL.

B. Effect of different LOS profiles

In this paper we obtained the results by considering a given valueL for the LOS probability

function (see Table II) which, as explained at the beginningof Section V, is set in order to

calibrate the analytical model with the system model provided by 3GPP for urban pico-cellular

scenario. In this subsection, we investigate the effect that the parameterL has on the network

performance; the related results are shown in Figure 4, where one can observe that the behaviour

of the SE curve is influenced by the LOS probability. In fact, we notice that the density giving

the highest spectral efficiency10 depends on the LOS likelihood parameterL. To explain this,

we should consider the optimal SE point, which occurs at the cell density where the user enters

the LOS region around the serving BS but remains in NLOS with most of the interfering BSs.

In denser propagation environments (e.g.,L = 40m in Figure 4), the user will enter the LOS

region of the serving BS in at higher cell densities, compared to the case of dense propagation

environments; hence, the optimal value of the spectral efficiency will be reached at a higher BS

density, and vice-versa.

10The reason why the spectral efficiency is not constant but hasa maximum value with the cell density is the same as for the

minimum coverage we can observe in Figure 3a; the reader can refer to the explanation we gave above.
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C. Frequency reuse

To have a comprehensive view of the frequency reuse as an interference mitigation scheme,

we need to assess the trade-off between the ASE and the network coverage probability, defined

as1−P [γ ≤ γth]. The results of this trade-off are shown in Fig. 5, where we plotted the network

coverage against the ASE for different frequency reuse factors and base station densities.
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Fig. 5. ASE vs coverage trade-off for frequency reuse. The trade-off curves have been plotted for BS density equal to 1, 2,

5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000 BSs/km2, and compare the combined LOS/NLOS model with the single

slope one.

Firstly, we focus on the LOS/NLOS propagation; we can noticefrom this plot that, if we

fix the BS density, higher frequency reuse factors enhance the network coverage but, on the

other hand, determine a drop of the ASE. This is in line with what one would expect from

frequency reuse. Nonetheless, if we have no constraint in the choice of the BS density, the ASE

vs coverage trade-off improves as the frequency reuse factor N increases. In fact, the trade-off

curve we obtain for a given reuse factorN lies on the top-right hand side with respect to the

curve for reuse factorN−1. This means that, by increasing the reuse factor and the basestation

density at the same time, it is possible to achieve better performance than with a lower frequency

reuse factors; note, though, that this is true when there is no constraint in terms of BS density.

This is actually a surprising results, as one might think that increasing the frequency reuse factor

leads to a drastic drop of the area spectral efficiency, due tothe usage of only oneN-th of the

available bandwidth. However, it turns out that the interference reduction obtained by limiting

each cell spectrum usage counterbalances the spectral efficiency decrease due to this spectrum
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Fig. 6. The probabilitypA given by (14) is reported as an “x” on each curve. The outage probability has been obtained for

γth = −8dB. In (a), the analytical results are shown to match closelythose obtained through simulations.

limitation and, thus, provides an overall gain in the ASE vs.coverage trade-off, as the density

increases. From the plot in Fig. 5 we can conclude that frequency ALOHA turns to be a simple

but effective resource management technique for dense networks, which would otherwise face

serious coverage issues due to the effect of LOS/NLOS propagation.

By looking at the single slope PL curve in Fig. 5, it appears that higher frequency reuse factors

should still be preferred in order to improve the ASE vs coverage trade-off. However, unlike

with the LOS/NLOS path loss, increasing the BS density enhances the ASE with no loss in terms

of network coverage. Yet, modelling the signal propagationwith the combined LOS/NLOS path

loss yields different results than with the single-slope PL.

D. Partial load regime

In this subsection we show the results for the partial load regime with LOS/NLOS propagation.

Differently from the case of full load regime, we recall thata fraction of the BSs may be inactive

and, thus, the density of interfering BSsλI does not necessary follow the trend of BS density

λ (see Section III-E and Fig. 2). In Fig. 6a and 6b we show the outage probability and the

ASE curves, respectively, as functions of the BS density fordifference user densities. To better

understand the effect of the partial load on the network performance, we compare these curves

with those of the full load regime. Furthermore, we higlightthe values of the probabilitypA of

a BS being active over the outage and ASE curves.
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We observe that, as long aspA ≥ 0.9, the deviation from the full load regime is minimal.

However, as soon asλ approaches the value of user densityλU, the probabilitypA drops and,

as a consequence, the density of interferingλI BSs grows slowly withλ, up to the point where

it saturates and converges toλU (see Fig. 2). At the same time, asλ increases, the distance

from UE to the serving BS tends to decrease, leading to an increment of the received power.

