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a b s t r a c t 

Understanding the quality of web browsing enjoyed by users is key to optimize services and keep users’

loyalty. This is crucial for both Content Providers and Internet Service Providers (ISPs). Quality is intrin- 

sically subjective, and the complexity of today’s websites challenges its measurement. Objective metrics

like OnLoad time and SpeedIndex are notable attempts to quantify web performance. However, these

metrics can only be computed by instrumenting the browser and, thus, are not available to ISPs.

PAIN (PAssive INdicator) is an automatic system to monitor the performance of websites from passive

measurements. It is open source and available for download. It leverages only flow-level and DNS mea- 

surements which are still possible in the network despite the deployment of HTTPS. With unsupervised

learning, PAIN automatically creates a model from the timeline of requests issued by browsers to render

web pages, and uses it to measure website performance in real-time.

We compare PAIN to objective metrics based on in-browser instrumentation and find strong correlations

between the approaches. PAIN correctly highlights worsening network conditions and provides visibility

into websites performance. We let PAIN run on an operational ISP network, and find that it is able to

pinpoint performance variations across time and groups of users.
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. Introduction

Objective metrics to indicate the Quality of Experience (QoE)

re key to understand how users enjoy the web. Such metrics are

f prime importance to all actors involved in the service deliv-

ry. From Content Providers, which need to monitor users’ satis-

action to maintain or increase their user base, to Internet Service

roviders (ISPs), which need to be aware of performance offered by

he network and factors affecting web browsing experience [26] .

he idea that unsatisfied users are more prone to switch providers

s widely disseminated. More than that, there are many anecdotal

vidences that a small deterioration of quality levels could result

n losses of revenues to providers. 1 

Given the importance of QoE, Content Providers have developed

 number of objective metrics to estimate users’ QoE. On the con-

rary, there are hardly any objective metrics to estimate users’ QoE

t ISPs [5,7,26] , even if ISPs are equally blamed for poor users’ ex-

erience. Bad performance in the network and, in particular, in the

ast-mile is historically the first suspect when users’ quality de-
∗ Corresponding author.

E-mail addresses: martino.trevisan@polito.it (M. Trevisan), idilio.drago@polito.it

I. Drago), marco.mellia@polito.it (M. Mellia).
1 https://www.fastcompany.com/1825005/how- one- second- could- cost- amazon-

6- billion- sales .
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rades. This has motivated major Content Providers to publicize

ankings of ISP performance. 2 It is no exaggeration to say that ISPs

re evaluated based on the experience of end-users while interact-

ng with third-party services, with video and web browsing being

he most important. In addition, ISPs need to measure the impact

f possible network configuration changes on performance – e.g.,

o decide whether the deployment of web caches or new content

elivery nodes is advantageous, or to tune configuration parame-

ers of their networks. 

Users’ QoE is intrinsically subjective, thus hard to be assessed.

deally, QoE should be estimated by means of metrics such as

he Mean Opinion Score (MOS), which is quantified by asking

sers directly about their opinions on the service. Previous works

5,7,11] have proposed objective metrics that have been shown to

e correlated with users’ MOS, even if a model to predict MOS is

till hard to get [8] . These metrics however either are computed at

he server-side (i.e., available to Content Providers only) or require

round truth from in-browser instrumentation (i.e., not scalable for

he monitoring of a large number of sites at ISPs). Passive solutions

hat provide visibility into web performance are rare, and gener-

lly complicated by the need to analyze payload to reconstruct web

ages [26] . 
2 For an example, see https://ispspeedindex.netflix.com/ .
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We introduce PAIN (PAssive INdicator), a completely unsuper- 

vised system to monitor website performance using passive traffic 

logs. The adoption of encryption (e.g., HTTPS) makes solutions that 

reconstruct web sessions from payload [5,7,26] no longer effective. 
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Fig. 1. Sample of flows in a visit to www.nytimes.com . We use the time to contact

support domains to monitor performance.

Fig. 2. Support domain flows for a visit to www.bbc.co.uk . The browser contacted

94 support domains ( y -axis) during 6 seconds ( x -axis). Notable browser events are

reported as vertical lines.

metrics not covered in this work, is more representative of users’ 

QoE than the OnLoad time. 

These metrics are computed by the web browser at client- 

side. Collecting them requires the access of users’ devices. Content 
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PAIN instead relies only on L4-level statistics (e.g., Netflow), anno-

tated with the original server domain 

3 information [6] to compute

a synthetic indicator of the website performance. 

We validate PAIN in a testbed, in which we browse websites

while collecting also classic client-side objective metrics. We show

that PAIN is able to spot changes in network conditions, report-

ing quality degradation when the site performance effectively de-

grades. PAIN metrics are strongly correlated with objective metrics

obtained by means of client instrumentation, which are in turn

known to be correlated to users’ MOS [12,15] . Finally, PAIN out-

performs alternatives, either by avoiding expensive training or by

working with encrypted traffic. 

We demonstrate the practical application of PAIN in a case

study. We deploy PAIN in an ISP network for one full year. First,

we show how PAIN can help the ISP understand its users’ expe-

rience, e.g., highlighting web browsing performance of users con-

nected with different Internet access capacity. Then, we show how

PAIN lets the ISP quantify variations in web browsing performance,

e.g., pinpointing sudden performance variations of websites.

PAIN is open-source, and it is released as a module of the Net-

Lytics Big Data platform [29] . It can be fed using Tstat [32] , Squid

[2] and Bro [25] , to extract performance metrics directly from raw

log files. 

This paper extends our preliminary work [31] . In contrast to the

workshop version, we have performed new experiments to bet-

ter validate parameter choices, added new results comparing PAIN

against supervised alternatives, and deployed PAIN in a large op-

erational network in a case study. Finally, the presentation of the

algorithms have been extended. 

In the following, Section 2 details the problem and envisioned

deployment scenario, while Section 3 summarizes related work.

Section 4 describes PAIN design and algorithms. Section 5 in-

troduces the employed datasets. Section 6 validates PAIN, while

Section 7 describes our experience of running PAIN on an opera-

tional network. Finally, Section 8 concludes the paper. 

2. The complexity of QoE estimation

2.1. Objective quality metrics 

Given the intrinsic subjectiveness of QoE, measuring it is hardly

possible without involving the users directly. Therefore, large-scale

measurement campaigns are usually infeasible. Not a surprise, sev-

eral approaches exist to estimate QoE with objective metrics calcu-

lated without human intervention. 

In this paper we focus on users’ experience while browsing the

web. Two of the most popular objective metrics to estimate users’

QoE in this scenario are: 

(i) OnLoad time: The time browsers fire the onLoad event – i.e.,

when all elements of the page, including images, style sheets

and scripts have been downloaded and processed; 

ii) SpeedIndex : Proposed by Google, 4 it represents the delay to

render the visible portions of a page. It is computed by captur-

ing the video of the page loading in the browser and tracking

its visual progress. 

