
Responsive high throughput congestion control for interactive
applications over SDN-enabled networks

Author:
Naman, AT; Wang, Y; Gharakheili, HH; Sivaraman, V; Taubman, D; Habibi
Gharakheili, Hassan

Publication details:
Computer Networks
v. 134
pp. 152 - 166
1389-1286 (ISSN); 1872-7069 (ISSN)

Publication Date:
2018-04-07

Publisher DOI:
https://doi.org/10.1016/j.comnet.2018.01.043

License:
https://creativecommons.org/licenses/by-nc-nd/4.0/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/unsworks_51751 in https://
unsworks.unsw.edu.au on 2024-04-17

http://dx.doi.org/https://doi.org/10.1016/j.comnet.2018.01.043
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://hdl.handle.net/1959.4/unsworks_51751
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


Responsive High Throughput Congestion Control for Interactive Applications
over SDN-Enabled Networks

Aous Thabit Namana,1, Yu Wanga,1, Hassan Habibi Gharakheilia,1, Vijay Sivaramana,1, David Taubmana,1

aSchool of Electrical Engineering and Telecommunications, UNSW, Sydney, Australia

Abstract

New interactive video applications are increasingly emerging over the Internet; these interactive applications are
characterized by high bandwidth requirements that fluctuates depending on end-user actions (e.g. less bandwidth is
usually needed for stationary scenes). More importantly, this interactive class of services also involves a requirement
for high responsiveness (i.e. low latency) from the network, in order to respond in real-time to end-user actions. One
emerging service of this nature is 360◦ video streaming; another example is cloud-based gaming services. In this paper,
we focus specifically on JPIP (JPEG 2000 Interactive Protocol) applications that support remote interactive video
browsing with dynamic pan and zoom capabilities, as a highly representative example of the interactive service class.
Existing network communication services are mostly agnostic to latency implications, and hence are not well adapted
to such interactive applications. Meanwhile, explicit resource reservation protocols have not been widely deployed,
and do not consider the time-varying dependencies that naturally arise in interactive applications. In this work, we
leverage software defined networking (SDN) principles to support a proposed “interactive service” class. The main
contributions of this work are a network-exposed application programming interface (API) that provides visibility
into the state of the network, an SDN-assisted congestion control algorithm that utilizes network state information to
achieve the desired low latency and high bandwidth utilization requirements, and a fair resource assignment algorithm
that shares available bandwidth among interactive and non-interactive traffic dynamically – all without a reservation
protocol.

Keywords: Software Defined Network, OpenFlow, Interactive Video, JPEG2000, JPIP, Congestion Control.

1. Introduction

We are witnessing an emergence of on-line interac-
tive video applications. The requirements of interactive
video differ from conventional video streaming; while
both are amenable to optimization of the received data,
they have different requirements on pre-fetching, round
trip time, and retransmissions. For cloud-based gam-
ing services, such as PlayStation Now, round trip time
should be kept to a minimum, such that the player feels
that the system is responding to his/her actions, and
therefore pre-fetching is not desirable, since it increases

Email addresses: aous@unsw.edu.au (Aous Thabit Naman),
yu.wang1@unsw.edu.au (Yu Wang), h.habibi@unsw.edu.au
(Hassan Habibi Gharakheili), vijay@unsw.edu.au
(Vijay Sivaraman), d.taubman@unsw.edu.au (David Taubman)

1A. T. Naman, Y. Wang, H. Habibi Gharakheili, V. Sivaraman
and D. Taubman are with the School of Electrical Engineering and
Telecommunications, The University of New South Wales, Sydney,
Australia.

the round trip time. Similar considerations apply to in-
teractive video streaming based on the JPEG 2000 Inter-
active Protocol (JPIP) [1], where a client interactively
browses and retrieves remotely stored video, based on
one or more interactively controlled windows of inter-
est (WOI), governing both scale/zoom and spatial sup-
port. For viewport adaptive streaming of 360◦ immer-
sive video for head-mounted displays, keeping round
trip time to a minimum is of great importance, because
this keeps the end-user feeling immersed in the video
when he/she moves his/her head. To address this prob-
lem in part, Gudumasu et al. [2] explore a variety of
tiling strategies to hide network latency, at the expense
of wasting bandwidth in sending content that the end
user may not view. Augmented reality applications also
share many of the same properties.

All of these applications belong to an interactive class
of services that is addressed by the methods proposed in
this paper. The bandwidth required for an interactive

Preprint submitted to Elsevier January 24, 2018



stream is time varying, and depends on end-user actions
as well as the contents being delivered. Less bandwidth
is usually needed in stationary portions of a scene, but
also when the end-user pauses, reduces the playback
rate or navigates over previously visited content that
may be partially held in a local cache. Additionally, re-
transmission of lost packets is only worthwhile if these
packets are delivered in time for them to be used in the
reconstruction of yet to be displayed frames, and then
only if the packets are relevant to a possibly modified
window of interest or viewpoint.

In summary, these interactive video applications de-
mand a considerable amount of network bandwidth,
just like other video streaming applications, but more
importantly they also need low latency to maintain
real-time responsiveness. The low latency requirement
of interactive video flows cannot be guaranteed when
these flows are intermixed with other flows, since other
flows (such as TCP) can queue up data over the bot-
tleneck link, causing high latency. Therefore, in this
work, we partition traffic originating from interactive
and non-interactive services into two different queues
at each switch. Such an approach has been success-
fully employed by Podlesny and Williamson [3], where
they utilize one queue for TCP NewReno (loss-based
latency-agnostic) flows and another queue for TCP
Vegas (delay-based latency-sensitive) flows to prevent
TCP NewReno from dominating the available band-
width and causing high latency. It is also the approach
adopted by the newly proposed L4S[4] protocol for low
latency traffic.

Our goal is to leverage SDN to provide a highly re-
sponsive and bandwidth-efficient mechanism for serv-
ing interactive traffic, while fairly allocating bandwidth
for other traffic, without the need for reservation or
static allocation of resources. The contributions of this
work are as follows: We develop an SDN-based system
architecture with a RESTful API that exposes network
state information to interactive applications on short
time scales (tens to hundreds of milliseconds). We also
develop a low-delay high-throughput congestion control
algorithm that utilizes information provided by the SDN
controller for responsive and bandwidth-efficient deliv-
ery of interactive traffic. Additionally, we develop a
dynamic service policy scheme for interactive applica-
tions that adjusts the minimum bandwidth available to
interactive flows based on network conditions and the
state of non-interactive flows. Lastly, we evaluate the
benefits of our proposed scheme via experiments in the
mininet environment with real JPIP endpoints; JPIP is
chosen because it exemplifies interactive video applica-
tions and is already well-defined and in use. We argue

that the proposed scheme offers a viable solution for a
richer interactive video experience.

A good approach for congestion control is to employ
a congestion window mechanism. Most if not all of
TCP variants employ such a window, relying on end-
to-end probing to adjust the size of this window. A
commonly accepted size for this window, which meets
the low latency requirement, is the product of available
bandwidth and the minimal round trip delay; a conges-
tion window larger than the bandwidth-delay product
buffers data in the network (imposing delay), while a
smaller window does not utilize enough of the avail-
able bandwidth. For this approach to work efficiently,
reasonable estimates of bandwidth and round trip time
are important. While it is possible to estimate available
bandwidth using packet pair probing [5, 6, 7], it is not
clear, when video content is being served, how much of
an observed round trip delay results from queuing delay;
in order to get an accurate measure of the delay, conven-
tional techniques need to let the link between the inter-
active endpoints go idle at times. This reduces overall
utilization of the available capacity. In this work, we
employ software-defined networking (SDN) techniques
to expose network state information via a RESTful API;
interactive applications can utilize this state information
to obtain estimates of available bandwidth and latency
that are current and more accurate than what can be ob-
tained by probing, since they are measured in real-time
by the SDN controller.

The proposed RESTful API uses SDN only as a pas-
sive monitoring tool. In this work, we also employ SDN
to dynamically adapt the service policy for the two ser-
vice classes under consideration: interactive and non-
interactive. In this case, SDN is used to actively adjust
queue service rates at the individual switches based on
the number of flows and bandwidth utilization of each
queue. Both the passive and active uses of SDN are
important to the delivery of a fair, efficient and appro-
priate communication infrastructure for interactive and
non-interactive flows, as envisaged here.

Other researchers find it useful to expose a network
API to video applications [8, 9, 10], but their main focus
is on request/control of bandwidth reservation per video
stream over a short period of time. In our proposed ap-
proach, neither clients nor servers make any explicit re-
quest for resources. They are assigned to the interactive
or non-interactive class by the SDN controller. While
a differential charging model might be imposed by net-
work providers, there is no fundamental reason why this
should be required, since the benefits of being assigned
to the interactive service class apply only to actual in-
teractive streaming applications.

2



The rest of the work is organized as follows: Sec-
tion 2 summarizes relevant prior work. The proposed
system architecture and API are explained in Section 3.
We present the SDN-assisted congestion control mech-
anism and related experimental results in Section 4 for
a single provider network. Section 5 explains our dy-
namic service policy algorithm with experimental re-
sults. Section 6 extends the proposed approach to fed-
erated networks, and Section 7 concludes the paper and
gives directions for future work.

