
Detecting Heavy Flows in the SDN Match and
Action Model

Yehuda Afek1, Anat Bremler-Barr2, Shir Landau Feibish1, and Liron Schiff1

1Blavatnik School of Computer Science, Tel-Aviv University, Israel
2Computer Science Dept., Interdisciplinary Center, Herzliya, Israel

afek@cs.tau.ac.il, bremler@idc.ac.il, shirl11@post.tau.ac.il, schiffli@post.tau.ac.il

Abstract—
Efficient algorithms and techniques to detect and identify large

flows in a high throughput traffic stream in the SDN match-
and-action model are presented. This is in contrast to previous
work that either deviated from the match and action model by
requiring additional switch level capabilities or did not exploit
the SDN data plane. Our construction has two parts; (a) how to
sample in an SDN match and action model, (b) how to detect
large flows efficiently and in a scalable way, in the SDN model.

Our large flow detection methods provide high accuracy and
present a good and practical tradeoff between switch - controller
traffic, and the number of entries required in the switch flow
table. Based on different parameters, we differentiate between
heavy flows, elephant flows and bulky flows and present efficient
algorithms to detect flows of the different types.

Additionally, as part of our heavy flow detection scheme,
we present sampling methods to sample packets with arbitrary
probability p per packet or per byte that traverses an SDN switch.

Finally, we show how our algorithms can be adapted to a
distributed monitoring SDN setting with multiple switches, and
easily scale with the number of monitoring switches.

I. INTRODUCTION

Heavy flow detection in traffic remains one of the funda-
mental capabilities required in a network. It is a key ability
in providing QoS, capacity planning and efficient traffic engi-
neering. Furthermore, heavy flow detection is crucial for the
detection of Distributed Denial of Service (DDoS) attacks in
the network which remain a common attack in the Internet
today, with hundreds of attacks carried out daily [1].

We present techniques for large flows detection in traffic
that flows through an SDN switch with Openflow. While SDN
switches are very efficient and considerably simpler to manage
than existing routers and switches, they do not offer direct
means for the detection of large flows.

Existing network monitoring tools for classic IP networks
have been available for over 20 years, with one of the
earliest tools being Cisco Netflow [2]. Over the years, traffic
visibility, and specifically measurements and monitoring in IP
networks has become an increasingly difficult task due to the
overwhelming amounts of traffic and flows [3]. While existing
tools may be very useful for classic networks, monitoring

This research was supported by European Research Council (ERC) Starting
Grant no. 259085, and the Neptune Consortium, administered by the Office
of the Chief Scientist of the Israeli ministry of Industry, Trade, and Labor,
and the Ministry of Science and Technology, Israel.

in SDN networks requires new tools and technology. The
SDN network architecture places the controller as the focal
point of the network. Therefore, using existing tools would
require extensive communication between the controller and
the monitoring tools, which would place significant overhead
on the controller. It is therefore necessary to provide new
monitoring methods for SDN networks based on the SDN
architecture.

We design ways to implement monitoring methods with the
widespread OpenFlow and the recent P4 standard for SDN
switches. OpenFlow switches provide counters of the number
of bytes and packets per flow entry, yet traffic measurement
remains a difficult task in SDN for two reasons: First the
hardware (usually Ternary Content Addressable Memories
(TCAMs)) constraints limit the number of flows which the
switch can maintain and follow. Secondly the limited number
of updates that the switch can process per second [4], which
hence limits the number of updates that the controller can
make to the flow table. The algorithms provided herein over-
come these limitations by providing efficient building blocks
for large flow detection and sampling which may be used by
various monitoring applications.

A. Our Contribution
First, we propose our Sample&Pick algorithm which is an

efficient method to detect large or heavy flows going through
an SDN switch. The Sample&Pick algorithm is designed for
protocols which are based on the match and action model
(e.g., OpenFlow, P4, etc.), and performs a division of labour
between the switch and the controller, coordinating between
them to identify the large flows. Sample&Pick achieves very
high accuracy using a fixed amount of rules in the switch
and requiring little communication between the switch and
the controller.

Second, as part of our algorithm we present various Open-
Flow based methods to sample packets that traverse an SDN
switch. These methods may be used independently of our
heavy flows detection algorithm

Third, we consider a distributed model with multiple
switches and propose solutions for efficient scaling of our
techniques, to support large flow detection as well as sampling
in the distributed setting.

Finally we have implemented and evaluated our Sam-
ple&Pick comparing it with OpenSketch [5]. The sampling

ar
X

iv
:1

70
2.

08
03

7v
1

 [
cs

.N
I]

 2
6

Fe
b

20
17

2

methods rely on standard and optional features of OpenFlow
1.3 (or the P4 language) and are implemented with the NoviKit
(hardware) switch[6] (operated with NoviWare switching soft-
ware [7]). The heavy flow detection also relies on a standard
OpenFlow controller and was evaluated as a whole using a
dedicated virtual time simulation for both the data and control
planes. Additionally, the techniques presented are both flow-
table size and switch-controller communication efficient.

II. HEAVY FLOWS DETECTION

A. Background

The problem of finding the heavy hitters or frequent items
in a stream of data is as follows: given a parameter v and a
sequence of N values α = 〈α1,αN〉, using O(v) space, find
at most v values each having a frequency (the number of times
it appears in α) which is greater than N

v .
Many solutions have been proposed for the heavy hitters

problem, for example [8], [9], [10], [11], [12]. A description
of a few counter-based algorithms as well as other results
regarding the heavy hitters problem can be found in [13].