Both metrics are considered a proxy to indicate users’ QoE, with

some authors [7] arguing that the SpeedIndex , along with other

3 We use the term domain informally throughout the paper, meaning Fully Qual-

ified Domain Name (FQDN).
4 
https://developers.google.com/speed/docs/insights/about . T  

2

roviders and websites usually instrument services to collect such

etrics from web browsers and upload results to servers as pages

re loaded. 

.2. Challenges for estimating QoE from network traffic 

Objective metrics based on Deep Packet Inspection (DPI) [26] no

onger work, due to the deployment of encrypted protocols. Meth-

ds to compute objective quality metrics must therefore be com-

atible with the data visible in the network. 

ISPs can still rely on flow-level monitoring [17] , which provides

oarse-grained data about the activity collected at the network and

ransport layers. Moreover, ISPs usually control key Internet ser-

ices, e.g., the DNS. PAIN exploits flow-level measurements and

NS information to build models for the traffic of given websites.

n the remainder of the paper we assume that both flow level and

NS measurements are available at the ISP. 

Obtaining objective quality metrics from such coarse-grained

ata is not trivial. The complexity of websites has dramatically in-

reased over the years [19] , and loading a web page requires reach-

ng dozens of servers and fetching hundreds of objects. 

Once users reach a website, browsers open multiple flows to

ifferent servers to fetch HTML objects, scripts and media con-

ent. We call the domain associated with the first contacted server

he Core Domain and the remaining contacted domains Support Do-

ains . 

Figure 1 provides a simplified example: arrows represent the

ime in which flows to support domains start while the user is vis-

ting the core domain www.nytimes.com . In this example, loading

he web page requires the browser to open 16 flows to 12 different

ervers. 

Figure 2 provides a more realistic example of the flow-level

easurements obtained during visits to a website. It depicts all

ows to support domains opened during a visit to www.bbc.co.uk .

his visit has taken around 6 seconds to load all objects. The
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browser has contacted 94 (unique) support domains. Black lines in 

the picture represent notable browser events. The browser starts 

rendering the page at 0.7 s and finishes parsing the HTML doc- 

ument at time 1.6 s, when the browser has downloaded mainly 

H  

p  

e  

l  

e  

h

 

t  

t  

f  

s  

m  

d  

w  

c  

c

3

 

p  

r  

t  

u  

l

 

fi  

t  

m  

l  

a  

Q  

s  

[

m  

A  

t  

u  

i  

v  

w  

b

 

g  

s  

e  

b  

t  

t  

t  

c  

t

 

k  

[  

o  

S  

o  

t  

e  

[

Differently from past works, we follow an unsupervised ap- 

proach, avoiding the need of a resource-consuming testbed to 

gather client-side metrics. Moreover, PAIN automatically builds 

models from flow-level traces, with no need to access traffic pay- 
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TML objects and JavaScripts. Then, it starts to download other

age objects (e.g., images and style sheets), firing the onLoad
vent only at 5.4 s. After this, the browser continues to down-

oad elements from other servers (and opening new flows). In this

xample, the page triggers 27 additional connections to domains

osting analytics, advertisements, etc. 

The goal of PAIN is to calculate a performance indicator from

his kind of traces, which are influenced by browser configura-

ions, website designs, network configuration, etc. PAIN profits

rom support domains to estimate the performance of the web-

ite from flow timings. It is an unsupervised system that auto-

atically learns typically contacted support domains after a core

omain visit, and creates models describing the typical order in

hich support flows appear after the core domain visit. PAIN then

onsiders the delay to observe support flows as performance indi-

ators. 

. Related work 

Previous work focuses on estimating QoE-related metrics from

assive network measurements. Authors of [11] show that indi-

ect metrics can serve as indicators for the users’ MOS. According

o Gonzalez et al. [13] , packet losses are strongly correlated with

sers’ session abandonment, thus suggesting that even some low-

evel network parameters may serve as indicators for users’ QoE. 

Considering web browsing QoE, past works have shown the dif-

culties for its estimation, proposing multiple objective metrics to

his end. Egger et al. [14] show that user-perceived page load times

ay deviate from common technical metrics used to estimate page

oad times. Wang et al. [34] claim that in-browser computation

nd blocking Javascripts are significant factors affecting perceived

oE. Metrics such as the onLoad time or SpeedIndex have been

hown to be correlated with QoE metrics, such as users’ MOS

12,15] . Authors of [7] propose ByteIndex and ObjectIndex –
etrics based on the bytes delivered to the client to render a page.

uthors of [9] propose the Above-The-Fold metric to overcome

he limitations of the naive onLoad approach. This latter metric is

sed in combination with classical metrics to predict users’ MOS

n [12] . In the same direction as these previous works, PAIN pro-

ides a new metric to monitor the performance of websites that

e will show to correlate well with established objective metrics,

ut without requiring any client-side instrumentation. 

Past works targeting the ISP scenario require either DPI or

round truth from client browsers to train machine learning clas-

ifiers. Ibarrola et al. [18] build a network emulation system that

stimates QoE-related metrics when varying network conditions,

ased on data collected from volunteers. Shaikh et al. [27] study

he correlation between physical layer metrics and QoE. The au-

hors however use a page formed by a single object on an in-lab

estbed. A similar approach is used by Aggarwal et al. [4] , where

arefully instrumented mobile devices provide the ground truth to

rain models for predicting QoE parameters. 

Other works rely on DPI of the HTTP transactions to gather

nowledge about QoE-related metrics [16] . Balachandran et al.

5] create models to predict web QoE from passive measurements

n cellular networks examining the sequence of HTTP requests.

imilarly, some Sandvine’s products [26] build dependency graph

f web pages extracted from HTTP traffic traces to assess PLT, but

hey are limited to non-encrypted traffic. All these works are how-

ver outdated, since encryption is already the norm in the Internet

33] . 
oads, thus seamlessly operating with encrypted data carried over

TTPS. 

. The PAIN system 

PAIN is an unsupervised system composed by two blocks (see

ig. 3 ). The Model Learning module analyzes flow records exported

y monitoring devices and creates a model for each core domain of

nterest, i.e., it discovers and clusters support domains associated

o specific websites. It must be continuously updated to cope with

hanges in website structures. The PAIN Index Computation module

xtracts the actual performance index using the previously built

odels. All algorithms scale linearly with respect to the input size

i.e., number of flow records), and support scalable processing us-

ng big data approaches offered by Apache Spark. 

.1. Input data 

PAIN expects two inputs: (i) Flow records from traffic, and (ii)

he list of Core Domains of interest. 

Flow records are annotated with time and domain information:

iven a flow f , identified by client and server IP addresses, client

nd server port numbers and the transport-layer protocol, ts f , te f 
re the start and end timestamps, i.e., the time of the first and

ast packet of the flow. Each flow record must be enriched with

nformation about the server domain d requested by the client. 