2. Related Work

In this section, we cover three areas of related re-
search; namely, quality of service, quality control, and
congestion control.

Quality of Service: Several techniques have been
proposed to maintain quality of service for on-line
video delivery. Video content providers employ tech-
niques such as TCP instrumentation [11] and video
rate adaptation (using real-time probing of available
bandwidth). These methods are not so helpful for in-
teractive videos, especially when the network is con-
gested, since they primarily aim at bandwidth provision-
ing with latency being out of their concern. We note
that the networking research community has also devel-
oped a variety of service quality control solutions rang-
ing from ATM switched virtual circuits (SVC) to RSVP
and IntServ/DiffServ with limited success. These tech-
niques mainly require fairly static configurations, offer
“soft” assurance of quality, and do not expose control
to applications in the process of fair network resource
provisioning.

Quality Control: There is a large body of re-
search that advocates an application-aware networking
paradigm for improving application performance and
network utilization. The work in [12] explores utilizing
an integrated network control and configuration for big
data applications, performing bulk transfers. Our focus
in this paper is on delay-sensitive interactive video that
demands low RTT and high throughput. Many SDN-
based frameworks have been proposed to explicitly con-
trol network services. PANE [8] proposes a set of net-
work programmable interfaces that enable applications
to query the network state and request a specialized
treatment (e.g., bandwidth reservation). Similarly, the
system in [10] allows users and content providers to re-
quest provisioning special lanes for certain flows (e.g.,
application-specific or device-specific) over the bottle-
neck access link from the broadband network operator.
By contrast, in the approach proposed in this paper, the
video application does not specify or exercise network

Ac
ce

ss
 / 

Ed
ge

In
te

rn
et

 G
at

ew
ay

Network Provider

Application
Provider

Internet

Application
Users

SDN
Controller

Figure 1: System architecture.

control; instead, an SDN controller exposes network
state information to application endpoints, and dynami-
cally adapts provisioning in the network.

Congestion Control: Numerous congestion control
mechanisms have been developed in the past; examples
include [13, 14, 15]. OpenTCP [13] is the first attempt
to employ SDN to dynamically adapt TCP, improving
its performance. TIMELY [14] and DX [15] use delay
measurements to detect congestion in datacenter net-
works. In L4S [4] and DCTCP [16], network devices
use packet marking as a soft indicator for congestion;
end-points notice these markings and reduce their trans-
mission rate, easing congestion, while maintaining low
delay high throughput transmission. In this work, we
leverage the visibility provided by an SDN controller,
which sits at a central vantage point, to obtain quicker
and more accurate estimate of the network state. Sec-
tion 3.2.2 gives a detailed description of the exposed
network state.

3. System Architecture Design

In this section, we describe our solution for enhanc-
ing the delivery of interactive flows (e.g. JPIP video)
in an SDN-enabled network. We begin by outlining our
major architectural decisions in Section 3.1. This is fol-
lowed by the proposed network API in Section 3.2.1 and
the proposed network quality control in Section 3.2.3.

3.1. Architectural Decisions
Figure 1 shows the proposed system architecture; the

aim is to enhance the performance of interactive video
applications and to efficiently utilize network resources.
We rely on the SDN to provide network visibility to
interactive video applications and to dynamically con-
trol bandwidth provisioning for them. Since delay-
sensitive applications tend to compete poorly with ag-
gressive TCP traffic [14], we propose to isolate inter-
active flows from the rest of the traffic by using an
application-specific queue, which we identify as the in-
teractive queue, at each hop, where a guaranteed frac-
tion (slice) of a hop’s bandwidth is provisioned for that

3



queue. This slice of bandwidth is adjusted dynamically,
as explained in Section 5. The SDN controller detects
interactive flows and assigns these flows to the interac-
tive queues, without the need for any reservation of re-
sources. A registration API call is employed to assist
in the identification of interactive flows, as explained in
Section 3.2.1. In Sections 3-5 of this work, we focus on
a single domain network, extending the proposed ap-
proach to federated networks in Section 6.

The SDN controller in this work has good knowledge
of the network topology, including link capacities and
physical delays. It also knows the network path between
any two endpoints (video server and client in our case),
since it manages data flows in the network. Our con-
troller runs an application that is capable of probing the
state of the data-plane elements (network switches and
routers) several times a second (e.g. every 50 ms) to
collect network information such as queue lengths and
cumulative bytes transferred. This information is stored
by the SDN application as entries in a data table, which
we identify as the network state table (NST); each read-
ing in the NST is associated with an index. It is suffi-
cient for this table to store a few seconds’ worth of data
(e.g. in a circular buffer), since older data become of
little use for the estimation of the current network state
needed by the interactive video endpoints, which are the
JPIP servers and clients in the context of this work.

The data thus collected by the SDN application from
network elements is exposed via a RESTful (REpresen-
tational State Transfer) API; this way interactive end-
points can poll the SDN application for network state
using standard HTTP commands over TCP. The use of
a binary format for state information, which is more ef-
ficient but less flexible, might be explored in a future
work.

3.2. Network Exposure and Control

3.2.1. Network Visibility
The SDN controller in the proposed architecture pro-

vides a RESTful API that accepts two types of calls:

• Registration: This call aims at providing the SDN
controller with attributes of the interactive video
application. In registration, an application spec-
ifies (a) the identity of the caller application re-
questing the special treatment; and (b) the 5-tuple
flow information; a flow’s 5-tuple information is
the source IP address and port number; the destina-
tion IP address and port number; and the protocol
in use. This API is called by the application at the
start of the video session and prior to querying the
network.

• Network Query: This call provides the caller ap-
plication with network state information. The re-
ply includes (a) the number of hops (and their
physical delay) between application endpoints; (b)
the number of waiting (or queued) bytes in the in-
teractive queue at each hop; (c) the minimum band-
width of the interactive queue at each hop; and
(d) the throughput of the interactive queue at each
hop. In practice all these parameters are estimates,
since exact information may not be discoverable
and cannot generally be current.

This query API is employed by interactive video
server(s) and clients. Network state information is
then utilized by the congestion control algorithm of
the interactive application; the objective of the pro-
posed congestion control algorithm is for each flow
to approximately maintain a target number of bytes
on the queue of its most congested hop (i.e. bottle-
neck link), minimizing the overall RTT. A detailed
description of this call is given in Section 3.2.2.

Note that the above API calls need to authenticate the
caller application, but in this work we mainly focus on
our proposed congestion control algorithm and dynamic
bandwidth provisioning.

3.2.2. Detailed Description of The Network Query Call
To request data from the NST, the interactive client

or server sends a GET request of the form:
GET /stats/<MyIP>/<PeerIP>/<LastIdx>/<MaxEntr>/

specifying its IP address (MyIP), its peer IP address
(PeerIP), the last NST entry index it has received
(LastIdx), and the maximum number of entries that it
is willing to receive (MaxEntr). The first two values,
myIP and PeerIP, help the SDN controller identify the
two network endpoints and a direction along the path
between these two endpoints. The value of LastIdx
prevents the SDN controller from sending entries that
endpoints already know about. The MaxEntr value
serves to limit the amount of response data in cases
when there is no previous request (in this case LastIdx
is 0) or there is no request for a long time.

The SDN controller replies with a concatenation of
network state entries of the form:

[ns entry, ns entry, . . .]

where each entry is of the form:

[i, L, link entryi
1, link entryi

2, . . . , link entryi
L]

Here, i is the entry index, and L is the number of links
on the path between a client and its server; these links

4



can be within one or multiple service providers. A link
entry for a link l, where 1 ≤ l ≤ L, has the form:

[∆i
l, bi

l, qi
l, Ri

l, di
l]

where ∆i
l is the acquisition interval (seconds) between

entry i and entry i − 1 for link l., bi
l is the number of

bytes transmitted through link l in that interval, qi
l is the

number of bytes that are queued at the buffer before link
l when this entry is created, Ri

l is the minimum data rate
allocated to the interactive queue at link l, and di

l is the
physical delay on link l. We choose to communicate the
link rate and physical delay with each entry, since it is
possible that the SDN controller changes the path2 be-
tween the endpoints. This is also useful when the SDN
controller changes bandwidth provisioning for interac-
tive streams, as explained in Section 5. Communicating
a time duration ∆i

l for each link l, instead of one time
duration for each index i, is useful when multiple SDN
controllers are employed along a path, within one net-
work provider or multiple providers; in this case, each
controller can have its own set of state acquisition inter-
vals. We explore this scenario further in Section 6.

The API above is designed to provide minimal yet
sufficient information (bytes transmitted and queued on
each link) to interactive endpoints, without revealing
per-flow information. The latter can impose significant
burden on the network and the controller in terms of data
collection and communication. Our implementation (in
Sections 4 and 6) demonstrates feasibility, though we
defer larger-scale deployment to future work. In order
to use the API effectively, interactive endpoints need to
supplement the aggregate information that they receive
with properties of their own flow, estimated separately,
as described below.