We chose the algorithm of Metwally et al. [8] as a building
block for the detection of heavy flows due to its simplicity,
efficiency and high level of counter accuracy. The (additive)
error rate ε of this algorithm is ε = N

v [8]. Therefore, for each
item j, denote its counter in the output of the algorithm c j,
and its count in the sequence as r j then r j ≤ c j ≤ r j + ε . The
algorithm requires O(v) space and only a single pass over the
input, with a small number of instructions per item.

B. Definitions

Following [14] a flow is defined to be any sequence of
packets which can be matched to rules in the flow table, such
as, for example, those defined by a set of header field values.
Note that our algorithms can be used for any flow definition,
including those which pertain to matches in the payload or
any of the headers as long as it is supported by the controller
and switch implementation. A flow entry in OpenFlow (flow)
table can be defined to match packets according to (almost)
any selection of header field bits thereby allowing various flow
definitions.

A large flow is usually defined as a flow that takes up more
than a certain percentage of the link traffic during a given
time interval [15]. For some applications other definitions of
large flows are required, for instance network analysis tools
may want to identify flows that consist of a certain amount
of packets regardless of link capacity. Therefore we refine the
large flow definition, considering both the time aspect as well
as the type of measurement performed.

We consider the following definitions of large flows:
Definition 2.1: Heavy flow: Given a stream of packets S, a

heavy flow is a flow which includes more than T percent of
the packets since the beginning of the measurement.

Considering the definition of flow provided above, this can
be useful for identifying flows which remain heavy over a
significant period of time, for example in Distributed Denial
of Service (DDoS) attacks. On the other hand this will miss

large flows if the measurement continues for a very long period
of time.

Definition 2.2: Interval Heavy flow (Elephants): Given a
stream of packets S, and a length of time m, an interval heavy
flow is a flow that includes more than T percent of the packets
seen in the previous m time units.
This can be used for standard traffic management and resource
allocation.

Definition 2.3: Bulky flow at a point of time: Given a
stream of packets S, and a length of time m, a bulky flow is
a flow that contains at least B packets in the previous m time
units.

The algorithms we present for large flows follow the above
definitions which consider traffic volume measurements in
terms of packets. Nevertheless, we note that certain traffic
management capabilities require volume, i.e., byte size, analy-
sis. For instance, if we wish to identify the flow which takes up
the most bandwidth, then we are required to count the number
of bytes in the flow rather than the number of packets. The
algorithms presented here work well for both definitions.

C. Towards a Solution in SDN

Fundamental counter based algorithms for finding Heavy
Hitters (or flows) such as that of Metwally et. al. [8], cannot be
directly implemented in the SDN framework since in the worst
case they would require rule changes for every packet that
traverses the switch. A different approach is therefore needed.

First we consider a naive solution which we name Sam-
ple&HH, that samples packets in the switch and then sends all
sampled packets to the controller. The controller computes the
heavy flows using a heavy hitters algorithm. However, as can
be seen in Figure 3a (and other works [15]), relying solely
on the samples is not accurate enough. Next we consider a
solution based on the Sample&Hold paradigm of [15] which
was devised for identifying elephant flows in traffic of classic
IP networks. In Sample&Hold sampled packets are sent to
the controller, which installs a counter rule for each new flow
that is sampled. Every consequent packet from that flow will
be counted by the rule and will not be sampled. By using
sampling together with accurate in-band counters for sampled
flows Sample&Hold achieves very accurate results, yet the
high amount of counters and the rate of installing them make
Sample&Hold incompatible with SDN switch architecture.
Therefore we only consider it as a reference point to evaluate
our algorithm.

To deal with the problems of the above solutions, we present
our Sample&Pick algorithm. Sample&Pick uses sampling to
identify flows that are suspicious of being heavy. For these
suspicious flows a special rule is placed in the switch flow
table providing exact counters for them. The Sample&Pick
algorithm considers both the bounded rule space in the switch
as well as the time it takes for the controller to install a rule
in the switch. Therefore we use two separate thresholds, the
first, T , for determining which flows are heavy and a second
lower threshold, t, for detecting potentially large flows. This
lower threshold allows us to install rules in the switch early
enough to get an accurate count of the large flows, yet we do

3

not install rules for too many flows that will remain small. The
Sample&Pick algorithm is described in detail in Section II-D.

Table I depicts the conceptual differences and the resource
consumption overhead of the Sample&Pick algorithm, the
SDN Sample&Hold algorithm and the Sample&HH algorithm

D. The Sample&Pick algorithm

1) Algorithm Overview: Our algorithm operates as follows:
in the first step we sample the flows going through the switch
using one of the sampling techniques to be explained in
Section II-E. As can be seen in Fig. 1, these samples are sent
to the controller, that feeds them as input to a heavy hitters
computation module in order to identify the suspicious heavy
flows (steps 2 and 3). Once a flow’s counter in the heavy
hitters module has passed some predefined threshold t, a rule
is inserted in the switch to maintain an exact packet counter
for that flow (steps 4 and 5). This counter is polled by the
controller at fixed intervals and stored in the controller (steps
6 and 7). Finally the last step increments the counters that are
processed by the Heavy Hitters module to maintain correct
counters of non-sampled flows.

Fig. 1: Sample&Pick overview

2) Switch Components Design: As seen in Fig. 1, two kinds
of rules are used in the switch flow tables. The sampling
rules, which are created as needed by the selected sampling
algorithm as described in Section II-E. And the counter rules
used for precisely counting packets of potentially heavy flows.
An example of this configuration can be seen in Table II.