Flow meters typically export information from the network

nd transport layers, missing the association between server IP

ddresses and domain names. To get the server domain, differ-

nt methods can be used. For example, DNS logs can be em-

loyed to extract queries/responses and annotate records in a post-

rocessing phase [6] . Equally, some flow meters export such infor-

ation on-the-fly directl y from the measurement point for popu-

ar protocols [17] . For instance, Deep Packet Inspection allows one

o extract the Server Name Identification (SNI) from encrypted TLS

ows, or the server Host: header from plain-text HTTP flows. 

The list of Core Domains is a user-defined list containing the set

f websites the ISP is interested in monitoring. Since PAIN oper-

tes with L4-level measurements and domains names, the analyst

ust specify only the domain names to be monitored, and not full

RLs. This allows PAIN to deal with encrypted traffic. Clearly, PAIN

annot monitor the performance of a single visit to specific web

ages. PAIN gains importance when monitoring popular websites

ccessed by large numbers of users in the network. 

.2. Model learning 

The Learning Module observes the timings of flows as seen in

he network traffic after a Core Domain. The first task is to learn

hich support domains are triggered by the core domain visit.

AIN learns that by focusing on the flows commonly occurring after

ore domains appearance in the network. 

Given that downloaded HTTP objects while rendering pages

ary from visit to visit (e.g., because of caching, persistent connec-

ions, modification in the content, personalized content etc.), PAIN

nalyzes the order in which groups of support domains typically

ppear. The rationale is that some support domains may be miss-

ng in a visit, while others may not be relevant for indicating the

ebsite performance (see Fig. 2 ). PAIN uses groups of support do-

ains to build models that are robust to such variations. 

The combination of these building blocks lets PAIN model the

ypical behavior of the websites hosted in a core domain. 
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Fig. 3. Architecture of PAIN. It learns and clusters support domains using flow records and a list of target core domains. The resulting groups are used to estimate perfor- 

mance. 

Fig. 4. Support domain learning: a flow to a core domain triggers a new observa- 

tion window, used to learn the support domain set S c . 

4.2.1. Support domains learning 

PAIN learns support domains based on the methodology we in- 

troduced in [30] . Let C be the set of core domains of interest pro- 

vided as input. PAIN training consists of learning the set of sup- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tion windows of c , leveraging a large number of OWs to get rid of 

noise. Algorithm 1 describes the procedure for updating F d, c and 

Algorithm 1 Process flows of a client updating F and maintain- 
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port domains S c , for each core domain c ∈ C . One possible solution

could be using active crawling, e.g., artificially visiting the pages

hosted at c and collecting domains being contacted. Unfortunately,

this does not work in practice because (i) the same service/website

changes when accessed from different location, time, browser, de-

vice etc., (ii) c may require authentication, or the usage of a specific

application, which complicates the crawling, and (iii) the approach

poses scalability issues. PAIN leverages instead data collected from

the network traffic itself to build and update the S c . 

The intuition is simple: When a client is observed opening a

flow to the core domain c , the domains of flows that follow shall

be considered within S c . However, not all flows are truly linked to

c , because the user may access multiple services at the same time

(e.g., multiple browser tabs), or because the user terminal may

contact unrelated services automatically (e.g., background software

updates). In addition, a single support domain may be shared by

multiple core domains, while a core domain itself may act as sup-

port domain for another services. 5 

Figure 4 reports a timeline of flows for a given client, and de-

picts the intuition behind PAIN learning. PAIN considers a flow f to

be a learning sample if its domain c ∈ C . In Fig. 4 , tall arrows are

identified as valid learning samples. 

When a flow to a core domain is observed, PAIN opens an Ob-

servation Window (OW) of duration �T . Domains of all flows ob-

served in �T become part of S ′ c , the candidates for forming S c . In

Fig. 4 , they are represented by short arrows sharing colors with

core domain flows. The longer �T , the more information is col-

lected, with chances of polluting S ′ c with false support domains.

Eventual core domains observed during �T will be considered can-

didate support domains too. PAIN keeps open a single observation

window per client during learning. 

PAIN avoids polluting S c by pruning candidate support domains

in S ′ c based on the frequency F d, c the domain d appears in observa-

5 Recall Fig. 1 : www.google.com is support domain for www.nytimes.com . How-

ever, it is a core domain for Google’s services. 
4

d, c 

ng the observation window. 

equire: 
f � The current flow
C = { c 1 , . . . } � The core domains
S ′ = { S ′ c 1 , . . . } � Candidate support domains for domains in C 

F = { F d,c 1 
. . . } � Frequency of candidate support domains

1: t = GetT ime () � Get current flow time
2: d ← parse ( f ) � Get the domain of f 
3: (t c , c) ← ow � Retrieve current ow if any
4: If ow � = ∅ ∧ t − t c ≥ �T then 
5: ow ← ∅ � Remove the ow if expired
6: If ow � = ∅ then � If an ow is open
7: S ′ c ← S ′ c ∪ { d} � Insert d in S ′ c 
8: F d,c + = 1 � Update F d,c 

9: else 
10: If d ∈ C then 
11: ow ← (t, d) � Open a new ow if d is a core domain

aintaining the observation window as flows of a client are pro-

essed during learning. 

Pruning of S ′ c is then performed: Actual support domains should

onsistently appear in multiple observation windows, whereas do-

ains related to background traffic, being present by chance,

hould be less frequent than support domains. PAIN gets the final

et of support domains S c based on F d, c and a threshold MinFreq

s follows: 

 c = { d | d ∈ S ′ c ∧ F d,c > MinF req } . (1)

MinFreq is calculated by PAIN directly from the data, observing

hat F d, c should approach 1 for actual support domains and 0 for

omains present in S ′ c by chance. PAIN searches for the MinFreq in

he interval [0 − 1] that minimizes the following error function: 

r r (MinF req ) = 

{∑ 

d∈ S ′ c | F d,c − 1 | i f F d,c ≥ MinF req ∑ 

d∈ S ′ c | F d,c − 0 | i f F d,c < MinF req 
(2)

n our experiments MinFreq results in the [0.4,0.5] range. 

Traffic from all clients contributes to S c , so that information is

ccumulated over time and in different conditions, i.e., identities,

rowsers, devices, configurations etc. 

.2.2. Support domain scores 

Intuitively, the timeline of support flows reflects the speed at

hich a website is loaded (recall Fig. 2 ). Page elements hosted by

hird-party sites (e.g., images and advertisements) are requested

fter other components of the page (e.g., scripts) are processed.