Overall, the fact thatλI saturates whereas the received power keeps growing asλ increases has

a positive impact on the SIR; as a result, the outage probability (see Fig. 6a) and the spectral

efficiency improve once the densityλ approaches or overcomesλU. Based on the results we

show in Fig. 6a, we can notice that the partial load regime almost completely compensates the

huge outage growth occurring at high densities due to LOS/NLOS propagation. Although this

would be achieved at the cost of a massive BS deployment, steering the networks into the partial

load regime represents an effective strategy to combat the network coverage issues resulting as

a consequence of the LOS/NLOS propagation.

In regards to the ASE trend, we show the results in Fig. 6b. According to (21), the ASE trend

is the combined outcome of the increase of the spectral efficiency and of the density of the

active base stations. As the density of base stations increases and approaches the user density

λU, the density of active base stations will converge toλU (see Fig. 6a); given that the density

of active BSs remains constant, the only contribution to theASE increase will be given by the

spectral efficiency improvement. As a matter of fact, we can see that, with respect to full load

regime, the ASE curves show a lower gain when the densityλ approachesλU.

To assess steepness of the ASE, we applied linear regressionto the ASE curves in order to

obtain the value of the parameterα corresponding to different intervals ofλ; we specifically

consider the approximation for the curve corresponding toλU = 1000UEs/km2 (red curve in

Fig. 6b). These values areα = 1.15 within the density range 1-50 BSs/km2, α = 0.43 within

the density range 50-500 BSs/km2 andα = 0.46 within the density range 500-10000 BSs/km2.

E. Transmit power per base station

In Fig. 7 we show the simulation results of the transmit powerper base stationPTX(λ), which

has been computed by using Algorithm 1 exposed in Section IV-A. In this figure we compare

the results we obtained using thesingle slopeand thecombined LOS/NLOSpath loss models.

As we can see from this plot, the behaviour of the transmit power as a function of the BS
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Fig. 7. Transmit power per BS. The power has been obtained with an SINR thresholdγth = −8dB and for tolerance∆θ = 0.1%.

The plot compares the TX power per BS for single slope-slope and LOS/NLOS path-loss for fully loaded networks. It also

provides the curve for frequency reuse factor 2 and 3 and for partially loaded network withλU = 1000UEs/km2 .

densityλ is different in the two cases of single slope and combined LOS/NLOS propagation. With

reference to Fig. 7, with single slope path loss, the power decreases linearly (in logarithmic scale)

with the density; in the case of combined LOS/NLOS propagation, the transmit power exhibits

different slopes as the base station density increases. We used linear regression to assess the slopes

of the TX power curves (indicated byδ, as explained in Section IV-C) within different density

intervals. With reference to the curve corresponding to fully loaded networks with LOS/NLOS

propagation (solid-blue curve in Fig. 7), the values of (PT, δ) are (9.3 · 10−9,−1.9) within

the λ range 1-60 BSs/km2, (4.4 · 10−17,−3.9) within the λ range 60-300 BSs/km2 and (1.15 ·

10−9,−1.44) within the range 300-10000BSs/km2.

The fact that the transmit power per base station decays moreor less steeply with the density

λ depends on how quickly the interference power increases or decreases withλ. As we explained

in Section IV-A, the transmit power per base stationPTX(λ) has to be set so that the network is

interference limited. Thus, if the channel attenuation between the interferer and the user decreases

quickly as the density increases, a lower transmit power will be enough to guarantee that the

interference power is greater than the noise power. In otherwords, if the interferer-to-user channel

attenuation tends to decrease quickly as the density increases, so does the transmit power and

vice-versa. For instance, forλ ∈ [60, 300]BSs/km2, the probability of having interferers in LOS

with the user rises and, as a consequence, we have a lower attenuation of the channel between
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Fig. 8. (a) Energy efficiency vs BS density in full load regime. The plot compares the energy efficiency for LOS/NLOS with

single slope path-loss. The energy efficiency is given also for frequency reuse factors 2 and 3. (b) Energy efficiency vs BS

density for partially loaded networks. Curves are given forλU = 1000UEs/km2 and for three values ofρ.

the interfering base station and the user. Hence, thePTX(λ) which guarantees the interference-

limited regime will also decrease steeply withδ = −3.9 as λ increases. On the contrary, for

λ > 300 BSs/km2, most of the interferers will have already entered the LOS zone, meaning that

the interferer-to-user channel attenuation drops less rapidly than for λ < 300 BSs/km2; for this

reason, alsoPTX(λ) will decrease less rapidly withδ = −1.44.

Let us note that, with increasing reuse factorsN , the TX power decreases, as indeed a smaller

bandwidth is used and, thus, the noise power is lower.