First, each packet is matched against counter rules. In case
of a successful match,, the relevant counter is increased. Only
if the packet does not match any counter rule, it is matched
against the sampling rules, and if the packet is selected by the
sampling rules it (or only the headers) is sent to the controller.
Counters of the counter rules are only sent to the controller
when polled by the controller.

3) Controller Components Design: (Fig. 1) The controller
maintains the heavy hitters computation module and a collec-
tion of the exact counters accumulation.

The heavy hitters computation module: Maintains the heavy
hitters data structure according to the algorithm of Metwally
et al. [8], as described in Section II-A.

As the heavy hitters module only receives sampled data
which is sent to the controller from the switch, the traffic of
the heavy flows which are not sampled is not inserted at all

into the heavy hitters and therefore it may seem as though
the flows are no longer heavy. To simulate the sampling of
these heavy flows, when the controller polls the switch for the
updated counters, it uses those counters to update the heavy
hitters module accordingly. That is, we simulate a sampling
of the heavy flows by updating the heavy hitters module with
the number of new packets that have been counted since the
previous polling, multiplied by the sampling ratio p. As noted
this mechanism saves a substantial amount of sample traffic
from the switch to the controller.

The exact count data structure: The accumulated counters
of the flows that are suspected to be heavy are maintained in
a simple ordered data structure. Its use is to compute the delta
from the previous time the counters were polled. This delta is
then fed (with a factor) into the heavy hitter module.

An additional counter is maintained in the controller to
count the total number of items inserted into the heavy hitters
module, which is necessary to calculate the rates from the
individual counters inside the heavy hitter module. At any
point the heavy flows may be identified as the flows in the
heavy hitters module that have passed the threshold T , relative
to the total counter.

4) Analysis: Here we discuss how to choose the param-
eters, t and v of Sample&Pick algorithm for given problem
parameters, the threshold T for heavy flow and the sampling
probability p.

By definition, if a total of N packets have passed so far,
each heavy hitter flow contains at least T N packets. Our
controller receives each packet with probability p. The number
of samples is then on average (or exactly depending on the
sampling method) n := N p. The number of packets sampled
out of x original packets is a random binomial variable
with average xp and variance xp(1− p). When x is high
this converges to normal distribution with similar parameters.
For normal distribution, w.h.p the random variable is within
distance of 3 times the standard deviation from the average.
Therefore the number of packets sampled from x packets is
w.h.p greater than xp−3

√
xp(1− p).

Our scheme uses a threshold t < T , in order to detect
possible heavy flows that might be missed due to sampling
errors. For a heavy flow (with at least T ·N packets) w.h.p at
least T N p−3

√
T N p(1− p) packets are sampled. We need to

set t to ensure that the above expression is higher than t · n.
Thus,

t < T −3

√
T (1− p)√

N p
(1)

Since t must be a positive number, we get the following
constraint on the flow weight (ratio) our scheme is expected
to detect: T 2−9 T (1−p)

N p > 0 which is valid when

T > 9
1− p
N p

(2)

For example, assuming a line rate of 6 · 105 packets per
second and a controller throughput of only a few thousands
messages per second, we need a sampling rate of at most
1 : 100, i.e., p < 10−2. Assuming that the tested interval is
at least 10 seconds long, more than six million packets pass

4

Technique Switch memory us-
age

Controller functionality Controller to Switch
traffic

Switch to controller traffic

Sample&Pick Sampling rules + at
most 1

t count rules
Heavy hitters computa-
tion + counter aggregation

Every interval at most 1
t

new count rules
Sample of all non-hold pack-
ets + counters each interval.

Sample&Hold
(OpenFlow
variant)

Sampling rules +
unlimited count
rules

Counter aggregation Every new sample cre-
ate message with a new
count rule

Sample of all non-hold pack-
ets + final counters.

Sample&HH Sampling rules Heavy hitters computa-
tion

None Sample of all packets

TABLE I: Comparison of the heavy flow detection techniques presented in this paper. Denote t the threshold for candidate
heavy hitter in Sample&Pick .

name match actions
Count
f low1

(src ip,src port,dst ip,dst port) = f low1 1

...
Count
f lowm

(src ip,src port,dst ip,dst port) = f lowm 1

Sample (src ip,src port,dst ip,dst port) = ∗ 2

TABLE II: Illustration of switch flow table configuration. Rule
priority decreases from top to bottom. Actions: 1- increment
counter; 2 - apply sampling technique (goto sampling tables /
apply group)

through the switch during the interval, i.e., N > 106. From
Equation 2 we get that the threshold, T , can then be roughly
10−3 or more.

Next we consider the fact that the flows that are monitored
by exact counters are updated in batches (when reading the
switch flow entry counters). To make sure that their counters in
the approximate HH structure are not evicted between updates,
we set the number of entries, v, to be high enough considering
the threshold, t, for monitored flows.

Next we show that by choosing v = 2/t the number of
samples that would cause the eviction of one of the monitored
flows, that is a flow that is located at the top part of the
approximate heavy hitters structure, is very high.

Assume we have k monitored flows, the sum of their
counters is at least k ·n · t. The number of other values in the
table is v−k, and their sum is at most n−knt. In order for the
minimal monitored flow to be evicted, all lower values in the
table should exceed it, i.e., all smaller counts need to become
higher than nt. Their sum should thus be at least (v− k)nt,
increasing by at least (v− k) · nt− (n− knt) = vnt− n. Since
the counts change by the number of incoming samples, if we
set v = 2

t then the number of new samples received between
batch updates should be as large as the number of all samples
received so far (n) which is highly unlikely.