In the current implementation, each request receives
a reply that describes the path from MyIP to PeerIP. If
the information for the reverse path is needed, a sepa-
rate request must be issued. In this work, we always
pipeline the request for MyIP to PeerIP with the request
for PeerIP to myIP, and we refer to them as a forward-
backward request.

Interactive endpoints post requests to the SDN con-
troller to obtain the network state that is of importance
to them. The arrangement used for experimental results
is for the client to send a forward-backward request,
and wait for the reply, before sending a new forward-
backward request. The server posts forward-backward
requests for all the clients of interest, and waits for all
the replies, before issuing new requests.

2The proposed approach requires some path stability; e.g., it is not
clear if it can work with link load balancing.

3.2.3. Network Quality Control
The objective is to maintain the performance of inter-

active videos, while being fair to other flows in the net-
work. The SDN controller achieves this “fairness” by
periodically running a dynamic service policy that sets
the minimum rate for the interactive queue to a frac-
tion of the link capacity that is equal to the ratio of the
number of interactive video flows to the total number of
flows. Section 5 details this service policy.

4. SDN-Assisted Congestion Control

Both interactive endpoints need to estimate network
bandwidth and delay attributes while serving or receiv-
ing video content. An interactive client uses delay infor-
mation to estimate when to request subsequent frames’
data, such that this data can be delivered in time for ren-
dering at the client. The client also needs bandwidth in-
formation to choose an ideal number of bytes to request
for each frame; requesting too little data does not utilize
enough of the available bandwidth, while requesting too
much data increases delay, since some of this data needs
to be buffered in the network. An interactive server uses
available bandwidth to decide how many bytes to send
in given period of time (for throttling). Further explo-
ration of the operation of JPIP is beyond the scope of
this work. In this work, the server and client use SDN-
supplied information to obtain accurate and timely esti-
mates of available bandwidth and delay.

4.1. Using Network State at the Interactive Server

Using the state information received from the SDN
controller, the interactive server estimates the average
stream bandwidth going through each link along the
communication path, using an exponential smoothing
strategy, which is also known as Exponential Weighted
Moving Average (EWMA). For the purpose of this sec-
tion, we consider that the bandwidth allocated to the
servicing of the interactive queues is fixed, as this al-
lows for better investigation of the proposed approach;
a more realistic policy is explored in Section 5, where
the bandwidth allocated to the interactive queues is dy-
namically adjusted. We write ΛS→C for the set of all
links in the path from the server to the client; we simi-
larly write ΛC→S for the set of links in the path from the
client to the server. This way, the average bandwidth λ̄i

l
going through link l at time index i is given by:

λ̄i
l = λ̄i−1

l + α · (
bi

l

∆i
l

− λ̄i−1
l ), l ∈ ΛC→S ,ΛS→C (1)

5



where α controls how fast bandwidth estimates respond
to changes in the observed bandwidth bi

l/∆
i
l. We set the

smoothing time constant ∆i
l/α to 1s in this work. How-

ever, for exponential smoothing, 0 < α < 1; therefore,
we use α = min(1,∆i

l). The average number of queued
bytes, q̄i

l, at the buffer of link l is similarly estimated
using :

q̄i
l = q̄i−1

l + α · (qi
l − q̄i−1

l ), l ∈ ΛC→S ,ΛS→C (2)

This average is for queued bytes at link l from all flows;
next, we explore how an interactive endpoint can es-
timate the average number of queued bytes associated
with its own flow.

In the following discussion, we assume that the path
from the interactive server to the client carries more data
than the client to server path, which is the case in all
video streaming applications. Both endpoints estimate
this server-to-client bandwidth λ̂i

f ; the server monitors
acknowledgments from the client and counts how many
bytes are associated with these acknowledgments, while
the interactive client keeps track of the number of bytes
received from the server in a given period of time. Both
use a moving average approach with a window size of
0.5 seconds.

Naturally, the bandwidth estimate of interactive flow
λ̂i

f should be no larger than the bandwidth λ̄i
l experi-

enced at each link l ∈ ΛS→C . It is also fair to assume that
the number of bytes q̂i

f ,l queued at any link l ∈ ΛS→C

and associated with server-to-client flow f is no larger
than the estimated total number of bytes q̄i

l queued at the
same link. With that in mind, we estimate the number
of queued bytes associated with flow f at the buffer of
link l using:

q̂i
f ,l =


λ̂i

f

λ̄i
l
· q̄i

l, λ̄i
l ≥ λ̂

i
f and λ̄i

l > 0

q̄i
l, otherwise

, l ∈ ΛS→C (3)

The congestion control policy in this work is based
on the interactive server attempting to maintain a cer-
tain number of bytes S from its flow f at the most con-
gested (bottleneck) link for that flow, so long as it has
something to send; if it has nothing to send to a client,
then it can let the link go idle for that flow f . This is
similar to delay-based TCP Vegas [17] and FAST TCP
[18] congestion control algorithms in that the trans-
mitter attempts to maintain a small number of pack-
ets queued in the network by allowing a correspond-
ingly small increase in observed delay over the idle case
(or BaseRTT); in these algorithms, the exact number of
queued packets cannot be controlled as accurately as we
can in this work. We assume that all interactive flows

are characterized by the same value for S . The server
estimates the rate λi

f ,l that achieves S queued bytes at
the buffer of link l using:

λi
f ,l =

S
S + (q̄i

l − q̂i
f ,l)
· Ri

l, l ∈ ΛS→C (4)

That is, at the steady state, we should have S bytes from
flow f and q̄i

f ,l− q̂i
l from other flows. The corresponding

data rate is decided by the most congested link l, as:

λi
f = min

l

{
λi

f ,l

}
, l ∈ ΛS→C (5)

To find the congestion window, we need to estimate
the round trip time, which is the sum of the network
delay δi

f experienced by server-to-client flow f and the
network delay δi

f̄
experienced by its associated client-

to-server flow f̄ . We estimate the server-to-client delay
δi

f using:

δi
f =

∑
l

S + q̄i
l − q̂i

f ,l

Ri
l

+ di
l

 , l ∈ ΛS→C (6)

That is, a packet from flow f experiences an expected
delay due to buffering of q̄i

f ,l − q̂i
l bytes from other flows

and to storing and forwarding its S bytes3. We find the
client-to-server delay δi

f̄
using:

δi
f̄ =

∑
l

 q̄i
l

Ri
l

+ di
l

 , l ∈ ΛC→S (7)

The congestion window is then set, following Little’s
Law [19], to

W i
f = λi

f · (δ
i
f + δi

f̄ ) (8)

The main regulator of traffic flow in our proposed
model is the server’s congestion window W i

f , as cal-
culated above, representing the total number of unac-
knowledged bytes that the server is prepared to have
outstanding within the network. Additionally, however,
the server shapes its outgoing traffic to a maximum data
rate of 1.25 · λi

f , so as to minimize the impact of sudden
changes in W i

f on the intermediate link buffers.

3In experimental results, we ignore this S bytes store and forward
delay, using δi

f =
∑

l((q̄i
l − q̂i

f ,l)/R
i
l + di

l) instead of (6), as the Mininet
tool appears to ignore the store-forward delay for packets. This might
be legitimate for switches that do not require a packet to be fully
buffered before transmission can commence.

6



5Mbps

50ms delay

10Mbps10.0.0.2 10Mbps10.0.0.254

10Mbps10.0.0.3 10Mbps10.0.0.4

S1 S2

Interactive-class Servers
JPIP Server

SDN Controller
DHCP Server

iperf Client iperf Server

Mininet inside Ubuntu Linux

Interactive-class Clients
JPIP Client(s)
OSX Machine

100Mbps

DHCP
Assigned

Figure 2: The test setup used to obtain the experimental results. A
Ubuntu Linux machine is used for running Mininet; inside Mininet, a
network of two switches is emulated. This Ubuntu machine is physi-
cally connected to an OSX machine that runs an interactive client and
any interactive-class clients. Non-interactive client (Iperf) and server
are shown in the lower half of the figure.

4.2. Using Network State at the Interactive Client
The interactive client maintains a request window,

constraining the number of bytes that might still be re-
ceived in response to outstanding requests, based on
these requests’ byte limits4. To estimate this request
window, the client could use its estimate of the server-
to-client bandwidth λ̂i

f , together with an estimate of the
minimum round trip delay δmin derived directly from
the proposed SDN API, setting the request window to
1.5 · λ̂i

f · δmin. However, for more accurate estimates, the
client employed in this work uses the exact same proce-
dure as that used by the server; in particular, the client’s
request window is set to 1.5 ·W i

f , obtained via (8).

4.3. Performance Evaluation of SDN-assisted Conges-
tion Control

We now evaluate the performance of the interactive
application in an SDN-enabled network using our JPIP
video streams and endpoints.

4.3.1. Test Setup
The various results of this section are produced using

the test setup shown in Figure 2. The network is emu-
lated inside the Mininet tool5 [20], which is run on an

4The client may receive fewer bytes in response to any request than
its request limit would suggest, since the server models the client’s
cache and only sends information that the client does not already have.