F. Energy efficiency

One of the most surprising outcomes of our study on LOS/NLOS propagation for ultra-dense

networks is the effect of cell-densification on the energy efficiency within the full load regime,

of which we show the results in Fig. 8a. The difference between the energy efficiency with

single-slope and with LOS/NLOS path-loss is noticeable. Inthe case of single-slope PL, due to

the linear growth of the ASE,ηEE(λ) is a monotonically increasing function of the densityλ

(see Section IV-C1). In the case of LOS/NLOS propagation, from Fig. 8a we observe that the

energy efficiency exhibits a maximum, which is achieved for agiven densityλ0.

To explain this, we consider the case of frequency reuseN = 1 (solid-blue curve in Fig. 8a);
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from (29) and with the values of the parametersP0 (given in Table II),PT andδ (given in Section

V-E), andα (given in Section V-A), the optimal pointλ0 is approximately 100BSs/km2. Beyond

this point, the ASE gain is too low to compensate power consumption increase in the network,

leading to a drop in terms of energy efficiency. From Fig. 8a, we can note that frequency reuse

reduces the energy efficiency compared toN = 1. As a result of the lower ASE achieved at

higher frequency reuse factorsN , the energy efficiency drops asN increases.

In Fig. 8b we show the energy efficiency for the partial load regime, for a user densityλU of

1000 UEs/km2. As we are dealing with networks in the partial load regime, we are interested in

the BS densitiesλ > λU, where energy efficiency strongly depends on the power saving factor

ρ of the BSs in stand-by state. This is because the parameterρ determines the energy saving of

the inactive BSs, which become more numerous as the densityλ increases. Depending on the

value ofρ, according to (33) a local maximum may even occur atλ∗ = αλU(1−ρ)
ρ(1−α)

.

With ρ = 0.1 and with the values ofα given in Section V-D, the local maximum turns to

be λ∗ ∼= 7300BSs/km2. For higher values ofρ, λ∗ is smaller than or too close toλU to be

considered as a reliable estimate of a maximum; we recall from Section IV-D that this estimate

can be reckoned as reliable only ifλ∗ is sufficiently greater thanλU. In fact, we observe from

Fig. 8b that there is no local maximum beyondλU for ρ = 0.3 or 0.6. Based on our system

model for ultra-dense networks which includes both LOS/NLOS propagation and partial load

regime, from the results in Fig. 8b, we show the existence of two optimal operating points which

turn to be convenient in terms of energy efficiency for the network operator. The first one can

be achieved in full load regime, provided that the operator deploys the network with BS density

given by (29); the second, by (33), occurs in the partial loadregime and can be achieved only

if the power saving factor is low enough (e.g.,ρ ≈ 0.1).

VI. CONCLUSIONS

In this paper, we have proposed a stochastic geometry-basedframework to model the outage

probability and the Area Spectral Efficiency (ASE) of Ultra-Dense Networks (UDNs), which

can operate either in the full or partial load regimes, and where the signal propagation accounts

for LOS and NLOS components.

As the main findings of our work, we have shown that, with LOS/NLOS propagation, massive

cell densification determines a deterioration of the network coverage at high cell densities, if
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the network is fully loaded. Moreover, the ASE grows less steeply than a linear function at

high cell densities, which implies that a larger number of base stations would be required to

achieve a given throughput target with respect to the case ofsingle slope path-loss. However,

from our results it also emerges that the coverage issues dueto LOS/NLOS propagation can

be mitigated by steering the network into the partial load regime; in addition, provided there is

no constraint in terms of BS density, we showed that frequency ALOHA with frequency reuse

factor N enhances the ASE vs. coverage trade-off with respect to a full frequency reuse case;

moreover, this improvement further increases with the frequency reuse factorN .

We have extended our study also to the energy efficiency as a function of the BS density. We

have shown that, as a combined effect of the LOS/NLOS propagation and of the partial load

regime, there are two optimal points of the energy efficiency, one of which occurs in the full

load regime, while the second is achieved at higher densities, when the network is in the partial

load regime. Our work gives an insight in terms of the optimaldensity as a design parameter to

optimize the energy efficiency of ultra-dense networks.

APPENDIX A

PDF OF THE DISTANCE TO THE SERVINGBS

Once the LOS probability function is known, from (11) we obtain the PDF of the distance to

the closest BS as follows:

P [r > R] = exp

(

− λ

∫

B(0,R)

pL(‖x‖)dx

)

exp

(

− λ

∫

B(0,d−1
eq (R))

(1− pL(‖x‖)) dx

)

. (A.1)

Assuming the integrals in (A.1) can be solved in a closed-form, with some symbolic manipulation,

(A.1) solves in its general form as follows:

P [r > R] =
M
∏

m=1

exp(fm(R)). (A.2)

By taking the derivative of (A.2), we obtain:

d

dR
[P [r > R]] =

d

dR

[

M
∏

m=1

exp(fm(R))