E. Traffic Sampling

An SDN controller sets flow entries in the switch, a flow
entry can match one or many flows but generates one statistical
record for all matching flows. A controller has to install a
flow entry per each separately monitored flow in real time
by sending all unmonitored flows to the controller which in

turn would install a specific entry for each. Monitoring flows
in real time in the controller is infeasible due to controller
computation speed constraints. Therefore in order to find large
flows in SDN networks, sampling has to be used to reduce the
set of monitored flows.

We discuss two types of traffic sampling: packet sampling
and pseudo byte sampling, for which we provide the following
definitions respectively:

Definition 2.4: Packet sampling: Select each packet in a
stream of packets with probability p, 0≤ p≤ 1.
Note that the number of packets sampled from each flow times
1/p is an estimation of the real number of packets in the flow
(during the sampling period).

Definition 2.5: Pseudo byte sampling: Select each byte in
a stream of traffic with probability p, 0≤ p≤ 1.
Practically, this translates to a packet size based sampling,
where given a stream of packets, a packet of size s bytes is
selected with probability 1−(1− p)s. For small enough p, this
can be approximated by 1− e−ps and since usually ps << 1
it is approximated by simply p · s. With this type of sampling,
the number of packets sampled from each flow times 1/p is an
estimation for the real number of bytes in each flow (during
the sampling period).

1) Packet Sampling: We present two approaches for packet
sampling, each using different SDN features.

Packet Sampling Using Random Selection: The following
technique in the most direct way to implement packet sam-
pling, it utilizes OpenFlow weighted groups (Section 7.3.4.2
in [16]), an optional feature intended for unequal load sharing
and we expect it to be supported by future P4 compilers.

A weighted group contains a list of buckets each with
different weight and actions. A packet is assigned to such a
group (by the apply group instruction) is randomly diverted to
one of the buckets according to the weights and that bucket’s
actions are applied to the packet.

In our case, we use a group with two buckets - an ”active”
bucket that transfers to the receiver and a ”dummy” bucket
does nothing. We set the weights of the buckets according to
the sampling probability p: weight 1 for the active bucket and
weight d 1

pe−1 for the dummy bucket.
Note that as weighted groups are optional in the OpenFlow

standard and are currently considered expensive (in terms of
switch resources) and are not supported by P4, this solution
is not compatible with all switches.

5

A similar sampling technique can be achieved by using
OpenFlow round-robin groups, where for each packet the
next action bucket is chosen (in round robin order). This
technique is less compatible and more expensive than wighted
groups based technique, and we therefore only use it for
comparison with other techniques without describing the full
implementation details.

Packet Sampling Using Hash Matching: As random gen-
erators are not natively supported by current SDN standards,
OpenFlow and P4, we suggest to use the hash of the packets
instead. More precisely we suggest to use Ethernet CRC or
TCP/UDP checksum fields and match them against predefined
bit patterns thereby selecting which packets to sample and send
to the collector. We overcome weaknesses of this method in
the sequel.

More precisely, assuming p = 1
2k the controller randomly

selects a ternary pattern with k 0/1-bits (not ’*’s) for matching
the checksum field, and install a flow entry with that pattern
as match and with an action to forward to the collector.
For example, sampling with probability p = 2−13 0.0001 is
implemented by matching the (16bit) checksum to a ternary
pattern with 3 ∗′s (don’t cares) and 13 zero/one bits.

Matching unconventional packet fields (e.g. checksum) is
supported in P4 and is also supported by some SDN switches
such as the NoviKit [6], [7] using the optional Experimenter
extension. In general this method uses the fundamental prop-
erties of all match-action modules (flow tables, TCAMs, etc..)
and therefore expected to be easily realized in future network
devices and control protocols.

Note that setting a single match pattern without changing it
may present some problems. For example, crafted packets such
as those in DDoS attacks may be missed. Such packets may
be generated with a specific checksum value, and would be
missed by this method. In order to deal with such scenarios, the
controller should modify the selected match pattern randomly
every fixed period of time, so that the mechanism approxi-
mates a sampling with a uniform probability for selecting any
packet over a long enough period of time.

Note that since each change in the bit pattern requires a
new rule (e.g., OpenFlow FlowMod command) to be sent by
the controller to the switch, there is a tradeoff between the
safety of the scheme and the control traffic it creates. It is
also possible to send multiple commands in batches utilizing
rule timeouts to set the end time of rule liveness, yet these
rules have to be separated by additional rules to set the start
time. Considering a short 1sec update interval and a command
packet size of 108 bytes (40 bytes for TCP/IP headers and 68
bytes for OpenFlow 1.3 FlowMod message with two actions)
we get an insignificant control plane traffic of 108B/s (in each
direction).

Note that the flow entries can be installed in a dedicated
flow table, so that the sampling process does not interfere
with other switch processing. Packets that match the pattern
are sampled and then all packets continue to traverse the rest
of the tables as in the unmodified pipeline. This process is
depicted in Fig. 2.

2) Pseudo Byte Sampling: As described above, Pseudo
Byte Sampling with probability p per byte is approximated

Fig. 2: Example of the randomized bit algorithm for packet
sampling. All packets traverse through both the new table and
the original flow table. The sampling rate provided is p = 1

128 .
Sampled packets may be sent to a monitor or the controller.

by sampling each packet with probability p · s, where s is the
packet size.