5Mininet version 2.1, http://mininet.org

Ubuntu Linux platform6. Inside mininet, we have two
switches7, one server with an IP address of 10.0.0.2, and
one SDN Controller with an IP address of 10.0.0.254,
which works as a DHCP server as well. A separate ma-
chine runs the JPIP server. To obtain accurate results, all
servers inside Mininet are configured to disable using
“jumbo” frames. The Linux machine is physically con-
nected to an OSX machine8 with a DHCP-assigned IP
address; the OSX machine runs JPIP clients. There are
also two hosts with IP addresses 10.0.0.3 and 10.0.0.4
that can be used to simulate non-interactive traffic; these
host are useful for the experiments in Section 5.

The traffic control command, tc, is run every 50ms
on the Linux machine to collect the state of the dif-
ferent switches and network interfaces inside Mininet.
This data is stored in the NST table, and made available
for serving by an HTTP server. We use a Python-based
HTTP server running on 10.0.0.254.

We set the number of queued bytes S in (4) to 1500.
The experiment is not an exact emulation of reality; for
example, the 4 octet FCS field of each Ethernet frame is
not included in the reported rates. Also, the experiment
ignores the 7 octet preamble, the 1 octet at the start of
each delimiter, and the 12 octet gap that exists between
each pair of Ethernet frames. For convenience, we also
ignore these fields in calculating byte counts and esti-
mated rates.

For testing, we employ a very high quality video
with a highly scalable representation. In particular,
we use the “Sintel” sequence [21] with a resolution of
4096 × 1744 and a frame rate of 24 frames per second.
The first 3000 frames of the “Sintel” sequence are com-
pressed using JPEG2000 Part 2 with 20 quality layers, 7
levels of DWT decomposition, 32×32 coefficient code-
blocks, 4 × 4 codeblock precincts, and 8 bits per color
component. The 9/7 CDF wavelet is used in the irre-
versible path of JPEG2000.

This highly scalable representation enables the JPIP
server to select and serve the best available quality for
the client’s viewport, given network conditions and the
client’s cache state, without playback stalls, and without

6An Intel Xeon W3520, 4 cores/8 threads, with 12GB RAM.
7Two additional switches are inserted on the path between the two

switches of Figure 2; these inner switches are used to emulate the
50ms propagation delay, while the outer switches are used to emulate
the change in data rate between 5Mbps and 10Mbps. We do so to
overcome Mininet’s behavior of using egress buffers of switches to
emulate delay, which interferes with the number of queued bytes used
in this work; we are interested here in data bytes that are buffered in
egress buffers due to change in data rate between ingress and egress
links, and not in those that are used to emulate delay.

8An Intel i7-3667U machine, 2 cores/4 threads, with 8GB RAM.

7



re-encoding the already compressed codestream[22].
The playback system used for experimental results
adopts a viewport size of 1024x436, which is the ex-
tent of the window of interest requests forwarded to the
JPIP client; this viewport is a portal into the full content
that is being zoomed and panned.

4.3.2. Performance Improvement on SDN
This section explores the performance improvement

of our proposed SDN-assisted approach compared to
JPIP over traditional networks. The JPIP server9 imple-
mentation used in this work employs the packet pair ap-
proach to estimate the available bandwidth over conven-
tional networks; this implementation also lets its com-
munication link to the client go idle at times in order to
correctly estimate network delay, as discussed earlier.

Figure 3 shows that over SDN a JPIP server can use
more of the available capacity, up to the full 5 Mbps,
which is available on the link between the JPIP end-
points. Figure 4 shows that using SDN also lowers
the number of bytes queued inside the network; this
helps improve responsiveness, because data buffered in
the network needs to be delivered before any new data,
which corresponds to the client’s new WOI, can arrive,
as explained before. Figure 5 shows video quality im-
provement that is obtained from the proposed approach.

0 10 20 30 40 50 60 70
0

2

4

6

Time (s)

A
ve

ra
ge

B
an

dw
id

th
(M

b/
s)

SDN
Conventional

V
id

eo
ac

ce
ss

Pl
ay

ba
ck

st
ar

ts

Figure 3: JPIP-based video bandwidth over traditional network and
over SDN, where the network state supplied by the SDN controller is
used for congestion control. Video bandwidth over SDN uses all of
the bottleneck links 5Mbps bandwidth. The first peak, which happens
at the 5th second corresponds to first access to video, while the actual
playback started around the 10th second.

9Kakadu Software v7.4, http://www.kakadusoftware.com/

0 10 20 30 40 50 60 70
0

2

4

6

Time (s)

A
ve

ra
ge

Q
ue

ue
d

B
yt

es
(k

B
) SDN

Conventional

Figure 4: In JPIP-based video browsing over traditional network,
more data is buffered in the network compared to the proposed ap-
proach which uses information from the SDN controller for conges-
tion control. The time axis here corresponds to that in Figure 3.

4.3.3. Fair Sharing among Interactive Flows
To facilitate testing the proposed congestion control

approach for a large number of clients, we developed
synthetic JPIP clients and servers, which follow the pro-
posed approach, but have a low computational cost; to
emulate traffic, a synthetic server sends zero-filled pack-
ets of desired size to synthetic clients. It is important to
stress that these synthetic clients and servers are used as
additional clients and servers beside one real JPIP server
and one or more real JPIP clients.

Figure 6 shows the behavior of the proposed approach
as multiple clients share a limited-capacity link. The
figure shows that the number of queued bytes is propor-
tional to the number of clients sharing the link; each
client has approximately the same number of queued
bytes, and therefore each client gets a fair share of band-
width. Additionally, the link is fully utilized most of the
time.

An important feature of JPIP is that the server needs
only to send data that the client does not already have
within its cache. Since interactive navigation may in-
volve forward or backward traversal of the video, with
changing window of interest, this introduces substan-
tial user-dependent dynamics into the traffic. To sim-
ulate this behavior within our emulated JPIP servers
also, we use a two-state Markov model for each client,
where the ON state refers to the server having some-
thing to send and the OFF state refers to having no data
to send. The model is characterized by the transition
probability, which we set to 0.1; that is, P(ON|OFF) =

P(OFF|ON) = 0.1, and P(OFF|OFF) = P(ON|ON) =

0.9. This model is evaluated for a transition once every

8



0 200 400 600 800 1,000 1,200 1,400
0

20

40

60

Frame Number

Q
ua

lit
y

(P
SN

R
)

SDN
Conventional

Figure 5: A JPIP server using SDN, as proposed in this work, can de-
liver higher quality video by around 1.1dB compared to a JPIP server
over a traditional network.

250 ms.
Figure 7 shows that the number of queued bytes in-

crease linearly with the number of clients receiving
data; this is because the server attempts to queue up
S bytes (1500 bytes in this work) for each client flow.
This way each client flow gets a fair share of bandwidth
because the server queues up the same amount for that
flow. Figure 7 also shows little disruption to the server’s
throughput when the server resumes or stops sending to
clients; in fact, full utilization of the link’s capacity is
achieved most of the time.

5. Dynamic Service Policy using SDN

In the previous section, we proposed an SDN-assisted
congestion control algorithm that can achieve high
throughput with low latency. In that section, however,
we took the available bandwidth for interactive traffic at
each link to be fixed. This is reasonable only if all traffic
belongs to the interactive class. In this section we in-
vestigate how interactive traffic can be intermixed with
non-interactive traffic. We show in Section 5.1 that the
widespread use of loss-based TCP traffic can dominate
delay-sensitive interactive traffic, degrading the latter’s
throughput and latency. Then, in Section 5.2, we present
an SDN-based approach for fairly dividing bandwidth
between interactive and non-interactive flows. In Sec-
tion 5.3, we examine the robustness of this bandwidth
partitioning approach. Experimental results are pre-
sented in Section 5.4.

0

1.5

3

4.5

6

7.5

9

1.67
2.5

5

Average queued bytes (kB)

One client
bandwidth (Mbps)

(i)
(ii)

(iii)

(iv) (v)

A
ve

ra
ge

Q
ue

ue
d

B
yt

es
(k

B
)

0 20 40 60 80 100
0
1
2
3
4
5

Average overall bandwidth (Mbps)

Time (s)

B
an

dw
id

th
(M

bp
s)

B
an

dw
id

th
(M

bp
s)

Figure 6: Fair sharing among multiple clients sharing the 5Mbps link
of Figure 2. (a) The figure starts with one synthetic client. At point
(i) a JPIP client is connected; this point is the first video access. At
(ii) video playback starts. At (iii) another synthetic client starts using
the link. At (iv) the JPIP client leaves. At (v) one synthetic client
leaves. The upper part of the figure shows fair bandwidth sharing
among clients, and that the number of queue bytes is proportional to
the number of client. The lower part of the figure shows that almost
all the link’s bandwidth is utilized.