]

=

M
∑

m=1

d

dR
[exp(fm(R))]

M
∏

n=1,n 6=m

exp(fn(R)) =

M
∑

m=1

d

dR
[fm(R)] exp(fm(R))

M
∏

n=1,n 6=m

exp(fn(R)) =
M
∑

m=1

f ′
m(R)

M
∏

n=1

exp(fn(R)) =
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M
∑

m=1

f ′
m(R)

(

M
∏

n=1

exp(fn(R))

)

= P [r > R]

M
∑

m=1

f ′
m(R). (A.3)

The PDF of the distance to the serving BS can finally be obtained as

fr(R) = −
d

dR
[P [r > R]] = −P [r > R]

M
∑

m=1

f ′
m(R). (A.4)

If we assume the LOS probability to be given by (3), we can further develop (A.1) by solving

the integrals in (A.1) and, with further symbolic manipulation, we obtain:

P [r > R] = eπλL
2e

−
R2

L2

· e−πλL2e
−

R2
eq

L2

· e−πλR2
eq , (A.5)

whereReq = d−1
eq (R). Let us define the functionsf1(R), f2(R), f3(R) and their first derivatives

f ′
1(R), f ′

2(R), andf ′
3(R), respectively, as follows:

f1(R) = πλL2e−
R2

L2 , f2(R) = −πλL2e−
R2
eq

L2 , f3(R) = −πλR2
eq, f ′

1(R) = −2πλRe−
R2

L2 ,

f ′
2(R) = πλK2

eq2βeqR
2βeq−1e−

−K2
eqR

2βeq

L2 , f ′
3(R) = −πλK2

eq2βeqR
2βeq−1.

By plugging (A.5) andf ′
1(R), f ′

2(R), andf ′
3(R) in (A.4), we obtain the PDF of the distance to

the serving BS.

When the LOS probability function is given by (4), we obtain the PDF of distance to the

closest BS station as follows. First, by solving the integrals in (A.1) and by some additional

algebraic operations, we obtainP [r > R] as follows:

P [r > R] = e2πλL
2e−

R
L · e2πλLRe−

R
L · e−πλR2

eq · e−2πλL2e−
Req
L · e−2πλLReqe

−
Req
L . (A.6)

Then, we define the functionsf1(R), f2(R) · · · , f5(R) and we compute their respective deriva-

tives f ′
1(R), f ′

2(R) · · · , f ′
5(R) as follows:

f1(R) = 2πλL2e−
R
L , f ′

1(R) = −2πλLe−
R
L , f2(R) = 2πλLRe−

R
L , f ′

2(R) = −2πλ(L−R)e−
R
L ,

f3(R) = −πλR2
eq, f ′

3(R) = −πλK2
eq2βeqR

2βeq−1, f4(R) = −2πλL2e−
Req

L ,

f ′
4(R) = 2πλLKeqβeqR

βeqe−
KeqR

βeq

L , f5(R) = −2πλLReqe
−

Req

L ,

f ′
5(R) = 2πλLKeqβeqR

βeq−1(KeqR
βeq − L)e−

KeqR
βeq

L ,

Finally, the PDF can be obtained by pluggingf ′
1(R), f ′

2(R) · · · , f ′
5(R) and (A.6) in (A.4).
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APPENDIX B

BENCHMARK OF PROBABILITY pA

In this paper we assume that the user associates to the base station from which the path-loss is

the minimum. When the path-loss is modelled as a single slopefunction, user association based

on minimum path-loss is equivalent to user association based on the minimum distance from

the base station [5], [13]. Using an empirical expression for the PDF of the Voronoi’s cell area

(which can be found in [24]), the authors of [13] computed an approximation of the probability

of a Voronoi cell being empty, which corresponds to the complementary event of a base station

being active defined in Section II-C.

Nevertheless, when the path-loss has both LOS and NLOS components, the user association

is no longer equivalent to the minimum distance associationrule. Moreover, it makes no longer

sense to talk about Voronoi’s cells, as the path-loss in (1) is a stochastic process, meaning the

it is not possible to define the boundary of the cells in a deterministic way. It follows that (14)

needs to be further validated in order to extend its use to theLOS/NLOS propagation case.

Motivated by our simulation results, we have noticed thoughthat the effect of the propagation

model given in (1) and (2) has a marginal effect on the on the probabilitypA with respect to what

given by (14) for the minimum distance user association. In Fig 9, we compared the simulation

results of the probabilitypA in the case of LOS/NLOS with (14) for various values of the base

station densityλ; as we can see from this plot, the maximum deviation from (14)is less than

2%, meaning that the model in (14) can be considered a reliable approximation ofpA also in

case of LOS/NLOS propagation.
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