We present optimized techniques for pseudo-byte sampling,
which are based on matching the packet size. Matching
unconventional packet fields (e.g. packet size) is supported in
P4 and is also supported by some SDN switches such as the
NoviKit [6], [7] using the OpenFlow optional Experimenter
extension

A General Approach for Pseudo-Byte Sampling: A straight-
forward implementation of the pseudo-byte sampling is to use
multiple instances of any of the packet sampling implemen-
tations presented so far, where each instance samples with a
different probability, and we divert each packet to the most
accurate sampling instance considering the packet size. More
formally, given a set of packet sizes {si}1≤i≤R, we define the
set of sampling instances {PSi}1≤i≤R, where PSi samples any
packet with probability p · si. Moreover, we divert each packet
with size s to the sampler PSz, where z = argmini|s− si|.

The maximum error ratio in this method is maxi
si

si−1
. There-

fore, in order to bound the error sis should be chosen as
geometric series. For example, for 1≤ i≤ R, si = m ·2i where
m and M are min and max packet size (e.g., 64 and 1500
for Ethernet) and R = log2

M
m . Finally, following last example,

given a packet of size s we divert it to the PSdlog2 se.
Note that this approach presents a tradeoff between accuracy

and resources. In order to reduce the maximum error, one has
to use more sampler instances.

Pseudo-Byte Sampling with Hash Comparison: The fol-
lowing sampling technique uses constant resources and has
optimal accuracy. It is fully supported by P4 and is also
supported by some SDN switches such as the NoviKit [6],
[7] using the OpenFlow optional Experimenter extension.

Before describing the technique we first make the following
observation: if s,M are numbers such that 0 < s < M and x
is a random variable chosen uniformly from [0,M], then the
probability that x≤ s is s/M, i.e. for x∼U([0,M]),Pr(x≤ s)=
s
M . Following last observation, if we substitute M with 1

p , we
get that the probability of sampling a packet of size s, namely
ps, is equal to the probability that x < s. This means that
given access to such uniform distribution we can implement
size based sampling in the following way: for each packet of
size s, first randomly choose x, then if x< s transfer the packet
to the receiver.

Similarly to the hash matching technique, we suggest to

6

use the packet checksum as a random number generator.
Assuming 1

p = 2b, where b ∈ N, we use the first b bits of
the checksum field as the random variable x, and we define
rules that checks whether x< s. If the comparison succeeds the
action should forward the packets to the receiver and otherwise
do nothing.

Comparing two fields is also not natively supported in
OpenFlow but can be implemented by a flow table filled with
2b+ 1 rules, where b is the width of the compared numbers
(in bits) [17].

Similarly to the packet sampling with hash matching de-
scribed in the previous section, the pseudo-byte sampling
technique presented here might miss specific classes of crafted
packets whose checksum is high. Therefore we need to add
some external randomness that is changed over time. While in
the case of packet sampling we can just change the pattern,
in the pseudo byte sampling case we need to affect the
comparison result.

The solution we suggest is that every fixed time interval the
controller will modify a rule (or a batch of rules with different
timeouts) that writes the metadata field of every packet with
some value r, and that value will be used in a modified version
of comparison that checks whether x⊕ r < s. For each new
value of r the controller needs to send one FlowMod command
packet whose size in our scenario is less than 110 bytes. As
in the packet sampling case, even for short time interval of 10
seconds, the control traffic overhead is insignificant.

F. Evaluation

We compare our Sample&Pick algorithm to the two ad-
ditional solutions described above Sample&Hold and Sam-
ple&HH(See algorithms overview in Table I. We analyze the
resource consumption and accuracy of each of the algorithms
in fixed time intervals. We use 10 intervals of 5 seconds each,
and we collect the counters of each algorithm at the end of
each interval. In addition we compare the results of these
algorithms to that of the OpenSketch Heavy Hitters detection
mechanism [5]. For our analysis, we use a one-hour packet
trace collected at a backbone link of a Tier-1 ISP in San Jose,
CA, at 12pm on September 17, 2009 [18].

We chose the following simulation parameters T = 5 ·10−3,
p = 1

1024·102 Bytes, t = 2 ·10−3, v = 2000.
Figure 3a shows a comparison of the three algorithms based

on accuracy criteria. The counter error refers to the ratio
between the real count of the heavy hitters and the algorithm
estimates. The false negative and false positive errors is the
ratio between Heavy Hitter (HH) flows missed to the total
number of HH flows, and the HH flows wrongly detected to
the total number of HH flows respectively. Figure 3b shows
a comparison of the three algorithms based on the amount
of traffic they generate and the amount of memory they use
in the switch. As can be seen, while Sample&Hold provides
the best accuracy results, it requires an increasing amount
of counters and therefore its switch memory consumption is
significantly higher than that of the other algorithms. In con-
trast, Sample&HH requires the least amount of switch memory
since all of the heavy hitters computation is performed in

the controller yet it relies on sampling alone and provides
significantly lower accuracy results. Our testing shows that the
Sample&Pick provides accuracy results only slightly inferior
to those of Sample&Hold yet requires significantly less switch
memory.