AIN leverages this behavior to calculate a score for d ∈ S c . The

core is higher for support domains appearing further away in time

rom the core domain c (e.g., right-most points in Fig. 2 ). 
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However, support domains varies from visit to visit or even 

among pages hosted in the website. S c is constructed from many 

observation windows and not all support domains appear in ev- 

ery observation window, e.g., due to caching and persistent con- 
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4.3. PAIN index computation 

The index computation module analyzes live traffic to provide 

a performance index. Like in the training phase, PAIN analyzes the 
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ections. Equally, nothing prevents browsers or mobile apps from

pening flows to third-parties in a different order while rendering

ages. 

To determine the score for each d i ∈ S c , PAIN computes a de-

endency matrix M c of order | S c | for each core domain c . Each

ell M c i, j 
represents the number of observations windows OW c in

hich the support domain d i has appeared after the support do-

ain d j in time. Note that M c i,i = 0 . Similarly, M c i, j 
= | OW c | only

f d i appears always after d j , and both d i and d j are in all observa-

ion windows for the core domain c . The score of d i is calculated

s: 

core (c, d i ) = 

∑ 

j 

M c i, j 
(3)

ote that score ( c, d i ) is high if d i appears often later in time

han other domains in the observations windows of c . Similarly,

t is lower if d i usually appear close in time to the core domain.

lgorithm 2 reports a pseudocode for the score calculation func-

lgorithm 2 Compute the scores of support domains for the core

omain c . 

equire: 
c � Core domain to be processed
S c � Support domains of c 
OW c � Observation windows for c 

1: M ∈ R | S c |×| S c | � Define the dependency matrix
2: for ow in OW c do � For each observation window
3: for d i in ow do � For each support domain in ow
4: for d j before d i in ow do � Supports before d i in time

5: if d i ∈ S c ∧ d j ∈ S c then 

6: M i, j + = 1 � Increment M i, j if supports are in S c 
7: end if 
8: end for 
9: end for 

10: end for 
11: for d i in S c do � Compute score for each support domain
12: score (c, d i ) = 

∑ 

j M i, j � Sum the row of M
13: end for 

ion. It processes one core domain at a time. PAIN computes the

ependency matrix M (lines 1–6), and, then, uses it to provide the

cores (lines 7–8). 6 

.2.3. Support domain grouping 

After scoring, PAIN identifies groups of support domains. By

lustering the support domains in some few groups, we filter out

he noise caused by missing support domains, besides creating

roups of domains that are strongly correlated to web perfor-

ance. 

More precisely, we sort d i ∈ S c in increasing order of score ( c, d i )

nd split the domains in n groups in G c , where groups have at

east | G c k 
| = 

⌊ | S c | 
n 

⌋ 

support domains. G c 1 will contain those sup-

ort domains that often appear the closest to the core domain

ow, wheres G c n will have the support domains that often appear

he furthest to the core domain. n is a parameter to be investi-

ated. 

The set G – i.e., groups of support domains for core domains C

is the output of the Model Learning module. 

6 In PAIN implementation, Algorithms 1 and 2 are both executed on-the-fly as

ew traffic comes into the system. 
5

raffic flows on a per-client basis, chronologically sorted by time.

hen it encounters a flow to a core domain c , it opens an obser-

ation window �T long. PAIN considers all support domain flows

enerated by the client within the OW, and accounts them to the

orresponding group. 

We measure the time at which flows in each group are ob-

erved. A visit to a group is considered complete when the last

ow in the group is observed. For each group G c i with i ∈ 1 , . . . , n ,

AIN calculates the index P i , equals to the time difference between

he starting of the last flow in the group i and the starting time

f the core domains c . Note that groups can be absent if none of

ts support domains is in OW . This can be typically caused by two

henomena: (i) The browser cache contains all the objects that are

osted on a particular domain and (ii) the browser already opened

 persistent connection toward the target domains. In this case, we

o not consider the sample. 

We tested different criteria in place of last per group (e.g., av-

rage and median) and all lead to worse results. The intuition is

hat the website performance is mainly driven by the ability of

he browser to obtain objects to render the pages, which corre-

ates well with the time late flows are observed in the network.

sing the last flow per group also highlights possible degradation

f specific servers involved in serving the content. 

The tuple P = { P 1 , . . . , P n } represents the performance index for

 given visit to the core domain c . By considering all visits from

ll clients to c , PAIN builds statistics on the performance faced by

lients. Due to the intrinsic noisiness of flow-level measurements,

AIN assumes relevance when multiple measures are aggregated to

ontrast different users, time periods or locations. 

.4. Design decisions, caveats and limitations 

The decision of making PAIN a completely unsupervised system

s motivated by our goal to monitor a vast range of websites. The

ystem is expected to receive only the list of core domains of inter-

st. It learns models directly from traffic, without requiring human

ntervention or any information collected at the client-side. 

Due to this design, PAIN does not directly provide MOS fig-

res, as reporting the MOS would require involving users directly.

owever, Section 6 will show that PAIN indexes have strong posi-

ive correlations with objective metrics (e.g., SpeedIndex ). These

etrics, in turn, present strong positive correlations to users’ MOS

12] . Even if these results do not prove PAIN is strongly correlated

o the MOS, they are a strong evidence that PAIN is also positively

orrelated with the MOS [22] . 7 

Other designs would be possible too, such as by using super-

ised algorithms. The system could train models from network

raffic assuming client-side metrics are present. Such a supervised

esign would result in a system that requires ground truth data

aptured at client-side for each core domain of interest. The super-

ised approach would allow one to predict the actual values for

bjective metrics, e.g., estimating OnLoad and SpeedIndex from

he traffic. We however argue that the absolute values of such met-

ics are far less useful than contrasting and monitoring the met-

ics across different users, conditions and time frames. PAIN is fully

ble to pinpoint variations in objective metrics (see Section 6.4 ) de-

pite not being able to estimate their absolute values. 

Moreover, the deployment of supervised alternatives requires

 resource-consuming test-bed, in which training should be per-

7 Given ρX, Y and ρY, Z , it possible to demonstrate that ρX, Z > 0 if ρ2 
X,Y + ρ2 

Y,Z > 1 .

his is condition is largely satisfied in our case. 
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Table 1 

Description of datasets. 

Dataset Size Collected on Collection environment 

SynthTypical 11 GB Testbed 10 websites, 4 (emulated) devices, 8 emulated typical access links 

SynthDegraded 11.4 GB Testbed 2 websites, 4 (emulated) devices, manually degraded access link conditions 

RealWorld 495 GB ISP network > 100 K websites, 10,0 0 0 ADSL installations, 1 year 

Table 2 

Browsers and emulated devices in the testbed. 

Browser Device Operating system 

Mozilla Firefox PC Windows 10 

Google Chrome PC Windows 10 

Google Chrome Nexus 7 Android 

Google Chrome iPad Mini iOS 

formed periodically for each monitored website. We have de- 

cided to follow the unsupervised approach, since it broaden the 

PAIN deployability and dramatically enhances training scalability. 