5.1. Interactive Flows in a Traditional Network
To examine the performance of interactive traffic in

the presence of non-interactive traffic, we employ one
best-effort queue for all traffic, interactive and non-
interactive. Figure 8a shows the throughput of a JPIP
video flow10 (solid blue line) and an Iperf TCP flow
(dotted red line). At time t = 0s, we have only one
JPIP video flow; then at time t = 24s, an Iperf TCP
flow is introduced. In absence of other traffic (i.e. when
t ∈ [0, 24]), JPIP video throughput is close to the full
link’s capacity. During this time, we also notice that
the round-trip time experienced by the JPIP video flow,
shown in Figure 8b, is around 106 ms, only 6ms larger
than the 100ms round-trip propagation delay. Unsur-
prisingly, a high quality video (PSNR of above 40dB)
is delivered to the client during this time, as shown in
Figure 8c.

10A JPIP server over a traditional network uses the packet pair ap-
proach to estimate the available bandwidth, letting its communication
link to the client go idle at times to correctly estimate network de-
lay. This is the same JPIP server used over conventional networks in
Section 4.3.2.

9



0 20 40 60 80 100
0

5

10

20

30

Time (s)

B
an

dw
id

th
,Q

ue
ue

d
B

yt
es

,a
nd

C
lie

nt
s

Average overall bandwidth (Mb/s)

Number of clients receiving data

Average queued bytes (kB)

Figure 7: In an interactive session, a JPIP server can have little data,
potentially zero, to send to a client for certain frames and a lot for
others. This figure shows the near full utilization of bandwidth as the
number of clients for which the server sends data changes over time.

On the other hand, once an aggressive TCP flow is
introduced at time t = 24, the bandwidth consumed
by the interactive video flow drops significantly; JPIP
video throughput falls below 1 Mbps and the aggres-
sive TCP flow dominates the link’s capacity, receiving
more than 4 Mbps of throughput, as shown in Figure 8a
when t ∈ [24, 70]s. Concurrently, the JPIP flow wit-
nesses an increase in RTT to above 1000 ms, reaching
as high as 2400 ms, as shown in Figure 8b. Naturally,
the decrease in JPIP throughput is accompanied by a de-
crease in the quality of delivered video down to a PSNR
of around 10dB, as depicted in Figure 8c; this extremely
low PSNR indicates that none of the data sent to the
client arrives in time for it to be used in rendering.

This behavior can be understood by remembering
that loss-based TCP flows aggressively fill up queuing
buffers, while delay-sensitive interactive traffic attempts
to minimize delay by buffering a small number of pack-
ets. Thus loss-based TCP flows cause high latency and
take a large proportion of available bandwidth because
they dominate queuing buffers.

5.2. Interactive Flows over a Network with SDN-
Controlled Dynamic Service Policy

To maintain the performance of interactive video
flows, and at the same time, provide other traffic with
a reasonable portion of a link’s capacity, we propose us-
ing two queues for each link, an interactive queue for
interactive flows and a non-interactive queue for other

0 10 20 30 40 50 60 70
0

1

2

3

4

a)
T

hr
ou

gh
pu

t(
M

bp
s)

Interactive JPIP Video
Iperf TCP

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

b)
R

T
T

(s
)

0 10 20 30 40 50 60 70
0

20

40

60

Time (s)

c)
PS

N
R

(d
B

)

Figure 8: Performance of an interactive JPIP video flow over a best-
effort network with congestion.

traffic, together with a dynamic service policy that aims
at fairly adjusting the minimum available rate to each of
the queues. We note that this service policy is utilized
by the network provider for quality control and will be
independent of the congestion control mechanism that
is run by the application provider.

We write QI and QNI for interactive and non-
interactive queues, respectively. The SDN controller is
able to track active flows in each queue, where we write
f I and f NI for the number of flows in QI and QNI.

In this work, we consider a fair distribution of a link’s
capacity C between these two queues to occur when
each queue gets a share of the capacity that corresponds
to the number of flows utilizing it. In practice, we use
the ratio ( f I + 1) : ( f NI + 1) for this purpose; this ra-

10



tio is the MAP (maximum a posteriori probability) esti-
mate of the ratio of the flows, given unscaled counts f I

and f NI, and no prior information is available concern-
ing the actual distribution of flows. Other definitions of
fairness are conceivable, and we may explore some of
them in future work.

The SDN controller uses this definition of fairness to
provision a long-term available rate R̂L for the interac-
tive queue QI at all switches along the interactive flow
path. It also provisions the non-interactive queue11 QNI
with the rest of the available capacity, given by C − R̂L.
The SDN controller updates these provisioned rates suf-
ficiently frequently to adapt to the changing state of the
network. The value of R̂L is computed using an expo-
nential average with a small parameter αL, and is given
by:

R̂i
L = (1 − αL) · R̂i−1

L + αL ·C ·
f I + 1

f I + f NI + 2
(9)

The use of exponential averaging helps smooth sud-
den transitions in the provisioned rate. The network
provider may choose to use other criteria for the long-
term rate, such as putting a lower limit on the rate allo-
cated to interactive flows.

Here, we are also interested in enabling interactive
flows to utilize any spare bandwidth that may occur in
the non-interactive queue, but we do not want inter-
active applications to resort back to probing, since, as
we have seen, probing is inefficient. For this purpose,
the SDN controller also estimates a short-term rate R̂S;
this is the rate communicated to interactive application
endpoints (e.g. a JPIP server) as is described in Sec-
tion 3.2.2. The short-term rate represents a short-time
guarantee of what rate interactive flows can potentially
achieve.

The short-term rate R̂S gradually decreases to the
long-term rate R̂L when there are queued packets qNI in
the non-interactive queue QNI, and gradually increases
to C − M in their absence, where C is the link’s capac-
ity and M is a small bandwidth margin chosen by the
network operator. The bandwidth margin M enables the
SDN controller to check if the non-interactive queue is
being utilized; i.e., there is non-interactive traffic on the
network. The short-term rate R̂S is given by

R̂i
S = (1 − αS) · R̂i−1

S (10)

+ αS ·
([

1 − I(qNI)
]
· (C − M) + I(qNI) · R̂i−1

L

)
11It is conceivable that the SDN controller provisions other queues,

but all these other queues belong to the non-interactive class, and
therefore the SDN is free to choose how to partition the available
bandwidth C − R̂L among them.

0 20 40 60 80 100 120
0

1

2

a)
N

um
be

ro
ffl

ow
s

iPerf TCP
Interactive JPIP video

0 20 40 60 80 100 120
0

1

2

3

4

5

6

b)
A

va
ila

bl
e

ba
nd

w
id

th
(M

bp
s) Long-term rate

Short-term Rate

0 20 40 60 80 100 120
0

1

2

3

4

5

6

Time (s)

c)
T

hr
ou

gh
pu

t(
M

bp
s)

iPerf TCP
Interactive JPIP video

Figure 9: Network performance of an interactive JPIP video flow over
an SDN-enabled network with congestion.

where I is a binary indicator function; that is, it is equal
to 1 when x is nonzero and 0 otherwise. The parame-
ter αS controls how fast the short term rate R̂S responds
to packet queuing in the non-interactive queue QNI; to
make this short-term rate R̂S responds faster to changes
than the long-term rate R̂L, the short-term rate parame-
ter αS should be larger than the corresponding long-term
parameter αL.

5.3. Robustness to Overstating the Short Term Rate R̂S

For interactive endpoint applications, the congestion
window W i

f of (8) depends on the short term rate R̂S
through (4), (5), (6), and (7). In this section, we show
that an interactive queue is not congested when the
short-term rate R̂S, communicated by the SDN con-

11



0 20 40 60 80 100 120
100

100.2

100.4

100.6

100.8

a)
R

T
T

(m
s)

0 20 40 60 80 100 120
0

500

1,000

1,500

2,000

b)
A

ve
ra

ge
qu

eu
ed

by
te

s
(k

B
)

4

8

12Interactive JPIP video (kB)
Iperf TCP (kB)

0 20 40 60 80 100 120
0

20

40

60

Time (s)

c)
PS

N
R

(d
B

)

Figure 10: Application performance of an interactive JPIP video flow
over an SDN-enabled network with congestion. Note that for (b) dif-
ferent y-axis scales are used for different colors.

troller, temporarily exceeds the actual rate available to
that interactive queue; this can occur when the uti-
lization of the corresponding non-interactive queue in-
creases suddenly, keeping in mind that an interactive
queue is provisioned to guarantee a rate of at least R̂L,
not R̂S.

Consider the case of N interactive flows passing
through one such interactive queue. The server or
servers of these flows attempt to queue an average of
S bytes of data per flow in this queue; thus, this interac-
tive queue should have N · S bytes queued, as we have
seen before. If the actual available bandwidth for this
queue is temporarily lower than the value reported by

the SDN-exposed API (i.e. R̂S), packets will accumu-
late within the queue, say N · α · S bytes are queued,
where α > 1. Using the SDN-exposed API, end-point
servers notice this increase in data packets; each server
correctly identifies, using (3), that a fraction 1/N of the
accumulated bytes belong to it, i.e. α ·S bytes. The sub-
sequent computation of available rate, via (4), is based
on the assumption that each other server has queued
only S bytes, yielding

λi
f ,l =

S
S + (N − 1) · α · S

· R̂S

which is always lower than R̂S/N, approaching R̂S/(N ·
α) as N becomes large. This effectively means that the
congestion control algorithm substantially compensates
for inaccuracies in the rate R̂S, avoiding large increases
in latency, especially in the critical case where many
servers are competing for the available bandwidth.