Technique OpenFlow
Compati-
bility

Error
Rate

Switch
mem-
ory
usage

Controller
↔ Switch
Traffic

Sample&Pick Yes 3.3% 2KB 220KB/s
Sample&Hold Yes 1.15% 400KB 140KB/s
Sample&HH Yes 11.3% ≤ 1KB 270KB/s
OpenSketch
[5]

No 0.05−
10%

94KB−
600KB

NA

TABLE III: Resource consumption test results

As can be seen in Table III, Sample&Hold gives the smallest
error rate, since it performs an actual count of all flows that it
samples, yet it uses significantly more switch memory. Sam-
ple&HH uses only samples for the counter estimates without
using any counters in the switch yet incurs significantly higher
error rates. Sample&Pick has relatively small error rates due to
the actual counting of potentially heavy flows, yet due to the
careful selection of which counters to place in the switch, the
switch memory usage in Sample&Pick is very low. According
to our testing, the error rate of Sample&Pick may be further
reduced with increased sampling rate or counter polling rate,
yet the switch memory requirement remains steady at 2KB as
determined by our parameters. The controller↔switch traffic
(sum of traffic in both directions) of each of the presented
algorithms is directly influenced by the sampling rate (recall in
this case p= 1

1024·102 Bytes) and the counter polling rate of the
controller. In the case of Sample&Pick the polling rate is set
to be every 0.1 seconds in these tests, while in Sample&Hold
the controller only polls for the counters once at the end of the
interval. As can be seen, Sample&HH produces a larger traffic
overhead since all sampled messages are sent to the controller
whereas in the other two algorithms the counters in the switch
perform the aggregation locally.

Additionally, we compare our results to testing done on the
OpenSketch Heavy Hitters detection mechanism [5]. OpenS-
ketch is a very efficient measurement architecture, yet it is
not compliant with the OpenFlow standard. Our Sample&Pick
algorithm was designed with the current OpenFlow and P4
ablities in mind and it can therefore be implemented using the
current standards. We base our comparison on the evaluation
results shown in [5]. Note that while we perform our test
on the same data as used in [5], we provide an average of
10 intervals of 5 seconds each, as opposed to 120 intervals
used in the OpenSketch evaluation. As can be seen in Ta-
ble III, Sample&Pick requires very little switch memory while
achieving counter errors which are similar to those achieved
by OpenSketch which uses significantly more switch memory.

7

(a) Comparison of algorithms by Counter error, False negative errors
and False positive errors.

(b) Comparison of algorithms by Overall traffic (between switch and
controller) and Switch memory usage.

Fig. 3: Resource consumption and accuracy comparison

The traffic overhead for OpenSketch is not provided in [5] and
therefore we do not indicate it.

III. INTERVAL HEAVY FLOW AND BULKY FLOW
DETECTION

Recall that, an interval heavy flow is a flow whose volume is
more than T percent of the traffic seen in the last time interval
of length m. While the problem is defined in a continuous
manner, that is, an interval can begin at any point in time,
considering the inherent subtle delays caused by the OpenFlow
architecture, an approximate solution is sufficient.

Fig. 4: The modified heavy hitters data structure using counter
arrays. In this example the active counter is currently c1.

Our solution makes use of the Sample&Pick algorithm,
specifically we take the array of counters in the heavy hitter
module in the controller as the starting point. We modify this
structure so that instead of maintaining one counter per item
(flow), an array of counters is maintained for each flow that
is kept in the heavy hitter module. In addition, for each flow
we maintain an additional accumulative counter. The updated
counter structure is depicted in Fig. 4.

The array of counters for each flow maintains the history
of the flow’s counter values in fixed intervals of time. The
flow’s accumulative counter is the sum of all the counters in
the flow’s array. Let m seconds be the selected time interval,
and let there be r history counters maintained for each flow,
we get a sub-interval that is m

r seconds long. The basic idea
is that in each sub-interval a different counter in the array
is updated by the HH module, in addition to updating the
accumulative counter. Thereby, consecutive (cyclicly) counters
in the array can be used to calculate the number of times the
value appeared in the entire interval. At the beginning of the

sub-interval, for each flow, the value of the active counter is
decreased from the value of the accumulative counter. Then all
active counters in all flows are reset to zero. In this manner, at
the end of each sub-interval, for any flow, the active counter
equals the number of times the flow was sampled during that
sub-interval, and the value of the accumulative counter equals
the number of times the flow was sampled in the last interval
m. It follows that if the index of the active counter is a s.t.
0 ≤ a ≤ r− 1 for any r′ ≤ r− 1 the sum of the cyclically
consecutive counters between index a−r′ mod r and a equals
to the number of times the item was seen during the r′ previous
sub-intervals.

Note that if an interval does not begin at the beginning of
an exact sub-interval, we will consider it to begin at the start
of either the current or the consequent sub-interval.

The accumulative counter has two additional important uses:
1) it is used to maintain the threshold ratio; 2) it is used by
the heavy hitters algorithm as the de-facto counter for deciding
which flow has the minimum counter and should be evicted.

Using the accumulative counter in this manner is the basis
for the correctness of our algorithm, which we will now briefly
show. Given an interval i of length m, denote N to be the
number of items seen in i. If i is made up only of whole
sub-intervals, it is easy to see that at the end of interval i the
accumulative counter of each flow in the structure is equal to
what its counter would be had we reset all of the counters at the
beginning of the interval. Therefore, using the accumulative
counters as described above provides us with a heavy hitters
mechanism which supports the same counter error rate (i.e.
N
v) as that of [8]. If, however, i begins in the middle of a sub-
interval, the counter error rate is slightly higher. In this case,
suppose i contains j complete sub-intervals, and at most 2
partial sub-intervals. The additional error contains appearances
of the flow which occurred in the partial sub-intervals, which
may incur an additional error of at most N

v since otherwise it
would be heavy for an interval comprised of only complete
sub-intervals as well, making the overall error rate in this case
to be 2N

v .

Notice that bulky flows can be detected by using the above

8

mechanism without dividing the counters sum by the relevant
sum of counters, but rather taking the absolute values.