In Section 6.6 we consider a simple supervised approach and com- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Settings in the SynthTypical dataset. Native corre- 

sponds to a scenario with no traffic shaping. 

Name Down link Up link RTT 

Native 1 Gbit/s 1 Gbit/s native 

FIOS 20 Mbit/s 5 Mbit/s 4 ms 

Cable 5 Mbit/s 1 Mbit/s 28 ms 

DSL 1.5 Mbit/s 1 Mbit/s 50 ms 

LTE 12 Mbit/s 12 Mbit/s 70 ms 

3G Fast 1.6 Mbit/s 768 Kbit/s 150 ms 

3G 1.6 Mbit/s 768 Kbit/s 200 ms 

3G Slow 780 Kbit/s 330 Kbit/s 200 ms 

Table 4 

Support domains for websites in SynthTypical dataset, and fre- 

quency they appear after onLoad . 

Core domain Support domains After 

Min Median Max OnLoad 

www.corriere.it 30 57 137 2.2% 

www.ebay.it 2 50 223 40.5% 

www.gazzetta.it 25 58 138 6.5% 

www.ilmeteo.it 17 56 185 18.5% 

www.lastampa.it 14 34 81 8.7% 

www.meteo.it 27 52 91 6.6% 

www.mymovies.it 24 45 147 11.0% 

www.repubblica.it 27 53 216 23.0% 

www.subito.it 26 52 119 7.0% 

www.wordreference.com 2 14 68 6.0% 

Chrome running on PCs and we leverage Chrome’s features to em- 

ulate its use on a smartphone and on a tablet. 8 

We consider 8 access network technologies summarized in 

Table 3 . These are emulated by WebPageTest by imposing traffic 
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6

pare it to PAIN. We show that it brings limited benefits. 

5. Datasets 

In this section we describe our validation datasets. We employ

both synthetic datasets generated using a testbed, and real world

traces collected in an operational network. They are summarized

in Table 1 . 

5.1. Synthetic traces 

5.1.1. Testbed 

Synthetic traces produced in a testbed allow us to compare

PAIN to objective metrics directly collected in the browser. We in-

strument a PC with WebPageTest [3] , a tool for web performance

assessment. WebPageTest emulates networks based on DummyNet

[10] , a network emulation tool. Given a list of URLs, it automati-

cally navigates through each page while saving detailed statistics.

Many options are available, including the choice of client browser

(Chrome and Firefox), device (PCs, tablets and smartphones) and

network emulation (e.g., 3G, DSL and Cable). It thus provides the

means to emulate users’ browsing considering realistic clients and

network conditions. 

WebPageTest exports the HTTP Archive (HAR) [1] for each page

visit. It contains information about the visit as well as statistics

for each object: from HTTP-headers, to network-level statistics that

describe the TCP connections opened to download objects, includ-

ing the time in which the TCP connection starts, and the domain

associated with it. 

Additionally, WebPageTest computes many objective quality

metrics. Here, we consider the OnLoad and the SpeedIndex (see

Section 2 ). 

5.1.2. Synthetic datasets 

We build two datasets to validate PAIN, namely SynthTypical

and SynthDegraded , with respectively typical and degraded net-

work conditions. 

The SynthTypical dataset is built by letting WebPageTest visit

10 popular domains in Italy (listed in Table 4 ). For each domain,

WebPageTest visits the homepage and 9 internal pages for a total

of 100 pages. 

Since PAIN must work seamlessly regardless of client configu-

rations, we consider 4 different browser and device combinations,

which we summarize in Table 2 . We consider both Firefox and
haping policies that mimic actual parameters of the technologies.

he Native case has no shaping – i.e., the 1 Gbps Ethernet network

onnecting the testbed is used without changes. For other cases,

ummyNet enforces typical bandwidth and Round Trip Time (RTT)

aced by users of a given technology. 

We visit each page twice for each setup: (i) With empty

rowser cache; and (ii) few seconds later for profiting from

aching. The traffic is expected to vary strongly, since many ob-

ects are cached in the second case, complicating the identification

f support domains. In total, WebPageTest recorded 6 400 visits

hile building this first dataset (all visits have been completed in

bout 48 h). 

The second dataset, SynthDegraded , represents artificial con-

itions, in which we enforce link delay or bandwidth limits. We

imulate scenarios in which website performance decreases due to

orsening network conditions. We simulate 10 cases: (i) Adding

rom 100 ms to 500 ms extra per-packet delay and (ii) imposing

 limit from 2.5 Mbit/s to 312.5 kbit/s on uplink and downlink ac-

ess bandwidth. Again, we visit each page twice (cold and warm

ache) and with 4 browsers. For the sake of brevity, we performed

hese experiments for 2 websites only, namely www.repubblica.it

8 We skip other browsers such as Edge or Safari, as they are not available in the

inux version of WebPageTest. 
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and www.subito.it . WebPageTest has performed 8 0 0 0 visits for 

building this second dataset (completed in about 60 h). 

5.2. ISP flow traces 
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Table 5 

Similarity of support domain across different sub-pages and 

devices ( SynthTypical dataset). 

Core domain Support domains similarity 

Subpages Devices 

www.corriere.it 0.69 0.78 

www.ebay.it 0.16 0.68 

www.gazzetta.it 0.67 0.81 

www.ilmeteo.it 0.90 0.68 

www.lastampa.it 0.61 0.79 

www.meteo.it 0.87 0.66 

www.mymovies.it 0.69 0.59 

www.repubblica.it 0.56 0.74 

www.subito.it 0.82 0.58 

www.wordreference.com 0.89 0.41 

the websites in the SynthTypical dataset. For each website, we 

compute the Jaccard index similarity coefficient [21] for the sets 

of support domains contacted for each pair of sub-pages. Table 5 

reports the median values obtained for each websites. 
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This dataset includes flow summaries exported by Tstat [32] in

 real deployment. Tstat is a passive monitor able to collect rich

ow summaries. It exposes more than 100 metrics, including the

ypical ones exported by popular flow meters, such as server IP

ddresses contacted by clients, timestamps of the first packet in

ach flow and bytes counters per flow. Tstat associates flow records

o domain names requested by clients using the SNI information

rom TLS handshakes and by exploiting DNS traffic also observed

n the network [6] . 

We have instrumented a Point of Presence (PoP) of a European

SP, where ≈ 10, 0 0 0 ADSL customers are aggregated. The ISP pro-

ides us the access link speed of each ADSL customer. Moreover,

ach customer is provided a fixed IP address and, thus, by inspect-

ng the (anonymized) client IP addresses in our dataset, PAIN iso-

ates flows per ADSL installation and use them as the per-client

races. Each trace includes information about traffic of all users’

evices connected at home. 