We remind the reader that R̂S will be larger than R̂L
only when the SDN-controller considers that the non-
interactive traffic is temporarily under-utilizing its fair
share of available bandwidth. Once the SDN-controller
responds to the sudden increase in utilization by non-
interactive traffic, it should report a lower short term rate
R̂S, approaching the long term rate R̂L if the increased
utilization persists.

5.4. Performance Evaluation of the Dynamic Service
Policy

We evaluate the proposed dynamic service policy on
the same test setup shown in Figure 2. To test the per-
formance of the proposed scheme, we start a JPIP flow
at t = 14s and stop it at t = 104s. During that time, we
also employ Iperf flows following the pattern 0, 1, 2, 1,
0; Figure 9a shows the number of flows on the link be-
tween S1 and S2 of Figure 2. We expect the long-term
bandwidth, which is the minimum bandwidth available
to interactive flows, to converge to 2.5 Mbps when there
are no flows, 3.3 Mbps when JPIP flow is the only flow,
2.5 Mbps when we have one JPIP flow and one Iperf
flow, and so on, as given by (9). The solid line in Fig-
ure 9b shows that the experimental results corroborate
this expectation. The dotted line in Figure 9b shows the
short-term bandwidth; this is the rate exposed to inter-
active applications by the SDN controller via the query
API call.

Figure 9c shows that JPIP flow throughput (dotted
line) quickly tracks the reported short-term bandwidth,
and the rate of the interactive queue (and JPIP flow
throughput accordingly) is adapted as the number of
TCP flows changes. For example, at about t = 30s, JPIP

12



throughput is approximately halved after introducing an
Iperf TCP flow and after ten seconds it again slightly
drops when the second Iperf TCP arrives. This behav-
ior is a result of the SDN-controller reducing the mini-
mum available bandwidth allocated to interactive queue
as more flows enter the default queue. The network con-
troller may choose a policy whereby the bandwidth al-
located to interactive flows cannot drop below a certain
fraction of the total link capacity, but this is not the case
here.

Figure 10 shows the performance of the interactive
video application under the proposed approach by a
number of metrics. The RTT, shown in Figure 10a,
is minimal at 101ms or less, compared to a round
trip propagation delay of 100ms; a minimal RTT en-
ables interactive end-points to quickly respond to client
changes, and as such improves responsiveness. In Fig-
ure 10b, we see that the interactive queue holds around
a kilobyte of JPIP data during video playback, because
the SDN-assisted congestion control, presented in Sec-
tion 4, attempts to have 1500 bytes per flow of inter-
active data (e.g. JPIP data), even when the interac-
tive queue buffer is configured to hold a thousand pack-
ets. For the default non-interactive queue, even a single
Iperf TCP flow can quickly fill up this queue’s buffer,
as shown by the dotted red line in Figure 10b between
t = 35s and T = 40s, where around 1.5 MB are queued.
Finally, Figure 10c shows the high-quality of the de-
livered JPIP video, averaging around 40dB and never
falling below 35dB; most importantly, it is not signif-
icantly harmed by other traffic as is the case in Sec-
tion 5.1, Figure 8c. These results are considerably bet-
ter for interactive applications, compared to the results
of Section 5.1, and in particular Figure 8b.

Summary: With the help of an SDN-controlled dy-
namic service policy, interactive JPIP flows can achieve
the desired low-latency and high-throughput, while
other traffic still experiences a decent share of a link’s
capacity.

6. Extending SDN-Assisted Congestion Control to
Federated Networks

In Section 4, we presented an SDN-assisted conges-
tion control algorithm; all discussions and results in that
section are limited to one domain, suitable for one net-
work provider. In this section, we explore how the ap-
proach can be extended to multiple service providers.

6.1. The Proposed Approach
To employ the proposed SDN-assisted congestion

control algorithm through multiple service providers,

these providers need to exchange their network state in-
formation that is necessary for the operation of this al-
gorithm. The pricing mechanisms that might be used
in such a federated service are beyond the scope of this
work.

In this work, a provider’s SDN controller12 collects
network state information from other providers for all
interactive flows originating from or terminating into
its own network, consolidates this information with its
own network state information, and makes this informa-
tion available to its own interactive end-points and other
providers’ SDN controllers; thus, a provider’s SDN con-
troller also acts as a proxy for other providers’ state in-
formation, but only for interactive flows that originate
from or terminate into its network. This way, it is suffi-
cient for an SDN controller to only query the SDN con-
troller of the immediate network provider on the path of
an interactive flow.

To see how this works, consider the interactive end-
point shown in Figure 11, represented by the JPIP server
in ISP1. This end-point needs to only query its own
SDN controller about the network state information for
its interactive flow to ISP4; the SDN controller of ISP1
should be able to supply this end-point with the state in-
formation corresponding to its flow, from data it already
has. The SDN controller of ISP1 obtains relevant state
information for other providers’ networks by querying
its adjacent network (i.e., the SDN controller in ISP2)
about the state of relevant interactive flows between
ISP2 and ISP4 and from ISP2 to itself; the SDN con-
troller of ISP1 consolidates this state information with
that of its own network, and makes it available to its
clients and SDN controllers of other network providers.

The advantage of this approach is that communica-
tion of network state information is done only at the
local level; switches and end-points communicate only
with their local controller, and controllers communicate
only with the nearest adjacent controller. Interrogating
all controllers along the path of a flow would incur sig-
nificantly more bandwidth, even though it might allow
more immediate (lower latency) responses.

An SDN controller does not issue network state infor-
mation requests until an interactive flow is established;
it then continues to issue state requests until all such
flows are closed. In this work, a polling mechanism is
employed, using the RESTful API of Section 3.2.2, to
obtain state information, but it is also conceivable that
other more efficient mechanisms might be used, such as

12Conceptually, every provider has one SDN controller; if more
than one controller exists within a provider, then these controllers can
exchange network state information using the proposed approach.

13



ISP1 ISP2

SDN
Controller

ISP3 ISP4
East-West API

OpenFlow
Southbound API

Peering Link

JPIP Server
JPIP Client

P1 P2

Figure 11: Interactive flows over a federated network.

streaming telemetry, whereby network state information
is streamed from an SDN controller to other SDN con-
trollers that have enrolled (or subscribed) to receive this
information.

To allow interactive flows to mix with other flows,
each network provider needs to implement the dynamic
service policy of Section 5; this policy does not need
any network state information from other providers, so
each network implements the policy independently, re-
porting the short-term rate for its switches as part of its
network state information.

An SDN controller does not have to reveal network
state information for all of its internal switches; instead,
it is sufficient to provide visibility into switches that can
delay traffic or limit the capacity available to interactive
flows.

6.2. Consolidation of Network State Information

When an SDN controller generates a new network
state entry, the entry has a new index, and a concate-
nation of link entries from its own network and from
other networks; the format of a network state entry is
described in Section 3.2.2.

It is possible that SDN controllers collect, and pos-
sibly consolidate, network state information at different
frequencies. Therefore, when a network state entry is
created in one controller, it is possible that no new infor-
mation is available for a link l that lies within a different
network provider; it is also possible that multiple new
link entries are available from the other provider’s con-
troller. If there are multiple entries, indexed by j ∈ J,

then the combined entry indexed by i has ∆i
l =

∑
j∈J ∆

j
l ,

bi
l =

∑
j∈J b j

l , qi
l = qk

l , Ri
l = Rk

l , di
l = dk

l , where qk
l , Rk

l ,
and dk

l are the most recently known number of queued
bytes, rate, and propagation delay for link l. In the ab-
sence of any new entry for link l, we generate an entry
indexed by i that has ∆i

l = 0, bi
l = 0, qi

l = 0, Ri
l = Rk

l ,
di

l = dk
l .

The interactive end-points ignore entries that have ∆i
l

equal to zero, because such entries carry no recent in-
formation; they continue using their latest estimates of
the average bandwidth λ̄i

l and number of queued bytes
q̄i

l. For the other entries, (1) and (2) are used as in Sec-
tion 4.

6.3. Experimental Results

In this section, we show that the proposed SDN-
assisted congestion control algorithm can successfully
provide low latency and high throughput across mul-
tiple network operators. We emulate each ISP in the
federated network shown in Figure 11 using an Ubuntu
virtual machine; these machines are run inside an in-
stance of VMWare Workstation Pro. Each ISP’s net-
work is emulated using Mininet, with three routes, a few
switches, and multiple hosts. We configure each peering
link to have a 50ms delay, and a 5Mbps capacity, giving
a minimum RTT delay of 300ms; links within a network
provider are assumed to have sufficient capacity, not to
interfere with results. Network state information is col-
lected and exchanged every 100ms.