IV. DISTRIBUTED SETTING

In many cases, in order to achieve a comprehensive view
of the network, it is required to distributively monitor traffic
at multiple switches. There are two main challenges to deal
with when detecting large flows in this distributed setting;
false negatives due to split flows and false positives due to
sequential flows. Split flows are large flows that their traffic
is split to small sub flows, each going through a differ-
ent monitoring switch, and therefore monitored in parallel.
Sequential flows are small flows that each of their packets
traverse multiple monitoring switches and are therefore over
sampled or counted.

In this section we extend our Sample&Pick solution in order
to support this distributed setting. We describe the changes
that need to be done to the sampling and to the large flow
detection scheme. We note that our solution easily scales
with the number of monitoring switches. To support multiple
controllers, a hierarchy of controllers needs to be defined and
data should be collected by the controllers and forwarded up
the hierarchy.

Sampling: In order to handle over sampling of sequen-
tial flows, flows that each of their packets traverse multiple
switches, we need to prevent each packet from being sampled
more than once. We suggest to do so by marking packets after
they are sampled (whether selected or not) and by applying
sampling only to unmarked packets. Marking of packets can
easily be managed in SDNs (with OpenFlow and especially
with P4), for example by utilizing one bit in the VLAN tag.
Matching the VLAN tag of each packet can be easily done and
allows to skip sampled packets. Note that the marks should be
removed at egress ports so that they do not affect the traffic
leaving the network.

Heavy Flow Detection: As described in Section II-D, our
Sample&Pick algorithm makes use of both sampling and exact
counter rules in the switch. To support the distributed setting,
and to handle split flows, that each of their sub flows goes
through a different monitoring switch, all of the samples
and counter values from all monitoring switches should be
aggregated centrally by the controller. The controller will
receive the samples and counter values from the different
switches and treat them as if they were generated by a single
monitoring switch. One of the implications of that is that when
a flow becomes suspect of being large, exact counter rules
should be installed on all monitoring switches, to assure that
all consequent packets going through the network are counted.

Similarly to sampling, in case of sequential flows that tra-
verse multiple switches, exact counters (on different switches)
should not count the same packet more than once. The same
packet marking technique we suggest to avoid over sampling,
can be used in order to prevent multiple counting (see Figure
5), i.e., marked packets are not matched against exact counter
rules nor sampled. Moreover, packets which match exact count
rules are marked even if they have not been sampled.

Fig. 5: Marking sampled packets in the distributed setting.

V. RELATED WORK

One of the earliest network monitoring tools was Cisco Net-
flow [2], which allowed collection of IP flow level statistics.
Netflow provided the ability to gather information from the
router about every IP flow, including byte and packet counts
yet suffered from high processing and collection overheads,
which were partially decreased using sampling in the variant
Sampled Netflow, yet this variant provided reduced accuracy
caused by the straightforward use of sampling [15]. In [15]
Estan and Varghese significantly improve the accuracy of
the sampling process by introducing the Sample and Hold
algorithm which provides better accuracy while reducing the
processing and collection overhead. The sample and hold
algorithm is essentially sampling with a ”twist”. As in regular
sampling, each packet is sampled with some probability, and
if there is no entry for the packet’s flow, an entry is created.
Once an entry for a flow exists, it is updated for every packet
thereafter in that flow.

In a usual setup, monitoring devices are placed in central
locations in the network (such as Arbor’s Peekflow [19], or
other security detection devices) and samples of traffic are
being sent to the monitoring devices for various additional
processing for which the switch/router are not suitable, such
as heavy-hitters analysis, DPI, and behavioral analysis. These
monitoring devices usually cannot absorb and process all the
traffic. Therefore, traffic must be sampled, and only the sam-
ples or relevant flows should be forwarded to these devices.

As the networks evolved, network monitoring tools with
more advanced capabilities were developed. In [20], for ex-
ample, a flow monitoring tool was presented. There, they dis-
cussed adding flow sampling abilities as an inherent capability
of the routers. They provide a framework for distributing the
monitoring across routers, allowing for network-wide moni-
toring. By using uniform hash functions, flow sampling is not
duplicated across different routers which route the same flow.

In OpenFlow the flow table allows us to define rules which
support counting of bytes and packets per flow. However, this
is not sufficient for more advanced measurements. Recently
there have been several works that discuss or suggest enhance-
ments to network measurement capabilities for both OpenFlow
and for SDN in general. FleXam is a sampling infrastruc-
ture for OpenFlow proposed in [21], which adds sampling
capabilities, using random number generation. Opensketch [5]
provides a simple approach to collect and use measurement

9

data, separating the measurement data plane from the control
plane. The paper suggests a new architecture, where in the data
plane, a pipeline of three essential building blocks is provided:
hashing, filtering and counting, and in the control plane, a
wide library of measurement tasks is provided. The above
works suggest an alternate to the OpenFlow architecture, while
our work relies on features that already appear in the current
OpenFlow standard as required or optional features, in addition
to the common extensions of as matching on an extra field
in the packet. These extensions follow the concepts described
in [22], that suggests that the OpenFlow standard should allow
the user to configure the headers that the switch can examine.
All our modification are in the spirit of OpenFlow architecture.

We note that there are works that do not require changes
to the OpenFlow standard. For instance, OpenNetMon de-
scribed in [23] is a controller module for monitoring flow
level metrics, such as packet loss, delays and throughput in
OpenFlow networks, for determining whether QoS criteria
are met, which is based on the OpenFlow standard. Our
solution which combines both a switch module and a controller
module provides accurate results while significantly reducing
the communication overhead.

A recent work [24], proposes a method for distributing the
monitoring tasks between different switches in order to reduce
the number of rules needed in each switch. This method is
orthogonal to our distributed solution (see Section IV), and can
be combined to further reduce the number of switch entries.