We here consider data from the whole year 2017. Considering

nly HTTP and HTTPS flows, we obtain 15 billion flows related to

round 10 0,0 0 0 websites. This trace represents a realistic scenario

f a possible PAIN deployment. No ground truth about associations

f support and core domains is available in the dataset. 

. Validation 

.1. Support domains at a glance 

We first provide high-level statistics about support domains

see Table 4 ). We aim at complementing Fig. 2 , illustrating the

hallenges to extract knowledge from support domains and their

omplex relations with the page loading process. Table 4 lists the

ebsites in SynthTypical dataset. The 3rd column reports the me-

ian number of support domains across all visits: They vary from

ess than 20 to more than 50. The number and order at which sup-

ort domain flows are opened vary across visits (see 2nd and 4th

olumns of Table 4 ). More than that, support domains are often

ontacted after the OnLoad event has fired, e.g., due to browser

re-fetching or the presence of analytics scripts programmed to

un after the page is loaded. We quantify the percentage of these

ases in the 5th column of the table. Extreme is the case of

ww.ebay.it : More than 40% of connections are issued after the

rowser completed loading the page. 

These results already hint for the importance of PAIN group-

ng step. For example, if one would naively take the delay of the

ast support flow as a performance indicator, the obtained metric

ould likely have very low correlation with objective quality met-

ics observed at the client-side, as such metrics represent events

appening much earlier in time than late flows. 

.2. Support domains across sub-pages and devices 

PAIN aims at monitoring whole websites, represented by a core

omain. However, websites host many web pages, which may rely

n completely different support domains. Moreover, it is unclear to

hat extent the set of support domains remain similar when web-

ites are accessed from different devices. We now quantify these

ffects to verify whether PAIN could be applied in such diverse sce-

arios. 

We perform an analysis aiming at quantifying the variability of

upport domains in different scenarios. First, we compare the list

f support domains obtained when considering each sub-page of
If the Jaccard index is equal to one, the sets of support domains

re equal. We can see in the table that median values are indeed

igh for the evaluated websites. That is, sub-pages of these sites

sually share most support domains, e.g., with www.ilmeteo.it

eaching a 0.9 median similarity coefficient. Low values are ob-

erved for www.ebay.it (0.16), where manual inspection reveals

hat some sub-pages have a simpler structure, relying on a lower

umber of support domains. PAIN would fail to identify the groups

f support domains when people visit these simpler pages. It will

hus ignore these samples when calculating the performance met-

ic. 

We repeat the operation for the 4 emulated devices in the Syn-

hTypical dataset (recall Table 2 ). Overall, varying the device used

or accessing the web page does not affect the contacted support

omains. The lowest value is observed for www.wordreference.com

 where the median similarity coefficient is 0.41. As above, these

esults show that the set of contacted support domains is rather

table when varying devices, allowing PAIN to operate even if dif-

erent devices are connected to the monitored network. 

.3. Tuning of parameters �T and n 

We now tune the parameters �T and n . We rely on the Syn-

hTypical dataset. We vary each parameter while comparing the

AIN index to the metrics exposed by our testbed, i.e., onLoad and

peedIndex . Indeed, we want the PAIN index to be correlated

ith the objective metrics, since a high correlation with these met-

ics would suggest that PAIN is also correlated to the users’ MOS.

e quantify correlation using the Spearman’s rank correlation co-

fficient between PAIN index and objective metrics [28] . A Spear-

an coefficient higher than 0.5 is usually considered a strong cor-

elation indication. 

We first observe the impact of the observation window choice

 �T ) in Fig. 5 . Only the correlations between objective metrics and

he 3rd group of support flows (i.e., P 3 ) are shown to improve vi-

ualization. Notice in the figure that PAIN achieves high correlation

oefficients when �T increases. When �T value is larger than 30 s,

esults do not improve further. In a nutshell, PAIN is not very sen-

itive to �T . Provided that support domains are grouped, and each

roup is used to extract P i , PAIN index remains mostly unaffected,

ven if some support domains are not associated to the respec-

ive core domain because �T is expired. In the following, we set

T = 30 s. 

We next perform a similar analysis for n , the number of groups.

e report results for the SynthTypical dataset for onLoad and

peedIndex separately in Fig. 6 (a) and (b), respectively. Each row
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Fig. 5. Spearman Correlation of P 3 with onLoad and SpeedIndex when varying 

�T ( SynthTypical dataset). 

Fig. 6. Correlation of PAIN index with onLoad and SpeedIndex when varying 

the number of groups n ( SynthTypical dataset). 

j represents an experiment with a different n ∈ [1, 6]. The column 

i reports the correlation of P i when using n = j. For example, the 

left-most cell on the last row represents the correlation of P 1 with 

onLoad when using n = 6 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each point is the result of 80 runs, i.e., 10 pages × 4 browsers/OS 

× 2 repetitions, thus covering experiments for different browsers, 

sub-pages, etc. Even if omitted for improve visualization, results 

show low variability (computed as the interquartile range), always 
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PAIN is not very sensitive to n either, i.e., results always show

high correlation values. Some other interesting observations can be

extracted from the figures too. 

First, notice that for both onLoad and SpeedIndex the high-

est correlation is usually not achieved with the latest group for

n > 1. This result confirms our intuition from Fig. 2 , that flows

opened after the page has finished loading would decrease the cor-

relation between late groups of flows and the objective metrics.

Remind that we always take the arrival time of the last observed

flow in each group as performance metric. Using a small value of

n provides poor information. Considering multiple groups, on the

other hand, makes PAIN more robust to outliers. 

Second, comparing correlations with onLoad and

SpeedIndex for a single n , notice how the best correla-

tion is achieved with earlier groups (i.e., smaller i ) for the

SpeedIndex , in particular for large n . This is due to the fact that

the SpeedIndex is computed based on the visual progress of the

page, which is usually achieved earlier than the onLoad event.

Different PAIN groups correlate better with each metric. 

Finally, n = 4 seems to be a good trade-off for both metrics. P 2 
and P 3 are the groups correlated the most with objective quality

metrics when n = 4 , and in general, P i assumes more significance

when i is close to n . We take P 3 with n = 4 for the remaining ex-

periments. However, Fig. 6 shows that small variations of n and P i 
do not affect the results, and our experiments reinforce this claim.

6.4. Effects of network conditions 

We check whether PAIN can reflect worsening on network con-

ditions using the SynthDegraded dataset. Fig. 7 illustrates PAIN in-

dex values when varying delay and bandwidth to reach the two

websites in the dataset. Each point in the figure depicts the me-

dian value for the PAIN index over all tests with the given setup.
ower than 15% from the median. 