14



6.3.1. Experiment 1
At time t = 0s, one interactive client at ISP4 starts

communicating with an interactive server at ISP1. At
t ≈ 18s, another interactive client at ISP3 starts com-
municating with the interactive server at ISP1. At t =

58s, an Iperf client13 connected to ISP1 starts commu-
nicating with an Iperf server connected to ISP3. Fig-
ure 12 shows results at port P1, which is the interface
between ISP1 and its peering link to ISP2, when east-
west link delays match the peering link propagation de-
lay of 50ms. In this scenario, P1 is the buffer at which
flows compete for bandwidth; network state information
from P1 can be up to 100ms old or slightly more.

0

1

2

3

4

5

Start and end
of Iperf traffic

B
an

dw
id

th
(M

bp
s)

0 20 40 60 80 100 120 140
0
2
4
6
8

10
12 EWMA of Queued Bytes (kB) in Black

Time (s)

Q
ue

ue
d

B
yt

es
(k

B
)

Figure 12: Bandwidth for two interactive clients and the number of
queued bytes at P1 of Figure 11 when east-west link propagation de-
lays match that of the peering link delays. Flows from these two in-
teractive clients compete with an Iperf flow at P1, starting at t = 25s.

6.3.2. Experiment 2
At time t = 0s, one interactive client at ISP4 starts

communicating with an interactive server at ISP1. At
t ≈ 18s, another interactive client at ISP3 starts commu-
nicating with the interactive server at ISP1. At t = 58s,
an Iperf client connected to ISP2 starts communicating
with an Iperf server connected to ISP3. Figure 13 shows
the bandwidth observed by the two interactive clients. It

13For interactive flows, the server generates data streams, while, for
Iperf, it is the client.

also shows the number of queued bytes at port P1 and
P2, which is the interface between ISP2 and its peering
link to ISP3.

It can be seen that, during the period t ∈ [58, 98], the
bandwidth utilized by interactive clients fluctuates, with
an average per client bandwidth of 1.25 Mbps, which is
lower than the ideal case of 1.5Mbps. Moreover, the
number of queued bytes is peaky with an average of
around 2 kB per client instead of ideally being 1.5 kB.
This occurs when the network state information for P2
is of the order of 200ms old. The reason behind this
fluctuation is explored in Section 6.4; additionally, that
section discusses the implications of larger network de-
lays and proposes approaches to reduce bandwidth fluc-
tuations. In any case, the presence of these bandwidth
fluctuations in high delay configurations such as this
one, does not undermine the efficacy of the proposed
methods, but it does suggest an opportunity for future
research and mathematical modeling for federated sys-
tems.

6.4. Network Delay and Interactive Applications

For the interactive applications considered in this
work, the latency between a user’s action and the re-
sponse to this action should be small. Pantel and Wolf
[23] experimental results for interactive real-time rac-
ing show that it is best to keep latency at no more than
150ms; at 200ms, the racing experience becomes unre-
alistic. Similar results are obtained by Waltemate et al.
[24]; they found that “simultaneity,” which is the feeling
that the action and its response are occurring at the same
time, starts declining between 125 ms and 210 ms. This
latency includes network delay and any data processing
performed at the server and client; therefore, for truly
interactive applications, such as virtual reality and 360◦

video streaming, network delay should be of the order
of 150ms or less.

The bandwidth fluctuations in Section 6.3.2 occur be-
cause of a rather aggressive policy for adjusting the con-
gestion window (4) and (8). For modest network delays,
as considered in Section 6.3.1, the server can observe
the response to its adjustment of the congestion win-
dow in a short period of time, and therefore can adapt
these adjustments to the new network state. For the
rather long network delay considered in Section 6.3.2,
the server can only observe the network state after a
longer period of time, and therefore it can only provide
a rather late response. To reduce fluctuations, the server
should make smaller adjustment to the congestion win-
dow; i.e., it should be less aggressive. We next present
a couple of modifications that reflect this strategy.

15



0

1

2

3

4

5

Start and end
of Iperf traffic

Bandwidth (Mbps)
for two interactive clients

B
an

dw
id

th
(M

bp
s)

0
2
4
6
8

10
12

Queued Bytes at P1(kB)

Q
ue

ue
d

B
yt

es
(k

B
)

0 20 40 60 80 100 120
0

5

10

15

20
Queued Bytes

at P2(kB)
in Gray

EWMA of
Queued Bytes
(kB) in Black

Time (s)

Q
ue

ue
d

B
yt

es
at

P2
(k

B
)

Figure 13: Bandwidth for two interactive clients and the number of
queued bytes at P1, and P2 of Figure 11 when east-west link propa-
gation delays match that of the peering link delays. Flows from these
two interactive clients compete with an Iperf flow at P2, starting at t =

58s.

6.4.1. Limiting the Smallest Number of Queued Bytes
to S

A simple strategy to limit the maximum size of the
congestion window is to make the number of queued
bytes q̄i

l no smaller than S , which is the smallest mean-
ingful value; that is, we change (3) to

q̂i
f ,l =


λ̂i

f

λ̄i
l
·max{q̄i

l, S }, λ̄i
l ≥ λ̂

i
f & λ̄i

l > 0

max{q̄i
l, S }, otherwise

, l ∈ ΛS→C

(11)
and (4) to

λi
f ,l =

S

S +
(
max{q̄i

l, S } − q̂i
f ,l

) · Ri
l, l ∈ ΛS→C (12)

In the case where there are two sources sharing the bot-
tleneck link, with λ̂i

f /λ̄
i
l ≈ 0.5, this modification has

0

1

2

3

4

5

Start and end
of Iperf traffic

B
an

dw
id

th
(M

bp
s)

0
2
4
6
8

10
12

Queued Bytes at P1(kB)

Q
ue

ue
d

B
yt

es
(k

B
)

0 20 40 60 80 100 120
0

5

10

15

20
Queued Bytes

at P2(kB)
in Gray

EWMA of
Queued Bytes
(kB) in Black

Time (s)

Q
ue

ue
d

B
yt

es
at

P2
(k

B
)

Figure 14: Experimental results when the minimum number of queued
bytes are limited to S. The same setup of Section 6.3.2 is used.

the effect of limiting λi
f ,l to at most Ri

l/1.5, which sig-
nificantly reduces excursions in the congestion window,
considering that the ideal value for λi

f ,l would be Ri
l/2

in this case. Figure 14 shows the experimental results
when q̄i

l is limited to S for the same setup used in Sec-
tion 6.3.2. Evidently, both the bandwidth and number of
queued bytes have become substantially closer to their
ideal values. We also observe that bandwidth fluctua-
tions reduce over time. We stress the fact that these ex-
perimental results involve two interactive sources that
share a common path. In applications where many
sources interact incoherently, we expect the number of
queued bytes to be both larger and more stable. The
modification represented by (11) and (12) would have
no impact in such cases. Figure 7 shows the case when
flows from many clients interact.

16



6.4.2. Limiting the Changes to the Congestion Window
The modification above imposed an entirely justifi-

able lower bound on the value of q̄i
l used in the deriva-

tion of each flow’s rate and hence window size, with
the effect that the window size for any given flow is
bounded above in a manner that depends on the ob-
served flow ratio λ̂i

f /λ̄
i
l. We can take this idea further

by imposing both lower and upper bounds on the win-
dow size, dynamically adjusted based on the observed
flow ratio, as well as the network delay. We write τl

for the time it takes for the interactive server to observe
the influence of the changes it made to the congestion
window on the number of queued bytes at link l; this in-
cludes propagation delays and any processing delays for
the network state information. Then, the upper bound
on the congestion window is:

U i
f ,l =

λ̂i
f

λ̄i
l

· Ri
l + max

0, (Ri
l − λ̄

i
l) ·

λ̂i
f

λ̄i
l

 +
n · S
τi (13)

The first term represents a fraction of the link’s capac-
ity Ri

l that is suggested by the observed flow ratio, not-
ing that this flow ratio may have been based on a dif-
ferent value for the capacity Ri

l, in periods when the
SDN controller is changing the distribution of band-
width between interactive and non-interactive flows, as
explained in Section 5. The second term enables the
server to utilize any available spare capacity on the link
in the same proportion; the maximum operator prevents
this term from becoming negative. The last term limits
how many additional bytes the server can queue during
τl, the time needed by the server to observe the newly
queued bytes at link l. Choosing a high value for n
enables faster response to the increase in available ca-
pacity but the number of queued bytes becomes more
“peaky”; thus, n is a tunable parameter that might be
determined by the network operator.

A lower bound can also be deduced using similar rea-
soning. Here, we use

V i
f ,l =

λ̂i
f

λ̄i
l

· Ri
l +

S − q̄i
f − m · S

τl
(14)

The first term is similar to that above while the second
term limits the drop in the number of queued bytes dur-
ing τl; the drop is limited to S−q̄i

f−m·S . When m is zero
the number of queued bytes can drop to S bytes. When
m is greater than zero, the drop can be larger. Larger
m enables faster drop of the rate, such as when a new
client joins the queue. Similar to n, the choice of m can
be left to the network operator.