Another recent work, [25], proposes DREAM, a framework
for identifying heavy hitters (see Section II-A) in traffic using
TCAM based hardware. As shown in [25], the algorithm
they use for heavy hitters detection may require more TCAM
entries than a commodity switch may have available. Therefore
DREAM performs efficient multi-switch resource allocation
between switches to achieve the desired accuracy rates. The
Sample&Pick algorithm we propose (Section II-D) requires
significantly less counters in the switch and can be used by
DREAM to reduce the overall number of switch entries used.

VI. CONCLUSIONS

We have presented techniques for performing large flow
detection and sampling in SDN. Our sampling techniques are
unique in that they are simple and remain mostly within the
confinements of the OpenFlow standard. Our approximation
algorithms for large flows detection provide a generic mech-
anism for SDN, providing a way to detect various types of
large flows with a relatively small error rate while minimizing
the computation and space overhead in the switch and requir-
ing little controller-switch communication. Furthermore, we
expanded our algorithms to a distributed multi-switch setting.

REFERENCES

[1] “Kaspersky ddos intelligence report for q1 2016,”
https://securelist.com/analysis/quarterly-malware-
reports/74550/kaspersky-ddos-intelligence-report-for-q1-2016/.

[2] [Online]. Available: http://www.cisco.com/c/en/us/tech/
quality-of-service-qos/netflow/index.html

[3] Q. Zhao, Z. Ge, J. Wang, and J. J. Xu, “Robust traffic matrix estimation
with imperfect information: making use of multiple data sources,” in
Proceedings of the Joint International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS/Performance 2006.

[4] B. Stephens, A. L. Cox, W. Felter, C. Dixon, and J. B. Carter,
“PAST: scalable ethernet for data centers,” in Conference on emerging
Networking Experiments and Technologies, CoNEXT ’12.

[5] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch,” in USENIX NSDI, 2013, pp. 29–42.

[6] “NoviFlow’s NoviKit,” http://noviflow.com/products/novikit/(accessed
on March 2015).

[7] “NoviFlow’s NoviWare,” http://noviflow.com/products/noviware/(accessed
on January 2017).

[8] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation
of frequent and top-k elements in data streams,” in ICDT, 2005, pp.
398–412.

[9] J. Misra and D. Gries, “Finding repeated elements,” Sci. Comput.
Program., vol. 2, no. 2, pp. 143–152, 1982.

[10] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approx-
imating the frequency moments,” J. Comput. Syst. Sci., vol. 58, no. 1,
pp. 137–147, 1999.

[11] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” in LATIN, 2004, pp. 29–38.

[12] G. S. Manku and R. Motwani, “Approximate frequency counts over data
streams,” PVLDB, vol. 5, no. 12, p. 1699, 2012.

[13] G. Cormode and M. Hadjieleftheriou, “Finding frequent items in data
streams,” PVLDB, vol. 1, no. 2, pp. 1530–1541, 2008.

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. M. Parulkar, L. L.
Peterson, J. Rexford, S. Shenker, and J. S. Turner, “Openflow: enabling
innovation in campus networks,” Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[15] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting: Focusing on the elephants, ignoring the mice,” ACM Trans.
Comput. Syst., vol. 21, no. 3, pp. 270–313, 2003.

[16] Open Networking Foundation, OpenFlow Switch
Specification Version 1.3.2, 2013. [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.2.pdf

[17] Y. Afek, A. Bremler-Barr, and L. Schiff, “Orange: Multi field openflow
based range classifier,” in ANCS, 2015.

[18] “The caida ucsd anonymized internet traces 2009 - sep. 17 2009,”
http://www.caida.org/data/passive/passive 2009 dataset.xml.

[19] A. N. Inc., “Peekflow,” Aug. 2004,
http://www.arbornetworks.com/products/peakflow.

[20] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R. Kompella, and
D. G. Andersen, “csamp: A system for network-wide flow monitoring,”
in USENIX NSDI, 2008, pp. 233–246.

[21] S. Shirali-Shahreza and Y. Ganjali, “Flexam: flexible sampling extension
for monitoring and security applications in openflow,” in HotSDN, 2013,
pp. 167–168.

[22] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: scaling flow management for high-performance
networks,” in SIGCOMM, 2011, pp. 254–265.

[23] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon:
Network monitoring in openflow software-defined networks,” in NOMS.
IEEE, 2014, pp. 1–8.

[24] Y. Yu, C. Qian, and X. Li, “Distributed and collaborative traffic moni-
toring in software defined networks,” in HotSDN, 2014, pp. 85–90.

[25] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “DREAM: dynamic
resource allocation for software-defined measurement,” in SIGCOMM,
2014, pp. 419–430.

http://www.cisco.com/c/en/us/tech/quality-of-service-qos/netflow/index.html
http://www.cisco.com/c/en/us/tech/quality-of-service-qos/netflow/index.html
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.2.pdf

	I Introduction
	I-A Our Contribution

	II Heavy Flows Detection
	II-A Background
	II-B Definitions
	II-C Towards a Solution in SDN
	II-D The Sample&Pick algorithm
	II-D1 Algorithm Overview
	II-D2 Switch Components Design
	II-D3 Controller Components Design
	II-D4 Analysis

	II-E Traffic Sampling
	II-E1 Packet Sampling
	II-E2 Pseudo Byte Sampling

	II-F Evaluation

	III Interval Heavy Flow and Bulky Flow Detection
	IV Distributed Setting
	V Related Work
	VI Conclusions
	References