Consider Fig. 7 (a), which refers to www.repubblica.it and www.

ubito.it , when RTT ∈ [0, 500] ms . PAIN index increases alongside

he delay, starting from around 0.5 s and up to almost 10 s when

TT is 500 ms for www.repubblica.it . That is, P i reflects the net-

ork conditions and increases in case of degradation. Actual PAIN

ndex values are sometimes inverted from their original order for

xtreme values of RTT (e.g., P 3 larger than P 4 ). This happens be-

ause the order at which a browser opens connections towards

upport domains is subject to variations. Similarly, in Fig. 7 (a), P 1 
as a slightly lower value for 500 ms than for 400 ms. Indeed, this

onfirms that P 1 and P 2 are not as good as P 3 and P 4 as indicators

f the website conditions, reinforcing results of Fig. 6 . 

Similar considerations hold for Fig. 7 (b), which shows the im-

act of download link capacity. When the available bandwidth

s reduced, PAIN index increases. Observe that a bandwidth of

.25 Mbit/s already implicates performance degradation for www.

epubblica.it , while still no penalty is suffered by www.subito.it . 

In summary, results show that P i reflects the network condi-

ions, allowing ISPs to track degradation on the network that im-

acts website performance. 

.5. Comparison to objective metrics 

We have seen in Fig. 6 that PAIN index is correlated to objective

uality metrics. We now detail that analysis, by directly comparing

he values of P 3 to the SpeedIndex and onLoad . We set n = 4

nd �T = 30 s. Fig. 8 reports results obtained for a single website

n different scenarios. Similar figures are obtained for other cases.

gain, the figure reports median values over 80 runs. Fig. 8 (a) also

eports error bars that span over 25 th and 75 th percentiles. We use

his figure to illustrate the variability of our results, which we re-

all to be always limited to less than 15% of the median value. Sim-

lar results are obtained for the other two figures, but they are not

eported as the error bars would overlap and compromise read-

bility. 

Each point in Fig. 8 represents the median value for all visits

ith the given network condition. Since the metrics have different

bsolute values, we use the y -axis in the left-hand side to report

peedIndex and onLoad times, and the y -axis in the right-hand

ide to report values of the PAIN index. Thus, the figure shows

hether the metrics present similar rate of variation given changes

n the network conditions. 

Focusing on Fig. 8 (a) notice how the three metrics grow al-

ost linearly with the RTT. The rate of variation in PAIN (see blue

ine) is similar for SpeedIndex (green) and onLoad (red) ones.

hen varying the bandwidth in the degraded scenario ( Fig. 8 (b)),

he values of PAIN index change similarly to the rate observed for

nLoad time, but faster than SpeedIndex . PAIN is more sen-

itive to deterioration on the available capacity. Yet, results show

hat the PAIN index is directly related to the website performance.

bserve also that all three metrics are basically constant when the

andwidth is larger than 2.5 Mbit/s (see points in the left part of

he figure). That is, the web page performance is not affected when

 minimum bandwidth is available, and all three metrics reflect

uch behavior. Finally, Fig. 8 (c) reports the values for typical net-

ork scenarios. Again, we see similar patterns among the metrics,

ith the rate of variation of PAIN index in between the other met-

ics. 

In summary, results reinforce that the metrics are correlated,

nd they vary according to the network conditions similarly. Abso-
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Fig. 7. Median value of PAIN index when varying delay and bandwidth ( SynthDegraded dataset). 

Fig. 8. www.repubblica.it onLoad , SpeedIndex and P 3 for various setups ( SynthTypical and SynthDegraded datasets). (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

lute values are in different ranges, but they all reflect degradation 

in quality. 
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metrics. BestCheckpoint and BeaconCheckpoint are also posi- 

tively correlated to the objective metrics. For example, for www. 

gazzetta.it , they achieve 0.92 and 0.88, respectively. BestCheck- 

point is more strongly correlated to onLoad than PAIN. This is 
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.6. Comparison to alternative approaches 

We validate PAIN against two possible alternatives: 

(i) BestCheckpoint : We use a supervised mechanism to extract

 performance metric that tries to maximizes the correlation with

bjective metrics. Considering a training dataset and a core do-

ain c , we extract the delay to observe each support domain

 ∈ S c after all visits to c . Then, we compute the correlation coef-

cient between the delays for each s ∈ S c and the objective metrics

 SpeedIndex and onLoad ). We select the most correlated sup-

ort domain to serve as landmark. 

When evaluating new traffic, the delay to observe the landmark

s considered as the performance metric for the core domain. Note

hat this supervised approach requires per-site objective metrics at

raining time. 

(ii) BeaconCheckpoint : This approach has been proposed by

uthors of [20] . It consists in leveraging the analytics objects typi-

ally present in web pages to identify when page loading is com-

lete. The intuition comes from the fact that analytics services wait

or the browser to finish rendering the page before sending back

tatistics to the server. Here, we consider the Google Analytics script

hat uploads statistics to Google servers after the onLoad event is

red by the browser. After finding a flow to the core domain of in-

erest, we search the HTTP requests to Google Analytics URL. Note

hat such an approach requires non-encrypted traffic and works

nly for sites embedding analytics scripts (e.g., only present in 4

ebsites in SynthTypical ). 

The delay between the core domain flow and Google Analytics

equest is reported as performance metric. 

Fig. 9 shows the correlation of PAIN, BestCheckpoint and Bea-

onCheckpoint with SpeedIndex and OnLoad . BeaconCheck-

oint can be computed only for 4 websites. As we have seen be-

ore, PAIN correlation coefficients are positive and very high. Con-

idering onLoad in Fig. 9 (a), they range from 0.67 for www.ebay.it

o 0.90 for www.gazzetta.it . Most values are close to 0.8 for both
xpected because of the supervised approach. Yet, absolute dif-

erences are small, showing that PAIN can achieve similar perfor-

ance without the burdens of building ground truth for training

he models. 

Similar conclusions hold for SpeedIndex in Fig. 9 (b). PAIN

orrelations coefficient span from 0.55 for www.ilmeteo.it to 0.86

or www.gazzetta.it , with other metrics in similar ranges. 

Summarizing, PAIN index is strongly correlated with both objec-

ive metrics for different sites. PAIN achieves similar performance

han other approaches, which are however hardly feasible in real

eployments. 

.7. Learning duration and periodicity 

Next we investigate the number of observation needed to learn

upport domains, and for how long the models remain valid. This

nformation defines the duration and periodicity of PAIN learning.

ince PAIN is unsupervised, it learns models directly from live traf-

c. Large learning periods should help creating robust models. On

he other hand, sites may change over time invalidating the mod-

ls. 

We first evaluate how the size of the learning sample impacts

AIN. We perform experiments with the RealWorld dataset. Since

e aim at checking how the models behave in large samples and

ong periods, we focus on the top-100 ranked sites in Italy by

lexa. 