0

1

2

3

4

5

Start and end
of Iperf traffic

B
an

dw
id

th
(M

bp
s)

0
2
4
6
8

10
12

Queued Bytes at P1(kB)

Q
ue

ue
d

B
yt

es
(k

B
)

0 20 40 60 80 100 120
0

5

10

15

20
Queued Bytes

at P2(kB)
in Gray

EWMA of
Queued Bytes
(kB) in Black

Time (s)

Q
ue

ue
d

B
yt

es
at

P2
(k

B
)

Figure 15: Experimental results when the change in the congestion
window is limited. The same setup of Section 6.3.2 is used.

For both the upper and lower limits, we can see that
larger changes to the congestion window are possible
when τ is small.

Figure 15 shows the experimental results for the ap-
proach of this section for the same setup used in Sec-
tion 6.3.2 with the conservative choice of n = 2 and
m = 2. The figure shows that when the second client
joins the interactive server at t=18s, we have a slower
change towards equal bandwidth sharing between the
two clients. The figure also shows that when the iPerf
flow starts at t=58s, there is almost no fluctuation in
client bandwidths.

It is useful to keep in mind that these results repre-
sent worst case scenarios, because, for realistic deploy-
ment of the proposed approach, we expect to have many
clients. In the presence of many clients, congestion win-
dow changes that are made to accommodate a single
client should have a relatively smaller effect. We also
expect that a link’s bandwidth is shared among many

17



clients from many servers, and therefore, they pose re-
quests that are temporally incoherent; i.e., it is very un-
likely that a large portion of these requests occur or dis-
appear at the same time.

7. Conclusions

There is an emerging need for the management of
high throughput real-time traffic, with JPIP as the prima
facie example in this paper.

In this work, we have proposed an SDN-based ar-
chitecture that offers real-time network services to in-
teractive applications, such as remote media browsing.
Interactive applications need high bandwidth with low
latency; however, their required bandwidth fluctuates,
depending on the end-user’s action and the amount of
data that needs to be delivered to satisfy the response to
this action.

We have also presented a RESTful API that exposes
the network state to interactive applications. These ap-
plications can employ this API in a congestion control
algorithm that achieves full or near full utilization of
bandwidth and fair sharing among interactive client, all
while having a minimal number of queued data packets
in the network (i.e. minimal latency).

The work also presents an SDN-controlled dynamic
service policy that aims at dynamically and fairly shar-
ing network resources between interactive flows and
other traffic, without a reservation protocol.

We have evaluated the efficacy of our architecture
and algorithms using real JPIP endpoints in a Mininet
environment. Our results show that low-latency high-
throughput interactive applications are possible on an
SDN-enabled network while other traffic still experi-
ence an appropriate share of throughput.

We have also shown how the approach can be ex-
tended to federated networks, where we have presented
experimental results to show the viability of the ap-
proach.

One area of future work is to replace the proposed
RESTful API with a more efficient protocol, such as
streaming telemetry information. Another area of fu-
ture work lies in the development of even more effective
strategies to control flow rates and queue sizes in high
latency federated networks.

References

[1] ISO/IEC 15444-9, “Information technology – JPEG 2000 image
coding system – Part 9: Interactivity tools, APIs and protocols,”
2004.

[2] S. Gudumasu, E. Asbun, Y. He, and Y. Ye, “Segment scheduling
method for reducing 360◦ video streaming latency,” in Applica-
tions of Digital Image Processing XL, August 2017.

[3] M. Podlesny and C. Williamson, “Providing fairness between
tcp newreno and tcp vegas with rd network services,” in
2010 IEEE 18th International Workshop on Quality of Service
(IWQoS), June 2010, pp. 1–9.

[4] B. Briscoe, K. De Schepper, and M. Bagnulo Braun, “Low La-
tency, Low Loss, Scalable Throughput (L4S) Internet Service:
Architecture,” draft-ietf-tsvwg-l4s-arch-01, IETF, Tech. Rep.,
October 2017.

[5] R. L. Carter and M. E. Crovella, “Measuring Bottleneck Link
Speed in Packet-switched Networks,” Performance Evaluation,
vol. 27–28, no. 0, pp. 297 – 318, Oct 1996.

[6] J. Navratil and R. L. Cottrell, “Abwe: A practical approach to
available bandwidth estimation,” in Proc. of Passive and Active
Measurement (PAM), 2003.

[7] N. Hu and P. Steenkiste, “Evaluation and characterization of
available bandwidth probing techniques,” IEEE Journal on Se-
lected Areas in Communications, vol. 21, no. 6, pp. 879–894,
Aug 2003.

[8] A. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krish-
namurthi, “Participatory Networking: An API for Application
Control of SDNs,” in Proc. ACM SIGCOMM, Hong Kong,
China, Aug 2013.

[9] V. Sivaraman, T. Moors, H. Habibi Gharakheili, D. Ong,
J. Matthews, and C. Russell, “Virtualizing the access network
via open apis,” in Proc. of ACM CoNEXT, Santa Barbara, Cali-
fornia, USA, Dec 2013.

[10] H. Habibi Gharakheili, V. Sivaraman, A. Vishwanath, L. Ex-
ton, J. Matthews, and C. Russell, “SDN APIs and Models for
Two-Sided Resource Management in Broadband Access Net-
works,” IEEE Transactions on Network and Service Manage-
ment, vol. 13, no. 4, pp. 823–834, Dec 2016.

[11] M. Ghobadi, Y. Cheng, A. Jain, and M. Mathis, “Trickle: Rate
limiting youtube video streaming.” in Proc. of USENIX Annual
Technical Conference, Boston, MA, USA, Jun 2012.

[12] G. Wang, T. E. Ng, and A. Shaikh, “Programming Your Net-
work at Run-time for Big Data Applications,” in Proc. of the
First Workshop on Hot Topics in Software Defined Networks,
Helsinki, Finland, Aug 2012.

[13] M. Ghobadi, S. H. Yeganeh, and Y. Ganjali, “Rethinking end-to-
end congestion control in software-defined networks,” in Proc.
of ACM Workshop on Hot Topics in networks, Redmond, Wash-
ington, USA, Oct 2012.

[14] R. Mittal, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, D. Zats et al., “TIMELY:
RTT-based Congestion Control for the Datacenter,” in Proc. of
ACM SIGCOMM, London, United Kingdom, Aug 2015.

[15] C. Lee, C. Park, K. Jang, S. Moon, and D. Han, “Accurate
Latency-based Congestion Feedback for Datacenters,” in Proc.
of USENIX ATC, Santa Clara, CA, USA, Jul 2015.

[16] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan,
“Data center tcp (dctcp),” SIGCOMM Comput. Commun.
Rev., vol. 41, no. 4, pp. –, Aug. 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2043164.1851192

[17] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson,
“TCP vegas: New techniques for congestion detection and
avoidance,” SIGCOMM Comput. Commun. Rev., vol. 24,
no. 4, pp. 24–35, October 1994. [Online]. Available: http:
//doi.acm.org/10.1145/190809.190317

[18] D. Wei, C. Jin, S. Low, and S. Hegde, “FAST TCP: Motivation,
architecture, algorithms, performance,” Networking, IEEE/ACM
Transactions on, vol. 14, no. 6, pp. 1246–1259, Dec 2006.

18



[19] J. D. C. Little and S. C. Graves, Little’s Law. Boston,
MA: Springer US, 2008, pp. 81–100. [Online]. Available:
https://doi.org/10.1007/978-0-387-73699-0 5

[20] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop:
Rapid Prototyping for Software-defined Networks,” in Proc. of
ACM SIGCOMM Workshop on Hot Topics in Networks. New
York, NY, USA: ACM, 2010.

[21] Roosendaal, T. (Producer). (2010) Sintel. Blender Foundation,
Durian Open Movie Project (2010). [Online]. Available:
http://www.sintel.org

[22] D. Taubman and R. Prandolini, “Architecture, philosophy and
performance of JPIP: internet protocol standard for JPEG 2000,”
Int. Symp. Visual Comm. and Image Proc., vol. 5150, pp. 649–
663, July 2003.

[23] L. Pantel and L. C. Wolf, “On the impact of delay on
real-time multiplayer games,” in Proceedings of the 12th
International Workshop on Network and Operating Systems
Support for Digital Audio and Video, ser. NOSSDAV ’02. New
York, NY, USA: ACM, 2002, pp. 23–29. [Online]. Available:
http://doi.acm.org/10.1145/507670.507674

[24] T. Waltemate, I. Senna, F. Hülsmann, M. Rohde, S. Kopp,
M. Ernst, and M. Botsch, “The impact of latency on perceptual
judgments and motor performance in closed-loop interaction in
virtual reality,” in Proceedings of the 22Nd ACM Conference on
Virtual Reality Software and Technology, ser. VRST ’16. New
York, NY, USA: ACM, 2016, pp. 27–35. [Online]. Available:
http://doi.acm.org/10.1145/2993369.2993381

19