In Fig. 10 , we let PAIN learn support domains with an increasing

umber of observations per core domain. We then compare the se-

ected support domains with the set obtained with the largest ob-

ervation period – i.e., when all core domains have been observed

t least 10,0 0 0 times. The y -axis reports how similar the two sets

re using the Jaccard similarity coefficient [21] . Clearly, the right-

ost point has value 1 (perfect similarity). Other points confirm

hat the larger the observation period is, the more stable the sets
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Fig. 9. Correlation of PAIN, BestCheckpoint and BeaconCheckpoint with objective metrics ( SynthTypical dataset). 

Fig. 10. Support domains for increasing number of observations per core domain, 

compared to 10,0 0 0 observations ( RealWorld ). 

Fig. 11. Support domains over the months of a year ( RealWorld ). 

become. Indeed, after some thousand observations the similarity 

reaches almost a plateau, with the Jaccard coefficient at around 

0.80 with 5,0 0 0 observations. This figure suggests that some thou- 

sand observations are sufficient to learn stable sets of support do- 

 

 

 

 

 

 

 

 

 

 

 

 

 

these results suggest that continuously updating support domains 

is advisable to retain PAIN performance. 

In summary, PAIN benefits from a large number of observa- 

tions to learn models of support domains for the websites. Few 
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mains. 

A question still remains: How often should PAIN learning be

performed? Performing learning sporadically may let models get

outdated and reduce the metrics precision. We quantify this phe-

nomenon in Fig. 11 . We let PAIN run on the RealWorld dataset

using the previous subset of domains, learning support domains

separately for each month. Then, we compare the learned sets at

each month with those learned during the January 2017. Again, we

use the Jaccard coefficient as similarity metric. 

The figure shows that support domains learned on February

have a 0.77 similarity coefficient with those learned on January.

The similarity decreases to 0.69 on March, and finally to 0.36 on

November. It is clear that even in short periods, e.g., a couple of

months, the learned support domains diverge significantly. While

PAIN grouping approach partly compensates for such variations,
housands of samples per core domain seem sufficient to bootstrap

he system. On the other hand, learning must be continuous, with

odels being updated to avoid using outdated sets of support do-

ains. 

. Case studies 

We now report our experience when using PAIN in a real

eployment. We exploit the RealWorld dataset, containing flow-

evel measurements of around 10,0 0 0 ADSL customers over one

ear. More concretely, we run PAIN to understand (i) whether

eb browsing performance changes for different ADSL installa-

ions; (ii) the impact of large server-side events on users’ expe-

ience. 

PAIN learns the models on the RealWorld dataset on a per-

onth basis. We focus on the top-100 Alexa rank for Italy. PAIN

s set with n = 4 , �T = 30 s. 

.1. Performance per ADSL capacity 

For ISPs, it is important to understand the impact of access

ink capacity on web browsing. For example, ISPs are interested

n knowing whether users with poor connectivity are significantly

mpaired while surfing the Web, e.g., to propose upgrades to such

sers. PAIN allows ISPs to estimate how objective metrics (i.e.,

nLoad and SpeedIndex ) vary across users, even if these met-

ics are not measurable with passive monitoring. 

We know the download access link capacity of each ADSL in-

tallation in the RealWorld dataset. We thus divide users in three

ategories: (i) slow ( < 4 MBit/s), (ii) medium (4–12 Mbit/s) and

iii) fast ( > 12 Mbit/s). We then compute PAIN P 3 for users of each

roup. 

Results for two news websites in Italy are reported Fig. 12 . For

ww.lastampa.it ( Fig. 12 (a)), distributions are clearly not overlap-

ing. PAIN index decreases significantly when the access capac-

ty increases. Indeed, the median value moves from 9.6 s for slow

sers to 4.3 s for fast users. For www.repubblica.it ( Fig. 12 (b)), dif-

erences across users are even more pronounced. PAIN index me-

ian value is 12.3 s for slow users and 5.1 s for fast users. 

These results allow quantifying the role of access capacity on

age load time in the real world, where previous experiments re-

ied only on testbeds [23,24] . 
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Fig. 12. Distribution of PAIN P 3 index according to the access-link capacity for all visits in RealWorld dataset. 

Fig. 13. PAIN index for www.poste.it over 1 month ( RealWorld ). 

Fig. 14. PAIN index trend for www.repubblica.it before and after website restruc- 

turing ( RealWorld ). 

7.2. Impairments due to server-side events 

ISPs can rely on PAIN index to monitor anomalies causing real 

impact on users’ performance. To this end, we illustrate some no- 
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iceable episodes emerging from the RealWorld dataset. We let

AIN run on the entire dataset for the top-100 Alexa services.

e then manually went through the obtained time series to find

pisodes worth of attention, such as abrupt changes in PAIN index.

rominent cases have been further investigated, to uncover possi-

le reasons behind the sudden changes. 

Fig. 13 reports an episode related to www.poste.it , the website

f the Italian national mail service. On January 18th 2017, the me-

ian PAIN index incurs sudden increase: The median value for P 3 
rows from the [4,6] s range to the [8,10] s range, while median P 4 
ncreases from [8,10] s to [10,12] s ranges (see y -axis the figure). 

Investigating the root-cause for this change in behavior, we dis-

overed that the website switched all services to HTTPS on that

ate. As such, the additional load imposed to both servers and

lients is likely causing a performance impairment. 

Fig. 14 depicts a second prominent episode uncovered by PAIN,

elated to www.repubblica.it . Recall that this site hosts a major

talian news portal. The website passed a major reorganization of

ayout and content on 27th February 2017. The portal claimed at

he time that the reorganization would lead to performance im-

rovements for its users. 

PAIN is able to measure the website performance before and

fter the restructuring. Fig. 14 depicts P 3 and P 4 evolution in time.

1

hile P 4 from ≈ 11 s to ≈ 9 s. 9 

In summary, these case studies illustrate how PAIN can be used

o spot changes in websites performance, due to intrinsic charac-

eristics of the network or external events (e.g., websites modifica-

ions). PAIN can be used to trigger alerts in case of sudden changes

n performance, driving ISPs to further investigate the problems

hat are relevant to users’ experience. 

. Conclusions 

We presented PAIN, an automatic and unsupervised system

o monitor website performance using flow-level measurements,

nd release it as open source. PAIN builds a behavioral model

or the websites’ traffic, leveraging flows automatically opened by

rowsers to retrieve images, scripts etc. The model is used for as-

essing performance. 

We validated PAIN by showing that it can highlight sudden per-

ormance deterioration due to changes on network conditions. We

howed that PAIN metrics are strongly correlated with well-known

bjective metrics used as indication of users’ QoE, i.e., onLoad
ime and SpeedIndex . Moreover, we showed that PAIN perfor-

ance is similar to supervised alternatives, which are however

arder to be deployed in practical scenarios. 

Finally, we deployed PAIN in an ISP network for one full

ear. PAIN allowed us to quantify website performance differences

cross customers with different access link capacities. Moreover,

AIN pinpointed sudden performance variations for websites that

ncurred restructuring. 
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